of 59 /59
Neodred¯eniintegrali Definicija. Za funkciju F : I R, gde je I interval, kaˇ zemo da je primitivna funkcija funkcije f : I R ako je F 0 (x)= f (x) za svako x I. Teorema 1. Ako je F : I R primitivna funkcija za f : I R, tada je i funkcija F (x)+ C, C R, takod¯e primitivna funkcija funkcije f. Definicija. Skup svih primitivnih funkcija funkcije f naziva se neodred¯eni integral funkcije f i oznaˇ cava sa Z f (x)dx. Osnovne osobine neodred¯enog integrala: 1 o (R f (x)dx ) 0 = f (x) , 2 o R F 0 (x)dx = F (x)+ C, 3 o R λf (x)dx = λ R f (x)dx, λ R \{0} , 4 o R( f (x) ± g(x) ) dx = R f (x)dx ± R g(x)dx . ˇ Cuvajmo drve´ ce. Nemojte ˇ stampati ovaj materijal, ukoliko to nije neophodno. 1

Neodredjeni integrali

  • Author
    igob94

  • View
    254

  • Download
    8

Embed Size (px)

DESCRIPTION

Neodredjeni integrali zadaci

Text of Neodredjeni integrali

  • Neodredeni integrali

    Definicija. Za funkciju F : I R, gde je I interval, kazemo da je primitivnafunkcija funkcije f : I R ako je

    F (x) = f(x)

    za svako x I.

    Teorema 1. Ako je F : I R primitivna funkcija za f : I R, tada je ifunkcija F (x) + C, C R, takode primitivna funkcija funkcije f.

    Definicija. Skup svih primitivnih funkcija funkcije f naziva se neodredeniintegral funkcije f i oznacava sa

    f(x)dx.

    Osnovne osobine neodredenog integrala:

    1o(

    f(x)dx) = f(x) ,

    2oF (x)dx = F (x) + C ,

    3of(x)dx =

    f(x)dx, R \ {0} ,

    4o (f(x) g(x))dx = f(x)dx g(x)dx .

    Cuvajmo drvece. Nemojte stampati ovaj materijal, ukoliko to nije neophodno.

    1

  • 2Tablica integrala

    xndx =

    xn+1

    n+ 1+ C, n 6= 1

    dx

    x= ln |x|+ C

    dx

    1 + x2={

    arctanx+ C, arcctg x+ C

    dx

    x2 1 =12

    lnx 1x+ 1

    + Cdx

    1 x2 ={

    arcsinx+ C, arccosx+ C

    dxx2 1 = ln |x+

    x2 1|+ C

    exdx = ex + Caxdx =

    ax

    ln a+ C, a > 0, a 6= 1

    sinx dx = cosx+ C cosx dx = sinx+ Cdx

    sin2 x= cotx+ C

    dx

    cos2 x= tanx+ C

    sinhx dx = coshx+ C

    coshx dx = sinhx+ Cdx

    sinh2 x= cothx+ C

    dx

    cosh2 x= tanhx+ C

    Osnovne metode integracije:

    METOD SMENEAko je

    f(x)dx = F (x) +C, tada je

    f(u)du = F (u) +C. Uzmimo da je

    x = (t), gde je neprekidna funkcija zajedno sa svojim izvodom . Tada

    f((t)

    )(t)dt = F

    ((t)

    )+ C.

    METOD PARCIJALNE INTEGRACIJEAko su u i v diferencijabilne funkcije i funkcija uv ima primitivnu funkciju,

    tada je udv = uv

    vdu.

  • 3Primeri najcesce koriscenih smena:

    dx =1ad(ax+ b), a 6= 0, smena: t = ax+ b, dt = a dx,

    xdx =12d(x2), smena: t = x2, dt = 2xdx,

    xdx =12a

    d(ax2 + b), a 6= 0, smena: t = ax2 + b, dt = 2axdx,

    xn1dx =1nd(xn), n 6= 0, smena: t = xn, dt = nxn1dx,

    dxx

    = 2 d(x), smena: t =

    x, 2t dt = dx,

    dxax+ b

    =2ad(ax+ b), a 6= 0, smena: t = ax+ b, 2

    at dt = dx,

    dx

    x= d(lnx), smena: t = lnx, dt =

    dx

    x,

    dx

    x= d(

    ln ax), a 6= 0, smena: t = ln ax, dt = dx

    x,

    exdx = d(ex), smena: t = ex, dt = exdx,

    eaxdx = d(

    1aeax), a 6= 0, smena: t = eax, dt = aeaxdx,

    sinx dx = d(cosx), smena: t = cosx, dt = sinx dx,cosx dx = d(sinx), smena: t = sinx, dt = cosx dx,

    dx

    cos2 x= d(tanx), smena: t = tanx,

    dt

    1 + t2= dx,

    dx

    sin2 x= d(cotx), smena: t = cotx, dt

    1 + t2= dx,

    sinhx dx = d(coshx), smena: t = coshx, dt = sinhx dx,

    coshx dx = d(sinhx), smena: t = sinhx, dt = coshx dx,

    dx

    cosh2 x= d(tanhx), smena: t = tanhx,

    dt

    t2 1 = dx,dx

    sinh2 x= d(cothx), smena: t = cothx, dt

    1 t2 = dx.

  • 4METOD REKURZIVNIH FORMULAOdredivanje integrala In =

    fn(x)dx, funkcija koje zavise od celobro-

    jnog parametra n, moguce je primenom parcijalne integracije ili nekog drugogmetoda, svesti na izracunavanja integrala Im, 0 m < n, istog tipa. Takverelacije, oblika

    In = (In1, . . . , Ink),

    zovemo rekurzivne formule. Da bi se na osnovu njih odredila vrednost integralaIn, neophodno je poznavati uzastopnih k integrala In1, . . . , Ink, kao i prvihk integrala I0, . . . , Ik1.

    INTEGRALI SA KVADRATNIM TRINOMOM

    1. I =

    mx+ nax2 + bx+ c

    dx

    m = 0 : I =

    ndx

    ax2 + bx+ c=n

    a

    dx

    x2 + bax+ca

    =n

    a

    dx(

    x+ b2a)2+ ca b24a2

    =t = x+ b2a , h2 = | ca b24a2 | = na

    dt

    t2 h2 .

    m 6= 0 : I = m

    xdx

    ax2 + bx+ c+ n

    dx

    ax2 + bx+ c= mI1 + nI2;

    I1 =

    xdx

    ax2 + bx+ c=

    12a

    2ax dx

    ax2 + bx+ c

    =12a

    2ax+ b bax2 + bx+ c

    dx =12a

    d(ax2 + bx+ c)ax2 + bx+ c

    b2aI2

    =12a

    ln |ax2 + bx+ c| b2aI2.

    Izracunavanje integrala I2 opisano je u prethodnom slucaju (m = 0).

    2. I =

    mx+ nax2 + bx+ c

    dx, analogno tipu integrala pod 1.

    3. I=

    dx

    (mx+ n)ax2+ bx+ c

    , smenom mx+n =1t

    svodi se na slucaj 2.

    4. I =

    ax2 + bx+ c dx, resava se dovodenjem na potpun kvadrat izraza

    pod korenom

    ax2+bx+c =a((x+

    b

    2a

    )2+c

    a b

    2

    4a2

    )=a(t2h2), t=x+ b

    2a, h2 =

    ca b

    2

    4a2

    .

  • 5INTEGRACIJA RACIONALNIH FUNKCIJA

    FunkcijaP (x)Q(x)

    , P (x) i Q(x) su polinomi, jeste prava racionalna funkcija

    ukoliko je stepen polinoma P (x) manji od stepena polinoma Q(x).Prava racionalna funkcija

    P (x)Q(x)

    =P (x)

    ni=1

    (x ai)si mi=1

    (x2 + pix+ qi

    )ki ,

    gde su nule kvadratnih trinoma x2 + pix + qi, i = 1, . . . ,m kompleksne, imarazvoj

    P (x)Q(x)

    =A11x a1 +

    A12(x a1)2 + +

    A1s1(x a1)s1

    +A21x a2 +

    A22(x a2)2 + +

    A2s2(x a2)s2

    + +

    An1x an +

    An2(x an)2 + +

    Ansn(x an)sn

    +B11x+ C11x2 + p1x+ q1

    +B12x+ C12

    (x2 + p1x+ q1)2+ + B1k1x+ C1k1

    (x2 + p1x+ q1)k1

    +B21x+ C21x2 + p2x+ q2

    +B22x+ C22

    (x2 + p2x+ q2)2+ + B2k2x+ C2k2

    (x2 + p2x+ q2)k2+ +

    Bm1x+ Cm1x2 + pmx+ qm

    +Bm2x+ Cm2

    (x2 + pmx+ qm)2+ + Bmkmx+ Cmkm

    (x2 + pmx+ qm)km.

    Konstante Aij , Bij , Cij nalazimo metodom neodredenih koeficijenata.

    INTEGRACIJA IRACIONALNIH FUNKCIJA:

    1. IntegralR[x,(ax+ bcx+ d

    )p1/q1,(ax+ bcx+ d

    )p2/q2, . . .

    ]dx, gde je R neka ra-

    cionalna funkcija i pi Z, qi N, uvodenjem smeneax+ bcx+ d

    = tn, n = NZS{q1, q2, . . . },

    svodi se na integral racionalne funkcije.

  • 62.

    Pn(x)dxax2 + bx+ c

    = Qn1(x)ax2 + bx+ c+

    dx

    ax2 + bx+ c,

    koeficijente polinoma Qn1(x) i odredujemo metodom neodredenihkoeficijenata nakon diferenciranja gornje jednakosti.

    3. Integral

    dx

    (x+ )nax2 + bx+ c

    smenom x+ =1t

    svodi se na slucaj

    pod 2.

    4. IntegralR(x,

    ax2 + bx+ c)dx, gde je R neka racionalna funkcija,

    primenom Ojlerovih ili trigonometrijskih/hiperbolickih smena svodi sena integral racionalne funkcije.

    Ojlerove smene:

    I) Ukoliko je a > 0, uvodimo smenuax2 + bx+ c = ta x ;

    II) Kada je c 0, smena glasi ax2 + bx+ c = xtc ;III) U slucaju ax2 + bx + c = a(x x1)(x x2), x1, x2 R, koristimo

    smenuax2 + bx+ c = t(x x1).

    Trigonometrijske i hiperbolicke smene:

    (a) ako se u integralu javia2 x2, smena: x = a sin t ili x = a cos t;

    (b) ako se u integralu javia2 + x2, smena: x = a tan t ili x = a sinh t;

    (c) ako se u integralu javix2 a2, smena: x = a

    sin tili x =

    a

    cos tili

    x = a cosh t.

    5. Integracija binomnog diferencijala:

    I =xr(a+ bxq

    )pdx, za a, b R, p, q, r Q

    a) U slucaju p Z, q = q1m, r =

    r1m, gde su q1, r1 Z i m N,

    uvodimo smenu: x = tm, dx = mtm1dt. Polazni integral tada

    postaje I = mtr1+m1

    (a+ b tq1

    )pdt.

    b) Kada jer + 1q Z, p = s

    m, smena: a+ bxq = tm ili x = t1/q.

    c) Za slucajr + 1q

    + p Z, p = sm, smena: x = t1/q ili axq + b = tm.

  • 7INTEGRACIJA TRIGONOMETRIJSKIH FUNKCIJA

    Neka je R neka racionalna funkcija. Posmatramo integral oblika

    I =R(sinx, cosx)dx.

    1. U slucaju

    R( sinx, cosx) = R(sinx, cosx), smena: t = cosx; R(sinx, cosx) = R(sinx, cosx), smena: t = sinx; R( sinx, cosx) = R(sinx, cosx), smena: t = tanx.

    Inace, smenom t = tanx

    2, dx =

    2dt1 + t2

    , imajuci u vidu transformacije

    sinx =2t

    1 + t2, cosx =

    1 t21 + t2

    ,

    polazni integral postaje integral racionalne funkcije.

    2. Transformacije proizvoda u zbir

    sin ax sin bx =12(

    cos(a b)x cos(a+ b)x),sin ax cos bx =

    12(

    sin(a b)x+ sin(a+ b)x),cos ax cos bx =

    12(

    cos(a b)x+ cos(a+ b)x),svode integrale oblika

    sin ax sin bx dx,

    sin ax cos bx dx,

    cos ax cos bx dx,

    na elementarne integrale.

    3. Za I =

    sinm x cosn xdx, gde su m,n Z razlikujemo sledece slucajeve:

    n = 2k + 1 (m = 2k + 1 analogno):

    I =

    sinm x(cos2 x)k cosxdx = t = sinxdt = cosxdx

    = tm(1t2)kdt;

  • 8 m = 2k, n = 2l : Snizavamo stepen trigonometrijskih funkcija podintegralom primenom transformacija

    sin2 x =1 cos 2x

    2, cos2 x =

    1 + cos 2x2

    ;

    m = k, n = l, k, l N :

    I =

    dx

    sink x cosl x=

    1sink x cosl2 x

    dx

    cos2 x

    =

    1sink xcosk x

    cosl+k2 x

    dx

    cos2 x

    =

    tank x(1 + tan2 x

    ) l+k22 d(tanx)

    4.R(

    tanx)dx, smena: t = tanx, dx =

    dt

    1 + t2, takode

    R(

    cotx)dx, smena: t = cotx, dx = dt

    1 + t2.

    5. Hiperbolicke funkcije analogno, uz napomenu o jednakostima koje vazeza ove funkcije:

    sinhx =ex ex

    2, coshx =

    ex + ex

    2, tanhx =

    sinhxcoshx

    ,

    cosh2xsinh2x=1, sinh 2x=2 sinhx coshx, cosh 2x=cosh2x+sinh2x,

    sinhx

    2= sgn(x)

    coshx 1

    2, cosh

    x

    2=

    coshx+ 1

    2,

    sinhx =tanhx

    1 tanh2 x, coshx =

    11 tanh2 x

    ,

    arc sinhx = lnx+x2 + 1 , arc coshx = ln x+x2 1 ,

    arc tanhx =12

    lnx+ 1x 1

    , arc cothx = 12 lnx 1x+ 1

    ,arc tanh

    x

    a=

    12

    lnx+ ax a

    , arc coth xa = 12 lnx ax+ a

    ,

  • 9Zadaci

    1. Dokazati za a > 0 i b 6= c :

    a)

    dx

    x+ b= log |x+ b|+ C, b)

    dx

    (x+b)(x+c)=

    1c b ln

    x+ bx+ c

    +C,c)

    dx

    a2 + x2=

    1a

    arctanx

    a+ C, d)

    dx

    a2 x2 =12a

    lnx+ ax a

    + C,e)

    x2

    a2 + x2dx = x a arctan x

    a+ C, f)

    x2

    x2 a2 dx = xa

    2lnx+ ax a

    + C,g)

    dxa2 x2 = arcsin

    x

    a+ C, h)

    dxx2 a2 =ln

    x+x2 a2+C,i)

    x dx

    a2 x2 = 12

    ln |a2 x2|+ C, j)

    x dxa2 x2 =

    a2 x2 + C,

    k)

    dx

    x(a2x2) =

    12a2

    ln x2a2x2

    +C, l) dxxa2x2 =

    12a

    loga2x2aa2x2+a

    +C,m)

    a2 x2dx = x

    2

    a2 x2 + a

    2

    2arcsin

    x

    a+ C,

    n)

    x2 a2dx = x2

    x2 a2 a

    2

    2lnx+x2 a2+ C.

    Resenje: a)

    dx

    x+ b=d(x+ b)x+ b

    = log |x+ b|+ C.

    b)

    dx

    (x+b)(x+c)=

    1cb

    (x+c)(x+b)(x+b)(x+c)

    dx=1cb

    ( dxx+b

    dx

    x+c

    )1.a)=

    1cb log

    x+bx+c

    +C.c) Kako je I =

    dx

    a2 + x2=

    1a2

    dx

    1 +(xa

    )2 ,uvodenjem smene t =

    x

    a, dx = a dt, polazni integral postaje tablicni

    I =1a

    dt

    1 + t2=

    1a

    arctan t+ C.

    Vracanjem smene, konacno dobijamo I =1a

    arctanx

    a+ C.

  • 10

    d) Integral I =

    dx

    a2 x2 jeste zapravo specijalan slucaj integrala pod b) zaa = a i b = a. Tako na osnovu rezulata pod b) zakljucujemo da je

    I =12a

    lnx+ ax a

    + C.e)

    x2

    a2+x2dx=

    a2+x2a2a2+x2

    dx=dxa2

    dx

    a2+x21.c)= xa arctanx

    a+C.

    f)

    x2

    x2a2 dx=x2a2+a2x2a2 dx=

    dx+a2

    dx

    x2a21.d)= xa

    2lnx+ ax a

    +C.g) I =

    dxa2 x2 =

    1a

    dx

    1 x2a2

    = t = xadx = a dt

    = dt1 t2= arcsin t+ C = arcsin

    x

    a+ C.

    h) I =

    dxx2 a2 =

    1a

    dxx2

    a2 1

    = t = xadx = a dt

    = dtt2 1= ln

    t+t2 1+C1 = ln xa

    +

    x2

    a2 1+C1 = ln |x+x2 a2|+C,

    gde je C = C1 ln a.

    i) I =

    xdx

    a2x2 = t=a2x22xdx=dt

    =12dt

    t=1

    2ln |t|+C=1

    2lna2x2+C.

    j) I =

    xdxa2x2 =

    t=a2x22xdx=dt=12

    t

    12dt=1

    2t

    12

    1/2+C=

    a2x2+C.

    k) I =

    dx

    x(a2 x2) =

    1a2

    a2 x2 x2x(a2 x2) dx = 1a2

    dx

    x 1a2

    x dx

    a2 x2

    1.i)=

    1a2

    log |x| 12a2

    loga2 x2+ C = 1

    2a2log x2a2 x2

    + C.l) I =

    dx

    xa2 x2 =

    x dx

    x2a2 x2 =

    t =a2 x2, x2 = (t2 a2)

    dt = x dxa2x2

    =

    dt

    t2 a21.d)=

    12a

    log t at+ a

    + C = 12a

    loga2 x2 aa2 x2 + a

    + C.

  • 11

    m) Oblast definisanosti podintegralne funkcijea2 x2 integrala

    I =

    a2 x2 dx

    je segment Df =[ a, a]. To opravdava uvodenje smene x = a sin t, pri tom

    je dx = a cos t dt, kada t na primer prolazi segment t [pi/2, pi/2]. Za takavizbor vrednosti nove nezavisno promenljive t vazi cos t 0. Tada je

    I = a

    a2 a2 sin2 t cos t dt = a2

    1 sin2 t cos t dt

    = a2

    cos2 t dt =a2

    2

    (1 + cos 2t)dt =

    a2

    2

    (dt+

    cos 2t dt

    )=a2

    2

    (t+

    12

    cos 2t d(2t)

    )=a2

    2

    (t+

    12

    sin 2t)

    + C.

    Primetimo da je sin t =x

    a, t = arcsin

    x

    a, kao i

    sin 2t = 2 sin t cos t = 2 sin t

    1 sin2 t = 2xa

    1

    (xa

    )2=

    2xa2

    a2 x2.

    Tada imamo

    I =a2

    2

    (arcsin

    x

    a+

    x

    a2

    a2 x2

    )+ C =

    x

    2

    a2 x2 + a

    2

    2arcsin

    x

    a+ C.

    n) I =

    x2 a2dx = u =

    x2 a2, du = x dx

    x2a2dv = dx, v =

    dx = x

    = x

    x2 a2

    x2 dxx2 a2 = x

    x2 a2

    x2 a2 a2

    x2 a2 dx

    = xx2 a2

    ( x2 a2 dx a2

    dxx2 a2

    )1.h)= x

    x2 a2 I a2 ln |x+

    x2 a2|.

    Odatle je2I = x

    x2 a2 a2 ln |x+

    x2 a2|+ C1,

  • 12

    odnosno

    I =x

    2

    x2 a2 a

    2

    2ln |x+

    x2 a2|+ C.

    Jos jedan pogodan nacin izracunavanja integrala I dat je u nastavku.

    I =

    x2 a2dx =

    x2 a2x2 a2 dx = (c0x+ c1)

    x2 a2 +

    dxx2 a2

    Diferenciranjem ove jednakosti nalazimo

    x2 a2x2 a2 = c0

    x2 a2 + (c0x+ c1) x

    x2 a2 + dxx2 a2 .

    Posle mnozenja sax2 a2 i sredivanja izraza, dobijamo

    x2 a2 = 2c0x2 + c1x c0a2 + .

    Izjednacavanjem koeficijenata uz iste stepene promenljive x dolazimo do sis-tema jednacina

    1 = 2c0, 0 = c1, a2 = c0a2 + ,

    cije je resenjec0 = 1/2, c1 = 0, = a2/2.

    Time trazeni integral postaje

    I =x

    2

    x2 a2 a

    2

    2

    dxx2 a2

    1.h)=

    x

    2

    x2 a2 a

    2

    2ln |x+

    x2 a2|+C.

    2. Odrediti sledece integrale:

    10

    x(x+ 2)3dx 20x2(1 + x)20dx 30

    x dx

    (x+ 9)10

    40

    dx

    x2 + 4x+ 450

    dx

    x2 + x 2 60

    1 2x2 + x4 dx

    Resenje: 10

    x(x+ 2)3dx =x1/2

    (x3 + 6x2 + 12x+ 8

    )dx

  • 13

    = (

    x7/2 + 6x5/2 + 12x3/2 + 8x1/2)dx

    =x(2

    9x4 +

    127x3 +

    245x2 +

    163x)

    + C.

    20x2(1 + x)20dx=

    t=1 + xdt = dx = (t 1)2t20dt= (t2 2t+ 1)t20dt

    = (

    t22 2t21 + t20)dt = t2323 2 t

    22

    22+t21

    21+ C

    =(1 + x)23

    23 (1 + x)

    22

    11+

    (1 + x)21

    21+ C.

    30

    x dx

    (x+ 9)10= t = x+ 9dt = dx

    = (t 9)t10dt = (t9 9t10)dt=t8

    8 9t9

    9 + C =1

    (x+ 9)9 1

    8(x+ 9)8+ C.

    40

    dx

    x2 + 4x+ 4=d(x+ 2)(x+ 2)2

    =1x+ 2

    + C.

    50

    dx

    x2 + x 2 =

    dx

    (x+ 2)(x 1)1.b)=

    13

    lnx 1x+ 2

    + C.60

    1 2x2 + x4 dx =

    (1 x2)2 dx =

    (1x2) dx = (xx3

    3

    )+C,

    za 1 x2 0, tj. x [1, 1].Za x (,1) ili x (1,+) vazi

    1 2x2 + x4 dx =

    (1 x2) dx = (x x3

    3

    )+ C1.

  • 14

    3. Metodom smene odrediti:

    10

    x3dx

    x8 2 20

    x7dx

    (1 + x4)230

    x8dx

    (x3 1)3

    40

    x9

    x5 + 1dx 50

    dx

    x(x10 + 1

    )2 60 1 x7x(1 + x7) dx70

    xdx1 + x4

    80

    dx

    xx2 + 1

    90 (

    x+12

    )x2 + x+ 1 dx

    Resenje: 10

    x3dx

    x8 2 =14

    d(x4)

    (x4)2 (2)21.d)=

    18

    2lnx4 2x4 +2

    + C.

    20

    x7dx

    (1 + x4)2=

    x4

    (1 + x4)2x3dx =

    t = 1 + x4dt = 4x3dx= 14

    t 1t2

    dt

    =14

    (t1 t2)dt = 1

    4(

    ln |t|+ 1/t)+ C=

    14

    (ln(1 + x4

    )+

    11 + x4

    )+ C.

    30

    x8dx

    (x3 1)3 =

    (x3)2

    (x3 1)3x2dx =

    t = x3 1dt = 3x2dx= 13

    (t+ 1)2

    t3dt

    =13

    (1t

    +2t2

    +1t3

    )dt =

    13

    (ln |t| 2

    t 1

    2t2)

    + C

    =13

    (ln |x3 1| 2

    x3 1 1

    2(x3 1)2)

    + C.

    40

    x9

    x5 + 1dx=

    15

    x5d(x5)

    x5 + 1=

    15

    x5 + 1 1x5 + 1

    d(x5)

    =15

    (d(x5) d(x5 + 1)

    x5 + 1

    )=x5

    5 1

    5log1 + x5+ C.

  • 15

    50

    dx

    x(x10 + 1

    )2 = x9dxx10(x10 + 1

    )2 = t = x10dt = 10x9dx = 110

    dt

    t(t+ 1)2

    =110

    t+ 1 tt(t+ 1)2

    dt =110

    dt

    t(t+ 1) 1

    10

    d(t+ 1)(t+ 1)2

    1b)=

    110

    log tt+1

    + 110(t+1)

    +C=110

    log x10x10+1

    + 110(x10+1

    )+C.

    60

    1x7x(1+x7

    ) dx= 1x7x7(1+x7

    ) x6dx= t = x7dt = 7x6dx= 17

    1tt(1+t)

    dt

    =17

    1 + t 2tt(1 + t)

    dt =17

    log|x7|(

    x7 + 1)2 + C.

    70

    xdx1 + x4

    =12

    d(x2)

    1 + (x2)2=

    12

    lnx2 +1 + x4 + C.

    80

    dx

    xx2 + 1

    =

    x dx

    x2x2 + 1

    =

    t =x2 + 1, x2 = t2 1

    dt = x dxx2+1

    =

    dt

    t2 11.d)=

    12

    ln t 1t+ 1

    + C2 = 12 lnx2 + 1 1x2 + 1 + 1

    + C2.

    90 (

    x+12

    )x2 + x+ 1 dx =

    t = x2 + x+ 1dt = (2x+ 1)dx = 2(x+ 12)dx

    =12

    t dt =

    12t3/2

    3/2+ C =

    13

    (x2 + x+ 1)3 + C.

  • 16

    4. Metodom smene odrediti:

    10

    dx5x 2 2

    0

    x

    1 4x dx 30

    4

    1 4x dx

    40

    dxx+ 1 +

    x 1 5

    0

    dx

    x+ 3x 2

    60

    x51 x2 dx 7

    0

    x dx(

    1 + x2)3/2 80 x3dx(x2 + 1)3x2 + 1

    90

    2(2 x)2

    3

    2 x2 + x

    dx

    Resenje: 10

    dx5x 2 =

    25

    d(

    5x 2) = 25

    5x 2 + C.

    20

    x1 4x dx =

    t = 1 4x, x = 1t24dx = 12 t dt = 18

    (t2 1)dt

    =18

    ( t33 t)

    + C =112

    1 4x (1 + 2x) + C.

    30

    4

    1 4x dx= t = 41 4x, t4 = 1 4xx = 1t44 , dx = t3dt

    = t4dt= t55 + C= 4

    1 4x 4x 15

    + C.

    40

    dxx+1+

    x1 =

    x+1x1

    x+ 1(x 1) dx=12

    (x+1x1 ) dx

    =12

    x+ 1 d(x+ 1) 1

    2

    x 1 d(x 1)

    =12

    (x+1)3/2

    3/2 1

    2(x1)3/2

    3/2+C=

    13((x+1)3/2(x1)3/2)+C.

  • 17

    50

    dxx+3x2 =

    x+3+

    x2

    (x+3)(x2) dx =15

    (x+ 3 +

    x 2 ) dx

    =215((x+ 3)3/2 + (x 2)3/2)+ C.

    60

    x51 x2 dx =

    x4

    1 x2 xdx = t =

    1 x2, x2 = 1 t2

    dt = x dx1x2

    =

    (1 t2)2dt =

    1 x2

    (15

    (1 x2)2 23

    (1 x2) + 1)

    + C.

    70

    x dx(1+x2

    )3/2 = t=

    11+x2

    dt= x dx(1+x2)3/2

    =dt=t+C= 1

    1+x2+C.

    80

    x3dx(x2 + 1

    )3x2 + 1

    =

    t =x2 + 1, x2 = t2 1

    dt = x dxx2+1

    =t2 1t6

    dt

    = (t4t6)dt= t33 t55 +C= 15(x2+1)5 13(x2+1)3 +C.

    90

    2(2 x)2

    3

    2 x2 + x

    dx=

    t = 3

    2+x2x

    dt = 4/3(2x)2

    3

    (2x2+x

    )2dx

    =32

    t dt

    =34t2 + C =

    34

    3

    (2 + x2 x

    )2+ C.

  • 18

    5. Metodom smene izracunati:

    10

    dx

    x lnx20

    x+ lnxx

    dx 30

    ln 2xx ln 4x

    dx

    40

    dx

    x

    lnx50

    ln(1 + x) lnxx(1 + x)

    dx 60xx(1 + log x)dx

    70x(

    ln(1 + x) + ln(1 x))2x2 1 dx

    Resenje: 10

    dx

    x lnx=d(lnx)

    lnx= ln | lnx|+ C.

    20

    x+ lnxx

    dx=x1/2dx+

    lnx

    dx

    x=x1/2

    1/2+

    lnx d(lnx)

    =2x+

    12

    ln2 x+ C.

    30 S obzirom da je d(ln 4x)=dx

    xi ln 4x=ln 2x+ln 2, uvodimo smenu t=ln 4x :

    ln 2xx ln 4x

    dx=t ln 2

    tdt =

    dt ln 2

    dt

    t= t ln 2 ln |t|+ C

    = ln 4x ln 2 ln | ln 4x|+ C.

    40

    dx

    x

    lnx=

    (lnx)1/2d(lnx) = 2

    lnx+ C.

    50

    ln(1+x)lnxx(1+x)

    dx=

    ln(1+ 1x

    )x(1+x)

    dx=

    t=ln

    (1+ 1x

    )dt= 1

    1+1x

    dxx2

    = dxx(1+x)

    =

    t dt = t

    2

    2+ C = 1

    2ln2(

    1 +1x

    )+ C.

    60xx(1 + log x)dx =

    t=xx, log t=x log x

    dtt = (1 + log x)dx

    = dt= t+ C=xx + C.

  • 19

    70x(

    ln(1+x)+ln(1x))2x21 dx=

    ln2(1x2) x dx

    x21 = t=ln

    (1x2)

    dt= 2x dx1x2

    =

    12

    t2dt =

    16t3 + C =

    16

    ln3(1 x2)+ C.

    6. Metodom smene odrediti:

    10

    dx

    ex + 120

    dx1 + e2x

    30

    ex 11 + 3ex

    dx

    40ex

    21x dx 50x e(1+x2)1/2

    (1 + x2)3dx 60

    x+ 1

    x(1 + x ex

    ) dxResenje: 10

    dx

    ex+1=

    dx

    ex(1+ex

    )= d(1+ex)1+ex

    = ln (1+ex)+C= ln

    ex

    1 + ex+ C = x ln (1 + ex)+ C.

    Isti rezultat mozemo da dobijemo i na sledeci nacin.dx

    ex + 1=

    1 + ex exex + 1

    dx=dx

    exdx

    ex + 1=x

    d(ex + 1

    )ex + 1

    = x ln (ex + 1)+ C.

    20

    dx1 + e2x

    =

    dx

    exe2x + 1

    = t = exdt = exdx

    = dtt2 + 1= ln |t+

    t2 + 1|+ C = ln(ex +

    e2x + 1) + C

    = lnex

    1 +

    1 + e2x+ C = x ln (1 +1 + e2x)+ C.

    30

    ex 11 + 3ex

    dx =ex 1ex + 3

    ex dxex 1 =

    t =ex 1, ex = t2 + 1

    dt = 12ex dxex1

    =2

    t2

    t2+4dt

    1.e)= 2t4 arctan t

    2+C=2

    ex14 arctan

    ex12

    +C.

  • 20

    40ex

    21x dx = t=x21dt=2x dx

    = 12etdt = 1

    2ex

    21 + C.

    50xe(1+x2)

    12(1+x2)3

    dx=

    t=e(1+x2)

    12

    dt= e(1+x2)

    12 x dx

    (1+x2)32

    =dt= t+C=e(1+x

    2)12+C.

    60

    x+ 1x(1 + x ex

    ) dx= (x+ 1)exxex(1 + x ex

    ) dx = t = xexdt = (1 + x)exdx

    =

    dt

    t(t+ 1)1.b)= ln

    tt+ 1

    + C = ln xexxex + 1

    + C.7. Metodom smene odrediti:

    10

    tanx dx 20

    dx

    cosx30

    dx

    1 + cosx

    40

    cotx dx 50

    dx

    sinx60

    dx

    1 + sinx

    Resenje: 10

    tanx dx =

    sinx dxcosx

    = d(cosx)

    cosx= ln | cosx|+ C.

    20

    dx

    cosx=

    cosx dxcos2 x

    =

    d(sinx)1 sin2 x

    1.b)=

    12

    ln1 + sinx1 sinx + C.

    =12

    ln(1 + sinx)2

    1 sin2 x + C = ln1 + sinx

    cosx

    + C= log

    cos x2 + sin x2cos x2 sin x2+C = log 1 + tan x21 tan x2

    +C.30

    dx

    1 + cosx=

    dx

    2 cos2 x2=

    d(x2

    )cos2 x2

    = tanx

    2+ C.

    40

    cotx dx = log | sinx|+ C.

  • 21

    50

    dx

    sinx= log

    tan x2

    + C.

    60

    dx

    1 + sinx=x = t+ pi/2, dx = dt = dt

    1 + sin(t+ pi/2)=

    dt

    1+cos t7.30= tan t/2+C=tan

    x pi22

    +C=tan x2tan pi4

    1+tan x2 tanpi4

    +C

    =tan x2 1tan x2 + 1

    + C = cosx1 + sinx

    + C =2

    1 + cot x2+ C1.

    8. Metodom smene odrediti:

    10

    cos2 x dx 20

    cos3 x dx 30

    cos4 x dx

    40

    sin2 x dx 50

    sin3 x dx 60

    sin4 x dx

    Resenje: 10

    cos2 x dx =

    1 + cos 2x2

    dx =12

    dx+

    14

    cos 2x d(2x)

    =x

    2+

    sin 2x4

    + C.

    20

    cos3 x dx =

    cos2 x cosx dx = (

    1sin2 x)d(sinx) = sinx sin3 x3

    +

    C.

    Drugi oblik primitivne funkcije moze se dobiti snizavanjem stepena trigo-nometrijske funkcije pod integralom.

    cos3 x dx=

    cos2 x cosx dx =

    12

    (1 + cos 2x

    )cosx dx

    =12

    (cosx+cos 2x cosx

    )dx=

    12

    (cosx+

    12

    (cos 3x+cosx))dx

    =14

    (3 cosx+cos 3x

    )dx=

    34

    sinx+112

    sin 3x+C.

  • 22

    30

    cos4x dx= (

    cos2x)2dx=

    (1+cos 2x

    2

    )2dx=

    1+2 cos 2x+cos22x

    4dx

    =14

    dx+

    14

    cos 2x d(2x) +

    18

    (1 + cos 4x)dx

    =38x+

    14

    sin 2x+132

    sin 4x+ C.

    40

    sin2 x dx =x

    2 1

    4sin 2x+ C.

    50

    sin3 x dx = 34

    cosx+112

    cos 3x+ C = cosx+ cos3 x

    3+ C.

    60

    sin4 x dx =38x 1

    4sin 2x+

    132

    sin 4x+ C.

    9. Metodom smene odrediti:

    10

    dx

    cos3 x20

    dx

    cos4 x30

    dx

    sinx cos2 x

    40

    dx

    sin3 x50

    dx

    sin4 x60

    dx

    sin2 x cosx

    70

    tan2 x dx 80

    tan3 x dx 90

    tan4 x dx

    100

    sin 2x4 cos2 x+ 9 sin2 x

    dx 110

    sinx cos3 x1 + cos2 x

    dx

    Resenje: 10 Za x ( pi2 + 2kpi, pi2 + 2kpi), k Z, imamo cosx > 0. Tada jedx

    cos3 x=

    1cosx

    dx

    cos2 x=

    t=tanx, dt= dx

    cos2 x

    cosx= 11+t2

    =

    1+t2 dt

    1.n)=( t

    2

    1+t2 +

    12

    lnt+1+t2 )+C

    =( tanx

    2 cosx+

    12

    ln tanx+ 1

    cosx

    )+ C=

    sinx2 cos2 x

    +12

    lnsinx+ 1

    cosx

    + C = sinx2 cos2 x

    +12

    lncos x2 + sin x2cos x2 sin x2

    + C.

  • 23

    Integral, takode mozemo odrediti na sledeci nacin:dx

    cos3 x=

    sin2 x+ cos2 xcos3 x

    dx =

    sin2 x dxcos3 x

    +

    dx

    cosx

    = u = sinx du = cosx dxdv = d(cosx)

    cos3 xv = 1

    2 cos2 x

    = sinx2 cos2 x 12

    dx

    cosx+

    dx

    cosx

    =sinx

    2 cos2 x+

    12

    dx

    cosx7.20=

    sinx2 cos2 x

    +12

    log1 + tan x21 tan x2

    + C.

    20

    dx

    cos4 x=

    1cos2 x

    dx

    cos2 x=

    t = tanx, dt = dx

    cos2 x

    cos2 x = 11+tan2 x

    = 11+t2

    =

    (1 + t2)dt = t+t3

    3+ C = tanx+

    13

    tan3 x+ C.

    30

    dx

    sinx cos2 x=

    sin2 x+ cos2 xsinx cos2 x

    dx =

    sinx dxcos2 x

    +

    dx

    sinx

    7.50= d(cosx)cos2 x

    + ln tan x

    2

    = 1cosx

    + ln tan x

    2

    + C.40

    dx

    sin3 x=

    18

    ( 1cos2 x2

    1sin2 x2

    )+

    12

    log tan x

    2

    + C.50

    dx

    sin4 x= cotx 1

    3cot3 x+ C.

    60

    dx

    sin2 x cosx= log

    cos x2 + sin x2cos x2 sin x2 1sinx + C.

    70

    tan2x dx=

    sin2xcos2x

    dx=

    1cos2xcos2 x

    dx=

    dx

    cos2xdx=tanxx+C.

    80

    tan3 x dx=

    tanx tan2 x dx=

    tanx1 cos2 x

    cos2 xdx

    =

    tanx d(tanx)

    tanx dx 7.10

    =12

    tan2 x+ ln | cosx|+ C.

  • 24

    90

    tan4 x dx =

    tan2x1cos2 x

    cos2 xdx=

    tan2 x d(tanx) dx

    tan2 x dx

    9.70=tan3 x

    3 tanx+ x+ C.

    100

    sin 2x4 cos2 x+9 sin2 x

    dx=

    t=4 cos2 x+9 sin2 x

    dt=5 sin 2x dx

    = 15dt

    t=

    15

    ln |t|+ C

    =15

    ln(4 cos2 x+9 sin2 x

    )+ C.

    110

    sinx cos3 x1 + cos2 x

    dx= t = 1 + cos2 xdt = 2 cosx sinx dx

    = 12

    1 tt

    dt

    =12

    ( dttdt)

    =12

    ln |t| 12t+ C

    =12

    ln(1 + cos2 x

    ) 1 + cos2 x2

    + C.

    10. Metodom smene odrediti:

    10xarctan 2x

    1 + 4x2dx 20

    sin 2xsinx+ 1

    dx 30

    1 sin 2x dx

    40

    cos1x

    dx

    x250

    sinx cos2 x dx 60

    cos2 x sin 2x dx

    70

    dx

    sinx+ 2 cosx+ 380

    dx

    2 cosx+ 390

    dx

    4 3 cosx100

    tanx

    (1 + cosx)2dx 110

    dx

    (3 + cosx) sinx120

    sin 3x+ cos 3xsin 3x cos 3x

    dx

  • 25

    Resenje: 10xarctan 2x

    1 + 4x2dx =

    x dx

    1 + 4x2

    arctan 2x1 + 4x2

    dx

    =18

    d(1 + 4x2)

    1 + 4x2 1

    2

    arctan 2x d(arctan 2x)

    =18

    ln(1 + 4x2) 12

    arctan3/2 2x3/2

    + C

    =18

    ln(1 + 4x2) 13

    arctan3/2 2x+ C.

    20

    sin 2xsinx+1

    dx=2

    sinx cosxsinx+1

    dx=

    t=

    sinx+1, sinx= t21dt= 12

    cosxsinx+1

    dx

    =4 (

    t2 1)dt = 43t3 4t+ C = 4

    3t(t2 3) + C

    =43

    sinx+ 1 (sinx 2) + C.

    30

    1 sin 2x dx=

    sin2 x+ cos2 x 2 sinx cosx dx

    =

    (sinx+ cosx)2 dx =

    (sinx+ cosx)dx

    =(

    sinx cosx)+ C, za sinx+ cosx 0.40

    cos

    1x

    dx

    x2=

    cos

    1xd(1x

    )= sin 1

    x+ C.

    50

    sinx cos2 x dx =

    sinx cosx dx=

    sinx d(sinx)=(sinx)3/2

    3/2+C,

    za x (2kpi, 2kpi + pi/2), k Z, gde je sinx, cosx 0.

    60

    cos2 x sin 2x dx=2

    cos3 x sinx dx = 2

    cos3 x d(cosx)

    =12

    cos4 x+ C.

  • 26

    70

    dx

    sinx+2 cosx+3=

    t = tan x2 dx = 2dt1+t2sinx = 2t1+t2

    cosx = 1t2

    1+t2

    = 2

    dt

    t2+2t+5

    = 2

    d(t+ 1)(t+ 1)2 + 4

    = arctant+ 1

    2+ C = arctan

    tan x2 + 12

    + C.

    80

    dx

    2 cosx+3=

    t=tan x2 , dx= 2dt1+t2cosx = 1t21+t2

    =

    2dtt2+5

    1.c)=

    25

    arctantan x2

    5+C.

    90

    dx

    4 3 cosx = t = tan x2 , dx = 2dt1+t2cosx = 1t2

    1+t2

    =

    2dt1 + 7t2

    1.c)=

    27

    arctan(

    7 tanx

    2)

    + C.

    100

    tanx(1 + cosx)2

    dx =

    sinx dxcosx(1 + cosx)2

    = t = cosxdt = sinx dx

    =

    dt

    t(1 + t)2=

    1 + t tt(1 + t)2

    dt =

    dt

    t(1 + t)d(1 + t)(1 + t)2

    1.b)= log

    1 + cosxcosx

    + 11 + cosx

    + C.

    110

    dx

    (3+cosx) sinx=

    d(cosx)

    (3+cosx)(1cos2 x) = t = cosxdt = sinx dx

    =

    dt

    (3 + t)(t2 1) =12

    t+ 1 (t 1)

    (3 + t)(t 1)(t+ 1) dt

    =12

    dt

    (3 + t)(t 1) 12

    dt

    (3 + t)(t+ 1)1.b)=

    18

    log t1t+3

    + 14

    log t+3t+1

    +C= 18

    log(1cosx)(3+cosx)

    (1+cosx)2

    +C

  • 27

    120

    sin 3x+ cos 3xsin 3x cos 3x

    dx =

    dx

    cos 3x+

    dx

    sin 3x= t = 3xdx = dt3

    =

    13

    dt

    cos t+

    13

    dt

    sin t7.20,7.50

    =13

    (log1+tan t21tan t2

    +log tan t2

    )+C=

    13

    log

    (1 + tan 3x2

    )tan 3x2

    1 tan 3x2

    + C.11. Metodom smene odrediti:

    10

    dx

    sinhx20

    sinhxcosh 2x

    dx

    30

    sinhx coshxsinh4 x+ cosh4 x

    dx 40

    dx

    cosh2 x 3

    tanh2 x

    Resenje: 10

    dx

    sinhx=

    12

    dx

    sinh x2 coshx2

    =12

    dx

    tanh x2 cosh2 x

    2

    =d(

    tanh x2)

    tanh x2= ln

    tanh x2

    + C.

    20

    sinhxcosh 2x

    dx =

    sinhx dx2 cosh2 x 1

    =12

    d(coshx)cosh2 x 12

    1.h)=

    12

    ln coshx+cosh2 x 1

    2

    + C.

    30

    sinhx coshxsinh4 x+ cosh4 x

    dx =12

    sinh 2x dx

    (sinh2 x)2 + (cosh2 x)2

    =12

    sinh 2x dx(

    cosh 2x12

    )2 + ( cosh 2x+12 )2 =

    sinh 2x dx2(cosh2 2x+ 1)

    = t=cosh 2xdt=2 sinh 2x dx

    = 122

    dtt2+1

    =1

    2

    2lnt+t2+1 +C

    =1

    2

    2ln(

    cosh 2x+

    cosh2 2x+ 1)

    + C.

  • 28

    40

    dx

    cosh2 x 3

    tanh2 x=

    tanh2/3 x d(tanhx) = 3 3

    tanhx+ C.

    12. Primenom metoda parcijalne integracije odrediti:

    10

    dx

    (a2 + x2)220

    x2dx

    (x2 a2)2

    30

    x3a2 + x2

    dx 40

    x3a2 x2 dx

    50

    dx(x2 a2 )5

    Resenje: 10

    dx

    (a2 + x2)2=

    1a2

    a2 + x2 x2(a2 + x2)2

    dx

    =1a2

    dx

    a2+x2 1a2

    x2

    (a2+x2)2dx

    1.c)=

    1a3

    arctanx

    a 1a2

    x2

    (a2+x2)2dx

    =

    u = x du = dx

    dv = x dx(a2+x2)2

    v = 12

    d(a2 + x2)(a2 + x2)2

    = 12(a2 + x2)

    =

    1a3

    arctanx

    a 1a2

    ( x

    2(a2 + x2)+

    12

    dx

    a2 + x2

    )=

    12a3

    arctanx

    a+

    x

    2a2(a2 + x2)+ C.

    20

    x2dx

    (x2a2)2 = u=x dv=

    x dx(x2a2)2

    du=dx v= 12(x2a2)

    = x2(x2a2) + 12

    dx

    x2a21.d)=

    x

    2(a2 x2) +14a

    logx ax+ a

    + C.

  • 29

    30

    x3a2 + x2

    dx =

    u = x2 du = 2x dx

    dv = x dxa2+x2

    v1.j)=a2 + x2

    =x2

    a2+x2 2

    xa2+x2 dx=x2

    a2+x2

    a2+x2 d

    (a2+x2

    )=x2

    a2+x2 2

    3

    (a2+x2

    )3+C=x22a23

    a2+x2 +C.

    Drugi nacin odredivanja ovog integrala podrazumeva koriscenje rezultataPn(x)dxax2 + bx+ c

    = Qn1(x)ax2 + bx+ c+

    dx

    ax2 + bx+ c.

    Tada je I =

    x3a2 + x2

    dx =(c0x

    2 + c1x + c2)

    a2 + x2 +

    dxa2 + x2

    ,

    gde c0, c1, c2 i odredujemo metodom neodredenih koeficijenata.Diferenciranjem poslednje jednakosti po x dobijamo

    x3a2 + x2

    = (2c0x+ c1)a2 + x2 +

    (c0x

    2 + c1x+ c2) x

    a2 + x2+

    a2 + x2

    .

    Nakon mnozenja saa2 + x2 i sredivanja, izraz postaje

    x3 = 3c0x3 + 2c1x2 + (2a2c0 + c2)x+ a2c1 + .

    Jednacenjem koeficijenata uz iste stepene od x na levoj i desnoj strani jed-nakosti, dobijamo

    c0 =13, c1 = 0, c2 = 2a

    2

    3, = 0,

    sto ponovo daje vrednost integrala I =x2 2a2

    3

    a2 + x2 + C.

    40

    x3a2 x2 dx =

    u = x2 du = 2x dx

    dv = x dxa2x2 v

    1.j)= a2 x2

    =x2

    a2 x2 +2

    xa2x2 dx=x2

    a2x2

    a2x2 d(a2x2)

    =x2a2x2 2

    3

    (a2x2)3+C=x2+2a2

    3

    a2x2+C.

  • 30

    Drugi nacin odredivanja :

    I =

    x3a2 x2 dx =

    (c0x

    2 + c1x+ c2)

    a2 x2 +

    dxa2 x2 .

    Diferenciranjem po x i sredivanjem koeficijenata uz iste stepene od x do-bijamo

    c0 = 13 , c1 = 0, c2 = 2a2

    3, = 0,

    tj., I = x2 + 2a2

    3

    a2 x2 + C.

    50

    dx(x2a2 )5 = 1a2

    x2(x2a2)

    (x2a2) 52dx=

    1a2

    x2

    (x2a2) 52dx 1

    a2

    dx

    (x2a2) 32

    =

    u = x dv = x dx

    (x2a2)5/2

    du = dx v = 12 d(x2a2)

    (x2a2)5/2 = 13(x2a2)3/2

    =

    1a2

    ( x3(x2 a2)3/2 +

    13

    dx

    (x2 a2)3/2) 1a2

    dx

    (x2 a2)3/2

    = 13a2

    x

    (x2 a2)3/2 2

    3a2

    dx

    (x2 a2)3/2

    = 13a2

    x

    (x2 a2)3/2 2

    3a4

    x2 (x2 a2)(x2 a2)3/2 dx

    = 13a2

    x

    (x2a2)3/22

    3a4

    (x2

    (x2a2)3/2 dx

    dxx2a2

    )

    =

    u = x dv = x dx

    (x2a2)3/2

    du = dx v = 12 d(x2a2)

    (x2a2)3/2 = 1x2a2

    =13a2

    x

    (x2a2)3/22

    3a4

    ( xx2a2 +

    dxx2a2

    dxx2a2

    )=

    23a4

    xx2 a2

    13a2

    x(x2 a2 )3 + C = x3a4 2x

    2 3a2(x2 a2 )3 + C.

  • 31

    13. Primenom metoda parcijalne integracije odrediti:

    10

    log x dx 40

    log xx2

    dx 70

    log(x+

    a2 + x2

    )dx

    20

    log2 x dx 50

    log2 xx2

    dx 80x2 log

    (x+

    a2 + x2

    )dx

    30x2 log2 x dx 60

    x log

    2 + x2 x dx 9

    0

    x log(x+

    1 + x2)

    1 + x2dx

    Resenje: 10

    log x dx = u = log x du = dxxdv = dx v = x

    = x log x dx= x log x x+ C = x(log x 1) + C = x log x

    e+ C.

    20

    log2 x dx = u=log2 x du=2 log x dxxdv=dx v=x

    =x log2 x2 log x dx13.10= x log2 x 2x(log x 1) + C = x

    (log2

    x

    e+ 1)

    + C.

    30x2 log2 x dx=

    u=log2 x du= 2 log x dxx

    dv=x2dx v= x3

    3

    = x3

    3log2 x 2

    3

    x2 log x dx

    =

    u = log x du =dxx

    dv = x2dx v = x3

    3

    = x33 log2 x 23(x33 log x 13x2dx

    )=

    13x3 log2 x 2

    9x3 log x+

    227x3+C=

    x3

    27

    (9 log2 x6 log x+2

    )+C

    =x3

    27((3 log x 1)2 + 1)+ C.

    40

    log xx2

    dx=

    u = log x du =dxx

    dv = dxx2

    v = 1x

    =1x log x+dx

    x2=1

    xlog x 1

    x+C

    =1x

    (log x+ 1) + C = 1x

    log ex+ C.

  • 32

    50

    log2 xx2

    dx =

    u=log2 x dv= dx

    x2

    du= 2 log x dxx v= 1x

    =1x log2 x+2

    log xx2

    dx

    13.40= 1x

    log2 x 2x

    log ex+ C = 1x

    (log2 ex+ 1

    )+ C.

    60x log

    2+x2x dx=

    u=log 2+x2x dv=x dx

    du= 4 dx4x2 v=

    x2

    2

    = x2

    2log

    2+x2x+2

    x2

    x24 dx

    1.f)=x2

    2log

    2+x2x+2x2log

    2+x2x+C=

    x242

    log2+x2x+2x+C.

    70

    log(x+a2 + x2

    )dx =

    u = log

    (x+a2 + x2

    )dv = dx

    du = dxa2+x2

    v = x

    = x log

    (x+a2+x2

    ) x dxa2+x2

    1.j)= x log

    (x+a2+x2

    )a2+x2+C.

    80x2 log

    (x+

    a2 + x2

    )dx =

    u = log

    (x+a2 + x2

    )dv = x2dx

    du = dxa2+x2

    v = x3

    3

    =x3

    3log(x+

    a2 + x2

    ) 13

    x3

    a2 + x2dx

    12.30=x3

    3log(x+

    a2 + x2

    ) x2 2a29

    a2 + x2 + C.

    90x log(x+

    1 + x2)

    1 + x2dx =

    u = log

    (x+

    1 + x2)

    dv = x dx1+x2

    du = dx1+x2

    v =

    1 + x2

    =

    1+x2 log(x+

    1+x2) dx=1+x2 log (x+1+x2)x+C.

  • 33

    14. Primenom metoda parcijalne integracije odrediti:

    10x3 sinx dx 20

    x sin2 x dx 30

    x2 cos 2x dx

    40

    dx

    cos5 xdx 50

    tan7 x dx 60

    x sin

    x dx

    70

    (2x 1) sin 3x dx 80

    sin3 x cos3 x dx 90

    dx

    (sinx+ cosx)4

    Resenje: 10x3 sinx dx =

    u = x3 du = 3x2dxdv = sinx dx v = cosx

    =x3 cosx+ 3 x2 cosx dx = u = x2 du = 2x dxdv = cosx dx v = sinx

    =x3 cosx+ 3(x2 sinx 2 x sinx dx) = u = x du = dxdv = sinx dx v = cosx

    =x3 cosx+ 3x2 sinx 6

    ( x cosx+ cosx dx)

    =x3 cosx+ 3x2 sinx+ 6x cosx 6 sinx+ C.

    20x sin2 x dx =

    u = x dv = sin2 x dx = 1cos 2x2 dxdu = dx v = x2 14 sin 2x

    =x2

    2x

    4sin 2x

    (x2 1

    4sin 2x

    )dx

    =x2

    2x

    4sin 2xx

    2

    4 1

    8cos 2x+C=

    x2

    4x

    4sin 2x 1

    8cos 2x+C.

    30x2 cos 2x dx =

    u = x2 du = 2x dxdv = cos 2x dx v = 12 sin 2x

    =x2

    2sin 2x

    x sin 2x dx =

    u = x du = dxdv = sin 2x dx v = 12 cos 2x

    =x2

    2sin 2x+

    x

    2cos 2x 1

    2

    cos 2x dx

    =x2

    2sin 2x+

    x

    2cos 2x 1

    4sin 2x+C=

    2x214

    sin 2x+x

    2cos 2x+C.

  • 34

    40

    dx

    cos5 x=

    sin2 x+ cos2 xcos5 x

    dx =

    sin2 xcos5 x

    dx+

    dx

    cos3 x

    =u=sinx du=cosx dxdv= sinx dx

    cos5 xv= 1

    4 cos4 x

    = sinx4 cos4x+ 34

    dx

    cos3 x

    9.10=sinx

    4 cos4 x+

    38

    sinxcos2 x

    +38

    logcos x2 + sin x2cos x2 sin x2

    + C.

    50

    tan7 x dx =

    sin7 xcos7 x

    dx = u = sin6 x du = 6 sin5 x cosx dxdv = sinx dx

    cos7 xv = 1

    6 cos6 x

    =

    16

    tan6 x

    sin5 xcos5 x

    dx= u=sin4 x du=4 sin3 x cosx dxdv= sinx dx

    cos5 xv= 1

    4 cos4 x

    =

    16

    tan6 x 14

    tan4 x+

    tan3 x dx

    9.80=16

    tan6 x 14

    tan4 x+12

    tan2 x+ log | cosx|+ C.Integral se moze takode izracunati i primenom metoda smene.

    tan7 x dx=

    tan5 x tan2 x dx =

    tan5 x1 cos2 x

    cos2 xdx

    =

    tan5x d(tanx)

    tan5x dx=16

    tan6x

    tan3x1cos2x

    cos2 xdx

    =16

    tan6 x 14

    tan4 x+

    tan3 x dx

    9.80=16

    tan6 x 14

    tan4 x+12

    tan2 x+ log | cosx|+ C.

    60x sin

    x dx =

    t = x, x = t2dx = 2t dt = 2 t3 sin t dt

    14.10= 2( t3 cos t+ 3t2 sin t+ 6t cos t 6 sin t)+ C

    = 2x3 cos

    x+ 6x sin

    x+ 12

    x cos

    x 12 sinx+ C.

  • 35

    70

    (2x 1) sin 3x dx = u = 2x 1 dv = sin 3x dxdu = 2dx v = 13 cos 3x

    = 2x1

    3cos 3x+

    23

    cos 3x dx=

    12x3

    cos 3x+29

    sin 3x+C.

    80

    sin3 x cos3 x dx=18

    sin3 2x dx=

    u=sin2 2x du=4 sin 2x cos 2x dxdv=sin 2x dx v=12 cos 2x

    =12

    sin2 2x cos 2x+ 2

    sin 2x cos2 2x dx

    =12

    sin2 2x cos 2x

    cos2 2x d(cos 2x)

    =12

    sin2 2x cos 2x 13

    cos3 2x+ C.

    90

    dx

    (sinx+ cosx)4=

    d(sinx+ cosx)(cosx sinx)(sinx+ cosx)4

    =

    u = 1cosxsinx du = sinx+cosx(cosxsinx)2 dxdv = d(sinx+cosx)

    (sinx+cosx)4v = 1

    3(sinx+cosx)3

    =

    13(sinx+cosx)3(cosxsinx)

    13

    dx

    (cosxsinx)2(sinx+cosx)2

    =1

    3(sinx+ cosx)2(cos2 x sin2 x) 13

    dx

    (cos2 x sin2 x)2

    = 13(1 + sin 2x) cos 2x

    13

    dx

    cos2 2x

    = 13(1 + sin 2x) cos 2x

    16

    tan 2x+ C.

  • 36

    15. Primenom metoda parcijalne integracije odrediti:

    10

    arcsinx dx 20

    arccosx

    2dx 30

    x2 arccosx dx

    40

    arcsin2 x dx 50x arcsin2 x dx 60

    arcsinxx2

    dx

    70x arcsinx

    1 x2 dx 80

    arcsinx arccosx dx

    Resenje: 10

    arcsinx dx=

    u=arcsinx dv=dxdu= dx1x2 v=x

    =x arcsinx

    x dx1x2

    1.j)= x arcsinx+

    1 x2 + C.

    20

    arccosx

    2dx =

    u=arccos x2 dv=dxdu= dx4x2 v=x

    =x arccos x2 +

    x dx4x2

    1.j)= x arccos

    x

    2

    4 x2 + C.

    30x2arccosx dx =

    u=arccosx dv=x2dxdu= dx1x2 v=

    x3

    3

    = x33 arccosx+ 13

    x31x2 dx

    12.40=x3

    3arccosx x

    2 + 29

    1 x2 + C.

    40

    arcsin2 x dx =

    u=arcsin2 x dv=dxdu=2 arcsinx dx1x2 v=x

    = x arcsin2 x 2

    arcsinx

    x dx1 x2 =

    u=arcsinx du= dx

    1x2

    dv= x dx1x2 v

    1.j)= 1x2

    =x arcsin2 x+ 2

    1 x2 arcsinx 2

    dx

    = x arcsin2 x+ 2

    1 x2 arcsinx 2x+ C.

  • 37

    50x arcsin2 x dx==

    u = arcsin2 x dv = x dxdu = 2 arcsinx dx1x2 v =

    x2

    2

    =x2

    2arcsin2 x

    arcsinx

    x2dx1 x2

    =

    u = x arcsinx dv = x dx

    1x2

    du =(

    arcsinx+ x1x2

    )dx v

    1.j)= 1 x2

    =x2

    2arcsin2 x+x

    1x2 arcsinx

    1x2 arcsinx dx

    x dx

    =

    u = arcsinx du =dx1x2

    dv =

    1 x2 dx v 1.m)= x2

    1 x2 + 12 arcsinx

    =x2 1

    2arcsin2 x+

    x

    2

    1x2 arcsinx x

    2

    2+

    12

    x dx

    +12

    arcsinx d(arcsinx)

    =2x2 1

    4arcsin2 x+

    x

    2

    1 x2 arcsinx x

    2

    4+ C.

    60

    arcsinxx2

    dx =

    u = arcsinx dv =dxx2

    du = dx1x2 v =

    1x

    = arcsinxx +

    dx

    x

    1 x2

    1.l)= 1

    xarcsinx+

    12

    log

    1 x2 11 x2 + 1

    + C.

    70x arcsinx

    1 x2 dx=u=arcsinx dv= x dx

    1x2

    du= dx1x2 v

    1.j)=1x2

    =

    1x2 arcsinx+dx

    = x

    1 x2 arcsinx+ C.

  • 38

    80

    arcsinx arccosx dx=

    u=arccosx dv=arcsinx dxdu= dx1x2 v

    15.10= x arcsinx+

    1x2

    =x arcsinx arccosx+

    1x2 arccosx+

    arcsinx

    x dx1x2 +

    dx

    15.70= x arcsinx arccosx+

    1 x2( arccosx arcsinx)+ 2x+ C.Bez koriscenja rezultata 15.10 i 15.70, integral se moze izracunati na sledecinacin.

    arcsinx arccosx dx=

    u=arcsinx arccosx dv=dx

    du= arccosxarcsinx1x2 dx v=x

    = x arcsinx arccosx

    (arccosx arcsinx) x dx

    1 x2

    =

    u=arccosx arcsinx dv= x dx

    1x2

    du= 2dx1x2 v=

    1 x2

    = x arcsinx arccosx+

    1 x2(arccosx arcsinx) + 2

    dx

    = x arcsinx arccosx+

    1 x2(arccosx arcsinx) + 2x+ C.

    16. Primenom metoda parcijalne integracije odrediti:

    10x arctanx dx 20

    x2 arctanx dx 30

    1x2

    arctanx

    3dx

    40

    arctanx dx 50

    x2 arctanx

    1 + x2dx 60

    arctan

    2x1 x2 dx

    70

    x earctanx

    (1 + x2)3/2dx

    Resenje: 10x arctanx dx =

    u = arctanx du =dx

    1+x2

    dv = x dx v = x2

    2

    =x2

    2arctanx 1

    2

    x2

    1 + x2dx

    1.e)=

    x2 + 12

    arctanx x2

    + C.

  • 39

    20x2arctanx dx=

    u=arctanx du=dx

    1+x2

    dv=x2 dx v= x3

    3

    =x33 arctanx 13

    x3

    1+x2dx

    = t=1+x2dt=2x dx

    =x33 arctanx16t1tdt=

    x3

    3arctanx1

    6(tlog|t|)+C

    =x3

    3arctanx 1

    6(1 + x2 log(1 + x2))+ C.

    30

    1x2

    arctanx

    3dx =

    u=arctan x3 dv=

    dxx2

    du= 3 dx9+x2

    v= 1x

    =1x arctan x3 +

    3 dxx(9+x2

    )1.k)= 1

    xarctan

    x

    3+

    16

    log x2x2 + 9

    + C.

    40

    arctanx dx =

    t = x, t2 = x2t dt = dx = 2 t arctan t dt

    16.10=(t2 + 1

    )arctan t t+ C = (x+ 1) arctanxx+ C.

    50x2 arctanx

    1 + x2dx =

    u = arctanx du =dx

    1+x2

    dv = x2 dx

    1+x2v

    1.e)= x arctanx

    = x arctanx arctan2 x

    x dx

    1 + x2+

    arctanx d(arctanx)

    1.i)= x arctanx 1

    2arctan2 x 1

    2log(1 + x2

    )+ C.

    60

    arctan2x

    1 x2 dx = u = arctan 2x1x2 du = 2dx1+x2dv = dx v = x

    = x arctan

    2x1x22

    x dx

    1+x21.i)= x arctan

    2x1x2log

    (1+x2

    )+C.

  • 40

    70 I =

    x earctanx

    (1 + x2)3/2dx =

    u = x

    1+x2dv = e

    arctan xdx1+x2

    du = dx(1+x2)3/2

    v = earctanx

    =xearctanx

    1+x2

    earctanx

    (1+x2)3/2dx=

    u= 1

    1+x2du= x dx

    (1+x2)3/2

    dv= earctan xdx

    1+x2v = earctanx

    =xearctanx

    1 + x2 e

    arctanx

    1 + x2

    x earctanx

    (1 + x2)3/2dx =

    (x 1) earctanx1 + x2

    I.

    Odatle je I =earctanx(x 1)

    2

    1 + x2+ C.

    17. Primenom metoda parcijalne integracije odrediti:

    10x3e2x dx 20

    x2ex

    (x+ 2)2dx 30

    exdx

    40eax cos bx dx 50

    eax sin bx dx

    60e2x sin2 x dx 70

    e2x cos2 x dx

    Resenje: 10 I =x3e2xdx =

    u = x3 du = 3x2dxdv = e2xdx v = 12e2x

    =x3

    2e2x 3

    2

    x2e2xdx =

    u = x2 du = 2x dxdv = e2xdx v = 12e2x

    =x3

    2e2x 3

    2

    (x2

    2e2x

    xe2xdx

    )=x3

    2e2x 3x

    2

    4e2x +

    32

    xe2xdx

    = u = x du = dxdv = e2xdx v = 12e2x

    = x32 e2x 3x24 e2x + 32(x2 e2x 12e2xdx

    )=x3

    2e2x 3x

    2

    4e2x+

    3x4e2x 3

    8e2x+C=

    e2x

    8(4x36x2+6x3

    )+C.

  • 41

    20

    x2ex

    (x+ 2)2dx=

    u = x2ex du = x(x+ 2)exdxdv = dx(x+2)2 v = 1x+2

    = x2

    x+ 2ex +

    xexdx =

    u = x du = dxdv = exdx v = ex

    = x2

    x+ 2ex+xex

    exdx = x

    2

    x+ 2ex + xex ex+C

    =x 2x+ 2

    ex + C.

    30exdx=

    xexdxx

    =

    u=x dv= e

    xdxx

    du= dx2x

    v=2ex

    =2xexexdxx

    = 2xex 2e

    x + C = 2e

    x(x 1)+ C.

    40 I =eax cos bx dx =

    u = cos bx du = b sin bx dxdv = eaxdx v = 1aeax

    =1aeax cos bx+

    b

    a

    eax sin bx dx =

    u = sin bx du = b cos bx dxdv = eaxdx v = 1aeax

    =1aeax cos bx+

    b

    a

    (1aeax sin bx b

    a

    eax cos bx dx

    )=eax

    a2(a cos bx+ b sin bx

    ) b2a2I.

    Odatle jea2 + b2

    a2I =

    eax

    a2(a cos bx+ b sin bx

    )+ C1, odnosno

    I =eax

    a2 + b2(a cos bx+ b sin bx

    )+ C.

    50eax sin bx dx =

    u = sin bx du = b cos bx dxdv = eaxdx v = 1aeax

    =1aeaxsin bx b

    a

    eaxcos bx dx17.4

    0

    =eax

    a2+b2(a sin bxb cos bx)+C.

  • 42

    60e2x sin2 x dx =

    u = sin2 x du = 2 sinx cosx dx = sin 2x dxdv = e2xdx v = 12e2x

    =12

    (e2xsin2x

    e2xsin2x dx

    )17.50=

    e2x

    8(2cos2xsin2x)+C.

    70e2x cos2 x dx =

    e2x(1 sin2 x) dx = e2x dx e2x sin2 x dx

    17.60=e2x

    8(2 + cos 2x+ sin 2x

    )+ C.

    18. Odrediti rekurentnu formulu za izracunavanje integrala In za n N, n 2i a, b 6= 0.

    10 In =

    x logn x dx 20 In = (

    1 x2)n/2 dx30 In =

    dx

    (x2 + a2)n40 In =

    dx

    (ax2 + bx+ c)n

    50 In =x2nx2 a2 dx 60 In =

    x2n+1

    x2 a2 dx

    70 In =

    sinn x dx 80 In =

    dx

    cosn x

    90 In =

    tann x dx 100 In =

    cotn x dx

    110 In =

    dx

    (a sinx+ b cosx)n120 In =

    dx

    (a+ b cosx)n

    Resenje: 10 In =

    x logn x dx = u = logn x du = n logn1x dxxdv = x dx v = 23xx

    =

    23x3/2 logn x 2n

    3

    x logn1 x dx =

    23x3/2 logn x 2n

    3In1.

  • 43

    Iskoristimo izvedenu relaciju za izracunavanje, na primer, integrala I3. Kakoje

    I1 =

    x log x dx =

    u = log x du =dxx

    dv =x v = 23x

    3/2

    = 23x3/2 log x 23

    x dx

    =23x3/2 log x 4

    9x3/2 + C =

    29x3/2

    (3 log x 2)+ C,

    na osnovu izvedene rekurentne relacije imamo

    I2 =23x3/2 log2 x 4

    3I1 =

    227x3/2

    (9 log2 x 12 log x+ 8)+ C,

    I3 =23x3/2 log3 x 2I2 = 227x

    3/2(9 log3 x 18 log2 x+ 24 log x 16)+ C.

    20 In = (

    1 x2)n/2dx = (1 x2)(1 x2)(n2)/2dx= In2

    x2(1x2)n22 dx= u=x dv=x

    (1x2)n22 dx

    du=dx v= 1n(1x2)n/2

    = In2+

    x

    n

    (1x2)n/2 1

    n

    (1x2)n/2dx= 1

    nIn+In2+

    x

    n

    (1x2)n/2.

    Dakle,n+ 1n

    In = In2 +x

    n

    (1 x2)n/2, pa je

    In =n

    n+ 1In2 +

    x

    n+ 1(1 x2)n/2.

    Znamo da je I1 =

    1 x2 dx 1.m)= x2

    1 x2 + 1

    2arcsinx + C. Na osnovu

    izvedene rekurentne relacije dobijamo

    I3 =34I1 +

    x

    4(1 x2)3/2 = 3

    8arcsinx+

    x

    8

    1 x2(5 2x2)+ C.

    Kako je I2 = (

    1 x2)dx = x x33

    + C, mozemo odrediti

    I4 =45I2 +

    x

    5(1 x2)2 + C = x 2

    3x3 +

    15x5 + C.

  • 44

    30 In =

    dx

    (x2+a2)n=

    1a2

    x2+a2x2(x2+a2)n

    dx=1a2In1 1

    a2

    x2

    (x2+a2)ndx

    =

    u = x dv =x dx

    (x2+a2)n

    du = dx v = 1(22n)(x2+a2)n1

    =

    2n 3(2n 2)a2 In1 +

    1(2n 2)a2

    x

    (x2 + a2)n1.

    Primetimo da su ovaj integral i dobijena rekurentna relacija samo specijalanslucaj integrala i relacije iz narednog primera (a = 1, b = 0, c = a2).

    40 In =

    dx

    (ax2 + bx+ c)n=

    ax2 + bx+ c(ax2 + bx+ c)n+1

    dx

    =

    d(ax2 + bx+ c) = (2ax+ b)dx

    ax2 + bx+ c = 14a((2ax+ b)2 + 4ac b2)

    =

    (2ax+b)2+4acb24a(ax2+bx+c)n+1

    dx=14a

    (2ax+b)2

    (ax2+bx+c)n+1dx+

    4acb24a

    In+1

    =

    u = 2ax+ b du = 2a dxdv = d(ax2+bx+c)(ax2+bx+c)n+1

    v = 1n(ax2+bx+c)n

    =

    14a

    ( (2ax+ b)n(ax2 + bx+ c)n

    +2an

    dx

    (ax2 + bx+ c)n

    )+

    4ac b24a

    In+1

    = 2ax+ b4an(ax2 + bx+ c)n

    +1

    2nIn +

    4ac b24a

    In+1.

    4ac b2

    4aIn+1 = In 12nIn +

    2ax+ b4an

    (ax2 + bx+ c

    )n In+1 = 2a4ac b2

    2n 1n

    In +2ax+ b

    n(4ac b2)(ax2 + bx+ c)n .

  • 45

    50 In =x2nx2 a2 dx =

    x2n2

    (x2 a2 a2)x2 a2 dx

    =x2n2

    (x2a2) 32dxa2In1 =

    u=(x2a2) 32 dv=x2n2dx

    du=3x2a2xdx v= x2n12n1

    =

    x2n1

    2n 1(x2 a2) 32 3

    2n 1In a2In1

    2n+ 22n 1In =

    x2n1

    2n 1(x2 a2) 32 a2In1

    In = x2n1

    2n+ 2(x2 a2) 32 2n 1

    2n+ 2a2In1.

    60 In =x2n+1

    x2 a2 dx =

    u = x2n du = 2nx2n1dxdv = x2 a2xdx v = 13(x2 a2) 32

    =13x2n(x2 a2) 32 2n

    3

    x2n1

    (x2 a2) 32dx

    =13x2n(x2 a2) 32 2n

    3(In a2In1

    ) 2n+ 3

    3In =

    13x2n(x2 a2) 32 2n

    3a2In1

    In = 12n+ 3x2n(x2 a2) 32 2na2

    2n+ 3In1.

    70 In=

    sinn x dx=

    sinn2 x(1cos2 x)dx=In2

    cos2 x sinn2 x dx

    = u = cosx dv = sinn2 x d(sinx)du = sinx dx v = 1n1 sinn1 x

    = In2 1

    n 1 sinn1x cosx 1

    n 1In

    nn 1In = In2

    1n 1 sin

    n1 x cosx

    In = n 1n

    In2 1n

    sinn1 x cosx.

  • 46

    80 In =

    dx

    cosn x=

    sin2 x+ cos2 xcosn x

    dx =

    sin2 xcosn x

    dx+

    dx

    cosn2 x

    =

    sin2 xcosn x

    dx+ In2 =

    u = sinx du = cosx dxdv = d(cosx)cosn x v = 1(n1) cosn1 x

    =sinx

    (n 1) cosn1 x 1

    (n 1)In2 + In2

    =sinx

    (n 1) cosn1 x +n 2n 1 In2.

    90 In =

    tann x dx =

    tann2 x1 cos2 x

    cos2 xdx =

    tann2 x

    dx

    cos2 x In2

    =

    tann2 x d(tanx) In2 = 1n 1 tan

    n1 x In2.

    100 In =

    cotn x dx =

    cotn2 x1 sin2 x

    sin2 xdx =

    cotn2 x

    dx

    sin2 x In2

    =

    cotn2 x d(cotx) In2 = 1n 1 cot

    n1 x In2.

  • 47

    110 In =

    dx

    (a sinx+ b cosx)n=

    a sinx+ b cosx(a sinx+ b cosx)n+1

    dx

    =

    u=1

    (a sinx+b cosx)n+1du=(n+ 1) a cosxb sinx

    (a sinx+b cosx)n+2dx

    dv=(a sinx+b cosx)dx v=(a cosxb sinx)

    = a cosx b sinx

    (a sinx+ b cosx)n+1 (n+ 1)

    (a cosx b sinx)2

    (a sinx+ b cosx)n+2dx

    = a cosxb sinx(a sinx+b cosx)n+1

    (n+ 1)a2+b2(a sinx+b cosx)2

    (a sinx+b cosx)n+2dx

    = a cosx b sinx(a sinx+ b cosx)n+1

    (n+ 1)((a2 + b2

    )In+2 In

    ) In+2 = n(n+ 1)(a2 + b2)In 1(n+ 1)(a2 + b2) a cosx b sinx(a sinx+ b cosx)n+1 .

    120 In =

    dx

    (a+ b cosx)n=

    a+ b cosx(a+ b cosx)n+1

    dx

    = a

    dx

    (a+b cosx)n+1+b

    cosx dx(a+b cosx)n+1

    =aIn+1+b

    cosx dx(a+b cosx)n+1

    =

    u = 1(a+b cosx)n+1 du = (n+ 1)b sinx dx(a+b cosx)n+2dv = cosx dx v = sinx

    =aIn+1+b(

    sinx(a+b cosx)n+1

    (n+1)b

    sin2x dx(a+b cosx)n+2

    )= aIn+1 +

    b sinx(a+ b cosx)n+1

    + (n+ 1)b2

    1 cos2 x(a+ b cosx)n+2

    dx

    =b sinx

    (a+b cosx)n+1+aIn+1+(n+1)b2In+2

    (n+1)b2 cos2 x(a+b cosx)n+2

    dx

    =b sinx

    (a+b cosx)n+1+aIn+1(n+1)b2In+2(n+1)b2

    (a+b cosxab

    )2dx

    (a+ b cosx)n+2

    =b sinx

    (a+b cosx)n+1(n+1)In+a(2n+3)In+1(n+1)

    (a2+b2

    )In+2.

  • 48

    (n+ 1)(a2 + b2)In+2 = b sinx(a+ b cosx)n+1 (n+ 2)In + a(2n+ 3)In+1 In+2 = b(n+ 1)(a2 + b2) sinx(a+ b cosx)n+1 n+ 2(n+ 1)(a2 + b2)In

    +(2n+ 3)a

    (n+ 1)(a2 + b2

    )In+1.

    19. Razlaganjem racionalne funkcije, izracunati sledece integrale

    10

    x3 + 6x3 5x2 + 6x dx 2

    0

    dx

    (x 1)2(x2 + 1)2

    30

    dx

    x(x+ 1)(x2 + x+ 1)340

    x

    x3 3x+ 2 dx

    50

    dx

    x3 + 160

    x+ 1x3 1 dx 7

    0

    dx

    x4 + 1

    80

    x2dx(x2 + 2x+ 2

    )2 90 2x2 5x4 5x2 + 6 dx100

    x3 1x4 + x2

    dx 110

    x+ 2x3 + 1

    dx 120

    x+ 1x(x2 + 2x+ 2)

    dx

    Resenje: 10 I =

    x3 + 6x3 5x2 + 6x dx; integral najpre svedemo na integral

    prave racionalne funkcije.

    x3 + 6x3 5x2 + 6x =

    x3 5x2 + 6x+ 5x2 6x+ 6x3 5x2 + 6x = 1 +

    5x2 6x+ 6x3 5x2 + 6x.

    Kako je x3 5x2 + 6x = x(x2 5x+ 6) = x(x 2)(x 3), to je

    I =dx+

    5x2 6x+ 6x(x 2)(x 3) dx.

    Nova racionalna podintegralna funkcija dozvoljava razvoj:

    5x2 6x+ 6x(x 2)(x 3) =

    A

    x+

    B

    x 2 +C

    x 3 , (1)

    gde je koeficijente A,B,C potrebno odrediti.

  • 49

    Metod neodredenih koeficijenata podrazumeva sledece:pomnozimo jednakost (1) sa x(x 2)(x 3). Ona postaje jednakost dva poli-noma u razvijenom obliku

    5x2 6x+ 6 =A(x 2)(x 3) +Bx(x 3) + Cx(x 2)= x2(A+B + C) + x(5A 3B 2C) + 6A.

    Izjednacavanjem koeficijenata uz iste stepene promenljive x dolazimo do sis-tema jednacina

    5 = A+B + C, 6 = 5A 3B 2C, 6 = 6A.Resavanjem ovog sistema nalazimo A = 1, B = 7 i C = 11.

    Time polazni integral svodimo na zbir cetiri elementarna integrala:

    I =dx+

    dx

    x 7

    dx

    x 2 + 11

    dx

    x 3= x+ log |x| 7 log |x 2|+ 11 log |x 3|+ C.

    20 I =

    dx

    (x 1)2(x2 + 1)2 , podintegralna funkcija dozvoljava razvoj:

    1(x 1)2(x2 + 1)2 =

    A1x 1 +

    A2(x 1)2 +

    B1x+ C1x2 + 1

    +B2x+ C2(x2 + 1

    )2 . (2)OdredimoAj , Bj , Cj metodom neodredenih koeficijenata. Nakon mnozenja

    (2) sa (x 1)2(x2 + 1)2 dolazimo do jednakosti1 = A1(x 1)

    (x2 + 1

    )2 +A2(x2 + 1)2 + (B1x+ C1)(x 1)2(x2 + 1)+(B2x+ C2)(x 1)2

    = x5(A1 +B1) + x4(A1 +A2 2B1 + C1) + x3(2A1 + 2B1 +B2 2C1)+x2(2A1 + 2A2 2B1 2B2 + 2C1 + C2)+x(A1 +B1 +B2 2C1 2C2)A1 +A2 + C1 + C2.

    Izjednacavanjem koeficijenata dva polinoma uz odgovarajuce stepene od x,dolazimo do sistema jednacina

    0 =A1 +B10 =A1 +A2 2B1 + C10 = 2A1 + 2B1 +B2 2C10 =2A1 + 2A2 2B1 2B2 + 2C1 + C20 =A1 +B1 +B2 2C1 2C21 =A1 +A2 + C1 + C2,

  • 50

    cijim resavanjem nalazimo vrednosti

    A1 = 1/2, A2 = 1/4, B1 = 1/2, C1 = 1/4, B2 = 1/2, C2 = 0.Polazni integral tada postaje

    I =12

    dx

    x 1 +14

    dx

    (x 1)2 +14

    2x+ 1x2 + 1

    dx+12

    x dx(

    x2 + 1)2

    =12

    log |x 1| 14(x 1) +

    14

    d(x2 + 1

    )x2 + 1

    +14

    dx

    x2 + 1+

    14

    d(x2 + 1

    )(x2 + 1

    )2=

    14

    (log

    x2 + 1(x 1)2

    x2 + x(x 1)(x2 + 1) + arctanx)+ C.

    30 I =

    dx

    x(x+ 1)(x2 + x+ 1)3; primetimo sledeci razvoj podintegralne funkcije

    1x(x+ 1)(x2 + x+ 1)3

    =x2 + x+ 1 x(x+ 1)x(x+ 1)(x2 + x+ 1)3

    =1

    x(x+ 1)(x2 + x+ 1)2 1

    (x2 + x+ 1)3

    =x2 + x+ 1 x(x+ 1)x(x+ 1)(x2 + x+ 1)2

    1(x2 + x+ 1)3

    =1

    x(x+ 1)(x2 + x+ 1) 1

    (x2 + x+ 1)2 1

    (x2 + x+ 1)3

    =1

    x(x+ 1) 1x2 + x+ 1

    1(x2 + x+ 1)2

    1(x2 + x+ 1)3

    .

    Time polazni integral postaje

    I =

    dx

    x(x+ 1)

    dx

    x2 + x+ 1

    dx

    (x2 + x+ 1)2

    dx

    (x2 + x+ 1)3

    1.b)= log

    xx+ 1

    d(x+ 12)(x+ 12

    )2 + 34

    d(x+ 12)((x+ 12

    )2 + 34)2

    d(x+ 12)((x+ 12

    )2 + 34)3 = t = x+ 12

    1.c)= log

    xx+ 1

    23

    arctan2x+ 1

    3

    dt(t2 + 34

    )2 dt(t2 + 34

    )312.10

    18.30= log xx+1

    143

    3arctan

    2x+13 2

    32x+1

    x2+x+1 2x+1

    6(x2+x+1

    )2 +C.

  • 51

    40

    x

    x3 3x+ 2 dx =29

    log1 x2 + x

    + 13(1 x) + C.

    50

    dx

    x3 + 1=

    13

    arctan2x 1

    3+

    16

    log(x+ 1)2

    x2 x+ 1 + C

    =13

    arctan2x 1

    3+

    16

    log(x+ 1)3x3 + 1

    + C.60

    x+ 1x3 1 dx =

    13

    log (x 1)2x2 + x+ 1

    + C = 13

    log(x 1)3x3 1

    + C.

    70

    dx

    x4+1=

    dx

    (x2+1)22x2 =1

    2

    2

    (arctan(1+

    2x)arctan(1

    2x)

    )+

    14

    2logx2 +2x+ 1x2 2x+ 1

    + C.80

    x2dx(x2 + 2x+ 2

    )2 = arctan(x+ 1) + 1x2 + 2x+ 2 + C.90

    2x2 5x4 5x2 + 6 dx =

    12

    2logx2x+2

    + 123 logx3x+3

    + C.100

    x3 1x4 + x2

    dx =1x

    +12

    log(1 + x2) + arctanx+ C.

    110

    x+ 2x3 + 1

    dx =

    3 arctan2x 1

    3+

    16

    log(x+ 1)3x3 + 1

    + C.120

    x+ 1

    x(x2 + 2x+ 2)dx =

    12

    arctan(x+ 1) +14

    logx2

    x2 + 2x+ 2+ C.

    20. Odrediti sledece integrale iracionalnih funkcija

    10

    dxx+ 2+ 3

    x+ 2

    20

    1x+ 11+ 3x+ 1

    dx 30

    dx6x 1+ 3x 1+x 1

    40

    dx

    (x+1)5x2+2x

    50

    x+1x1 dx 6

    0

    dx

    (x 1)(2 x)

  • 52

    Resenje: 10

    dxx+ 2 + 3

    x+ 2

    = t6 = x+ 2dx = 6t5dt

    = 6 t5dtt3 + t2 = 6

    t3dt

    t+ 1

    = 6t3 + 1 1t+ 1

    dt = 6

    (t2 t+ 1)dt 6

    dt

    t+ 1

    = 2t3 3t2 + 6t 6 log |t+ 1|+ C

    = 2x+ 2 3 3x+ 2 + 6 6x+ 2 6 log 6x+ 2 + 1+ C.

    20

    1x+ 11 + 3x+ 1

    dx = t6 = x+ 1dx = 6t5dt

    = 6 (1 t3)t51 + t2 dt= 6

    (t6 + t4 + t3 t2 t+ 1)dt+ 6

    t 1t2 + 1

    dt

    = 67t7 +

    65t5 +

    32t4 2t3 3t2 + 6t+ 3

    2t dtt2 + 1

    6

    dt

    t2 + 1

    = 67t7 +

    65t5 +

    32t4 2t3 3t2 + 6t+ 3 log(t2 + 1) 6 arctan t+ C

    = 67(

    6x+ 1

    )7 + 65(

    6x+ 1

    )5 + 32(

    3x+ 1

    )2 2x+ 13 3x+ 1 + 6 6x+ 1 + 3 log( 3x+ 1 + 1) 6 arctan 6x+ 1 + C.

    30

    dx6x 1 + 3x 1 +x 1 =

    t6 = x 1dx = 6t5dt = 6 t5t+ t2 + t3 dt

    = 6

    (t2 t)dt+ 6

    t dt

    t2 + t+ 1= 2t3 3t2 + 3

    2t+ 1 1t2 + t+ 1

    dt

    = 2t3 3t2 + 3d(t2 + t+ 1)t2 + t+ 1

    dt 3

    dt

    t2 + t+ 1

    = 2t3 3t2 + 3 log |t2 + t+ 1| 3

    dt

    (t+ 12)2 + 34

    1.c)= 2t3 3t2 + 3 log

    t3 1t 1

    33/2

    arctant+ 12

    3/2+ C

    = 2x13 3x1+3 log

    x116x1123 arctan 2 6x1+13 +C.

  • 53

    40 I =

    dx

    (x+1)5x2+2x

    =

    x+1=1t , x, t > 0

    dx=dtt2

    =

    t4dt1t2

    =(a0t

    3 + a1t2 + a2t+ a3)

    1 t2 +

    dt1 t2 .

    Diferenciranjem po t i mnozenjem sa

    1 t2 dobijamot4 = 4a0t4 3a1t3 + (3a0 2a2)t2 + (2a1 a3)t+ a2 + .

    Izjednacavanjem koeficijenata uz stepene od t formiramo sistem jednacina

    1 = 4a0 0 = 2a1 a30 = 3a1 0 = a2 + 0 = 3a0 2a2

    cije je resenje

    a0 = 1/4, a1 = 0, a2 = 3/8, a3 = 0, = 3/8.Nakon sredivanja nalazimo da je polazni integral

    I =x2 + 2x

    ( 14(x+ 1)4

    +3

    8(x+ 1)2) 3

    8arcsin

    1x+ 1

    + C.

    Za x < 2 integral se izracunava analognim postupkom, vodeci racuna da jet2 = t.

    Ovaj integral takode se moze odrediti primenom Ojlerove smene.

    I=

    dx

    (x+ 1)5x2 + 2x

    =

    x2 + 2x = t x, x = 2

    t21dx = 4t dt

    (t21)2

    =4

    (t2 1)4(t2 + 1)5

    dt = 4

    (t2 + 1 2)4(t2 + 1)5

    dt

    =4

    (t2 + 1)4 8(t2 + 1)3 + 24(t2 + 1)2 32(t2 + 1) + 16(t2 + 1)5

    dt

    =4

    dt

    t2 + 1+ 32

    dt

    (t2 + 1)2 96

    dt

    (t2 + 1)3+ 128

    dt

    (t2 + 1)4

    64

    dt

    (t2 + 1)5.

  • 54

    Koristeci izvedenu rekurentnu relaciju iz zadatka 18.30 nalazimo

    I = 32

    arctan t+5t7 3t5 + 3t3 5t

    2(t2 + 1)4+ C.

    Vracanjem smene konacno dobijamo

    I =x2 + 2x

    3x2 + 6x+ 54(x+ 1)4

    32

    arctanx2 + 2xx

    + C.

    50

    x+ 1x 1 dx =

    t =

    x+1x1

    dx = 4t dt(t21)2

    = 4

    t2

    (t2 1)2 dt

    12.20=2t

    t2 1 + log t+ 1t 1

    + C=

    (x+ 1)(x 1) + log x+(x+ 1)(x 1)+ C.

    60

    dx(x 1)(2 x) =

    x (1, 2) x = 1 + sin2 t, t (0, pi/2)dx = 2 sin t cos t dt,

    (x 1)(2 x) =

    sin2 t(1 sin2 t)

    =2dt = 2t+ C = 2 arcsin

    x 1 + C.

    Integral mozemo resiti i primenom trece Ojlerove smene.

    I =

    dx(x 1)(2 x) =

    (x 1)(2 x) = t(x 1)x = t

    2+2t2+1

    dx = 2t dt(t2+1)2

    = 2

    dt

    t2 + 1

    = 2 arctan t+ C = 2 arctan

    2 xx 1 + C.

    21. Svodenjem na integral racionalne funkcije, izracunati sledece integrale

    10

    dx

    x+x2 + x+ 1

    20

    dx

    1 +

    1 2x x2 30

    xx2 + 3x+ 2x+x2 + 3x+ 2

    dx

    40

    x3 + x4 dx 50

    x(1 + 3x)2 dx 60 33x x3 dx

  • 55

    Resenje: 10 I =

    dx

    x+x2 + x+ 1

    . Potkorena funkcija u integralu odgo-

    vara za primenu prve Ojlerove smene:x2 + x+ 1 = x+ t.

    Znak ispred x biramo tako da pogoduje sredivanju podintegralne funkcije.Kako je

    t = x+x2 + x+ 1,

    posle poredenja sa podintegralnom funkcijom uzimamox2 + x+ 1 = x+t.

    Tada je

    x2 + x+ 1 = x2 2xt+ t2 x+ 1 = t2 2xt,

    tj. x =t2 11 + 2t

    , pa je dx = 2t2 + t+ 1(2t+ 1)2

    dt. Integral onda glasi

    I = 2

    t2 + t+ 1t(2t+ 1)2

    dt.

    Rastavimo racionalnu funkciju

    2t2 + t+ 1t(2t+ 1)2

    =A1t

    +A2

    2t+ 1+

    A3(2t+ 1)2

    .

    Metodom neodredenih koeficijenata nalazimo da je

    A1 = 2, A2 = 3, A3 = 3.

    Integral se transformise u elementarne integrale

    I = 2dt

    t3

    dt

    2t+1 3

    2

    d(2t+1)(2t+1)2

    =2 log |t| 32

    log |2t+1|+ 32(2t+1)

    +C1

    = 2 logx+x2+x+1 3

    2log2x+2x2+x+1+1x+x2+x+1+C,

    gde je C = C1 1/2.

  • 56

    20 I =

    dx

    1+

    12xx2 =

    12xx2 =xt1dx=2t

    2+2t+1(t2+1)2

    dt

    = t2+2t+1t(t1)(t2+1) dt.

    t2 + 2t+ 1t(t 1)(t2 + 1) =

    A1t

    +A2t 1 +

    Bt+ Ct2 + 1

    A1 = 1, A2 = 1, B = 0, C = 2

    I =

    dt

    t 1 dt

    t 2

    dt

    t2 + 1= log

    t 1t

    2 arctan t+ C= log

    1 x+1 2x x21 +

    1 2x x2 2 arctan 1 +1 2x x2

    x+ C.

    30 I=xx2+3x+2x+x2+3x+2

    dx=

    x2+3x+2=

    (x+2)(x+1)= t(x+1)

    x = 2t2

    t21 , dx = 2tdt(t21)2

    =2

    t2 + 2t

    (t 2)(t 1)(t+ 1)3 dt.

    2 t2 + 2t

    (t 2)(t 1)(t+ 1)3 = 16

    27(t 2)+3

    4(t 1)17

    108(t+ 1)+

    518(t+ 1)2

    +1

    3(t+ 1)3

    I=1627

    log |t 2|+ 34

    log |t 1| 17108

    log |t+ 1| 518(t+ 1)

    16(t+ 1)2

    + C

    =1627

    log

    x+ 2x+ 1

    2+ 34 log

    x+ 2x+ 1

    1 17108 log

    x+ 2x+ 1

    + 1

    5

    18(

    x+ 2x+ 1

    + 1) 1

    6(

    x+ 2x+ 1

    + 1)2 + C.

  • 57

    40 I=

    x3 + x4 dx =x2(1 + x1)1/2 dx =

    1 + x1 = t2dx = 2t dt(t21)2

    =2

    t2dt

    (t2 1)4 = 2t2 1 + 1(t2 1)4 dt

    =2

    dt

    (t2 1)3 2

    dt

    (t2 1)4 = 2I3 2I4,

    gde je In =

    dt

    (t2 1)n . Rekurentnu relaciju za izracunavanje In

    In =t

    2(n 1)(t2 1)n1 2n 3

    2(n 1)In1

    mozemo dobiti, na primer, iz 18.40 za a = 1, b = 0 i c = 1, imajuci u viduda je

    I1 =

    dt

    t2 1 =12

    log t 1t+ 1

    + C1.Tada je

    I2 = t2(t2 1) 14

    log t 1t+ 1

    + C2.I3 =

    3t3 5t8(t2 1)2 +

    316

    log t 1t+ 1

    + C3.I4 = 15t

    5 40t3 + 33t48(t2 1)3

    532

    log t 1t+ 1

    + C4.I = 3t

    5 8t3 3t24(t2 1)3

    116

    log t 1t+ 1

    + C=

    124

    x2 + x(8x2 + 2x 3) + 1

    8logx+1 + x + C.

  • 58

    50

    x(1+ 3x)2 dx= x= t6dx=6t5dt

    =6 t8 dt(t2+1)2= 6

    (t4 2t2 + 3)dt 6

    4t2 + 3

    (t2 + 1)2dt

    =65t5 4t3 + 18t 6

    4(t2 + 1) 1

    (t2 + 1)2dt

    =65t5 4t3 + 18t 24

    dt

    t2 + 1+ 6

    dt

    (t2 + 1)2

    12.10=65t5 4t3 + 18t 21 arctan t+ 3 t

    t2 + 1+ C

    =6x

    5(1 + 3x )(6x 14 3

    x2 + 70 3

    x+ 105

    ) 21 arctan 6x+ C.

    60

    3

    3xx3 dx=x(1+3x2)1/3dx=

    1+3x2 = t3, x=

    3

    t3+1

    dx= 3

    3t2dt2(t3+1)3/2

    = 9

    2

    t3dt

    (t3+1)2=

    u= t dv= t2dt

    (t3+1)2

    du=dt v= 13(t3+1)

    = 3t2(t3+1) 32

    dt

    t3+1

    19.50=3t

    2(t3 + 1)

    32

    arctan2t 1

    3 1

    4log(t+ 1)3t3 + 1

    + C=

    118

    log

    (3

    3x x3 + x)3

    3x+x2

    9+

    19

    3arctan

    2 3

    3x x3 x3x

    + C.

    22. Svesti sledece integrale na integral racionalne funkcije.

    10

    3 tanx+ 13 tanx dx 2

    0

    dx

    4 + 3 tanx

    30

    1 2 cosx+ 3 sinx2 + 3 cosx 4 sinx dx 4

    0

    dx

    (sinx+ 2 cosx)3

    50

    dx

    sin2 x cos4 x60

    dx(sinx+

    2cosx

    )270

    2x 13 x dx 8

    0

    3

    x+ 22x 1 dx

  • 59

    Resenje: 10

    3 tanx+ 13 tanx dx =

    t = tanxdx = dt1+t2

    = 3t+ 1(3 t)(1 + t2) dt .20

    dx

    4 + 3 tanx= t = tanxdx = dt

    1+t2

    = dt(4 + 3t)(1 + t2) .

    30

    1 2 cosx+ 3 sinx2 + 3 cosx 4 sinx dx =

    t = tan x2 dx = 2dt1+t2sinx = 2t1+t2

    cosx = 1t2

    1+t2

    = 2

    3t2 + 6t 1

    (5 8t t2)(1 + t2) dt .

    40

    dx

    (sinx+2 cosx)3=

    t=tan x2 dx= 2dt1+t2sinx= 2t1+t2

    cosx= 1t2

    1+t2

    = 12

    (1+t2)dt(1+tt2)3 .

    50

    dx

    sin2 x cos4 x=

    1sin2 x cos2 x

    dx

    cos2 x=

    t=tanx dt=dx

    cos2 x

    sin2 x= t2

    1+t2cos2 x= 1

    1+t2

    =

    (1 + t2)2

    t2dt.

    60

    dx(sinx+

    2cosx

    )2 = t=tan x2 dx= 2dt1+t2sinx= 2t

    1+t2cosx= 1t

    2

    1+t2

    = 12

    (1+t2)(1t2)2dt(t(1t2)+(1+t2)2)2 .

    70

    2x 13 x dx =

    t =

    2x13x

    dx = 10t dt(2+t2)2

    = 10

    t2dt

    (2 + t2)2.

    80

    3

    x+ 22x 1 dx =

    t =3

    x+22x1

    dx = 15t2dt

    (2t31)2

    = 15

    t3dt

    (2t3 1)2 .