69
State-of-the-art Superconducting Quantum Interference Devices -SQUIDs- for electrical and magnetic measurements at low and very low temperatures Thomas Schurig Seminaire Daniel Dautreppe , Grenoble, Nov 21 -25 2011 Dietmar Drung, Jörn Beyer, Alexander Kirste, Rainer Körber, Margret Peters, Cornelia Aßmann, Sylke Bechstein, Frank Ruede, Marco Schmidt, Jan Storm, Hans Koch, Lutz Trahms, Martin Burghoff, Allard Schnabel, Physikalisch-Technische Bundesanstalt Abbestr. 2-12, 10587 Berlin, Germany [email protected] 1

State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

State-of-the-art

Superconducting Quantum Interference Devices

-SQUIDs-

for electrical and magnetic measurements

at low and very low temperatures

Thomas Schurig

Seminaire Daniel Dautreppe , Grenoble, Nov 21 -25 201 1

Thomas SchurigDietmar Drung, Jörn Beyer, Alexander Kirste, Rainer Körber, Margret

Peters, Cornelia Aßmann, Sylke Bechstein, Frank Ruede, Marco Schmidt, Jan Storm,

Hans Koch, Lutz Trahms, Martin Burghoff, Allard Schnabel,

Physikalisch-Technische Bundesanstalt Abbestr. 2-12, 10587 Berlin, Germany

[email protected] 1

Page 2: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Berlin

Braunschweig

The Physikalisch-Technische Bundesanstalt

National Metrology Instituteof Germany

1500 staff members (400 in Berlin)

Braunschweig Berlin-Charlottenburg

BraunschweigBerlin-Charlottenburg

Berlin

Page 3: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Motivation

Introducing Superconducting Quantum Interference Devices (SQUIDs) as a tool for sensitve electrical and

Yesterday: talk by Frank Hekkingabout the physics of Josephson junctions and dc SQUIDs

Devices (SQUIDs) as a tool for sensitve electrical and magnetic measurements.

Description of SQUID devices presently (commerciall y) available. Talk will concentrate on low critical te mperature superconductor (LTS) dc SQUIDs.

3

Page 4: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID basics

SQUID current sensor basics

State-of-the-art SQUID current sensors

Application examples

OutlineOutline

Application examples

Handling of SQUIDs

Auxiliary components

4

Page 5: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Most sensitive detector of magnetic flux (changes)

SQUIDs are very versatile and can be used for sensi tive magnetic and electrical measurements

Operating at cryogenic temperature (77 K down to th e mK range)

OutlineWhat is a SQUID?

SQUID function based onFlux quantization in a superconducting ringJosephson effect

Low-noise read-out electronics usually operating at room temperature is required

5

Page 6: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Magnetic flux Φ

The dc SQUID

Superconducting ring

Bias current Ib

Josephson junction

Physicist: “A dc SQUID is a superconducting ring interrupted by two Josephson junctions ...”

Electronics engineer: “A dc SQUID is a low-noise, nonlinear flux-to-voltage converter”

Page 7: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

How does a dc SQUID work?

Ib½Ib ½Ib

Iscr

CJ Rs V

Φ

n Φ0

L

Page 8: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

I-V and V-ΦΦΦΦ characteristics

How does a dc SQUID work?

V Ib

(n+½) Φ0

I0 – Critical current of the JJ

∆V – Voltage swing

W – Working point

Transfer function

VΦ = δV/δΦshould be maximum

I0 2I0 I

n Φ0

Page 9: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Small-signal SQUID readout

Main problems:

∆V W

Φ

V Φ0

δV δΦ

Φlin

Small change in applied flux δΦresults in

small change in SQUID voltage δV

How does a dc SQUID work?

Amplifies the weak SQUID voltage without adding noi seLinearizes transfer function to provide sufficient dy namic range

Main tasks of a SQUID electronics:

Very small voltage across the SQUID: ∆∆∆∆V ≈≈≈≈ 10...50 µV Transfer coefficient VΦΦΦΦ = δδδδV/δΦδΦδΦδΦ depends on SQUID working point Very small linear flux range: ΦΦΦΦlin << ΦΦΦΦ0

Main problems:

Example: Magnetometer with 1 nT/Φ0 → Human heart signal ≈ 0.05 Φ0

Power line interference ≈ 300 Φ0

Page 10: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

T ≤ 5K

Flux Locked Loop (FLL) with direct SQUID read-out

Rf

dc SQUID

V

Amplifier

VbΦf

Integrator

⌠⌠⌠⌠⌡⌡⌡⌡

How does a dc SQUID work?

FLL linearizes the V-Φ characteristics andenables a high dynamic range (100 Φ0)

V∞ Φ

Low-noise preamplifier required

Page 11: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Noise and energy resolution

Thermally induced white noise

Power spectral density of flux noise : SΦ ≈ SV / VΦ2

with SV(f) power spectral density of voltage noise

SΦ ≈ 16kBTL2/R (keep L low)SΦ ≈ 16kBTL /R (keep L low)

Noise energy : ε = SΦ/2L

1/f noise

sources: moving flux vortices,

critical current fluctuations in the junctions (HTS SQUIDs)

See e.g. Clarke, „SQUID fundamentals“ in SQUID Sensors, Fundamentals, Fabrication andApplications, NATO ASI vol.329 (1996)

Page 12: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

10µ

/H

z1/2

C5XL1R-C509-O8, 2007-01-15T = 4.2 K

SQUID

Noise and energy resolution

Flux noise of a PTB SQUID current sensor

0.1 1 10 100 1000 10000 100000100n

1/2 /

µΦ

0/H

z

f / Hz

Page 13: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Noise and energy resolution

Example (John Clarke)

L = 200 pH, R = 6 Ω, T = 4.2 K

Spectral flux noise density: √SΦ ≈ 1.2 µΦ0/√Hz

Noise energy : ε ≈ 1.5 x 10-32 J/Hz ≈ 150 ħ

1 x 10-32 J ≈ 10-13 eV is the energy to raise 1 electron through 1 mm in the earth‘s gravitational field, or 10-14 x the ground state energy of onehydrogen atom (John Clarke)

Page 14: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Outline

How to make a SQUID?

14

Page 15: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

First SQUIDs were made of bulk material

Resistive SQUID for noise thermometry (PTB)with Nb point contact

15A. Hoffmann and B. Buchholz, J. Phys. E, 17, 1984, 1035

Page 16: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

3” Si wafer with 183 SQUIDs

LTS SQUID Fabrication

Magnetometers fabricated using a Nb/AlOx/Nbthin-film technology

7.2 mm

Page 17: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Si/SiO2-substrate

Nb-base electrode

Nb2O5-insulation

LTS SQUID Fabrication

Layers

Josephson junction

shuntresistor

transformercoils

SiXNY-film

Au/Pd-resistive layer

Al2O3-barrier

Nb-counter electrode

17

Page 18: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Example of a LTS SQUID magnetometer

Multiloop SQUID magnetometer

To measure B, a fairly large sensing area is needed, beca use ΦΦΦΦ = ∫BdA

Chip-size: 7,2 mm x 7,2 mm

√SΦ = 2.6 µΦ0/√Hz @ 1kHz

√SB = 1.2 fT/√Hz @ 1 kHz

Noise @ T = 4.2 K

Drung type design

Dietmar Drung

L = 400 pH

Page 19: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Aktuelle Forschungsvorhaben -Beispiele

Heavily magneticallyshielded rooms

Fetal MCG

Page 20: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Outline

For a large number of experiments

we do not need magnetometers, but

sensitive SQUID current sensors.

20

Page 21: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

R

V

Preamp

V

Integrator

⌠⌠⌠⌠⌡⌡⌡⌡

T ≤ 5 K

I

How to make a SQUID current sensors?

RfVbMf

Page 22: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

V

Preamp Integrator

⌠⌠⌠⌠⌡⌡⌡⌡

T ≤ 5 K

I

Application example of SQUID current sensor

Magnetometer consisting ofwire wound pickup coiland SQUID current sensor

RfVbMf

I

Page 23: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Magnetometer made of SQUID current sensor

Page 24: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID chip

Nb chip holderNb cylinder

SQUID chip

Nb chip holderNb cylinder

Simple SQUID current sensor

closed capsule

open capsuleopen capsule

1.5 mm

√SI ≤ 1 pA/Hz½,

εC ≤ 400 h

B/Φ ≈ 10 nT/Φ0

TOP: 4.2K

W9SI:

Page 25: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Drawbacks

• extremely sensitive to magnetic interferences

• carefull magnetic shielding required

• extremely sensitive to vibrations

Simple SQUID current sensors

• limited flexibility regarding input inductance

• operational temperature 1 K – 5 K

Not well suited for many applications , in particular for those in

novel cryogen-free cryostats

with mechanical precooling.

Page 26: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

What SQUIDs are required?

Extremely sensitive, robust and easy to handle SQUID current sensorsrequired for (quantum) measurements at low and ultra-low temperatures

- low input inductance (nH) sensors: read-out of cryogenic radiation detectors TES, HEB, single-photon detectors

- high input inductance (µH) sensors: electromagnetic measurements electromagnetic measurements

metrology, Cryogenic Current Comperators (CCC)Nondestructive evaluation (NDE)susceptometryNMR, lf-NMR novel biomedical diagnostic toolsmagnetic nanoparticles

Sensitive magnetometers/gradiometers and nano-magnetometers - noise measurements - single magnetic moment detection

large polarizingfields (>>1 mT)are used

Page 27: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

State-of-the-art SQUID current sensors

Page 28: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Goal

• robust against magnetic interferences

• operation down to ultra-low temperature (ca. 10 mK)

Solution

→ gradiometric sensor design, small line width

→ appropriate resistance materials and Josephson junctions

Towards robust low-noise SQUID current sensors

• high flexibility

• high bandwidth and high slew rate

• easy to handle

→ appropriate resistance materials and Josephson junctions

→ variety of sensor designs : single- and double stage SQUIDs, arrays

→ appropriate read-out techniques, e.g. OCF (on chip current feedback)

→ auxiliary components, computer controlled, user-friendly software

Page 29: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

BI

Gradiometric sensor design

Parallel gradiometer: superconducting loop: →trapped flux

magnetometer parallel gradiometer

serial gradiometer

Robust low-noise SQUID current sensors

Serial gradiometer: →release of trapped flux with bias current

→ use serial gradiometers

magnetic microscopy of Nb stripes cooled down in ambient field

Bcool =85µT Bcool =5,3µTG. Stan, et. al.; Phys. Rev. Lett. 92, 097003 (2004)

Expulsion of vortices in the Nb thin-film patterns

→ Wmax ≤ 5µm

for cooling in Earth field

Page 30: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID array

VOUT∫

RFB

I

LIN,SQA

- low input inductance

- high dynamic range

- not sensitive to magnetic

interference

- single-SQUID-like behavior

Josephson junctions

Cooling fins

SQUID loop

Single-turn input coil

SQUID-to-SQUID connection

50 µm

Gradiometer SQUID

Page 31: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID array

3 mm3

mm

• 2 independent 16 SQUID-arrays per chip

• operable at mK-temperatures

• no shielding required

• integrated resistors for biasing radiation detectors

(e.g. TES) on chip

rf Filters

-F

+F

-V

+V+IN

-INRFeedback Coil

Bias Resistor

Shunted 16-SQUID Array-INR

+R+R

-F

+F

-V

+V+IN

-INRFeedback Coil

Bias Resistor

Shunted 16-SQUID Array-INR

+R+R

1

2

(e.g. TES) on chip

√SI <5 pA/√Hz @ 0.1 KLIN <3nHεC <57h @0,1 KPDiss∼1nW (per channel)

Page 32: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Technological limitation

SQUID current sensors with high input inductance

Problem :for high input inductance 10..100 turn input coil needed I

Currently Nb/AlOx/Nb thin-film technology with 2.5 µm photolithographic patterning

but

with 2.5 µm linewidth only 1 turn possible!

Solution:input flux transformer I

Page 33: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Current sensor with single SQUID

RB

SSASQ1

VOUT

LFB

∫I

LIN,SQ1

SSASQ1LIN,SSA

RFB

- high input inductance

- high sensitivity

- not sensitive to magnetic interference

Page 34: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

2-stage SQUID current sensors

RB

SSASQ1

VOUT

LFB

∫I

LIN,SQ1

SSASQ1LIN,SSA

RFB

- minimum coupled energy sensitivity

- integrated 2stage SQUID current sensor

- not sensitive to magnetic interference

- single-SQUID-like behavior

Page 35: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

2-stage SQUID current sensors

• front-end: single-SQUID, read out with SQUID array

• operable at mK-temperatures

• no shielding required

• V/Φ- characteristics like single-SQUID

• different sizes with LIN from 25 nH to 1.8 µH

3 mm

3 m

m

√SI < 0,05 pA/√Hz @ 0.1KLIN = 1,05µHεC < 8h @ 0.1KPDiss ∼2 nW

• different sizes with LIN from 25 nH to 1.8 µH

• adjustable input current limiter +FIN

-FIN

Z

-F

+F

+I

-V

+V

-IFX

+FX

-FQ

+FQ

+IN

+Q

-Q

-INShuntedSQUIDwith APF

Intermediate Loop

Feedback Transformer

BiasResistor

rf Filters

Shunted 16-SQUIDArray Amplifier

Unshunted16-SQUID ArrayCurrent Limiter

Page 36: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Example for robust and user-friendly FLL electronics : Directly coupled FLL electronics XXF (developed by PTB and Magnicon)

16 cm

670 surface-mount components on 13 ×××× 4.3 cm2 FLL board

Up to three channels in one FLL unit

Low noise 0.33 nV/√√√√Hz and 2.6 pA/√√√√Hz

High bandwidth 20 MHz (FLL) or 50 MHz (open-loop)

Built-in current sources for TES readout and two-stage SQUIDs

Fast < 1 µs external reset

Flexible and user-friendly → fully computer controlled

Page 37: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Novel SQUID current sensors below 1 K

• 4.2 K → <320 mK: white noise falls , but 1/f noise rises

• For this example: mK noise higher than 4.2 K noise above ≈≈≈≈40 Hz

• 1/f noise can become significant even in the kHz range

• Currently under investigation (other supercond. material)

Page 38: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Bandwidth limitation due to cable delay in the FLL1 m → 10 MHz

Wide bandwidth SQUID current sensors

SQUID+FLL at low temperature (4.2K)

• Very high FLL bandwidth ≈≈≈≈ 350 MHz

• Very high slew rate ≈≈≈≈ 80 ΦΦΦΦ0/µµµµs

• BUT: Power dissipation ≈≈≈≈ 10 mW

How to get faster?

• BUT: Power dissipation ≈≈≈≈ 10 mW3

mm

3 mm

SQUID with on chip current feedback (OCF)

• Semicond amplifier replaced by SQUID array

• very high small signal bandwidth >200 MHz

• large signal bandwidth 16 MHz

• current noise 7.4 pA/√Hz (L in < 5 nH)

• very high slew rate >50Φ0/µs

• Power dissipation ≈≈≈≈ 100 nW

Page 39: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Magnetometers and susceptometers

Integrated miniature multiloop SQUIDs

Sensor noise

< 4 fT/√√√√Hz size M (2.8 mm)

< 10 fT/√√√√Hz size S (1.7 mm)

2.8 mm

1.7 mm

39

Integrated susceptometers with 30 µm and 60 µm pick-up loop size for charcterization of small particles etc.

Page 40: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Large variety of devices available

40

Sources of SQUID devices:IPHT Jena, PTB Berlin, VTT Helsinki, Magnicon Hamburg, Supracon Jena US: Starcryoelectronics, Tristan

Page 41: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Outline

How to operate and handle SQUIDs?

41

Page 42: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Measurements

Characterization of SQUIDs

SQUID FLL-electronics Computer Oscilloscope

Spectrum analyzer

RF shielding

LHe can

ESD chair

42

Page 43: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Measurements

Characterization of SQUIDs

LHe can

Thermal super-

insulation

Take care of rf- and magnetic shielding!

Shielding

Inner vessel

insulation

Probe stick Cryoperm Pb

43

Page 44: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

20 mm

Measurements

Characterization of SQUIDs

SQUID chip

PCB chipcarrier

44

20 mm

Bonding wires

Page 45: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

MeasurementsHow to handle SQUIDs

Avoid electrostatic discharges (ESD)!(In particular if the SQUID input coil is connected!)

Always use ESD shoes and an ESD chair.

Use ESD bracelets and connect yourself with the mat and the soldering iron.

Connect the ground of your dip stick with the experimental setup 45

Page 46: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Measurements

Damages caused by ESD

PTB SQUID suszeptometer

Anna Repolles, Javier SeseUniversity Zaragoza

Repair with FIB

Page 47: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Application examples of SQUID current sensors

47

Page 48: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

• TES Xray microcalorimeters at NASA/GSFC

• SSA chip directly mounted on Cu block close to TESs

• 6keV pulse → ∆ΦSQ = 1.3 Φ0

Read-out of TES X-ray detectors

8x8 Pixel Array

SSA Chips

GSFC TES setup

SSA noise

TES noise (baseline ∆E 1.63+/-0.02 eV )

102

103

104

105

10

100

√SI (pA/√Hz)

f (Hz)

Page 49: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

LWL-Eingänge am mK-Kühler

TES detector-F

+F

-V

+V

INR

+R

-F

+F

+I

+FX

-

+V

-F

+F

-V

+V

INR

+R

-F

+F

+I

+FX

-

+V

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-IN

+IN

SQUID sensor

TES detector-F

+F

-V

+V

INR

+R

-F

+F

+I

+FX

-

+V

-F

+F

-V

+V

INR

+R

-F

+F

+I

+FX

-VIFX

+V

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-INR

+IN

-INR1

+IN1

-IN

+IN

SQUID sensor

Read-out of TES IR photon counter

49

LWL-gekoppeltes Detektormodul in DR200

Operation in cryogen free 3He/4He system

TES from NIST

Page 50: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

cooperation with German Space Research Organisation and University Karlsruhe

4 µm x 4 µm

Read-out of superconducting single photon detectors

SQUID-SensorDetektor FLL-Elektronik

RBias

RD

+IN

+V

-V

-INI+I

ID

×25 ∫

Rf

Vout

Mf

Mf

+-

IBias

Preamp Integrator

NbN, 88nm linewidth, 5,5 nm thicknessSQUID Chip

Detektor Chip

Page 51: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID NMR and low-field SQUID NMR

• Ultralow field down to 4 Hz (93 nT)

• Small room-temperature sample of volume 0.14 ml

• Broadband input coupling scheme and direct readout

• 2stage SQUID with εεεεc = 50 h →→→→ S/N ~ 5 in single shot

300K300K300K300K

NMR signals (FID) from oil/water mixtures in a 4:1 mass ratio at 300 K (black) and 275 K (grey).

Page 52: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

2 samples of distilled water

304 SQUID-Sensor

52

BPolarization 250 µT

3 seconds

BDetection 1.5 µT

Trahms, Burghoff, Hartwig (PTB)

Page 53: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

53

Page 54: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

He-probe stick for nanoSQUID measurement

Read-out of nanoSQUIDs

Page 55: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Read-out of nanoSQUIDs

IRB

SQUID-Array

Nano

SQUID

IBIAS

Exc..

coilWP

Read-outelectronics

Feedback

ΦSig

Collaboration with L. Hao, J. Gallop, O. Kazakova,

• NanoSQUID read-out with SQUID array current sensor• Working point adjustment with auxiliary coil • Nanoparticle excitation with exitation coil

T = 4.2K

T = 4.2…12 K

Exc..coil

T = 300K

Feedback

Page 56: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Characterization of nanoSQUID

10

T = 6.8 K, I = 60 µAT = 6.8 K, I = 60 µµµµA

7.6 mT

A

Collaboration with Gallop, Kazakova, Hao

SQUID loop ≈ 200 nm

Read-out of nanoSQUIDs

10-1

100

101

102

103

104

105

0.1

1

√SΦ (

µΦ0/√

Hz)

f (Hz)

0.2 0.2 0.2 0.2 µΦµΦµΦµΦ0000////√√√√HzHzHzHz

18.8

µA

Page 57: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

NanoSQUIDwith magnetic nanoparticle

Micro- and NanoSQUIDsRead-out of nanoSQUIDs

Bare SQUID With particle

Page 58: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID noise thermometers

MIN

LIn

RN

T

Integrated current sensing noise thermometer

MFFT

<U2> = 4kBTR∆fNyquist Formel

CSNT

Magnetic field fluctuation thermometer

3 mm

2 mm

Chip with SQUID current sensor and noise resistor

Cu, 5N8

3x3 mm2 SQUID gradiometer chip

LIn

SQUID current sensor

Page 59: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SQUID noise thermometers have to be calibrated at one

reference temperature only.

T = TRef.SΦ(fp, TRef)SΦ(fp,TMeas)

with fp plateau frequency

SQUID noise thermometers

101

102

103

10-10

10-9

10-8

SΦ (

Φ0

2/ Hz)

f (Hz)

103

104

105

10-11

10-10

10-9

10-8

SΦ (

Φ02 /H

z)

f (Hz)

T2000 = 698 mK

T2000 = 10 mK

T2000 = 676 mK

T2000 = 10 mK

CSNT MFFT

Page 60: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

MFFT mounted in cryogen-free 3He/4He- dilution refrigerator

SQUID noise thermometers

Page 61: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Geophysical sounding

61

Air borne SQUID system with highly balanced SQUID gradiometersR. Stolz, et al., “Magnetic full-tensor SQUID gradiometer system for geophysical applications, The Leading Edge 25;.178-180 (2006)

Supracon AG, Wildenbruchstr. 15, 07745 Jena Germany, www.supracon.com

IPHT Jena

Page 62: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Nondestructive evaluation of materials

62

Michael Mück, ez SQUID Mess- und Analysesysteme, Herborner Str. 9,

Commercial LT SQUID NDE system (eddy current testing) for defect inspection of materials

Page 63: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Fetal magnetocardiography

Biomagnetism

Mother: heart breathing304 channel system child

Page 64: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

B/fT

Brain response

SQUID Magnetoencephalography

Biomagnetism

Loudspeaker for acousticstimulation

Stimulus

Page 65: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the
Page 66: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Goal: Combine MEG with lf-MRI

SQUID MRI system

1. step: lf MRI imaging of the brain

Page 67: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Goal: Combine MEG with lf-MRI

Modified Modified NeuroMagNeuroMag 122 for MEG and ULF122 for MEG and ULF--MRIMRI•• 11stst step: 16 clusters (MRI channels), 64 magnetometersstep: 16 clusters (MRI channels), 64 magnetometers•• 22ndnd step: step: 61 clusters (61 clusters (MRI channels)MRI channels), 244 magnetometers, 244 magnetometers•• 1515--24 reference channels24 reference channels

LNLN22 cooled Bcooled Bpp coils designed for up to 0.2 Tcoils designed for up to 0.2 T

Whole-head system at LANL for MEG & ULF-MRI

67Slide 67

P. Magnelind, EUCAS 2011,

Page 68: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

Idea:

Monitor brain activity of a personwith room temperature SQUIDs

while he is doing strange things…

Than transmit the recorded data

VisionVision

Than transmit the recorded datato the brain of another person…

Page 69: State-of-the-art Superconducting Quantum Interference ...dautreppe2011.grenoble.cnrs.fr/IMG/file/exposé/Schurig_dautreppe.pdf · the earth‘s gravitational field, or 10-14 x the

SummaryVariety of SQUIDs are available for practical use a t very low temperatures→→→→ low noise, high dynamic performance→→→→ easy to use and robust →→→→ input inductance range 1 nH ... 2 µµµµH→→→→ noise thermometers available for temperature range 10 mK … 6 K→→→→ operation with commercialised electronics (see www.m agnicon.com)

If you are interested in using PTB SQUIDsyou are welcome to discuss your application with us