# Rangkuman-Materi-Matematika-kelas IV-SD.pdf

• View
1.850

609

Embed Size (px)

Citation preview

• By KAFFAH 2014

Nama :

Alamat :

Kelas :

• 1

DAFTAR ISI

DAFTAR ISI.................................................................................................................................. 1

OPERASI HITUNG BILANGAN ............................................................................................... 2

A. Mengidentifikasi Sifat Operasi Hitung ............................................................................ 2

B. Bilangan Ribuan ............................................................................................................... 2

C. Perkalian dan Pembagian Bilangan .................................................................................. 3

D. Operasi Hitungan Campuran ............................................................................................ 4

E. Pembulatan dan Penaksiran .............................................................................................. 5

KELIPATAN DAN FAKTOR BILANGAN .............................................................................. 7

A. Kelipatan Bilangan ........................................................................................................... 7

B. Faktor Bilangan ................................................................................................................ 7

C. Bilangan Prima ................................................................................................................. 7

D. KPK dan FPB ................................................................................................................... 8

PENGUKURAN .......................................................................................................................... 10

A. Pengukuran Sudut .......................................................................................................... 10

B. Satuan Waktu ................................................................................................................. 11

C. Satuan Panjang ............................................................................................................... 12

D. Satuan Berat ................................................................................................................... 13

E. Satuan Kuantitas ............................................................................................................. 14

SEGITIGA DAN JAJARGENJANG ........................................................................................ 16

A. Keliling dan Luas Segitiga ............................................................................................. 16

B. Keliling dan Luas Jajargenjang ...................................................................................... 17

BILANGAN BULAT .................................................................................................................. 18

A. Mengenal Bilangan Bulat ............................................................................................... 18

B. Operasi Bilangan Bulat .................................................................................................. 19

BILANGAN PECAHAN ............................................................................................................ 21

A. Mengenal Pecahan dan Urutanya ................................................................................... 21

B. Menyederhanakan Pecahan ............................................................................................ 21

C. Penjumlahan dan Pengurangan Pecahan ........................................................................ 22

D. Menyelesaikan Masalah Pecahan ................................................................................... 23

BILANGAN ROMAWI .............................................................................................................. 24

A. Menagenal Lambang Bilangan Romawi ........................................................................ 24

B. Membaca bilangan Romawi ........................................................................................... 24

BANGUN RUANG DAN BANGUN DATAR .......................................................................... 25

A. Bangun Ruang Sederhana .............................................................................................. 25

B. Jaring-Jaring Kubus dan Balok ...................................................................................... 26

C. Mengenal Bangun Datar Simetris .................................................................................. 27

D. Pencerminan Bangun Datar ............................................................................................ 27

DAFTAR PUSTAKA .................................................................................................................. 28

• 2

Operasi Hitung Bilangan

A. Mengidentifikasi Sifat Operasi Hitung

1. Sifat pertukaran atau komutatif. a + b = b + a Contoh: 4 + 2 = 2 + 4

a b = b a Contoh: 4 2 = 2 4

Sifat komulatif tidak berlaku pada operasi pengurangan dan pembagian

Misalkan :

8 2 = 6 dan 2 8 = -6

8 : 2 = 4 dan 2 : 8 = 0,25

Jadi, 8 : 2 2 : 8

2. Sifat pengelompokan atau asosiatif.

(a + b) + c = a + (b + c) Contoh: (2 + 3) + 4 = 2 + (3 + 4)

(a b) c = a (b c) Contoh: (2 3) 4 = 2 (3 4)

3. Sifat penyebaran atau distributif.

a (b + c) = (a b) + (a c) Contoh: 10 (2 + 3) = (10 2) + (10 3)

a (b c) = (a b) (a c) Contoh: 5 (6 2) = (5 6) (5 2)

1. ... + 25 = 25 + 138

2. 70 x ... = 23 x 70

3. 7 x (6 x ...) = (7 x 6) x 4

4. ... x ( 5 + 31) = (16 x 5) + (16 x ...)

5. 20 x (14 - ... ) = (... x 14) ( 20 x 5

B. Bilangan Ribuan

1. Mengenal Bilangan Ribuan

Bilangan yang terdiri dari 4 angka disebut bilangan ribuan.

Contoh: Bilangan 1.365

Angka Nilai Tempat Nilai Angka

1 Ribuan 1.000

3 Ratusan 300

6 Puluhan 60

5 Satuan 5

• 3

Bilangan 1.365 dibaca seribu tiga ratus enam puluh lima. Jika dijumlahkan semua

nilai angka pada kolom ketiga tabel di atas,akan diperoleh bentuk penjumlahan sebagai

berikut:

1.365 = 1.000 + 300 + 60 + 5

Bentuk penjumlahan dari nilai-nilai angka disebut bentuk panjang dari suatu bilangan.

2. Membandingkan dan Mengurutkan Bilangan

Untuk membandingkan dua bilangan, kita bandingkan masing-masing angka dari kedua

bilangan yang mempunyai nilai tempat sama dimulai dari angka yang paling kiri.

Contoh: 5.438 > 2.532 6.345 > 6.342

1. Baca dan tuliskan bilangan berikut ini

a. 9.038

b. Empat ribu seratus dua puluh satu

2. Nilai tempat 3 pada bilangan 1.304 adalah . . . .

3. Angka . . . . pada bilangan 5.127 mempunyai nilai 100.

4. Bandingkan bilangan-bilangan berikut dengan memberi tanda (>), (

• 4

2. Operasi Pembagian

Pembagian diartikan sebagai pengurangan yang berulang oleh bilangan pembagi terhadap

bilangan yang dibagi. Pembagian dapat dibedakan menjadi 2, yaitu:

a. Pembagian tanpa sisa

Contoh : 20 : 5

20 5 = 15

15 5 = 10

10 5 = 5

5 5 = 0

Hasil akhir pengurangan tersebut adalah 0. Pembagian tersebut dinamakan pembagian

tanpa sisa dan pengurangan dilakukan sebanyak empat kali. Jadi dapat dituliskan: 20 :

5 = 4

b. Pembagian Bersisa

Contoh : 20: 6

20 6 = 14

14 6 = 8

8 6 = 2

Hasil akhir pengurangan tersebut adalah 2 (artinya pembagian tersebut bersisa 2).

Pembagian tersebut dinamakan pembagian bersisa dan pengurangan dilakukan

sebanyak tiga kali. Jadi dapat dituliskan: 20 : 6 = 3 (sisa 2) =

. Bentuk tersebut

dinamakan pecahan campuran.

D. Operasi Hitungan Campuran

Contoh :

a. 695 500 + 75 = (695 500) + 75

= 195 + 75

= 270

b. 450 : 75 16 = (450 : 75) 16

= 6 16

= 96

c. 196 5 25 = 196 (5 25)

= 196 125

= 71

d. (640 + 360) : 10 = (640 + 360) : 10

= 1.000 : 10

= 100

Operasi penjumlahan dan pengurangan adalah setingkat. Urutan pengerjaannya mulai

dari kiri.

Operasi perkalian dan pembagian adalah setingkat. Urutan pengerjaannya mulai dari

kiri.

Operasi hitung perkalian dan pembagian harus didahulukan daripada penjumlahan dan

pengurangan.

Jika dalam operasi hitung campuran terdapat tanda kurung, maka operasi hitung yang

di dalamnya dikerjakan paling awal.

• 5

1. 1243 + 61 48 = ...

2. 6.844 : 4 1235 = ...

3. 360 : (18 + 12) = ...

4. (450 + 175) : 25 = ...

5. 25 12 50 + 500 : 2 = ...

E. Pembulatan dan Penaksiran

1. Pembulatan Bilangan

a. Pembulatan bilangan satuan terdekat.

Perhatikan angka pada persepuluhan (di belakang koma).

Jika angka tersebut kurang dari 5 (1, 2, 3, 4), maka bilangan dibulatkan ke bawah.

Jika angka tersebut paling sedikit 5 (5, 6, 7, 8, 9), maka bilangan dibulatkan ke atas.

Contoh : 3,6 dibulatkan menjadi 4

b. Pembulatan bilangan puluhan terdekat.

Jika angka tersebut kurang dari 5 (1, 2, 3, 4), maka bilangan dibulatkan ke bawah.

Jika angka tersebut paling sedikit 5 (5, 6, 7, 8, 9), maka bilangan dibulatkan ke atas.

Contoh : 47 dibulatkan menjadi 50

2. Menaksir Hasil Operasi Hitung Dua Bilangan

Ada tiga macam cara menaksir hasil operasi hitung, yaitu taksiran atas, taksiran bawah,

dan taksiran terbaik.

a. Taksiran Atas

Taksiran atas dilakukan dengan membulatkan ke atas bilangan-bilangan dalam operasi

hitung.

Contoh :

Tentukan hasil dari operasi hitung 22 58.

Penyelesaian :

Karena taksiran atas, maka setiap bilangan dibulatkan ke atas.

22 dibulatkan ke atas menjadi 30

58 dibulatkan ke atas menjadi 60

b. Taksiran Bawah

Taksiran bawah dilakukan dengan membulatkan ke bawah bilangan-bilangan dalam

operasi hitung.

Contoh:

Tentukan hasil taksiran bawah dari operasi hitung 22 58

Penyelesaian:

Karena ini taksiran bawah, maka bilangan dibulatkan ke bawah.

• 6

22 dibulatkan ke bawah menjadi 20

58 dibulatkan ke bawah menjadi 50

c. Taksiran terbaik dilakukan dengan membulatkan bilangan-bilangan dalam operasi

Contoh:

Tentukan hasil taksiran terbaik dari operasi hitung 22 58

Jawab:

1. Bulatkan bilangan berikut ke satuan terdekat.

a. 3,2 dibulatkan menjadi . . . .

b. 6,9 dibulatkan menjadi . . . .

2. Bulatkan bilangan berikut ke puluhan terdekat.

a. 46 dibulatkan menjadi . . . .

b. 52 dibulatkan menjadi . . . .

3. Bulatkan bilangan berikut ke ratusan terdekat.

a. 146 dibulatkan menjadi . . . .

b. 423 dibulatkan menjadi . . . .

• 7

Kelipatan dan Faktor Bilangan

A. Kelipatan Bilangan

1. Menentukan Kelipatan Suatu Bilangan

Contoh : Tentukan kelipatan dari 2

Penyelesaian:

2 = 2 = 2 1

4 = 2 + 2 = 2 2

6 = 4 + 2 = 2 3

8 = 6 + 2 = 2 4

10 = 8 + 2 = 2 5 dan seterusnya

Ternyata bilangan-bilangan tersebut diperoleh dengan menambahkan 2 dari bilangan

sebelumnya atau mengalikan 2 dengan bilangan 1, 2, 3, 4, 5, dan seterusnya. Jadi kelipatan

dari 2 yaitu : 2,4,6,8,10 dst.

2. Kelipatan Persekutuan Dari Dua Bilangan

Kelipatan persekutuan dari dua bilangan adalah kelipatan-kelipatan dari dua bilangan

tersebut yang bernilai sama.

Contoh: Tentukan kelipatan persekutuan dari 3 dan 4!

Penyelesaian :

Kelipatan 3 : 3,6,9,12,15,18,21,24,27,30,...

Kelipatan 4 : 4,8,12,16,20,24,28,32,36,40,...

Bilangan-bilangan yang sama dari kelipatan kedua bilangan tersebut adalah 12,24,.... .

Jadi 12,24,... merupakan kelipatan persekutuan dari 3 dan 4.

B. Faktor Bilangan

1. Menentukan Faktor Suatu Bilangan

Faktor adalah pembagi dari suatu bilangan,yaitu bilangan yang membagi habis bilangan

tersebut.

Contoh: faktor dari bilangan 8 adalah 1, 2, 4, dan 8.

2. Faktor Persekutuan Dari Dua Bilangan

Yaitu faktor-faktor dari dua bilangan tersebut yang bernilai sama.

Contoh: Tentukan faktor persekutuan dari 4 dan 12

Penyelesaian :

Faktor 4 = 1,2,4

Faktor 12 = 1,2,3,4,6,12

Jadi, faktor persekutuan dari 4 dan 12 adalah 1, 2 dan 4

C. Bilangan Prima

Bilangan prima adalah bilangan yang hanya mempunyai 2 faktor, yaitu bilangan 1 dan

bilangan itu sendiri.

Contoh: 2 merupakan bilangan prima karena hanya mempunyai dua faktor yaitu 1 dan 2.

3 merupakan bilangan prima karena hanya mempunyai dua faktor yaitu 1 dan 3.

5 merupakan bilangan prima karena hanya mempunyai dua faktor yaitu 1 dan 5

• 8

D. KPK dan FPB

1. Menentukan Kelipatan Persekutuan terKecil ( KPK) Kelipatan persekutuan terkecil (KPK) dari dua bilangan adala kelipatan persekutuan

bilanganbilangan tersebut yang nilainya paling kecil.

Contoh : Tentukan KPK dari 4 dan 12

Penyelesaian :

Kelipatan 4 = 4, 8, 12,16, 20,24, 28,32, 36,40,

Kelipatan 12 = 12, 24, 36, 48,

Kelipatan persekutuan dari 4 dan 12 adalah 12,24, 36,...

2. Menentukan Faktor Persekutuan terBesar (FPB)

Kelipatan persekutuan terbesar (FPB) dari dua bilangan adalah faktor persekutuan

bilangan-bilangan tersebut yang nilainya paling besar.

Contoh: Tentukan FPB dari 4 dan 12:

Penyelesaian :

Faktor 4 = 1,2,4

Faktor 12 = 1,2,3,4,6,12

Faktor persekutuan dari 4 dan 12 adalah 1,2,4

3. Menyelesaikan Masalah KPK dan FPB dalam Kehidupan Sehari-hari Menyelesaikan Masalah KPK

Contoh :

Lampu A menyala setiap 6 menit sekali dan lampu B menyala setiap 8 menit sekali. Jika

saat ini kedua lampu menyala secara bersamaan, dalam berapa menit kedua lampu

tersebut menyala secara bersamaan lagi?

Penyelesaian :

Soal tersebut diselesaikan dengan cara menetukan KPK dari 6 dan 8.

Kelipatan 6 = 6,12,18,24,30,36,42,48...

Kelipatan 8 = 8,16,24,32,40,48,...

KPK = 24

Jadi kedua lampu tersebut menyala secara bersamaan lagi setiap 24 menit.

Menyelesaikan Masalah FPB Contoh :

Dalam rangka merayakan hari ulang tahunnya, Ema membagikan 75 buku tulis dan 50

pensil kepada anak-anak yatim piatu. Setiap buku tulis dan pensil akan dibagikan

kepada anak-anak dengan jumlah yang sama banyak.

a. Berapa anak yatim yang bisa mendapatkan buku tulis dan pensil?

b. Berapa buku tulis dan pensil untuk masing-masing anak?

Penyelesaian :

a. Untuk mengetahui berapa anak yatim yang mendapat buku tulis dan pensil,maka

ditentuka FPB dari 75 dan 50.

Faktor dari 75 = 1,3,5,15,25,75.

Faktor dari 50 = 1,2,5,10,25,50.

FPB = 25

• 9

b. Banyaknya buku tulis untuk setiap anak = 75 : 25 = 3 buku

Banyaknya pensil untuk setiap anak = 50 : 25 = 2 pensil

1. Kelipatan 9 kurang dari 50 adalah . . .

2. KPK dari 28 dan 36 adalah . . .

3. Faktor persekutuan dari 39 dan 48 adalah . . .

4. FPB dari 60 dan 72 adalah . . .

5. Abid dan Marbun bermain peluit. Abid meniup peluit setiap 24 detik, sedangkan

Marbun meniup peluit setiap 14 detik. Setiap berapa menit mereka berdua meniup peluit

secara bersamaan?

6. Ibu Abid membuat 72 kue donat dan 84 kue bolu. Kuekue itu akan dikemas ke dalam

toples. Setiap kue mengisi toples sama banyak.

a. Berapa paling banyak toples yang dibutuhkan?

b. Berapa kue donat dan kue bolu yang mengisi setiap toples?

• 10

PENGUKURAN

A. Pengukuran Sudut

Sudut terbentuk oleh adanya dua ruas garis yang saling berpotongan, dan titik perpotongan

dua ruas garis disebut sudut.

1. Jenis Sudut

Sudut lancip yaitu sudut yang besarnya kurang dari 90

Sudut Tumpul yaitu sudut yang besarnya lebih dari 90

Sudut Berpenyiku ( Siku-siku ) yaitu sudut yang besarnya 90

Sudut Berpelurus yaitu sudut yang besarnya 180

2. Sudut yang ditunjukkan oleh jam dan Arah mata angin.

Sudut yang ditunjukkan oleh jam

Sudut yang ditunjukkan oleh Arah mata angin

Contoh

1. Berapa besar sudut kedua jarum pada pukul 04.00?

Jawab:

Jarak antara dua jarum jam = 4 bagian.

Pukul 04.00 = 4 x 30= 120.

Jadi, sudut kedua jarum pada pukul 04.00 = 4 x 30= 120

Catatan

Sudut yang dibentuk oleh

setiap arah mata angin

sebesar 45

90

30 Catatan Besar sudut yang dibentuk oleh satu

putaran penuh( satu jam) adalah 360 Besar sudut yang dibentuk pada setiap

angka jarum jam (setiap 5 menit) yaitu 30 Besar sudut yang dibentuk setiap menit

yaitu 6 ( dari 30 : 5= 6)

Sudut lancip Sudut tumpul Sudut berpenyiku Sudut berpelurus

• 11

2. Berapa besar sudut kedua jarum pada pukul 02.30?

Jawab:

Jarum pendek di tengah antara angka 2 dan 3.

Jarak antara dua jarum jam = 3

bagian.

Pukul 02.30 = 3

x 30= 105

1. Marbun berjalan ke arah selatan kemudian berbelok 90 ke kanan. Sekarang Marbun

berjalan ke arah . . . .

menghadap selatan. Menik berputar membetuk sudut sebesar . . .

3. Berapa besar sudut yang dibentuk oleh jarum jam saau menunjukkan pukul 02.00?

B. Satuan Waktu

1. Menentukan Hubungan antar Satuan Waktu

Catatan : Setiap 4 tahun sekali dalam 1 tahun ada 366 hari disebut tahun kabisat.

Contoh :

a. 3 menit = . . . . detik

1 menit = 60 detik

3 menit = 3 60 detik = 180 detik

Jadi, 3 menit = 180 detik

b. 4 dasawarsa + 3 windu = . . . . tahun

4 dasawarsa = 2 10 tahun = 40 tahun

3 windu = 3 8 tahun = 24 tahun

Jadi, 2 dasawarsa + 3 windu = 40 tahun + 24 tahun = 64 tahun

1 menit = 60 detik 1 tahun = 365 hari

1 jam = 60 menit 1 abad = 100 tahun

1 jam = 3600 detik 1 windu = 8 tahun

1 minggu = 7 hari 1 triwulan = 3 bulan

1 bulan = 30 hari 1 semester = 6 bulan

1 bulan = 4 minggu 1 catur wulan = 4 bulan

1 tahun = 12 bulan 1 lustrum = 5 tahun

1 tahun = 52 minggu 1 dasawarsa = 10 tahun

1 hari = 24 jam

• 12

2. Menyelesaikan Masalah Berkaitan dengan Satuan Waktu Contoh :

a. Sebuah bus berangkat dari Jakarta pukul 06.30. Bus tersebut menuju kota Bandung

dengan lama perjalanan 3 jam 45 menit. Pukul berapa bus sampai di Bandung?

Penyelesaian :

Bus berangkat pukul : 06.30

Lama perjalanan : 03.45

+

Bus sampai tujuan 09.75

Karena 1 jam hanya 60 menit, maka 09.75 dituliskan 10.15

Jadi, bus dari Jakarta tersebut sampai di Bandung pukul 10.15

b. Di tahun 2007, usia Marbun

usia ayahnya. Jika ayah Marbun lahir tahun 1971, tahun

berapakah Marbun lahir?

Penyelesaian:

Ayah Marbun lahir tahun 1971, maka pada tahun 2007 usia beliau adalah 2007 1971 =

36 tahun.

Usia Marbun =

x usia ayahnya

=

x 36 tahun

= 9 tahun

Tahun kelahiran Marbun = 2007 9 = 1998

1. 3 jam + 20 menit + 20 detik = ... detik

2. 5 windu + 3 dasawarsa = . . . . tahun

3. Sewindu lagi usia Ema 18 tahun. Berapa tahun usia Ema sekarang?

4. Kecuali hari Minggu, setiap hari Abid belajar selama 2 jam. Berapa menit Abid belajar

dalam seminggu?

5. Ayah bekerja dari pukul 07.30 pagi sampai pukul 05.00 sore setiap hari. Hari Sabtu dan

Minggu ayah libur. Berapa jam ayah bekerja dalam seminggu?

C. Satuan Panjang

1 km = 10 hm

1 hm = 10 dam

1 dam = 10 m

1 km = 1.000 m

1m = 10 dm

1 dm = 10 cm

1 cm = 10 mm

1m = 100 cm

1m = 1.000 mm

• 13

Contoh :

a. 3 km = . . . . m

1 km = 1.000 m

3 km = 3 1.000 m = 3.000 m

b. 7.500 cm = . . . . m

7.500 cm =

= 75 m

c. 3 km + 2 hm = . . . . dam

3 km = 300 dam

2 hm = 20 dam

3 km + 2 hm = 300dam + 20dam = 320

dam

d. Ali dan Amir akan bermain layang-layang. Ali mempunyai tali yang panjangnya 12 m dan

Abid mempunyai tali yang panjangnya 1.000 cm. Berapa meter selisih panjang tali marbun

dan Abid?

Diketahui : tali Ali : 12 m

tali Amir : 1000 cm

Ditanyakan : Selisih panjang tali Ali dan Amir?

Jawab : 12 m 1000 cm = ... m

12 m = 12 m

1000 cm = 1000: 100 = 10 m

Selisih panjang tali Ali dan Amir yaitu 12 m 10 m = 2 m

1. 4 hm + 5 dm = . . . . dm

2. 65 dam + 235 dm = . . . . cm

3. 550 dam + 20 mm = ... cm

4. Rumah Marbun 0,5 km di utara rumah Abid. Rumah Ema 300 m di selatan rumah Abid.

Berapakah meter jarak rumah Marbun dan rumah Ema

5. Menik dan ibunya pergi belanja ke toko. Mereka membeli benang jahit warna putih 2 m,

warna hitam 25 dm, dan warna biru 100 cm. Berpa meter panjang benang jahit yang

dibeli Menik dan ibunya?

D. Satuan Berat

Catatan

1 ton = 1000 kg

1 kwintal = 100 kg

1 kg = 2 pon

1 pon = 5 ons

1 ons = 1 hg

• 14

Contoh :

a. 20 kg = ...g

1 kg = 1000 g

Jadi 20 kg = 20 x 1000 = 20.000 g

b. 100 ons =...g

100 ons = 100 x 100 = 10.000 g

c. 6000 g = ... kwintal

6000 g = 6000 : 1000 = 6 kg

6 kg = 6 : 100 = 0,06 kwintal

Jadi, 6000 g = 0,06 kwintal

d. Setiap hari ada 8 truk yang melewati jalan raya di dekat rumah Riza. Setiap truk memuat

15 kelapa. Berapa ton jumlah kelapa yang dibawa 8 truk tersebut setiap hari?

Penyelesaian :

Ada 8 truk yang lewat setiap hari. Setiap truk memuat 15 kuintal kelapa. Sehingga jumlah

kelapa yang dibawa yaitu:

8 15 kuintal = 120 kuintal

120 kuintal = 12 ton

1. 2 kuintal + 4 kg = . . . . hg

2. 3 ton + 12 kuintal = . . . . kg

3. 3 kg + 10 hg = . . . . dag

4. Ibu Gita mempunyai gelang yang beratnya 20 gram,cincin 5 gram, dan kalung 50 gram.

Berapa ons berat perhiasan-perhiasan Ibu Gita?

5. Ayah Lisa menerima jatah beras 1 kuintal setiap bulan. Beliau selalu menyumbangkan

25 kg untuk fakir miskin. Berapa kuintal beras yang dibawa pulang ayah Lisa dalam

setahun?

E. Satuan Kuantitas

Contoh

a. 3 lusin pensil = . . . . buah pensil

1 lusin = 12 buah

3 lusin = 3 12 buah = 36 buah

Jadi, 3 lusin pensil = 36 buah pensil

1 lusin = 12 buah

1 gros = 12 lusin

1 kodi = 20 lembar

1 rim = 500 lembar

• 15

b. Elsa membeli 4 lusin buku tulis, 2 lusin pensil, dan 2 kodi pakaian untuk disumbangkan

kepada anak-anak korban bencana. Berapa buah barang-barang yang dibeli Elsa?

Jawab :

4 lusin + 2 lusin + 2 kodi =...buah

(4 x 12) + (2 x 12 ) + (2 x 20) = 48 + 24 + 40 = 112 buah

c. Di rumahnya, nenek Ema mempunyai 168 buah gelas dan 1 gros piring. Setelah dilihat,

ternyata ada 24 gelas dan 12 piring yang pecah. Tinggal berapa lusin jumlah gelas dan

piring nenek Ema?

Penyelesaian :

Banyaknya gelas = 168 24 = 144 buah = 12 lusin

Banyaknya piring = 1 gros - 12 buah = 12 1 = 11 lusin

Jumlah = 23 lusin

1. 5 lusin mangkok = . . . . buah mangkok

2. 36 lusin + 144 buah = . . . . gros

3. 2.000 lembar + 100 rim = . . . . rim

4. Seorang pedagang kain membeli 4 kodi kain batik, 3 kodi kain sarung, dan 50 lembar

kain polos. Berapa lembar kain yang dibeli pedagang kain tersebut?

5. Rosi dan ibunya membeli 4 lusin buku tulis, 2 lusin pensil, dan 2 kodi pakaian untuk

disumbangkan kepada anak-anak korban bencana. Berapa buah barang-barang yang

dibeli Rosi dan ibunya?

+

• 16

SEGITIGA DAN JAJARGENJANG

A. Keliling dan Luas Segitiga

1. Keliling segitiga

Keliling adalah ukuran panjang sisi yang mengitari bangun datar.

Keliling segitiga ABC yaitu jumlah panjang sisi-sisinya.

Contoh:

Tentukan keliling segitiga ABC berikut ini.

Penyelesaian :

a. K = AB + AC + BC b. K = PQ + QR + PR

= 3 cm + 4 cm + 2 cm = 8 cm + 6 cm + 10 cm

K = 9 cm K = 24 cm

2. Luas Segitiga

Luas segitiga adalah setengah dari luas persegi panjang.

Contoh : Tentukan luas segitig aberikut

a. b.

Penyelesaian :

a. L =

x a x t b. L =

x a x t

L =

x 20 x 10 L = L =

x 10 x 12

L = 100 cm2 L = 60 cm

2

Keliling (K) = AB + BC + CA

Luas (L) =

x alas (a) x tinggi (t)

alas (a)

Tin

ggi (t)

• 17

B. Keliling dan Luas Jajargenjang

1. Keliling jajargenjang

Keliling jajargenjang adalah jumlah panjang sisi-sisinya.

Contoh: Tentukan keliling jajargenjang berikut :

a. b.

Penyelesaian :

a. K = 2 x ( KL + KN) b. K = 2 x ( OP + PQ)

= 2 x (48 + 21) = 2 x ( 7 + 15)

K = 2 x 69 = 138 cm K = 2 x 22 = 44 cm

2. Luas jajargenjang

Contoh : Tentukan luas jajargenjang berikut:

a. b.

Penyelesaian :

a. L = a x t b . L = a x t

L = 10 x 13 = 130 cm2

L = 15 x 9 = 135 cm

2

1. Sebuah papan kayu berbentuk segitiga siku-siku dengan panjang sisi-sisi yang saling

tegak lurus adalah 13 m dan 40 m. Berapa luas papan kayu tersebut?

2. Atap sebuah rumah akan dipasang genteng dengan ukuran alas 20 cm dan tinggi 40 cm.

Jika luas atap 80 m2, berapa banyak genteng dibutuhkan?

Keliling (K) = AB + BC + CD + DA

atau

Keliling (K) = 2 (BC + AB)

Luas (L) = alas tinggi = a x t

a

• 18

BILANGAN BULAT

A. Mengenal Bilangan Bulat

1. Pengertian Bilangan Bulat

Bilangan bulat terdiri atas:

Bilangan bulat negatif yaitu bilangan bulat yang terletak di sebelah kiri angka 0 (nol).

Contoh bilangan bulat negatif: -1, -2,-3, -4, -5, ...

Bilangan 0 (nol) yaitu bilangan yang tidak positif dan tidak negatif. Bilangan 0 (nol)

Bilangan bulat positif yaitu bilangan bulat yang terletak di sebelah kanan angka 0 (nol).

Contoh bilangan bulat positif: 1, 2, 3, 4, 5, ... Bilangan-bilangan bulat positif disebut

bilangan asli.

Gabungan bilangan nol dan bilangan asli disebut bilangan cacah

Pada garis bilangan, letak bilangan makin ke kanan makin besar dan makin ke kiri makin kecil.

2. Penggunaan Bilangan Bulat Negatif Cara membaca bilangan Bulat Negatif

Contoh : 24 ( dibaca negatif dua puluh empat) 100 (dibaca negatif seratus)

Penggunaan Bilangan Bulat Negatif

Contoh :

a. Suhu di daerah kutub dapat mencapai lima belas derajat dibawah nol. (lima belas

derajat dibawah nol = 15 derajat)

b. Daerah itu rawan banjir karena ketinggiannya lima sentimeter di bawah permukaan

air laut. (lima sentimeter di bawah permukaan air laut = 5 cm)

3. Membandingkan dan Mengurutkan Bilangan Bulat

Contoh :

a. 25 < 10 b. 16 < 0 c. 78 > - 100

d. Urutkan bilangan-bilangan berikut ini.

5, 10, 25, 20, 10, 0, 30

Jawab:

Urutan bilangan dari yang terkecil adalah: 25, 10, 5, 0, 10, 20, 30

Urutan bilangan dari yang terbesar adalah: 30, 20, 10, 0, 5, 10, 25

Semakin ke kiri nilai bilangan semakin kecil. Sebaliknya, semakin ke kanan nilai

bilangan semakin besar.

• 19

B. Operasi Bilangan Bulat

a. Operasi Penjumlahan

b. Operasi Pengurangan

Bilangan-bilangan bulat di sebelah kiri titik nol saling berlawanan dengan bilangan di

sebelah kanan titik nol yang berjarak sama.

Contoh :

• 20

Mengurangi suatu bilangan sama dengan menjumlah bilangan itu dengan lawan bilangan

pengurangnya.

Contoh : 12 7 = 12 + (-7)

-8 5 = -8 + (-5)

-10 (-4) = -10 + 4

1. Lawan dari 1.059 adalah . . . .

2. Suhu di kota Bogor 24 C, sedangkan suhu di kota Pontianak 28 C. Kota mana yang

lebih dingin?

3. Urutan 150, 100, 350, 400, 250 dari yang terbesar adalah . . .

4. (168) (18) + 100 = . . . .

5. Suhu udara pada siang 30 C. Selisih suhu malam hari dan siang hari adalah 11 C.

Berapakah suhu malam hari?

• 21

BILANGAN PECAHAN

A. Mengenal Pecahan dan Urutanya

Pecahan merupakan bagian dari keseluruhan. Contoh :

1. Letak pecahan pada garis bilangan.

2. Membandingkan dan Mengurutkan Pecahan

Untuk membandingkan pecahan dapat dilihat letaknya pada garis bilangan.Contoh:

a.

b.

B. Menyederhanakan Pecahan

1. Pecahan yang senilai

Pecahan-pecahan senilai mempunyai nilai yang sama. Pecahan senilai dapat kita tentukan

dengan mengalikan atau membagi pembilang dan penyebutnya dengan bilangan yang

sama.

Contoh :

• 22

2. Menyederhanakan Pecahan

Pecahan yang paling sederhana adalah pecahan yang pembilang dan penyebutnya tidak

dapat dibagi dengan bilangan yang sama. Pecahan paling sederhana diperoleh dengan

membagi pembilang dan penyebutnya dengan FPB kedua bilangan tersebut.

Contoh:

Sederhanakanlah pecahan berikut ini : a.

b.

Penyelesaian:

a. Faktor 12 = 1, 2, 3, 4, 6, 12 b. Faktor 20 = 1,2,4,5,10,20

Faktor 16 = 1, 2, 4, 8, 16 Faktor 30 = 1,2,3,5,6,10,15,30

FPB 12 dan 16 = 4 FPB 20 dan 30 = 10

C. Penjumlahan dan Pengurangan Pecahan

1. Penyebut Sama

Penjumlahan atau pengurangan pecahan yang berpenyebut sama, dilakukan dengan

menjumlahkan atau mengurangkan pembilang-pembilangnya,sedangkan penyebutnya

tetap. Kemudian tuliskan hasilnya dalam bentuk paling sederhana.

Contoh:

a.

c.

b.

d.

2. Penyebut Berbeda

Penjumlahan atau pengurangan pecahan yang berpenyebut berbeda dilakukan dengan

aturan berikut ini.

a. Samakan penyebutnya dengan KPK kedua penyebut.

b. Jumlahkan atau kurangkan pecahan baru seperti pada penjumlahan atau pengurangan

pecahan berpenyebut sama.

Contoh:

Tentukan hasil dari penjumlahan dan pengurangan pecahan berikut:

a.

c.

b.

d.

Penyelesaian :

a.

c.

Kelipatan 4 = 4,8,12,16,... KPK 5 dan 15 = 15

Kelipatan 3 = 3,6,9,12,15...

KPK 4 dan 3 = 12

b.

d.

KPK 3 dan 6 = 6 KPK 7 dan 3 = 21

• 23

D. Menyelesaikan Masalah Pecahan

Contoh :

1. Marbun mempunyai dua botol yang berbeda besarnya. Botol pertama dapat diisi

liter air

dan botol kedua dapat diisi

liter air. Marbun telah menyediakan 1 liter air untuk disikan

ke dalam kedua botol tersebut.

a. Berapa liter air yang dapat diisikan?

b. Berapa liter air yang tersisa?

Penyelesaian :

a. Botol pertama dapat diisi

liter air

Botol kedua dapat diisi

liter air

Jadi air yang dapat diisikan ke dalam kedua botol tersebut =

liter

b. Air yang tersisa =

1.

. Bilangan yang benar untuk mengisi titik-titk di samping adalah...

2.

3.

4. Abid dan Marbun memetik

keranjang buah mangga. Sebanyak

keranjang mangga

telah dibagikan kepada para tetangga. Berapa bagian buah mangga yang masih ada?

5. Ibu Ema menghabiskan

kg tepung terigu untuk membuat kue. Di dapur masih tersisa

kg tepung terigu. Berapa kg tepung terigu pada awalnya?

• 24

Bilangan Romawi

A. Menagenal Lambang Bilangan Romawi

Contoh penggunaan bilangan romawi di kehidupan sehari hari:

Amir adalah siswa Kelas VI A yang mendapat beasiswa.

Memasuki abad XXI, kita dituntut untuk lebih menguasai teknologi.

Lambang bilangan Romawi adalah sebagai berikut.

B. Membaca bilangan Romawi

1. Aturan penjumlahan bilangan Romawi

Jika lambang yang menyatakan angka lebih kecil terletak di kanan, maka lambing-lambang

bilangan Romawi tersebut dijumlahkan.

Contoh :

a. VIII = V + I + I + I

= 5 + 1+ 1+ 1

= 8

b. CXXVIII = C + X + X + V + I + I +I

= 100 + 10 + 10 + 5 + 1 + 1+1

= 128

2. Aturan Pengurangan Jika lambang yang menyatakan angka lebih kecil terletak di kiri, maka lambang-lambang

bilangan Romawi tersebut dikurangkan. Pengurangan paling sedikit satu angka.

Contoh:

a. IV = V I

= 5 1 = 4

b. XIV

= X + (V I)

= 10 + (5 1) = 14

3. Aturan gabungan

Contoh :

a. MCMXCIX

= M + (M C) + (C X) + (X I)

= 1.000 + (1.000 100) + (100 10) + (10 1)

= 1.000 + 900 + 90 + 9

= 1.999

1. Tuliskan bilangan asli berikut ini ke dalam bilangan Romawi.

a. 49 b. 978 c. 2.005

2. Tuliskan bilangan romawi berikut ini ke dalam bilangan asli.

a. LCXIX b. DLXXIX c. MCMXCV

I melambangkan bilangan 1 C melambangkan bilangan 100

V melambangkan bilangan 5 D melambangkan bilangan 500

X melambangkan bilangan 10 M melambangkan bilangan 1.000

L melambangkan bilangan 50

• 25

Bangun Ruang dan Bangun Datar

A. Bangun Ruang Sederhana

Sisi adalah bidang atau permukaan yang membatasi bangun ruang.

Rusuk adalah garis yang merupakan pertemuan dari dua sisi bangun ruang.

Titik sudut adalah titik pertemuan dari tiga buah rusuk pada bangun ruang.

1. Bangun Ruang Sisi Tegak.

Kubus

Kubus adalah sebuah benda ruang yang ditutup oleh enam buah

persegi yang berukuran sama dan mempunyai panjang rusuk sama.

Sifat kubus:

a. Mempunyai 6 sisi berbentuk persegi yang berukuran sama.

b. Mempunyai 12 rusuk yang sama panjang.

c. Mempunyai 8 titik sudut

Balok

Yaitu sebuah benda ruang yang ditutup oleh enam buah

persegi yang terdiri dari tiga pasang sisi yang berhadapan,

yang panjang rusuk tiap pasangan berbeda dengan

pasangan lainnya.

Sifat balok:

a. Mempunyai 6 sisi

b. Mempunyai 12 rusuk

c. Mempunyai 8 titik sudut

2. Bangun Ruang Sis Lengkung

Tabung

Kerucut

Sifat Tabung :

Mempunyai 3 sisi,yaitu sisi lengkung,sisi atas,

dan sisi bawah.

Mempunyai 2 rusuk

Tidak mempunyai titik sudut.

Sifat Kerucut :

Mempunyai 2 sisi,yaitu sisi alas dan sisi

lengkung.

Mempunyai 1 rusuk

Mempunyai 1 titik sudut disebut titik puncak.

• 26

Bola

B. Jaring-Jaring Kubus dan Balok

1. Jaring jaring kubus

Gabungan dari beberapa persegi yang membentuk kubus dinamakan jaring-jaring kubus.

2. Jaring Jaring Balok

Jaring-jaring balok adalah gabungan dari beberapa persegi panjang membentuk balok.

1. Lengkapi titik-titik pada tabel di bawah ini.

Bangun Ruang Banyak rusuk Banyak sisi Banyak titik sudut

Kubus

Balok

Tabung

Kerucut

Bola

Sifat Bola :

Mempunyai 1 sisi

Tidak mempunyai rusuk

Tidak mempunyai titik sudut

• 27

C. Mengenal Bangun Datar Simetris

Benda simetris adalah benda yang dapat dilipat (dibagi) menjadi dua bagian yang sama

persis, baik bentuk maupun besarnya. Sedangkan tidak simetris disebut benda asimetris.

Garis lipat yang menentukan benda simetris disebut garis simetri atau sumbu simetri.

1. Tenentukan manakah di antara benda-benda berikut yang simetris.

D. Pencerminan Bangun Datar

Sifat bayangan benda yang dibentuk oleh cermin.

a. Bentuk dan ukuran bayangan sama persis dengan benda.

b. Jarak bayangan dari cermin sama dengan jarak benda dari cermin.

c. Bayangan dan benda saling berkebalikan sisi (kanan kiri atau depan belakang), sehingga

dikatakan bayangan simetris dengan benda (cermin sebagai simetri).

1. Gambarkan pencerminan dari gambar di bawah ini.

a

. b. c

. d.

• 28

DAFTAR PUSTAKA

Mustaqim,Burhan dan Astuty,Ary. 2008. Ayo Belajar Matematika untuk SD dan MI Kelas IV.

Jakarta: Pusat Perbukuan,Departemen Pendidikan Nasional.