Author
igob94
View
254
Download
8
Embed Size (px)
DESCRIPTION
Neodredjeni integrali zadaci
Neodredeni integrali
Definicija. Za funkciju F : I R, gde je I interval, kazemo da je primitivnafunkcija funkcije f : I R ako je
F (x) = f(x)
za svako x I.
Teorema 1. Ako je F : I R primitivna funkcija za f : I R, tada je ifunkcija F (x) + C, C R, takode primitivna funkcija funkcije f.
Definicija. Skup svih primitivnih funkcija funkcije f naziva se neodredeniintegral funkcije f i oznacava sa
f(x)dx.
Osnovne osobine neodredenog integrala:
1o(
f(x)dx) = f(x) ,
2oF (x)dx = F (x) + C ,
3of(x)dx =
f(x)dx, R \ {0} ,
4o (f(x) g(x))dx = f(x)dx g(x)dx .
Cuvajmo drvece. Nemojte stampati ovaj materijal, ukoliko to nije neophodno.
1
2Tablica integrala
xndx =
xn+1
n+ 1+ C, n 6= 1
dx
x= ln |x|+ C
dx
1 + x2={
arctanx+ C, arcctg x+ C
dx
x2 1 =12
lnx 1x+ 1
+ Cdx
1 x2 ={
arcsinx+ C, arccosx+ C
dxx2 1 = ln |x+
x2 1|+ C
exdx = ex + Caxdx =
ax
ln a+ C, a > 0, a 6= 1
sinx dx = cosx+ C cosx dx = sinx+ Cdx
sin2 x= cotx+ C
dx
cos2 x= tanx+ C
sinhx dx = coshx+ C
coshx dx = sinhx+ Cdx
sinh2 x= cothx+ C
dx
cosh2 x= tanhx+ C
Osnovne metode integracije:
METOD SMENEAko je
f(x)dx = F (x) +C, tada je
f(u)du = F (u) +C. Uzmimo da je
x = (t), gde je neprekidna funkcija zajedno sa svojim izvodom . Tada
f((t)
)(t)dt = F
((t)
)+ C.
METOD PARCIJALNE INTEGRACIJEAko su u i v diferencijabilne funkcije i funkcija uv ima primitivnu funkciju,
tada je udv = uv
vdu.
3Primeri najcesce koriscenih smena:
dx =1ad(ax+ b), a 6= 0, smena: t = ax+ b, dt = a dx,
xdx =12d(x2), smena: t = x2, dt = 2xdx,
xdx =12a
d(ax2 + b), a 6= 0, smena: t = ax2 + b, dt = 2axdx,
xn1dx =1nd(xn), n 6= 0, smena: t = xn, dt = nxn1dx,
dxx
= 2 d(x), smena: t =
x, 2t dt = dx,
dxax+ b
=2ad(ax+ b), a 6= 0, smena: t = ax+ b, 2
at dt = dx,
dx
x= d(lnx), smena: t = lnx, dt =
dx
x,
dx
x= d(
ln ax), a 6= 0, smena: t = ln ax, dt = dx
x,
exdx = d(ex), smena: t = ex, dt = exdx,
eaxdx = d(
1aeax), a 6= 0, smena: t = eax, dt = aeaxdx,
sinx dx = d(cosx), smena: t = cosx, dt = sinx dx,cosx dx = d(sinx), smena: t = sinx, dt = cosx dx,
dx
cos2 x= d(tanx), smena: t = tanx,
dt
1 + t2= dx,
dx
sin2 x= d(cotx), smena: t = cotx, dt
1 + t2= dx,
sinhx dx = d(coshx), smena: t = coshx, dt = sinhx dx,
coshx dx = d(sinhx), smena: t = sinhx, dt = coshx dx,
dx
cosh2 x= d(tanhx), smena: t = tanhx,
dt
t2 1 = dx,dx
sinh2 x= d(cothx), smena: t = cothx, dt
1 t2 = dx.
4METOD REKURZIVNIH FORMULAOdredivanje integrala In =
fn(x)dx, funkcija koje zavise od celobro-
jnog parametra n, moguce je primenom parcijalne integracije ili nekog drugogmetoda, svesti na izracunavanja integrala Im, 0 m < n, istog tipa. Takverelacije, oblika
In = (In1, . . . , Ink),
zovemo rekurzivne formule. Da bi se na osnovu njih odredila vrednost integralaIn, neophodno je poznavati uzastopnih k integrala In1, . . . , Ink, kao i prvihk integrala I0, . . . , Ik1.
INTEGRALI SA KVADRATNIM TRINOMOM
1. I =
mx+ nax2 + bx+ c
dx
m = 0 : I =
ndx
ax2 + bx+ c=n
a
dx
x2 + bax+ca
=n
a
dx(
x+ b2a)2+ ca b24a2
=t = x+ b2a , h2 = | ca b24a2 | = na
dt
t2 h2 .
m 6= 0 : I = m
xdx
ax2 + bx+ c+ n
dx
ax2 + bx+ c= mI1 + nI2;
I1 =
xdx
ax2 + bx+ c=
12a
2ax dx
ax2 + bx+ c
=12a
2ax+ b bax2 + bx+ c
dx =12a
d(ax2 + bx+ c)ax2 + bx+ c
b2aI2
=12a
ln |ax2 + bx+ c| b2aI2.
Izracunavanje integrala I2 opisano je u prethodnom slucaju (m = 0).
2. I =
mx+ nax2 + bx+ c
dx, analogno tipu integrala pod 1.
3. I=
dx
(mx+ n)ax2+ bx+ c
, smenom mx+n =1t
svodi se na slucaj 2.
4. I =
ax2 + bx+ c dx, resava se dovodenjem na potpun kvadrat izraza
pod korenom
ax2+bx+c =a((x+
b
2a
)2+c
a b
2
4a2
)=a(t2h2), t=x+ b
2a, h2 =
ca b
2
4a2
.
5INTEGRACIJA RACIONALNIH FUNKCIJA
FunkcijaP (x)Q(x)
, P (x) i Q(x) su polinomi, jeste prava racionalna funkcija
ukoliko je stepen polinoma P (x) manji od stepena polinoma Q(x).Prava racionalna funkcija
P (x)Q(x)
=P (x)
ni=1
(x ai)si mi=1
(x2 + pix+ qi
)ki ,
gde su nule kvadratnih trinoma x2 + pix + qi, i = 1, . . . ,m kompleksne, imarazvoj
P (x)Q(x)
=A11x a1 +
A12(x a1)2 + +
A1s1(x a1)s1
+A21x a2 +
A22(x a2)2 + +
A2s2(x a2)s2
+ +
An1x an +
An2(x an)2 + +
Ansn(x an)sn
+B11x+ C11x2 + p1x+ q1
+B12x+ C12
(x2 + p1x+ q1)2+ + B1k1x+ C1k1
(x2 + p1x+ q1)k1
+B21x+ C21x2 + p2x+ q2
+B22x+ C22
(x2 + p2x+ q2)2+ + B2k2x+ C2k2
(x2 + p2x+ q2)k2+ +
Bm1x+ Cm1x2 + pmx+ qm
+Bm2x+ Cm2
(x2 + pmx+ qm)2+ + Bmkmx+ Cmkm
(x2 + pmx+ qm)km.
Konstante Aij , Bij , Cij nalazimo metodom neodredenih koeficijenata.
INTEGRACIJA IRACIONALNIH FUNKCIJA:
1. IntegralR[x,(ax+ bcx+ d
)p1/q1,(ax+ bcx+ d
)p2/q2, . . .
]dx, gde je R neka ra-
cionalna funkcija i pi Z, qi N, uvodenjem smeneax+ bcx+ d
= tn, n = NZS{q1, q2, . . . },
svodi se na integral racionalne funkcije.
62.
Pn(x)dxax2 + bx+ c
= Qn1(x)ax2 + bx+ c+
dx
ax2 + bx+ c,
koeficijente polinoma Qn1(x) i odredujemo metodom neodredenihkoeficijenata nakon diferenciranja gornje jednakosti.
3. Integral
dx
(x+ )nax2 + bx+ c
smenom x+ =1t
svodi se na slucaj
pod 2.
4. IntegralR(x,
ax2 + bx+ c)dx, gde je R neka racionalna funkcija,
primenom Ojlerovih ili trigonometrijskih/hiperbolickih smena svodi sena integral racionalne funkcije.
Ojlerove smene:
I) Ukoliko je a > 0, uvodimo smenuax2 + bx+ c = ta x ;
II) Kada je c 0, smena glasi ax2 + bx+ c = xtc ;III) U slucaju ax2 + bx + c = a(x x1)(x x2), x1, x2 R, koristimo
smenuax2 + bx+ c = t(x x1).
Trigonometrijske i hiperbolicke smene:
(a) ako se u integralu javia2 x2, smena: x = a sin t ili x = a cos t;
(b) ako se u integralu javia2 + x2, smena: x = a tan t ili x = a sinh t;
(c) ako se u integralu javix2 a2, smena: x = a
sin tili x =
a
cos tili
x = a cosh t.
5. Integracija binomnog diferencijala:
I =xr(a+ bxq
)pdx, za a, b R, p, q, r Q
a) U slucaju p Z, q = q1m, r =
r1m, gde su q1, r1 Z i m N,
uvodimo smenu: x = tm, dx = mtm1dt. Polazni integral tada
postaje I = mtr1+m1
(a+ b tq1
)pdt.
b) Kada jer + 1q Z, p = s
m, smena: a+ bxq = tm ili x = t1/q.
c) Za slucajr + 1q
+ p Z, p = sm, smena: x = t1/q ili axq + b = tm.
7INTEGRACIJA TRIGONOMETRIJSKIH FUNKCIJA
Neka je R neka racionalna funkcija. Posmatramo integral oblika
I =R(sinx, cosx)dx.
1. U slucaju
R( sinx, cosx) = R(sinx, cosx), smena: t = cosx; R(sinx, cosx) = R(sinx, cosx), smena: t = sinx; R( sinx, cosx) = R(sinx, cosx), smena: t = tanx.
Inace, smenom t = tanx
2, dx =
2dt1 + t2
, imajuci u vidu transformacije
sinx =2t
1 + t2, cosx =
1 t21 + t2
,
polazni integral postaje integral racionalne funkcije.
2. Transformacije proizvoda u zbir
sin ax sin bx =12(
cos(a b)x cos(a+ b)x),sin ax cos bx =
12(
sin(a b)x+ sin(a+ b)x),cos ax cos bx =
12(
cos(a b)x+ cos(a+ b)x),svode integrale oblika
sin ax sin bx dx,
sin ax cos bx dx,
cos ax cos bx dx,
na elementarne integrale.
3. Za I =
sinm x cosn xdx, gde su m,n Z razlikujemo sledece slucajeve:
n = 2k + 1 (m = 2k + 1 analogno):
I =
sinm x(cos2 x)k cosxdx = t = sinxdt = cosxdx
= tm(1t2)kdt;
8 m = 2k, n = 2l : Snizavamo stepen trigonometrijskih funkcija podintegralom primenom transformacija
sin2 x =1 cos 2x
2, cos2 x =
1 + cos 2x2
;
m = k, n = l, k, l N :
I =
dx
sink x cosl x=
1sink x cosl2 x
dx
cos2 x
=
1sink xcosk x
cosl+k2 x
dx
cos2 x
=
tank x(1 + tan2 x
) l+k22 d(tanx)
4.R(
tanx)dx, smena: t = tanx, dx =
dt
1 + t2, takode
R(
cotx)dx, smena: t = cotx, dx = dt
1 + t2.
5. Hiperbolicke funkcije analogno, uz napomenu o jednakostima koje vazeza ove funkcije:
sinhx =ex ex
2, coshx =
ex + ex
2, tanhx =
sinhxcoshx
,
cosh2xsinh2x=1, sinh 2x=2 sinhx coshx, cosh 2x=cosh2x+sinh2x,
sinhx
2= sgn(x)
coshx 1
2, cosh
x
2=
coshx+ 1
2,
sinhx =tanhx
1 tanh2 x, coshx =
11 tanh2 x
,
arc sinhx = lnx+x2 + 1 , arc coshx = ln x+x2 1 ,
arc tanhx =12
lnx+ 1x 1
, arc cothx = 12 lnx 1x+ 1
,arc tanh
x
a=
12
lnx+ ax a
, arc coth xa = 12 lnx ax+ a
,
9Zadaci
1. Dokazati za a > 0 i b 6= c :
a)
dx
x+ b= log |x+ b|+ C, b)
dx
(x+b)(x+c)=
1c b ln
x+ bx+ c
+C,c)
dx
a2 + x2=
1a
arctanx
a+ C, d)
dx
a2 x2 =12a
lnx+ ax a
+ C,e)
x2
a2 + x2dx = x a arctan x
a+ C, f)
x2
x2 a2 dx = xa
2lnx+ ax a
+ C,g)
dxa2 x2 = arcsin
x
a+ C, h)
dxx2 a2 =ln
x+x2 a2+C,i)
x dx
a2 x2 = 12
ln |a2 x2|+ C, j)
x dxa2 x2 =
a2 x2 + C,
k)
dx
x(a2x2) =
12a2
ln x2a2x2
+C, l) dxxa2x2 =
12a
loga2x2aa2x2+a
+C,m)
a2 x2dx = x
2
a2 x2 + a
2
2arcsin
x
a+ C,
n)
x2 a2dx = x2
x2 a2 a
2
2lnx+x2 a2+ C.
Resenje: a)
dx
x+ b=d(x+ b)x+ b
= log |x+ b|+ C.
b)
dx
(x+b)(x+c)=
1cb
(x+c)(x+b)(x+b)(x+c)
dx=1cb
( dxx+b
dx
x+c
)1.a)=
1cb log
x+bx+c
+C.c) Kako je I =
dx
a2 + x2=
1a2
dx
1 +(xa
)2 ,uvodenjem smene t =
x
a, dx = a dt, polazni integral postaje tablicni
I =1a
dt
1 + t2=
1a
arctan t+ C.
Vracanjem smene, konacno dobijamo I =1a
arctanx
a+ C.
10
d) Integral I =
dx
a2 x2 jeste zapravo specijalan slucaj integrala pod b) zaa = a i b = a. Tako na osnovu rezulata pod b) zakljucujemo da je
I =12a
lnx+ ax a
+ C.e)
x2
a2+x2dx=
a2+x2a2a2+x2
dx=dxa2
dx
a2+x21.c)= xa arctanx
a+C.
f)
x2
x2a2 dx=x2a2+a2x2a2 dx=
dx+a2
dx
x2a21.d)= xa
2lnx+ ax a
+C.g) I =
dxa2 x2 =
1a
dx
1 x2a2
= t = xadx = a dt
= dt1 t2= arcsin t+ C = arcsin
x
a+ C.
h) I =
dxx2 a2 =
1a
dxx2
a2 1
= t = xadx = a dt
= dtt2 1= ln
t+t2 1+C1 = ln xa
+
x2
a2 1+C1 = ln |x+x2 a2|+C,
gde je C = C1 ln a.
i) I =
xdx
a2x2 = t=a2x22xdx=dt
=12dt
t=1
2ln |t|+C=1
2lna2x2+C.
j) I =
xdxa2x2 =
t=a2x22xdx=dt=12
t
12dt=1
2t
12
1/2+C=
a2x2+C.
k) I =
dx
x(a2 x2) =
1a2
a2 x2 x2x(a2 x2) dx = 1a2
dx
x 1a2
x dx
a2 x2
1.i)=
1a2
log |x| 12a2
loga2 x2+ C = 1
2a2log x2a2 x2
+ C.l) I =
dx
xa2 x2 =
x dx
x2a2 x2 =
t =a2 x2, x2 = (t2 a2)
dt = x dxa2x2
=
dt
t2 a21.d)=
12a
log t at+ a
+ C = 12a
loga2 x2 aa2 x2 + a
+ C.
11
m) Oblast definisanosti podintegralne funkcijea2 x2 integrala
I =
a2 x2 dx
je segment Df =[ a, a]. To opravdava uvodenje smene x = a sin t, pri tom
je dx = a cos t dt, kada t na primer prolazi segment t [pi/2, pi/2]. Za takavizbor vrednosti nove nezavisno promenljive t vazi cos t 0. Tada je
I = a
a2 a2 sin2 t cos t dt = a2
1 sin2 t cos t dt
= a2
cos2 t dt =a2
2
(1 + cos 2t)dt =
a2
2
(dt+
cos 2t dt
)=a2
2
(t+
12
cos 2t d(2t)
)=a2
2
(t+
12
sin 2t)
+ C.
Primetimo da je sin t =x
a, t = arcsin
x
a, kao i
sin 2t = 2 sin t cos t = 2 sin t
1 sin2 t = 2xa
1
(xa
)2=
2xa2
a2 x2.
Tada imamo
I =a2
2
(arcsin
x
a+
x
a2
a2 x2
)+ C =
x
2
a2 x2 + a
2
2arcsin
x
a+ C.
n) I =
x2 a2dx = u =
x2 a2, du = x dx
x2a2dv = dx, v =
dx = x
= x
x2 a2
x2 dxx2 a2 = x
x2 a2
x2 a2 a2
x2 a2 dx
= xx2 a2
( x2 a2 dx a2
dxx2 a2
)1.h)= x
x2 a2 I a2 ln |x+
x2 a2|.
Odatle je2I = x
x2 a2 a2 ln |x+
x2 a2|+ C1,
12
odnosno
I =x
2
x2 a2 a
2
2ln |x+
x2 a2|+ C.
Jos jedan pogodan nacin izracunavanja integrala I dat je u nastavku.
I =
x2 a2dx =
x2 a2x2 a2 dx = (c0x+ c1)
x2 a2 +
dxx2 a2
Diferenciranjem ove jednakosti nalazimo
x2 a2x2 a2 = c0
x2 a2 + (c0x+ c1) x
x2 a2 + dxx2 a2 .
Posle mnozenja sax2 a2 i sredivanja izraza, dobijamo
x2 a2 = 2c0x2 + c1x c0a2 + .
Izjednacavanjem koeficijenata uz iste stepene promenljive x dolazimo do sis-tema jednacina
1 = 2c0, 0 = c1, a2 = c0a2 + ,
cije je resenjec0 = 1/2, c1 = 0, = a2/2.
Time trazeni integral postaje
I =x
2
x2 a2 a
2
2
dxx2 a2
1.h)=
x
2
x2 a2 a
2
2ln |x+
x2 a2|+C.
2. Odrediti sledece integrale:
10
x(x+ 2)3dx 20x2(1 + x)20dx 30
x dx
(x+ 9)10
40
dx
x2 + 4x+ 450
dx
x2 + x 2 60
1 2x2 + x4 dx
Resenje: 10
x(x+ 2)3dx =x1/2
(x3 + 6x2 + 12x+ 8
)dx
13
= (
x7/2 + 6x5/2 + 12x3/2 + 8x1/2)dx
=x(2
9x4 +
127x3 +
245x2 +
163x)
+ C.
20x2(1 + x)20dx=
t=1 + xdt = dx = (t 1)2t20dt= (t2 2t+ 1)t20dt
= (
t22 2t21 + t20)dt = t2323 2 t
22
22+t21
21+ C
=(1 + x)23
23 (1 + x)
22
11+
(1 + x)21
21+ C.
30
x dx
(x+ 9)10= t = x+ 9dt = dx
= (t 9)t10dt = (t9 9t10)dt=t8
8 9t9
9 + C =1
(x+ 9)9 1
8(x+ 9)8+ C.
40
dx
x2 + 4x+ 4=d(x+ 2)(x+ 2)2
=1x+ 2
+ C.
50
dx
x2 + x 2 =
dx
(x+ 2)(x 1)1.b)=
13
lnx 1x+ 2
+ C.60
1 2x2 + x4 dx =
(1 x2)2 dx =
(1x2) dx = (xx3
3
)+C,
za 1 x2 0, tj. x [1, 1].Za x (,1) ili x (1,+) vazi
1 2x2 + x4 dx =
(1 x2) dx = (x x3
3
)+ C1.
14
3. Metodom smene odrediti:
10
x3dx
x8 2 20
x7dx
(1 + x4)230
x8dx
(x3 1)3
40
x9
x5 + 1dx 50
dx
x(x10 + 1
)2 60 1 x7x(1 + x7) dx70
xdx1 + x4
80
dx
xx2 + 1
90 (
x+12
)x2 + x+ 1 dx
Resenje: 10
x3dx
x8 2 =14
d(x4)
(x4)2 (2)21.d)=
18
2lnx4 2x4 +2
+ C.
20
x7dx
(1 + x4)2=
x4
(1 + x4)2x3dx =
t = 1 + x4dt = 4x3dx= 14
t 1t2
dt
=14
(t1 t2)dt = 1
4(
ln |t|+ 1/t)+ C=
14
(ln(1 + x4
)+
11 + x4
)+ C.
30
x8dx
(x3 1)3 =
(x3)2
(x3 1)3x2dx =
t = x3 1dt = 3x2dx= 13
(t+ 1)2
t3dt
=13
(1t
+2t2
+1t3
)dt =
13
(ln |t| 2
t 1
2t2)
+ C
=13
(ln |x3 1| 2
x3 1 1
2(x3 1)2)
+ C.
40
x9
x5 + 1dx=
15
x5d(x5)
x5 + 1=
15
x5 + 1 1x5 + 1
d(x5)
=15
(d(x5) d(x5 + 1)
x5 + 1
)=x5
5 1
5log1 + x5+ C.
15
50
dx
x(x10 + 1
)2 = x9dxx10(x10 + 1
)2 = t = x10dt = 10x9dx = 110
dt
t(t+ 1)2
=110
t+ 1 tt(t+ 1)2
dt =110
dt
t(t+ 1) 1
10
d(t+ 1)(t+ 1)2
1b)=
110
log tt+1
+ 110(t+1)
+C=110
log x10x10+1
+ 110(x10+1
)+C.
60
1x7x(1+x7
) dx= 1x7x7(1+x7
) x6dx= t = x7dt = 7x6dx= 17
1tt(1+t)
dt
=17
1 + t 2tt(1 + t)
dt =17
log|x7|(
x7 + 1)2 + C.
70
xdx1 + x4
=12
d(x2)
1 + (x2)2=
12
lnx2 +1 + x4 + C.
80
dx
xx2 + 1
=
x dx
x2x2 + 1
=
t =x2 + 1, x2 = t2 1
dt = x dxx2+1
=
dt
t2 11.d)=
12
ln t 1t+ 1
+ C2 = 12 lnx2 + 1 1x2 + 1 + 1
+ C2.
90 (
x+12
)x2 + x+ 1 dx =
t = x2 + x+ 1dt = (2x+ 1)dx = 2(x+ 12)dx
=12
t dt =
12t3/2
3/2+ C =
13
(x2 + x+ 1)3 + C.
16
4. Metodom smene odrediti:
10
dx5x 2 2
0
x
1 4x dx 30
4
1 4x dx
40
dxx+ 1 +
x 1 5
0
dx
x+ 3x 2
60
x51 x2 dx 7
0
x dx(
1 + x2)3/2 80 x3dx(x2 + 1)3x2 + 1
90
2(2 x)2
3
2 x2 + x
dx
Resenje: 10
dx5x 2 =
25
d(
5x 2) = 25
5x 2 + C.
20
x1 4x dx =
t = 1 4x, x = 1t24dx = 12 t dt = 18
(t2 1)dt
=18
( t33 t)
+ C =112
1 4x (1 + 2x) + C.
30
4
1 4x dx= t = 41 4x, t4 = 1 4xx = 1t44 , dx = t3dt
= t4dt= t55 + C= 4
1 4x 4x 15
+ C.
40
dxx+1+
x1 =
x+1x1
x+ 1(x 1) dx=12
(x+1x1 ) dx
=12
x+ 1 d(x+ 1) 1
2
x 1 d(x 1)
=12
(x+1)3/2
3/2 1
2(x1)3/2
3/2+C=
13((x+1)3/2(x1)3/2)+C.
17
50
dxx+3x2 =
x+3+
x2
(x+3)(x2) dx =15
(x+ 3 +
x 2 ) dx
=215((x+ 3)3/2 + (x 2)3/2)+ C.
60
x51 x2 dx =
x4
1 x2 xdx = t =
1 x2, x2 = 1 t2
dt = x dx1x2
=
(1 t2)2dt =
1 x2
(15
(1 x2)2 23
(1 x2) + 1)
+ C.
70
x dx(1+x2
)3/2 = t=
11+x2
dt= x dx(1+x2)3/2
=dt=t+C= 1
1+x2+C.
80
x3dx(x2 + 1
)3x2 + 1
=
t =x2 + 1, x2 = t2 1
dt = x dxx2+1
=t2 1t6
dt
= (t4t6)dt= t33 t55 +C= 15(x2+1)5 13(x2+1)3 +C.
90
2(2 x)2
3
2 x2 + x
dx=
t = 3
2+x2x
dt = 4/3(2x)2
3
(2x2+x
)2dx
=32
t dt
=34t2 + C =
34
3
(2 + x2 x
)2+ C.
18
5. Metodom smene izracunati:
10
dx
x lnx20
x+ lnxx
dx 30
ln 2xx ln 4x
dx
40
dx
x
lnx50
ln(1 + x) lnxx(1 + x)
dx 60xx(1 + log x)dx
70x(
ln(1 + x) + ln(1 x))2x2 1 dx
Resenje: 10
dx
x lnx=d(lnx)
lnx= ln | lnx|+ C.
20
x+ lnxx
dx=x1/2dx+
lnx
dx
x=x1/2
1/2+
lnx d(lnx)
=2x+
12
ln2 x+ C.
30 S obzirom da je d(ln 4x)=dx
xi ln 4x=ln 2x+ln 2, uvodimo smenu t=ln 4x :
ln 2xx ln 4x
dx=t ln 2
tdt =
dt ln 2
dt
t= t ln 2 ln |t|+ C
= ln 4x ln 2 ln | ln 4x|+ C.
40
dx
x
lnx=
(lnx)1/2d(lnx) = 2
lnx+ C.
50
ln(1+x)lnxx(1+x)
dx=
ln(1+ 1x
)x(1+x)
dx=
t=ln
(1+ 1x
)dt= 1
1+1x
dxx2
= dxx(1+x)
=
t dt = t
2
2+ C = 1
2ln2(
1 +1x
)+ C.
60xx(1 + log x)dx =
t=xx, log t=x log x
dtt = (1 + log x)dx
= dt= t+ C=xx + C.
19
70x(
ln(1+x)+ln(1x))2x21 dx=
ln2(1x2) x dx
x21 = t=ln
(1x2)
dt= 2x dx1x2
=
12
t2dt =
16t3 + C =
16
ln3(1 x2)+ C.
6. Metodom smene odrediti:
10
dx
ex + 120
dx1 + e2x
30
ex 11 + 3ex
dx
40ex
21x dx 50x e(1+x2)1/2
(1 + x2)3dx 60
x+ 1
x(1 + x ex
) dxResenje: 10
dx
ex+1=
dx
ex(1+ex
)= d(1+ex)1+ex
= ln (1+ex)+C= ln
ex
1 + ex+ C = x ln (1 + ex)+ C.
Isti rezultat mozemo da dobijemo i na sledeci nacin.dx
ex + 1=
1 + ex exex + 1
dx=dx
exdx
ex + 1=x
d(ex + 1
)ex + 1
= x ln (ex + 1)+ C.
20
dx1 + e2x
=
dx
exe2x + 1
= t = exdt = exdx
= dtt2 + 1= ln |t+
t2 + 1|+ C = ln(ex +
e2x + 1) + C
= lnex
1 +
1 + e2x+ C = x ln (1 +1 + e2x)+ C.
30
ex 11 + 3ex
dx =ex 1ex + 3
ex dxex 1 =
t =ex 1, ex = t2 + 1
dt = 12ex dxex1
=2
t2
t2+4dt
1.e)= 2t4 arctan t
2+C=2
ex14 arctan
ex12
+C.
20
40ex
21x dx = t=x21dt=2x dx
= 12etdt = 1
2ex
21 + C.
50xe(1+x2)
12(1+x2)3
dx=
t=e(1+x2)
12
dt= e(1+x2)
12 x dx
(1+x2)32
=dt= t+C=e(1+x
2)12+C.
60
x+ 1x(1 + x ex
) dx= (x+ 1)exxex(1 + x ex
) dx = t = xexdt = (1 + x)exdx
=
dt
t(t+ 1)1.b)= ln
tt+ 1
+ C = ln xexxex + 1
+ C.7. Metodom smene odrediti:
10
tanx dx 20
dx
cosx30
dx
1 + cosx
40
cotx dx 50
dx
sinx60
dx
1 + sinx
Resenje: 10
tanx dx =
sinx dxcosx
= d(cosx)
cosx= ln | cosx|+ C.
20
dx
cosx=
cosx dxcos2 x
=
d(sinx)1 sin2 x
1.b)=
12
ln1 + sinx1 sinx + C.
=12
ln(1 + sinx)2
1 sin2 x + C = ln1 + sinx
cosx
+ C= log
cos x2 + sin x2cos x2 sin x2+C = log 1 + tan x21 tan x2
+C.30
dx
1 + cosx=
dx
2 cos2 x2=
d(x2
)cos2 x2
= tanx
2+ C.
40
cotx dx = log | sinx|+ C.
21
50
dx
sinx= log
tan x2
+ C.
60
dx
1 + sinx=x = t+ pi/2, dx = dt = dt
1 + sin(t+ pi/2)=
dt
1+cos t7.30= tan t/2+C=tan
x pi22
+C=tan x2tan pi4
1+tan x2 tanpi4
+C
=tan x2 1tan x2 + 1
+ C = cosx1 + sinx
+ C =2
1 + cot x2+ C1.
8. Metodom smene odrediti:
10
cos2 x dx 20
cos3 x dx 30
cos4 x dx
40
sin2 x dx 50
sin3 x dx 60
sin4 x dx
Resenje: 10
cos2 x dx =
1 + cos 2x2
dx =12
dx+
14
cos 2x d(2x)
=x
2+
sin 2x4
+ C.
20
cos3 x dx =
cos2 x cosx dx = (
1sin2 x)d(sinx) = sinx sin3 x3
+
C.
Drugi oblik primitivne funkcije moze se dobiti snizavanjem stepena trigo-nometrijske funkcije pod integralom.
cos3 x dx=
cos2 x cosx dx =
12
(1 + cos 2x
)cosx dx
=12
(cosx+cos 2x cosx
)dx=
12
(cosx+
12
(cos 3x+cosx))dx
=14
(3 cosx+cos 3x
)dx=
34
sinx+112
sin 3x+C.
22
30
cos4x dx= (
cos2x)2dx=
(1+cos 2x
2
)2dx=
1+2 cos 2x+cos22x
4dx
=14
dx+
14
cos 2x d(2x) +
18
(1 + cos 4x)dx
=38x+
14
sin 2x+132
sin 4x+ C.
40
sin2 x dx =x
2 1
4sin 2x+ C.
50
sin3 x dx = 34
cosx+112
cos 3x+ C = cosx+ cos3 x
3+ C.
60
sin4 x dx =38x 1
4sin 2x+
132
sin 4x+ C.
9. Metodom smene odrediti:
10
dx
cos3 x20
dx
cos4 x30
dx
sinx cos2 x
40
dx
sin3 x50
dx
sin4 x60
dx
sin2 x cosx
70
tan2 x dx 80
tan3 x dx 90
tan4 x dx
100
sin 2x4 cos2 x+ 9 sin2 x
dx 110
sinx cos3 x1 + cos2 x
dx
Resenje: 10 Za x ( pi2 + 2kpi, pi2 + 2kpi), k Z, imamo cosx > 0. Tada jedx
cos3 x=
1cosx
dx
cos2 x=
t=tanx, dt= dx
cos2 x
cosx= 11+t2
=
1+t2 dt
1.n)=( t
2
1+t2 +
12
lnt+1+t2 )+C
=( tanx
2 cosx+
12
ln tanx+ 1
cosx
)+ C=
sinx2 cos2 x
+12
lnsinx+ 1
cosx
+ C = sinx2 cos2 x
+12
lncos x2 + sin x2cos x2 sin x2
+ C.
23
Integral, takode mozemo odrediti na sledeci nacin:dx
cos3 x=
sin2 x+ cos2 xcos3 x
dx =
sin2 x dxcos3 x
+
dx
cosx
= u = sinx du = cosx dxdv = d(cosx)
cos3 xv = 1
2 cos2 x
= sinx2 cos2 x 12
dx
cosx+
dx
cosx
=sinx
2 cos2 x+
12
dx
cosx7.20=
sinx2 cos2 x
+12
log1 + tan x21 tan x2
+ C.
20
dx
cos4 x=
1cos2 x
dx
cos2 x=
t = tanx, dt = dx
cos2 x
cos2 x = 11+tan2 x
= 11+t2
=
(1 + t2)dt = t+t3
3+ C = tanx+
13
tan3 x+ C.
30
dx
sinx cos2 x=
sin2 x+ cos2 xsinx cos2 x
dx =
sinx dxcos2 x
+
dx
sinx
7.50= d(cosx)cos2 x
+ ln tan x
2
= 1cosx
+ ln tan x
2
+ C.40
dx
sin3 x=
18
( 1cos2 x2
1sin2 x2
)+
12
log tan x
2
+ C.50
dx
sin4 x= cotx 1
3cot3 x+ C.
60
dx
sin2 x cosx= log
cos x2 + sin x2cos x2 sin x2 1sinx + C.
70
tan2x dx=
sin2xcos2x
dx=
1cos2xcos2 x
dx=
dx
cos2xdx=tanxx+C.
80
tan3 x dx=
tanx tan2 x dx=
tanx1 cos2 x
cos2 xdx
=
tanx d(tanx)
tanx dx 7.10
=12
tan2 x+ ln | cosx|+ C.
24
90
tan4 x dx =
tan2x1cos2 x
cos2 xdx=
tan2 x d(tanx) dx
tan2 x dx
9.70=tan3 x
3 tanx+ x+ C.
100
sin 2x4 cos2 x+9 sin2 x
dx=
t=4 cos2 x+9 sin2 x
dt=5 sin 2x dx
= 15dt
t=
15
ln |t|+ C
=15
ln(4 cos2 x+9 sin2 x
)+ C.
110
sinx cos3 x1 + cos2 x
dx= t = 1 + cos2 xdt = 2 cosx sinx dx
= 12
1 tt
dt
=12
( dttdt)
=12
ln |t| 12t+ C
=12
ln(1 + cos2 x
) 1 + cos2 x2
+ C.
10. Metodom smene odrediti:
10xarctan 2x
1 + 4x2dx 20
sin 2xsinx+ 1
dx 30
1 sin 2x dx
40
cos1x
dx
x250
sinx cos2 x dx 60
cos2 x sin 2x dx
70
dx
sinx+ 2 cosx+ 380
dx
2 cosx+ 390
dx
4 3 cosx100
tanx
(1 + cosx)2dx 110
dx
(3 + cosx) sinx120
sin 3x+ cos 3xsin 3x cos 3x
dx
25
Resenje: 10xarctan 2x
1 + 4x2dx =
x dx
1 + 4x2
arctan 2x1 + 4x2
dx
=18
d(1 + 4x2)
1 + 4x2 1
2
arctan 2x d(arctan 2x)
=18
ln(1 + 4x2) 12
arctan3/2 2x3/2
+ C
=18
ln(1 + 4x2) 13
arctan3/2 2x+ C.
20
sin 2xsinx+1
dx=2
sinx cosxsinx+1
dx=
t=
sinx+1, sinx= t21dt= 12
cosxsinx+1
dx
=4 (
t2 1)dt = 43t3 4t+ C = 4
3t(t2 3) + C
=43
sinx+ 1 (sinx 2) + C.
30
1 sin 2x dx=
sin2 x+ cos2 x 2 sinx cosx dx
=
(sinx+ cosx)2 dx =
(sinx+ cosx)dx
=(
sinx cosx)+ C, za sinx+ cosx 0.40
cos
1x
dx
x2=
cos
1xd(1x
)= sin 1
x+ C.
50
sinx cos2 x dx =
sinx cosx dx=
sinx d(sinx)=(sinx)3/2
3/2+C,
za x (2kpi, 2kpi + pi/2), k Z, gde je sinx, cosx 0.
60
cos2 x sin 2x dx=2
cos3 x sinx dx = 2
cos3 x d(cosx)
=12
cos4 x+ C.
26
70
dx
sinx+2 cosx+3=
t = tan x2 dx = 2dt1+t2sinx = 2t1+t2
cosx = 1t2
1+t2
= 2
dt
t2+2t+5
= 2
d(t+ 1)(t+ 1)2 + 4
= arctant+ 1
2+ C = arctan
tan x2 + 12
+ C.
80
dx
2 cosx+3=
t=tan x2 , dx= 2dt1+t2cosx = 1t21+t2
=
2dtt2+5
1.c)=
25
arctantan x2
5+C.
90
dx
4 3 cosx = t = tan x2 , dx = 2dt1+t2cosx = 1t2
1+t2
=
2dt1 + 7t2
1.c)=
27
arctan(
7 tanx
2)
+ C.
100
tanx(1 + cosx)2
dx =
sinx dxcosx(1 + cosx)2
= t = cosxdt = sinx dx
=
dt
t(1 + t)2=
1 + t tt(1 + t)2
dt =
dt
t(1 + t)d(1 + t)(1 + t)2
1.b)= log
1 + cosxcosx
+ 11 + cosx
+ C.
110
dx
(3+cosx) sinx=
d(cosx)
(3+cosx)(1cos2 x) = t = cosxdt = sinx dx
=
dt
(3 + t)(t2 1) =12
t+ 1 (t 1)
(3 + t)(t 1)(t+ 1) dt
=12
dt
(3 + t)(t 1) 12
dt
(3 + t)(t+ 1)1.b)=
18
log t1t+3
+ 14
log t+3t+1
+C= 18
log(1cosx)(3+cosx)
(1+cosx)2
+C
27
120
sin 3x+ cos 3xsin 3x cos 3x
dx =
dx
cos 3x+
dx
sin 3x= t = 3xdx = dt3
=
13
dt
cos t+
13
dt
sin t7.20,7.50
=13
(log1+tan t21tan t2
+log tan t2
)+C=
13
log
(1 + tan 3x2
)tan 3x2
1 tan 3x2
+ C.11. Metodom smene odrediti:
10
dx
sinhx20
sinhxcosh 2x
dx
30
sinhx coshxsinh4 x+ cosh4 x
dx 40
dx
cosh2 x 3
tanh2 x
Resenje: 10
dx
sinhx=
12
dx
sinh x2 coshx2
=12
dx
tanh x2 cosh2 x
2
=d(
tanh x2)
tanh x2= ln
tanh x2
+ C.
20
sinhxcosh 2x
dx =
sinhx dx2 cosh2 x 1
=12
d(coshx)cosh2 x 12
1.h)=
12
ln coshx+cosh2 x 1
2
+ C.
30
sinhx coshxsinh4 x+ cosh4 x
dx =12
sinh 2x dx
(sinh2 x)2 + (cosh2 x)2
=12
sinh 2x dx(
cosh 2x12
)2 + ( cosh 2x+12 )2 =
sinh 2x dx2(cosh2 2x+ 1)
= t=cosh 2xdt=2 sinh 2x dx
= 122
dtt2+1
=1
2
2lnt+t2+1 +C
=1
2
2ln(
cosh 2x+
cosh2 2x+ 1)
+ C.
28
40
dx
cosh2 x 3
tanh2 x=
tanh2/3 x d(tanhx) = 3 3
tanhx+ C.
12. Primenom metoda parcijalne integracije odrediti:
10
dx
(a2 + x2)220
x2dx
(x2 a2)2
30
x3a2 + x2
dx 40
x3a2 x2 dx
50
dx(x2 a2 )5
Resenje: 10
dx
(a2 + x2)2=
1a2
a2 + x2 x2(a2 + x2)2
dx
=1a2
dx
a2+x2 1a2
x2
(a2+x2)2dx
1.c)=
1a3
arctanx
a 1a2
x2
(a2+x2)2dx
=
u = x du = dx
dv = x dx(a2+x2)2
v = 12
d(a2 + x2)(a2 + x2)2
= 12(a2 + x2)
=
1a3
arctanx
a 1a2
( x
2(a2 + x2)+
12
dx
a2 + x2
)=
12a3
arctanx
a+
x
2a2(a2 + x2)+ C.
20
x2dx
(x2a2)2 = u=x dv=
x dx(x2a2)2
du=dx v= 12(x2a2)
= x2(x2a2) + 12
dx
x2a21.d)=
x
2(a2 x2) +14a
logx ax+ a
+ C.
29
30
x3a2 + x2
dx =
u = x2 du = 2x dx
dv = x dxa2+x2
v1.j)=a2 + x2
=x2
a2+x2 2
xa2+x2 dx=x2
a2+x2
a2+x2 d
(a2+x2
)=x2
a2+x2 2
3
(a2+x2
)3+C=x22a23
a2+x2 +C.
Drugi nacin odredivanja ovog integrala podrazumeva koriscenje rezultataPn(x)dxax2 + bx+ c
= Qn1(x)ax2 + bx+ c+
dx
ax2 + bx+ c.
Tada je I =
x3a2 + x2
dx =(c0x
2 + c1x + c2)
a2 + x2 +
dxa2 + x2
,
gde c0, c1, c2 i odredujemo metodom neodredenih koeficijenata.Diferenciranjem poslednje jednakosti po x dobijamo
x3a2 + x2
= (2c0x+ c1)a2 + x2 +
(c0x
2 + c1x+ c2) x
a2 + x2+
a2 + x2
.
Nakon mnozenja saa2 + x2 i sredivanja, izraz postaje
x3 = 3c0x3 + 2c1x2 + (2a2c0 + c2)x+ a2c1 + .
Jednacenjem koeficijenata uz iste stepene od x na levoj i desnoj strani jed-nakosti, dobijamo
c0 =13, c1 = 0, c2 = 2a
2
3, = 0,
sto ponovo daje vrednost integrala I =x2 2a2
3
a2 + x2 + C.
40
x3a2 x2 dx =
u = x2 du = 2x dx
dv = x dxa2x2 v
1.j)= a2 x2
=x2
a2 x2 +2
xa2x2 dx=x2
a2x2
a2x2 d(a2x2)
=x2a2x2 2
3
(a2x2)3+C=x2+2a2
3
a2x2+C.
30
Drugi nacin odredivanja :
I =
x3a2 x2 dx =
(c0x
2 + c1x+ c2)
a2 x2 +
dxa2 x2 .
Diferenciranjem po x i sredivanjem koeficijenata uz iste stepene od x do-bijamo
c0 = 13 , c1 = 0, c2 = 2a2
3, = 0,
tj., I = x2 + 2a2
3
a2 x2 + C.
50
dx(x2a2 )5 = 1a2
x2(x2a2)
(x2a2) 52dx=
1a2
x2
(x2a2) 52dx 1
a2
dx
(x2a2) 32
=
u = x dv = x dx
(x2a2)5/2
du = dx v = 12 d(x2a2)
(x2a2)5/2 = 13(x2a2)3/2
=
1a2
( x3(x2 a2)3/2 +
13
dx
(x2 a2)3/2) 1a2
dx
(x2 a2)3/2
= 13a2
x
(x2 a2)3/2 2
3a2
dx
(x2 a2)3/2
= 13a2
x
(x2 a2)3/2 2
3a4
x2 (x2 a2)(x2 a2)3/2 dx
= 13a2
x
(x2a2)3/22
3a4
(x2
(x2a2)3/2 dx
dxx2a2
)
=
u = x dv = x dx
(x2a2)3/2
du = dx v = 12 d(x2a2)
(x2a2)3/2 = 1x2a2
=13a2
x
(x2a2)3/22
3a4
( xx2a2 +
dxx2a2
dxx2a2
)=
23a4
xx2 a2
13a2
x(x2 a2 )3 + C = x3a4 2x
2 3a2(x2 a2 )3 + C.
31
13. Primenom metoda parcijalne integracije odrediti:
10
log x dx 40
log xx2
dx 70
log(x+
a2 + x2
)dx
20
log2 x dx 50
log2 xx2
dx 80x2 log
(x+
a2 + x2
)dx
30x2 log2 x dx 60
x log
2 + x2 x dx 9
0
x log(x+
1 + x2)
1 + x2dx
Resenje: 10
log x dx = u = log x du = dxxdv = dx v = x
= x log x dx= x log x x+ C = x(log x 1) + C = x log x
e+ C.
20
log2 x dx = u=log2 x du=2 log x dxxdv=dx v=x
=x log2 x2 log x dx13.10= x log2 x 2x(log x 1) + C = x
(log2
x
e+ 1)
+ C.
30x2 log2 x dx=
u=log2 x du= 2 log x dxx
dv=x2dx v= x3
3
= x3
3log2 x 2
3
x2 log x dx
=
u = log x du =dxx
dv = x2dx v = x3
3
= x33 log2 x 23(x33 log x 13x2dx
)=
13x3 log2 x 2
9x3 log x+
227x3+C=
x3
27
(9 log2 x6 log x+2
)+C
=x3
27((3 log x 1)2 + 1)+ C.
40
log xx2
dx=
u = log x du =dxx
dv = dxx2
v = 1x
=1x log x+dx
x2=1
xlog x 1
x+C
=1x
(log x+ 1) + C = 1x
log ex+ C.
32
50
log2 xx2
dx =
u=log2 x dv= dx
x2
du= 2 log x dxx v= 1x
=1x log2 x+2
log xx2
dx
13.40= 1x
log2 x 2x
log ex+ C = 1x
(log2 ex+ 1
)+ C.
60x log
2+x2x dx=
u=log 2+x2x dv=x dx
du= 4 dx4x2 v=
x2
2
= x2
2log
2+x2x+2
x2
x24 dx
1.f)=x2
2log
2+x2x+2x2log
2+x2x+C=
x242
log2+x2x+2x+C.
70
log(x+a2 + x2
)dx =
u = log
(x+a2 + x2
)dv = dx
du = dxa2+x2
v = x
= x log
(x+a2+x2
) x dxa2+x2
1.j)= x log
(x+a2+x2
)a2+x2+C.
80x2 log
(x+
a2 + x2
)dx =
u = log
(x+a2 + x2
)dv = x2dx
du = dxa2+x2
v = x3
3
=x3
3log(x+
a2 + x2
) 13
x3
a2 + x2dx
12.30=x3
3log(x+
a2 + x2
) x2 2a29
a2 + x2 + C.
90x log(x+
1 + x2)
1 + x2dx =
u = log
(x+
1 + x2)
dv = x dx1+x2
du = dx1+x2
v =
1 + x2
=
1+x2 log(x+
1+x2) dx=1+x2 log (x+1+x2)x+C.
33
14. Primenom metoda parcijalne integracije odrediti:
10x3 sinx dx 20
x sin2 x dx 30
x2 cos 2x dx
40
dx
cos5 xdx 50
tan7 x dx 60
x sin
x dx
70
(2x 1) sin 3x dx 80
sin3 x cos3 x dx 90
dx
(sinx+ cosx)4
Resenje: 10x3 sinx dx =
u = x3 du = 3x2dxdv = sinx dx v = cosx
=x3 cosx+ 3 x2 cosx dx = u = x2 du = 2x dxdv = cosx dx v = sinx
=x3 cosx+ 3(x2 sinx 2 x sinx dx) = u = x du = dxdv = sinx dx v = cosx
=x3 cosx+ 3x2 sinx 6
( x cosx+ cosx dx)
=x3 cosx+ 3x2 sinx+ 6x cosx 6 sinx+ C.
20x sin2 x dx =
u = x dv = sin2 x dx = 1cos 2x2 dxdu = dx v = x2 14 sin 2x
=x2
2x
4sin 2x
(x2 1
4sin 2x
)dx
=x2
2x
4sin 2xx
2
4 1
8cos 2x+C=
x2
4x
4sin 2x 1
8cos 2x+C.
30x2 cos 2x dx =
u = x2 du = 2x dxdv = cos 2x dx v = 12 sin 2x
=x2
2sin 2x
x sin 2x dx =
u = x du = dxdv = sin 2x dx v = 12 cos 2x
=x2
2sin 2x+
x
2cos 2x 1
2
cos 2x dx
=x2
2sin 2x+
x
2cos 2x 1
4sin 2x+C=
2x214
sin 2x+x
2cos 2x+C.
34
40
dx
cos5 x=
sin2 x+ cos2 xcos5 x
dx =
sin2 xcos5 x
dx+
dx
cos3 x
=u=sinx du=cosx dxdv= sinx dx
cos5 xv= 1
4 cos4 x
= sinx4 cos4x+ 34
dx
cos3 x
9.10=sinx
4 cos4 x+
38
sinxcos2 x
+38
logcos x2 + sin x2cos x2 sin x2
+ C.
50
tan7 x dx =
sin7 xcos7 x
dx = u = sin6 x du = 6 sin5 x cosx dxdv = sinx dx
cos7 xv = 1
6 cos6 x
=
16
tan6 x
sin5 xcos5 x
dx= u=sin4 x du=4 sin3 x cosx dxdv= sinx dx
cos5 xv= 1
4 cos4 x
=
16
tan6 x 14
tan4 x+
tan3 x dx
9.80=16
tan6 x 14
tan4 x+12
tan2 x+ log | cosx|+ C.Integral se moze takode izracunati i primenom metoda smene.
tan7 x dx=
tan5 x tan2 x dx =
tan5 x1 cos2 x
cos2 xdx
=
tan5x d(tanx)
tan5x dx=16
tan6x
tan3x1cos2x
cos2 xdx
=16
tan6 x 14
tan4 x+
tan3 x dx
9.80=16
tan6 x 14
tan4 x+12
tan2 x+ log | cosx|+ C.
60x sin
x dx =
t = x, x = t2dx = 2t dt = 2 t3 sin t dt
14.10= 2( t3 cos t+ 3t2 sin t+ 6t cos t 6 sin t)+ C
= 2x3 cos
x+ 6x sin
x+ 12
x cos
x 12 sinx+ C.
35
70
(2x 1) sin 3x dx = u = 2x 1 dv = sin 3x dxdu = 2dx v = 13 cos 3x
= 2x1
3cos 3x+
23
cos 3x dx=
12x3
cos 3x+29
sin 3x+C.
80
sin3 x cos3 x dx=18
sin3 2x dx=
u=sin2 2x du=4 sin 2x cos 2x dxdv=sin 2x dx v=12 cos 2x
=12
sin2 2x cos 2x+ 2
sin 2x cos2 2x dx
=12
sin2 2x cos 2x
cos2 2x d(cos 2x)
=12
sin2 2x cos 2x 13
cos3 2x+ C.
90
dx
(sinx+ cosx)4=
d(sinx+ cosx)(cosx sinx)(sinx+ cosx)4
=
u = 1cosxsinx du = sinx+cosx(cosxsinx)2 dxdv = d(sinx+cosx)
(sinx+cosx)4v = 1
3(sinx+cosx)3
=
13(sinx+cosx)3(cosxsinx)
13
dx
(cosxsinx)2(sinx+cosx)2
=1
3(sinx+ cosx)2(cos2 x sin2 x) 13
dx
(cos2 x sin2 x)2
= 13(1 + sin 2x) cos 2x
13
dx
cos2 2x
= 13(1 + sin 2x) cos 2x
16
tan 2x+ C.
36
15. Primenom metoda parcijalne integracije odrediti:
10
arcsinx dx 20
arccosx
2dx 30
x2 arccosx dx
40
arcsin2 x dx 50x arcsin2 x dx 60
arcsinxx2
dx
70x arcsinx
1 x2 dx 80
arcsinx arccosx dx
Resenje: 10
arcsinx dx=
u=arcsinx dv=dxdu= dx1x2 v=x
=x arcsinx
x dx1x2
1.j)= x arcsinx+
1 x2 + C.
20
arccosx
2dx =
u=arccos x2 dv=dxdu= dx4x2 v=x
=x arccos x2 +
x dx4x2
1.j)= x arccos
x
2
4 x2 + C.
30x2arccosx dx =
u=arccosx dv=x2dxdu= dx1x2 v=
x3
3
= x33 arccosx+ 13
x31x2 dx
12.40=x3
3arccosx x
2 + 29
1 x2 + C.
40
arcsin2 x dx =
u=arcsin2 x dv=dxdu=2 arcsinx dx1x2 v=x
= x arcsin2 x 2
arcsinx
x dx1 x2 =
u=arcsinx du= dx
1x2
dv= x dx1x2 v
1.j)= 1x2
=x arcsin2 x+ 2
1 x2 arcsinx 2
dx
= x arcsin2 x+ 2
1 x2 arcsinx 2x+ C.
37
50x arcsin2 x dx==
u = arcsin2 x dv = x dxdu = 2 arcsinx dx1x2 v =
x2
2
=x2
2arcsin2 x
arcsinx
x2dx1 x2
=
u = x arcsinx dv = x dx
1x2
du =(
arcsinx+ x1x2
)dx v
1.j)= 1 x2
=x2
2arcsin2 x+x
1x2 arcsinx
1x2 arcsinx dx
x dx
=
u = arcsinx du =dx1x2
dv =
1 x2 dx v 1.m)= x2
1 x2 + 12 arcsinx
=x2 1
2arcsin2 x+
x
2
1x2 arcsinx x
2
2+
12
x dx
+12
arcsinx d(arcsinx)
=2x2 1
4arcsin2 x+
x
2
1 x2 arcsinx x
2
4+ C.
60
arcsinxx2
dx =
u = arcsinx dv =dxx2
du = dx1x2 v =
1x
= arcsinxx +
dx
x
1 x2
1.l)= 1
xarcsinx+
12
log
1 x2 11 x2 + 1
+ C.
70x arcsinx
1 x2 dx=u=arcsinx dv= x dx
1x2
du= dx1x2 v
1.j)=1x2
=
1x2 arcsinx+dx
= x
1 x2 arcsinx+ C.
38
80
arcsinx arccosx dx=
u=arccosx dv=arcsinx dxdu= dx1x2 v
15.10= x arcsinx+
1x2
=x arcsinx arccosx+
1x2 arccosx+
arcsinx
x dx1x2 +
dx
15.70= x arcsinx arccosx+
1 x2( arccosx arcsinx)+ 2x+ C.Bez koriscenja rezultata 15.10 i 15.70, integral se moze izracunati na sledecinacin.
arcsinx arccosx dx=
u=arcsinx arccosx dv=dx
du= arccosxarcsinx1x2 dx v=x
= x arcsinx arccosx
(arccosx arcsinx) x dx
1 x2
=
u=arccosx arcsinx dv= x dx
1x2
du= 2dx1x2 v=
1 x2
= x arcsinx arccosx+
1 x2(arccosx arcsinx) + 2
dx
= x arcsinx arccosx+
1 x2(arccosx arcsinx) + 2x+ C.
16. Primenom metoda parcijalne integracije odrediti:
10x arctanx dx 20
x2 arctanx dx 30
1x2
arctanx
3dx
40
arctanx dx 50
x2 arctanx
1 + x2dx 60
arctan
2x1 x2 dx
70
x earctanx
(1 + x2)3/2dx
Resenje: 10x arctanx dx =
u = arctanx du =dx
1+x2
dv = x dx v = x2
2
=x2
2arctanx 1
2
x2
1 + x2dx
1.e)=
x2 + 12
arctanx x2
+ C.
39
20x2arctanx dx=
u=arctanx du=dx
1+x2
dv=x2 dx v= x3
3
=x33 arctanx 13
x3
1+x2dx
= t=1+x2dt=2x dx
=x33 arctanx16t1tdt=
x3
3arctanx1
6(tlog|t|)+C
=x3
3arctanx 1
6(1 + x2 log(1 + x2))+ C.
30
1x2
arctanx
3dx =
u=arctan x3 dv=
dxx2
du= 3 dx9+x2
v= 1x
=1x arctan x3 +
3 dxx(9+x2
)1.k)= 1
xarctan
x
3+
16
log x2x2 + 9
+ C.
40
arctanx dx =
t = x, t2 = x2t dt = dx = 2 t arctan t dt
16.10=(t2 + 1
)arctan t t+ C = (x+ 1) arctanxx+ C.
50x2 arctanx
1 + x2dx =
u = arctanx du =dx
1+x2
dv = x2 dx
1+x2v
1.e)= x arctanx
= x arctanx arctan2 x
x dx
1 + x2+
arctanx d(arctanx)
1.i)= x arctanx 1
2arctan2 x 1
2log(1 + x2
)+ C.
60
arctan2x
1 x2 dx = u = arctan 2x1x2 du = 2dx1+x2dv = dx v = x
= x arctan
2x1x22
x dx
1+x21.i)= x arctan
2x1x2log
(1+x2
)+C.
40
70 I =
x earctanx
(1 + x2)3/2dx =
u = x
1+x2dv = e
arctan xdx1+x2
du = dx(1+x2)3/2
v = earctanx
=xearctanx
1+x2
earctanx
(1+x2)3/2dx=
u= 1
1+x2du= x dx
(1+x2)3/2
dv= earctan xdx
1+x2v = earctanx
=xearctanx
1 + x2 e
arctanx
1 + x2
x earctanx
(1 + x2)3/2dx =
(x 1) earctanx1 + x2
I.
Odatle je I =earctanx(x 1)
2
1 + x2+ C.
17. Primenom metoda parcijalne integracije odrediti:
10x3e2x dx 20
x2ex
(x+ 2)2dx 30
exdx
40eax cos bx dx 50
eax sin bx dx
60e2x sin2 x dx 70
e2x cos2 x dx
Resenje: 10 I =x3e2xdx =
u = x3 du = 3x2dxdv = e2xdx v = 12e2x
=x3
2e2x 3
2
x2e2xdx =
u = x2 du = 2x dxdv = e2xdx v = 12e2x
=x3
2e2x 3
2
(x2
2e2x
xe2xdx
)=x3
2e2x 3x
2
4e2x +
32
xe2xdx
= u = x du = dxdv = e2xdx v = 12e2x
= x32 e2x 3x24 e2x + 32(x2 e2x 12e2xdx
)=x3
2e2x 3x
2
4e2x+
3x4e2x 3
8e2x+C=
e2x
8(4x36x2+6x3
)+C.
41
20
x2ex
(x+ 2)2dx=
u = x2ex du = x(x+ 2)exdxdv = dx(x+2)2 v = 1x+2
= x2
x+ 2ex +
xexdx =
u = x du = dxdv = exdx v = ex
= x2
x+ 2ex+xex
exdx = x
2
x+ 2ex + xex ex+C
=x 2x+ 2
ex + C.
30exdx=
xexdxx
=
u=x dv= e
xdxx
du= dx2x
v=2ex
=2xexexdxx
= 2xex 2e
x + C = 2e
x(x 1)+ C.
40 I =eax cos bx dx =
u = cos bx du = b sin bx dxdv = eaxdx v = 1aeax
=1aeax cos bx+
b
a
eax sin bx dx =
u = sin bx du = b cos bx dxdv = eaxdx v = 1aeax
=1aeax cos bx+
b
a
(1aeax sin bx b
a
eax cos bx dx
)=eax
a2(a cos bx+ b sin bx
) b2a2I.
Odatle jea2 + b2
a2I =
eax
a2(a cos bx+ b sin bx
)+ C1, odnosno
I =eax
a2 + b2(a cos bx+ b sin bx
)+ C.
50eax sin bx dx =
u = sin bx du = b cos bx dxdv = eaxdx v = 1aeax
=1aeaxsin bx b
a
eaxcos bx dx17.4
0
=eax
a2+b2(a sin bxb cos bx)+C.
42
60e2x sin2 x dx =
u = sin2 x du = 2 sinx cosx dx = sin 2x dxdv = e2xdx v = 12e2x
=12
(e2xsin2x
e2xsin2x dx
)17.50=
e2x
8(2cos2xsin2x)+C.
70e2x cos2 x dx =
e2x(1 sin2 x) dx = e2x dx e2x sin2 x dx
17.60=e2x
8(2 + cos 2x+ sin 2x
)+ C.
18. Odrediti rekurentnu formulu za izracunavanje integrala In za n N, n 2i a, b 6= 0.
10 In =
x logn x dx 20 In = (
1 x2)n/2 dx30 In =
dx
(x2 + a2)n40 In =
dx
(ax2 + bx+ c)n
50 In =x2nx2 a2 dx 60 In =
x2n+1
x2 a2 dx
70 In =
sinn x dx 80 In =
dx
cosn x
90 In =
tann x dx 100 In =
cotn x dx
110 In =
dx
(a sinx+ b cosx)n120 In =
dx
(a+ b cosx)n
Resenje: 10 In =
x logn x dx = u = logn x du = n logn1x dxxdv = x dx v = 23xx
=
23x3/2 logn x 2n
3
x logn1 x dx =
23x3/2 logn x 2n
3In1.
43
Iskoristimo izvedenu relaciju za izracunavanje, na primer, integrala I3. Kakoje
I1 =
x log x dx =
u = log x du =dxx
dv =x v = 23x
3/2
= 23x3/2 log x 23
x dx
=23x3/2 log x 4
9x3/2 + C =
29x3/2
(3 log x 2)+ C,
na osnovu izvedene rekurentne relacije imamo
I2 =23x3/2 log2 x 4
3I1 =
227x3/2
(9 log2 x 12 log x+ 8)+ C,
I3 =23x3/2 log3 x 2I2 = 227x
3/2(9 log3 x 18 log2 x+ 24 log x 16)+ C.
20 In = (
1 x2)n/2dx = (1 x2)(1 x2)(n2)/2dx= In2
x2(1x2)n22 dx= u=x dv=x
(1x2)n22 dx
du=dx v= 1n(1x2)n/2
= In2+
x
n
(1x2)n/2 1
n
(1x2)n/2dx= 1
nIn+In2+
x
n
(1x2)n/2.
Dakle,n+ 1n
In = In2 +x
n
(1 x2)n/2, pa je
In =n
n+ 1In2 +
x
n+ 1(1 x2)n/2.
Znamo da je I1 =
1 x2 dx 1.m)= x2
1 x2 + 1
2arcsinx + C. Na osnovu
izvedene rekurentne relacije dobijamo
I3 =34I1 +
x
4(1 x2)3/2 = 3
8arcsinx+
x
8
1 x2(5 2x2)+ C.
Kako je I2 = (
1 x2)dx = x x33
+ C, mozemo odrediti
I4 =45I2 +
x
5(1 x2)2 + C = x 2
3x3 +
15x5 + C.
44
30 In =
dx
(x2+a2)n=
1a2
x2+a2x2(x2+a2)n
dx=1a2In1 1
a2
x2
(x2+a2)ndx
=
u = x dv =x dx
(x2+a2)n
du = dx v = 1(22n)(x2+a2)n1
=
2n 3(2n 2)a2 In1 +
1(2n 2)a2
x
(x2 + a2)n1.
Primetimo da su ovaj integral i dobijena rekurentna relacija samo specijalanslucaj integrala i relacije iz narednog primera (a = 1, b = 0, c = a2).
40 In =
dx
(ax2 + bx+ c)n=
ax2 + bx+ c(ax2 + bx+ c)n+1
dx
=
d(ax2 + bx+ c) = (2ax+ b)dx
ax2 + bx+ c = 14a((2ax+ b)2 + 4ac b2)
=
(2ax+b)2+4acb24a(ax2+bx+c)n+1
dx=14a
(2ax+b)2
(ax2+bx+c)n+1dx+
4acb24a
In+1
=
u = 2ax+ b du = 2a dxdv = d(ax2+bx+c)(ax2+bx+c)n+1
v = 1n(ax2+bx+c)n
=
14a
( (2ax+ b)n(ax2 + bx+ c)n
+2an
dx
(ax2 + bx+ c)n
)+
4ac b24a
In+1
= 2ax+ b4an(ax2 + bx+ c)n
+1
2nIn +
4ac b24a
In+1.
4ac b2
4aIn+1 = In 12nIn +
2ax+ b4an
(ax2 + bx+ c
)n In+1 = 2a4ac b2
2n 1n
In +2ax+ b
n(4ac b2)(ax2 + bx+ c)n .
45
50 In =x2nx2 a2 dx =
x2n2
(x2 a2 a2)x2 a2 dx
=x2n2
(x2a2) 32dxa2In1 =
u=(x2a2) 32 dv=x2n2dx
du=3x2a2xdx v= x2n12n1
=
x2n1
2n 1(x2 a2) 32 3
2n 1In a2In1
2n+ 22n 1In =
x2n1
2n 1(x2 a2) 32 a2In1
In = x2n1
2n+ 2(x2 a2) 32 2n 1
2n+ 2a2In1.
60 In =x2n+1
x2 a2 dx =
u = x2n du = 2nx2n1dxdv = x2 a2xdx v = 13(x2 a2) 32
=13x2n(x2 a2) 32 2n
3
x2n1
(x2 a2) 32dx
=13x2n(x2 a2) 32 2n
3(In a2In1
) 2n+ 3
3In =
13x2n(x2 a2) 32 2n
3a2In1
In = 12n+ 3x2n(x2 a2) 32 2na2
2n+ 3In1.
70 In=
sinn x dx=
sinn2 x(1cos2 x)dx=In2
cos2 x sinn2 x dx
= u = cosx dv = sinn2 x d(sinx)du = sinx dx v = 1n1 sinn1 x
= In2 1
n 1 sinn1x cosx 1
n 1In
nn 1In = In2
1n 1 sin
n1 x cosx
In = n 1n
In2 1n
sinn1 x cosx.
46
80 In =
dx
cosn x=
sin2 x+ cos2 xcosn x
dx =
sin2 xcosn x
dx+
dx
cosn2 x
=
sin2 xcosn x
dx+ In2 =
u = sinx du = cosx dxdv = d(cosx)cosn x v = 1(n1) cosn1 x
=sinx
(n 1) cosn1 x 1
(n 1)In2 + In2
=sinx
(n 1) cosn1 x +n 2n 1 In2.
90 In =
tann x dx =
tann2 x1 cos2 x
cos2 xdx =
tann2 x
dx
cos2 x In2
=
tann2 x d(tanx) In2 = 1n 1 tan
n1 x In2.
100 In =
cotn x dx =
cotn2 x1 sin2 x
sin2 xdx =
cotn2 x
dx
sin2 x In2
=
cotn2 x d(cotx) In2 = 1n 1 cot
n1 x In2.
47
110 In =
dx
(a sinx+ b cosx)n=
a sinx+ b cosx(a sinx+ b cosx)n+1
dx
=
u=1
(a sinx+b cosx)n+1du=(n+ 1) a cosxb sinx
(a sinx+b cosx)n+2dx
dv=(a sinx+b cosx)dx v=(a cosxb sinx)
= a cosx b sinx
(a sinx+ b cosx)n+1 (n+ 1)
(a cosx b sinx)2
(a sinx+ b cosx)n+2dx
= a cosxb sinx(a sinx+b cosx)n+1
(n+ 1)a2+b2(a sinx+b cosx)2
(a sinx+b cosx)n+2dx
= a cosx b sinx(a sinx+ b cosx)n+1
(n+ 1)((a2 + b2
)In+2 In
) In+2 = n(n+ 1)(a2 + b2)In 1(n+ 1)(a2 + b2) a cosx b sinx(a sinx+ b cosx)n+1 .
120 In =
dx
(a+ b cosx)n=
a+ b cosx(a+ b cosx)n+1
dx
= a
dx
(a+b cosx)n+1+b
cosx dx(a+b cosx)n+1
=aIn+1+b
cosx dx(a+b cosx)n+1
=
u = 1(a+b cosx)n+1 du = (n+ 1)b sinx dx(a+b cosx)n+2dv = cosx dx v = sinx
=aIn+1+b(
sinx(a+b cosx)n+1
(n+1)b
sin2x dx(a+b cosx)n+2
)= aIn+1 +
b sinx(a+ b cosx)n+1
+ (n+ 1)b2
1 cos2 x(a+ b cosx)n+2
dx
=b sinx
(a+b cosx)n+1+aIn+1+(n+1)b2In+2
(n+1)b2 cos2 x(a+b cosx)n+2
dx
=b sinx
(a+b cosx)n+1+aIn+1(n+1)b2In+2(n+1)b2
(a+b cosxab
)2dx
(a+ b cosx)n+2
=b sinx
(a+b cosx)n+1(n+1)In+a(2n+3)In+1(n+1)
(a2+b2
)In+2.
48
(n+ 1)(a2 + b2)In+2 = b sinx(a+ b cosx)n+1 (n+ 2)In + a(2n+ 3)In+1 In+2 = b(n+ 1)(a2 + b2) sinx(a+ b cosx)n+1 n+ 2(n+ 1)(a2 + b2)In
+(2n+ 3)a
(n+ 1)(a2 + b2
)In+1.
19. Razlaganjem racionalne funkcije, izracunati sledece integrale
10
x3 + 6x3 5x2 + 6x dx 2
0
dx
(x 1)2(x2 + 1)2
30
dx
x(x+ 1)(x2 + x+ 1)340
x
x3 3x+ 2 dx
50
dx
x3 + 160
x+ 1x3 1 dx 7
0
dx
x4 + 1
80
x2dx(x2 + 2x+ 2
)2 90 2x2 5x4 5x2 + 6 dx100
x3 1x4 + x2
dx 110
x+ 2x3 + 1
dx 120
x+ 1x(x2 + 2x+ 2)
dx
Resenje: 10 I =
x3 + 6x3 5x2 + 6x dx; integral najpre svedemo na integral
prave racionalne funkcije.
x3 + 6x3 5x2 + 6x =
x3 5x2 + 6x+ 5x2 6x+ 6x3 5x2 + 6x = 1 +
5x2 6x+ 6x3 5x2 + 6x.
Kako je x3 5x2 + 6x = x(x2 5x+ 6) = x(x 2)(x 3), to je
I =dx+
5x2 6x+ 6x(x 2)(x 3) dx.
Nova racionalna podintegralna funkcija dozvoljava razvoj:
5x2 6x+ 6x(x 2)(x 3) =
A
x+
B
x 2 +C
x 3 , (1)
gde je koeficijente A,B,C potrebno odrediti.
49
Metod neodredenih koeficijenata podrazumeva sledece:pomnozimo jednakost (1) sa x(x 2)(x 3). Ona postaje jednakost dva poli-noma u razvijenom obliku
5x2 6x+ 6 =A(x 2)(x 3) +Bx(x 3) + Cx(x 2)= x2(A+B + C) + x(5A 3B 2C) + 6A.
Izjednacavanjem koeficijenata uz iste stepene promenljive x dolazimo do sis-tema jednacina
5 = A+B + C, 6 = 5A 3B 2C, 6 = 6A.Resavanjem ovog sistema nalazimo A = 1, B = 7 i C = 11.
Time polazni integral svodimo na zbir cetiri elementarna integrala:
I =dx+
dx
x 7
dx
x 2 + 11
dx
x 3= x+ log |x| 7 log |x 2|+ 11 log |x 3|+ C.
20 I =
dx
(x 1)2(x2 + 1)2 , podintegralna funkcija dozvoljava razvoj:
1(x 1)2(x2 + 1)2 =
A1x 1 +
A2(x 1)2 +
B1x+ C1x2 + 1
+B2x+ C2(x2 + 1
)2 . (2)OdredimoAj , Bj , Cj metodom neodredenih koeficijenata. Nakon mnozenja
(2) sa (x 1)2(x2 + 1)2 dolazimo do jednakosti1 = A1(x 1)
(x2 + 1
)2 +A2(x2 + 1)2 + (B1x+ C1)(x 1)2(x2 + 1)+(B2x+ C2)(x 1)2
= x5(A1 +B1) + x4(A1 +A2 2B1 + C1) + x3(2A1 + 2B1 +B2 2C1)+x2(2A1 + 2A2 2B1 2B2 + 2C1 + C2)+x(A1 +B1 +B2 2C1 2C2)A1 +A2 + C1 + C2.
Izjednacavanjem koeficijenata dva polinoma uz odgovarajuce stepene od x,dolazimo do sistema jednacina
0 =A1 +B10 =A1 +A2 2B1 + C10 = 2A1 + 2B1 +B2 2C10 =2A1 + 2A2 2B1 2B2 + 2C1 + C20 =A1 +B1 +B2 2C1 2C21 =A1 +A2 + C1 + C2,
50
cijim resavanjem nalazimo vrednosti
A1 = 1/2, A2 = 1/4, B1 = 1/2, C1 = 1/4, B2 = 1/2, C2 = 0.Polazni integral tada postaje
I =12
dx
x 1 +14
dx
(x 1)2 +14
2x+ 1x2 + 1
dx+12
x dx(
x2 + 1)2
=12
log |x 1| 14(x 1) +
14
d(x2 + 1
)x2 + 1
+14
dx
x2 + 1+
14
d(x2 + 1
)(x2 + 1
)2=
14
(log
x2 + 1(x 1)2
x2 + x(x 1)(x2 + 1) + arctanx)+ C.
30 I =
dx
x(x+ 1)(x2 + x+ 1)3; primetimo sledeci razvoj podintegralne funkcije
1x(x+ 1)(x2 + x+ 1)3
=x2 + x+ 1 x(x+ 1)x(x+ 1)(x2 + x+ 1)3
=1
x(x+ 1)(x2 + x+ 1)2 1
(x2 + x+ 1)3
=x2 + x+ 1 x(x+ 1)x(x+ 1)(x2 + x+ 1)2
1(x2 + x+ 1)3
=1
x(x+ 1)(x2 + x+ 1) 1
(x2 + x+ 1)2 1
(x2 + x+ 1)3
=1
x(x+ 1) 1x2 + x+ 1
1(x2 + x+ 1)2
1(x2 + x+ 1)3
.
Time polazni integral postaje
I =
dx
x(x+ 1)
dx
x2 + x+ 1
dx
(x2 + x+ 1)2
dx
(x2 + x+ 1)3
1.b)= log
xx+ 1
d(x+ 12)(x+ 12
)2 + 34
d(x+ 12)((x+ 12
)2 + 34)2
d(x+ 12)((x+ 12
)2 + 34)3 = t = x+ 12
1.c)= log
xx+ 1
23
arctan2x+ 1
3
dt(t2 + 34
)2 dt(t2 + 34
)312.10
18.30= log xx+1
143
3arctan
2x+13 2
32x+1
x2+x+1 2x+1
6(x2+x+1
)2 +C.
51
40
x
x3 3x+ 2 dx =29
log1 x2 + x
+ 13(1 x) + C.
50
dx
x3 + 1=
13
arctan2x 1
3+
16
log(x+ 1)2
x2 x+ 1 + C
=13
arctan2x 1
3+
16
log(x+ 1)3x3 + 1
+ C.60
x+ 1x3 1 dx =
13
log (x 1)2x2 + x+ 1
+ C = 13
log(x 1)3x3 1
+ C.
70
dx
x4+1=
dx
(x2+1)22x2 =1
2
2
(arctan(1+
2x)arctan(1
2x)
)+
14
2logx2 +2x+ 1x2 2x+ 1
+ C.80
x2dx(x2 + 2x+ 2
)2 = arctan(x+ 1) + 1x2 + 2x+ 2 + C.90
2x2 5x4 5x2 + 6 dx =
12
2logx2x+2
+ 123 logx3x+3
+ C.100
x3 1x4 + x2
dx =1x
+12
log(1 + x2) + arctanx+ C.
110
x+ 2x3 + 1
dx =
3 arctan2x 1
3+
16
log(x+ 1)3x3 + 1
+ C.120
x+ 1
x(x2 + 2x+ 2)dx =
12
arctan(x+ 1) +14
logx2
x2 + 2x+ 2+ C.
20. Odrediti sledece integrale iracionalnih funkcija
10
dxx+ 2+ 3
x+ 2
20
1x+ 11+ 3x+ 1
dx 30
dx6x 1+ 3x 1+x 1
40
dx
(x+1)5x2+2x
50
x+1x1 dx 6
0
dx
(x 1)(2 x)
52
Resenje: 10
dxx+ 2 + 3
x+ 2
= t6 = x+ 2dx = 6t5dt
= 6 t5dtt3 + t2 = 6
t3dt
t+ 1
= 6t3 + 1 1t+ 1
dt = 6
(t2 t+ 1)dt 6
dt
t+ 1
= 2t3 3t2 + 6t 6 log |t+ 1|+ C
= 2x+ 2 3 3x+ 2 + 6 6x+ 2 6 log 6x+ 2 + 1+ C.
20
1x+ 11 + 3x+ 1
dx = t6 = x+ 1dx = 6t5dt
= 6 (1 t3)t51 + t2 dt= 6
(t6 + t4 + t3 t2 t+ 1)dt+ 6
t 1t2 + 1
dt
= 67t7 +
65t5 +
32t4 2t3 3t2 + 6t+ 3
2t dtt2 + 1
6
dt
t2 + 1
= 67t7 +
65t5 +
32t4 2t3 3t2 + 6t+ 3 log(t2 + 1) 6 arctan t+ C
= 67(
6x+ 1
)7 + 65(
6x+ 1
)5 + 32(
3x+ 1
)2 2x+ 13 3x+ 1 + 6 6x+ 1 + 3 log( 3x+ 1 + 1) 6 arctan 6x+ 1 + C.
30
dx6x 1 + 3x 1 +x 1 =
t6 = x 1dx = 6t5dt = 6 t5t+ t2 + t3 dt
= 6
(t2 t)dt+ 6
t dt
t2 + t+ 1= 2t3 3t2 + 3
2t+ 1 1t2 + t+ 1
dt
= 2t3 3t2 + 3d(t2 + t+ 1)t2 + t+ 1
dt 3
dt
t2 + t+ 1
= 2t3 3t2 + 3 log |t2 + t+ 1| 3
dt
(t+ 12)2 + 34
1.c)= 2t3 3t2 + 3 log
t3 1t 1
33/2
arctant+ 12
3/2+ C
= 2x13 3x1+3 log
x116x1123 arctan 2 6x1+13 +C.
53
40 I =
dx
(x+1)5x2+2x
=
x+1=1t , x, t > 0
dx=dtt2
=
t4dt1t2
=(a0t
3 + a1t2 + a2t+ a3)
1 t2 +
dt1 t2 .
Diferenciranjem po t i mnozenjem sa
1 t2 dobijamot4 = 4a0t4 3a1t3 + (3a0 2a2)t2 + (2a1 a3)t+ a2 + .
Izjednacavanjem koeficijenata uz stepene od t formiramo sistem jednacina
1 = 4a0 0 = 2a1 a30 = 3a1 0 = a2 + 0 = 3a0 2a2
cije je resenje
a0 = 1/4, a1 = 0, a2 = 3/8, a3 = 0, = 3/8.Nakon sredivanja nalazimo da je polazni integral
I =x2 + 2x
( 14(x+ 1)4
+3
8(x+ 1)2) 3
8arcsin
1x+ 1
+ C.
Za x < 2 integral se izracunava analognim postupkom, vodeci racuna da jet2 = t.
Ovaj integral takode se moze odrediti primenom Ojlerove smene.
I=
dx
(x+ 1)5x2 + 2x
=
x2 + 2x = t x, x = 2
t21dx = 4t dt
(t21)2
=4
(t2 1)4(t2 + 1)5
dt = 4
(t2 + 1 2)4(t2 + 1)5
dt
=4
(t2 + 1)4 8(t2 + 1)3 + 24(t2 + 1)2 32(t2 + 1) + 16(t2 + 1)5
dt
=4
dt
t2 + 1+ 32
dt
(t2 + 1)2 96
dt
(t2 + 1)3+ 128
dt
(t2 + 1)4
64
dt
(t2 + 1)5.
54
Koristeci izvedenu rekurentnu relaciju iz zadatka 18.30 nalazimo
I = 32
arctan t+5t7 3t5 + 3t3 5t
2(t2 + 1)4+ C.
Vracanjem smene konacno dobijamo
I =x2 + 2x
3x2 + 6x+ 54(x+ 1)4
32
arctanx2 + 2xx
+ C.
50
x+ 1x 1 dx =
t =
x+1x1
dx = 4t dt(t21)2
= 4
t2
(t2 1)2 dt
12.20=2t
t2 1 + log t+ 1t 1
+ C=
(x+ 1)(x 1) + log x+(x+ 1)(x 1)+ C.
60
dx(x 1)(2 x) =
x (1, 2) x = 1 + sin2 t, t (0, pi/2)dx = 2 sin t cos t dt,
(x 1)(2 x) =
sin2 t(1 sin2 t)
=2dt = 2t+ C = 2 arcsin
x 1 + C.
Integral mozemo resiti i primenom trece Ojlerove smene.
I =
dx(x 1)(2 x) =
(x 1)(2 x) = t(x 1)x = t
2+2t2+1
dx = 2t dt(t2+1)2
= 2
dt
t2 + 1
= 2 arctan t+ C = 2 arctan
2 xx 1 + C.
21. Svodenjem na integral racionalne funkcije, izracunati sledece integrale
10
dx
x+x2 + x+ 1
20
dx
1 +
1 2x x2 30
xx2 + 3x+ 2x+x2 + 3x+ 2
dx
40
x3 + x4 dx 50
x(1 + 3x)2 dx 60 33x x3 dx
55
Resenje: 10 I =
dx
x+x2 + x+ 1
. Potkorena funkcija u integralu odgo-
vara za primenu prve Ojlerove smene:x2 + x+ 1 = x+ t.
Znak ispred x biramo tako da pogoduje sredivanju podintegralne funkcije.Kako je
t = x+x2 + x+ 1,
posle poredenja sa podintegralnom funkcijom uzimamox2 + x+ 1 = x+t.
Tada je
x2 + x+ 1 = x2 2xt+ t2 x+ 1 = t2 2xt,
tj. x =t2 11 + 2t
, pa je dx = 2t2 + t+ 1(2t+ 1)2
dt. Integral onda glasi
I = 2
t2 + t+ 1t(2t+ 1)2
dt.
Rastavimo racionalnu funkciju
2t2 + t+ 1t(2t+ 1)2
=A1t
+A2
2t+ 1+
A3(2t+ 1)2
.
Metodom neodredenih koeficijenata nalazimo da je
A1 = 2, A2 = 3, A3 = 3.
Integral se transformise u elementarne integrale
I = 2dt
t3
dt
2t+1 3
2
d(2t+1)(2t+1)2
=2 log |t| 32
log |2t+1|+ 32(2t+1)
+C1
= 2 logx+x2+x+1 3
2log2x+2x2+x+1+1x+x2+x+1+C,
gde je C = C1 1/2.
56
20 I =
dx
1+
12xx2 =
12xx2 =xt1dx=2t
2+2t+1(t2+1)2
dt
= t2+2t+1t(t1)(t2+1) dt.
t2 + 2t+ 1t(t 1)(t2 + 1) =
A1t
+A2t 1 +
Bt+ Ct2 + 1
A1 = 1, A2 = 1, B = 0, C = 2
I =
dt
t 1 dt
t 2
dt
t2 + 1= log
t 1t
2 arctan t+ C= log
1 x+1 2x x21 +
1 2x x2 2 arctan 1 +1 2x x2
x+ C.
30 I=xx2+3x+2x+x2+3x+2
dx=
x2+3x+2=
(x+2)(x+1)= t(x+1)
x = 2t2
t21 , dx = 2tdt(t21)2
=2
t2 + 2t
(t 2)(t 1)(t+ 1)3 dt.
2 t2 + 2t
(t 2)(t 1)(t+ 1)3 = 16
27(t 2)+3
4(t 1)17
108(t+ 1)+
518(t+ 1)2
+1
3(t+ 1)3
I=1627
log |t 2|+ 34
log |t 1| 17108
log |t+ 1| 518(t+ 1)
16(t+ 1)2
+ C
=1627
log
x+ 2x+ 1
2+ 34 log
x+ 2x+ 1
1 17108 log
x+ 2x+ 1
+ 1
5
18(
x+ 2x+ 1
+ 1) 1
6(
x+ 2x+ 1
+ 1)2 + C.
57
40 I=
x3 + x4 dx =x2(1 + x1)1/2 dx =
1 + x1 = t2dx = 2t dt(t21)2
=2
t2dt
(t2 1)4 = 2t2 1 + 1(t2 1)4 dt
=2
dt
(t2 1)3 2
dt
(t2 1)4 = 2I3 2I4,
gde je In =
dt
(t2 1)n . Rekurentnu relaciju za izracunavanje In
In =t
2(n 1)(t2 1)n1 2n 3
2(n 1)In1
mozemo dobiti, na primer, iz 18.40 za a = 1, b = 0 i c = 1, imajuci u viduda je
I1 =
dt
t2 1 =12
log t 1t+ 1
+ C1.Tada je
I2 = t2(t2 1) 14
log t 1t+ 1
+ C2.I3 =
3t3 5t8(t2 1)2 +
316
log t 1t+ 1
+ C3.I4 = 15t
5 40t3 + 33t48(t2 1)3
532
log t 1t+ 1
+ C4.I = 3t
5 8t3 3t24(t2 1)3
116
log t 1t+ 1
+ C=
124
x2 + x(8x2 + 2x 3) + 1
8logx+1 + x + C.
58
50
x(1+ 3x)2 dx= x= t6dx=6t5dt
=6 t8 dt(t2+1)2= 6
(t4 2t2 + 3)dt 6
4t2 + 3
(t2 + 1)2dt
=65t5 4t3 + 18t 6
4(t2 + 1) 1
(t2 + 1)2dt
=65t5 4t3 + 18t 24
dt
t2 + 1+ 6
dt
(t2 + 1)2
12.10=65t5 4t3 + 18t 21 arctan t+ 3 t
t2 + 1+ C
=6x
5(1 + 3x )(6x 14 3
x2 + 70 3
x+ 105
) 21 arctan 6x+ C.
60
3
3xx3 dx=x(1+3x2)1/3dx=
1+3x2 = t3, x=
3
t3+1
dx= 3
3t2dt2(t3+1)3/2
= 9
2
t3dt
(t3+1)2=
u= t dv= t2dt
(t3+1)2
du=dt v= 13(t3+1)
= 3t2(t3+1) 32
dt
t3+1
19.50=3t
2(t3 + 1)
32
arctan2t 1
3 1
4log(t+ 1)3t3 + 1
+ C=
118
log
(3
3x x3 + x)3
3x+x2
9+
19
3arctan
2 3
3x x3 x3x
+ C.
22. Svesti sledece integrale na integral racionalne funkcije.
10
3 tanx+ 13 tanx dx 2
0
dx
4 + 3 tanx
30
1 2 cosx+ 3 sinx2 + 3 cosx 4 sinx dx 4
0
dx
(sinx+ 2 cosx)3
50
dx
sin2 x cos4 x60
dx(sinx+
2cosx
)270
2x 13 x dx 8
0
3
x+ 22x 1 dx
59
Resenje: 10
3 tanx+ 13 tanx dx =
t = tanxdx = dt1+t2
= 3t+ 1(3 t)(1 + t2) dt .20
dx
4 + 3 tanx= t = tanxdx = dt
1+t2
= dt(4 + 3t)(1 + t2) .
30
1 2 cosx+ 3 sinx2 + 3 cosx 4 sinx dx =
t = tan x2 dx = 2dt1+t2sinx = 2t1+t2
cosx = 1t2
1+t2
= 2
3t2 + 6t 1
(5 8t t2)(1 + t2) dt .
40
dx
(sinx+2 cosx)3=
t=tan x2 dx= 2dt1+t2sinx= 2t1+t2
cosx= 1t2
1+t2
= 12
(1+t2)dt(1+tt2)3 .
50
dx
sin2 x cos4 x=
1sin2 x cos2 x
dx
cos2 x=
t=tanx dt=dx
cos2 x
sin2 x= t2
1+t2cos2 x= 1
1+t2
=
(1 + t2)2
t2dt.
60
dx(sinx+
2cosx
)2 = t=tan x2 dx= 2dt1+t2sinx= 2t
1+t2cosx= 1t
2
1+t2
= 12
(1+t2)(1t2)2dt(t(1t2)+(1+t2)2)2 .
70
2x 13 x dx =
t =
2x13x
dx = 10t dt(2+t2)2
= 10
t2dt
(2 + t2)2.
80
3
x+ 22x 1 dx =
t =3
x+22x1
dx = 15t2dt
(2t31)2
= 15
t3dt
(2t3 1)2 .