64
12/8/2016 Smart-buildings integrated in smart- grids: a key challenge of electrical engineering for the energy transition Dautreppe Conference, 5-9 december 2016 Grenoble - France Frederic WURTZ – Senior Researcher CNRS Benoit DELINCHANT – Assistant Professor - UGA Presentation of Work from Europe FP7 Project – Marie Curie

Smart-buildings integrated in smart- grids: a key ...dautreppe.energie.grenoble.cnrs.fr/sites/all/images/Présentations/... · Smart grids = Electricity + Internet Wind Farms HTA

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

12/8/2016

Smart-buildings integrated in smart-grids: a key challenge of electrical

engineering for the energy transition

Dautreppe Conference, 5-9 december 2016

Grenoble - France

Frederic WURTZ – Senior Researcher CNRS

Benoit DELINCHANT – Assistant Professor - UGA

Presentation of Work from

Europe FP7 Project – Marie Curie

• 2

Outline1° The necessity of an energy transition for the climate

2° The smart grid as part of the solution for the climate issues

3° « Smart Buildings » as keys allies of the «Smart-Grid »Buildings: the main consumers of energy in France / Brazil

Whereas buildings could be one of greatest producer of renewable energy

4°Energy transition scenario thanks to SB integrated in SG

5°What is a Smart-Building (SB)?

6°Scientific and technologic developments in SBDemand side management, Demand Response and Anticipative Optimal supervisionby using modelisation and optimisation

Optimal design of buildings integrating anticipative Management and Demand Response

Multi-physic modelisation of buildings

Experimental platforms in Grenoble: Smart building / Micro grid

7° SB: A complexity calling new scientific approaches and challenges

Physics, modeling and optimisation: yes, but with the right level of complexity

The necessity to introduce the human in the loop• Pro’sumer• Living lab

8°Perspectives and conclusions

08/12/2016 • 3

1°The necessity of an energytransition for the climate

The necessity of an energy transition for the climate

How can we inverse the curve and the trend ?For the climate as electrical engineer !

A necessity of the transition• 4

http://www.cop21.gouv.fr/

08/12/2016 • 5

2° The smart grid as part of the solution for the climate issues

The smart grid as part of the solution for the climate issues

ElectricalnetworksMutation

TowardSmart grids

= Electricity+

InternetWind Farms

HTA BT

Small Size Hydrolic

Fuel Cell

PV

CHP

Active distribution of energy

Intermittent or random generationClassic generationFully controllable

Production Network Distributionand repartition

63 kV - 750 kV

Network fordistribution

1.5 kV - 50 kV

400 V

New scheme

08/12/2016 • 7

� 3° « Smart Buildings » as keyallies of the «Smart-Grid »

Buildings: the main consumers of energy in France

- In France- In Brasil

Whereas buildings could be one of greatestproducer of renewable energy

Toward the concept of « Smart-Building » -Buildings able to harvest, store, manage production

and demand response

Final consumption of electricity by sector

Sidérurgie; 5.5; 3%

Industrie; 33.6; 21%

Résidentiel-Tertiaire; 68.2;

43%

Argriculture; 2.9; 2%

Transport; 50.4; 31%

Sidérurgie

Industrie

Résidentiel-Tertiaire

Argriculture

Transport

Sidérurgie; 10; 2%

Industrie; 126; 30%

Résidentiel-Tertiaire; 273; 64%

Argriculture; 3; 1%

Transport; 12; 3%

Sidérurgie

Industrie

Résidentiel-Tertiaire

Argriculture

Transport

French final energy consumption 2005(Mtep)

French electricity consumption 2005 (TWh)

Source: http://www.industrie.gouv.fr

% of buildings:43%

% of buildings:64%

The importance of energy in buildings in FranceThe importance of energy in buildings in FranceSidérurgie; 5.5; 3%

Industrie; 33.6; 21%

Résidentiel-Tertiaire; 68.2;

43%

Argriculture; 2.9; 2%

Transport; 50.4; 31%

Sidérurgie

Industrie

Résidentiel-Tertiaire

Argriculture

Transport

Sidérurgie; 10; 2%

Industrie; 126; 30%

Résidentiel-Tertiaire; 273; 64%

Argriculture; 3; 1%

Transport; 12; 3%

Sidérurgie

Industrie

Résidentiel-Tertiaire

Argriculture

Transport

French final energy consumption 2005(Mtep)

French electricity consumption 2005 (TWh)

Source: http://www.industrie.gouv.fr

% of buildings:43%

% of buildings:64%

The importance of energy in buildings in FranceThe importance of energy in buildings in France

Energy productionIndustry

Buildings Transport

Buildings: the main consumerof electrical energy in the network !

Buildings: the main consumers of electrical energy in France

Evolution of final consumptionof electricity by sectorEvolution of energy consumption in buildings in France

• 9

Evolution of energy consumption

Evolution of global electricity consumption

Evolution of usage of electricity energy

Highly dependant from buildings: heating and variation of consumption during the day

• 10

Typical daily electrical consumptionin France

http://www.radiateur-electrique.org/isolation.php

Geographic Reglementary Consumption dependingfrom the climatic zone

http://www.rte-france.com/sites/default/files/bilan_electrique_2013_3.pdf

Thermal sensitivity of electricalconsumption in France

Buildings: the main consumersof energy in Brazil

Electrical Energy Key Figures: why it is important to work on “smart buildings” integrated in “smart grids”

for Buildings in Brazil

1. Electric consumption (%) ?

2. Electrical part in (%) :

1. Public ?

2. Commercial ?

3. Residential ?

3. Most important consumers in residential building ? • 11

• 12From Prof. Roberto Lamberts, LabEEE

23.9+15.1+ 8.6-----47.6

• 13

• 14

From Prof. Roberto Lamberts, LabEEE

Bioclimatic zones: Z1: 21,5ºC, Z2: 16,9ºC, Z3: 23,1ºC,Z4: 21,6ºC, Z5: 22ºC, Z6: 24,1ºC,Z7: 26.1ºC, Z8: 26.9ºC

Buildings could be one of greatestproducer of renewable energy

And could become the key pillar

of the smart-grid of the future

• 15

Buildings could be one of greatestproducer of renewable energy

• 16

A building can get,

over a year,

more renewable

energy that

it needs

ΣEnergy/over year > 0

Consumption in kwh/year/m²

Building can produce more energy than they need

Buildings can help to:- Harvest- Store- Manage

renewable energy

Buildings could be one of greatestproducer of renewable energyA « smart-building » can be energy positive

What can be done with the excess of energy:

• 17A crazy dream ?

Buildings could become THE KEY PILLARof the smart grid of the future using

only renewable energy

Feed Electrical VehiclesV2H – Vehicule to House concept

Send Electricity to the network

• For other consumers

• For massive storage at levelof the national network

– For summer to winter in France –Interseasonal intermittence

– Thanks to:» Power to Gaz» Big hydraulic pump installation

Buildings could be one of greatestproducer of renewable energy

A dream that can become a reality !

Argued at the french level by an official study …

www.ademe.fr/sites/default/files/assets/.../rapport100enr_comite.pdf

• 18

Toward a 100% electricalmix in 2050 for France

The potentiel of renewable energy exists The evaluated cost is (perhaps?) acceptable

For this option, one key pillar will be the buildings

See video: Reportage France 2 sur le rapport ADEME Un mix ener gétique100% renouvelable en France,

https://www.youtube.com/watch?v=4IcYrG7ZqLQ

PV on Buildings: could be the greatest capacity 34%

(68 GW/196 GW)

Demand response of building willHelp to manage the grid: 18 GW of

demand response

Estimated need: 422 TWhAnnual potential: 1268 TWh

Peak demand in France 102 GWDemand response capabilities of buildings- Hot water tanks: 4 GW (4/102=4%)- Heater/HVAC (75%): 14 GW (14/102=14%)- Oven/Washing machine: 0,695 GW ( 1%)

In global 18/102=17%

4°Energy transition scenario thanks to SB integrated in SG

-Harwest the energy at world level

-The scenario of the energy transition supported by SG-SB

• 19

Energy transition scenario thanks to SB integrated in SG

Smart-buildings & Smart-grids: help for collecting the potential of renewable energy at world level

• 20

The potential The strategy

SG based on SBas a key pillar

EnerN

et, Internet de l'énergie –Y

ouTube

(seehttps://w

ww

.youtube.com/w

atch?v=jl53-LA

ziXg)

A proposal of scenario for the energy transition supported by SG-SB

• 21

The strategy The steps

1°Increasing efficiency

2°Substition of energy production

by decarbonised(**) electricity

3°Electric mobilityusing decarbonized

electricity

buildings as a key contributor

http://ww

w.energy-green.net/blog/

articles/wind-pow

er/wind-turbine-for-green-building.htm

l

V2H(*) concept

The actors

Companies

CitizensLocal

authoritiesStates

(1°,2°,3°: Is the proposed strategy of most of scenarios for energy transtion->See work of Patrick Criqui, member of GIEC, Lab EDDEN Grenoble –

Economie du développement durable et de l’énergiehttp://edden.upmf-grenoble.fr/https://www.futuribles.com/fr/article/transition-energetique-quelle-trajectoire-genealog/

(*) V2H: Vehicule to Home(**): Energy produced with no CO² émissions

5°What is a smart-building ?

Seen by Electrical Engineers

Working on the “smart building” integrated in the “smart grid”

• 22

• 23

What is a smart-building ?The functionnalities

Grid, Generatorsand Storage

Loads

UsersWeather

BuildingAnticipationcapabilities :•Weather forecast

• -> PV, Wind• Internal needs

• Heating/cooling needs

Offers services:• equip. usage• comfort req.

Multi sources control :• arbitration between generators• scheduling production / storage• uncertainties on availability

Load management :• uncontrolled load prediction • scheduling / adjusting / shedding

• 24

What is a smart-building ?The location in the smart environment of the future

Sources and storage

Loads

Users

Météo

Building

Local intelligence

Cloud

Distributed Intelligence

Networks/ Mutualisation

Models

Dynamic

Algorithms

Measures

Uncertainties

What is a smart-building ?Canopea - Solar Decathlon 2012

• 25

The French Rhône Alpes centered in Grenoble won the competition

http://www.g2elab.grenoble-inp.fr/grand-prix-international-solar-decathlon-2012--497448.kjsphttp://www.g-scop.grenoble-inp.fr/accueil/la-team-rhone-alpes-remporte-le-solar-decathlon-europe-2012--499021.kjsphttp://www.echosciences-grenoble.fr/articles/la-team-rhone-alpes-remporte-le-solar-decathlon-2012

« Prise en compte de la complexité de modélisation dans la gestion énergétique des bâtiments », Yanis Hadj Said,thèsede Docteur, docteur de l’université Grenoble alpes, 20 juillet 2016, available soon

6°Scientific and technologic developments in SB

For Electrical Engineers

Focus on some researchers made in my group Working on the “smart building” integrated in the

“smart grid”

• 26

• Demand side management, demand Response and Anticipative Optimal supervision by using modelisation and optimisation

• Optimal design of buildings integrating Demand Side Management and Demand Response

• Multi physic modelisation• Experimental platforms

Issued and objectives for scientific and technological research about SB integrated in SG

Main issues and objectives

Improve efficiency of lighting, appliances, fans and pumps

Help the grid with local production : PV on the roof to supply HVAC

Improve the usage of energy :

• Awareness of people when using energy• Automation / Regulation : automatic sun shading, cooling using fresh air during nights,

controlling HVAC according to meteorological forecast…

=> Improve interaction between grid and buildings:

Optimal power flow including buildings :

• Production : disturbed energy resources management• Consumption : demand side management

For the whole grid / for micro-grids (autonomy)

Building active solution for Demand Response

• 27

Demand side management, demand Response and Anticipative

Optimal supervisionby using modelisation and

optimisation

Optimization trade-off between :

• Energy consumption (or energy price)

• Human comfort

• 28

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supversion

• 29

At the scale of the building:locally adaptation

of production to needs

P

The scientific problematic

• Demand side Management

• Load Matching

• Demand Response

• Anticipativesupervision

24 hours prevision

Weather

Dynamic prices

• 30

Anticipative management and demand Response

But also : MILP, MINLP, SQP and dynamic approaches

Under constraints :

Ax ≤ b

Aeq.x = beq

lb ≤ x ≤ ub

With :

x are the variables (continue, binary or integers)

A, Aeq are matrixes;

f, b, beq are vectors

Objective function to minimize xf T xf T:Formulation : Mainly Mixed Linear Programming

The approach used: Optimization

Solved with : Matlab

CPLEX (Ilog), GUROBI

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

"Optimal Household Energy Management and Economic Analysis: From Sizing To Operation Scheduling",T. T. HA PHAM, C. CLASTRES,F. WURTZ, S. BACHA, and E. ZAMAI, publié dans Advances and Applications in Mechanical Engineering and Technology, Vol. 1, n° 1, pp. 35-68https://halshs.archives-ouvertes.fr/halshs-00323581

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

• 31

The approach used: Resulting optimisation tools

� Option : Ecology

� Option : Economy

� Option : Autonomy

�Option : Confort

Optimizer

"Ancillary services and optimal household energy management with photovoltaic production«C. CLASTRES, T.T. HA PHAM, F. WURTZ, S. BACHA, Energy, ISSN 0360-5442, DOI: 10.1016/j.energy.2009.08.025., volume 35 issue 1, Elsevier Publication, 2010, pp. 55-64, https://hal.archives-ouvertes.fr/halshs-00323576v1

Exemple of demand Side Management

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

• "Lithium-ion Battery Modelling for the Energy Management Problem of Microgrids”, D. TENFEN, E. C. FINARDI, B. DELINCHANT, F. WURTZ, IET Generation, Transmission & Distribution, Volume 10, Issue 3, 18 February 2016, p. 576 – 584, DOI: 10.1049/iet-gtd.2015.0423 , Print ISSN 1751-8687, Online ISSN 1751-8695

• “Load Demand, Batteries, and Electric Vehicles Modelling to the Energy Management of Microgrids”, Daniel Tenfen*; Benoit Delinchant; Frédéric Wurtz; Erlon C. Finardi; Jaqueline Rolim; Rubipiara C. Fernandes, 2nd Elecon Workshop, Magdebourg, Allemagne, 28-29 octobre 2014 available at http://www.elecon.ipp.pt/images/Workshop2/Papers/Load_Demand_Batteries_and_Electric_Vehicles_Modelling_to_the_Energy_Management_of_Microgrids.pdf

Optimal operating of laptops power supply,in order to maximize autonomy

• 33Hoang:Anh Dang, Benoit Delinchant, and Frederic Wurtz, “Toward autonomous photovoltaic building energy management: modeling and control of electrochemical batteries”, IBPSA 2013, Chambery, August 2013, http://www.ibpsa.org/proceedings/BS2013/p_2095.pdf

0 4 8 12 16 20 240

200

400

600

800

Time(h)

Pow

er (

W)

Total consumption power

Photovoltaic power

0 4 8 12 16 20 24-200

0

200

400

600

800

Time (h)

Ele

ctric

al g

rid p

ower

(W

)

0 4 8 12 16 20 240

20

40

60

80

100

Time(h)

SO

C (

%)

Grid (W)

SoC (%)

Pre-chargingbatteries

Auto-consumption

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

�185 inputs

�(50x24)+11=1211 continues variables� (24x24)= 576 binary discretes variables

� (178x24)+1=4273 constraints

• 34

- Charging of the battery with carbonfree energy during the day

- Use of the energy stored in the battery for shaving the peek demandof the evening

• « Gestion des flux multi-énergie pour les systèmes V2H», A. Dargahi,thèse de l’Université de Grenoble, 26 Septembre 2014, https://tel.archives-ouvertes.fr/tel-01111994

• A. Dargahi, S. Ploix, A. Soroudi, F. Wurtz, (2014) "Optimal household energy management using V2H flexibilities", COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33 Iss: 3, pp.777, DOI:10.1108/COMPEL-10-2012-0223

Anticipative demande side Management of Vehicule to Home (V2H)

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

Anticipative demande side Management: trade off consumption - comfort

• 35

• Anticipativesupervision

24 hours prevision

Weather

Dynamic prices

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

http://www.vesta-system.fr/fr/produits/vestaenergy/vesta-energy.html

Industrial solution available at

ELECON: An example of a Portugal - French – Brazilian –

German program about interaction between SG and SB

• 36

Smart Buildings offering Demand Side Management, Demand Response, Anticipative optimal supervision

http://www.elecon.ipp.pt/

Optimal design of buildingsintegrating Demand Side

Management and Demand Response

Especially in sketch phases

• 37

Optimal design of buildings integrating Demand Side Management and Demand Response

building envelope Size of energy systems

Do it simultaneously!État de charge de la batterie au cours de la journéepour un coût d'investissement PV de 1100 €/m²

Chauffage, Ballon,…

kWh

24 h

kWh

24 h

SOC

GRID

The scientific problematic

As early as possible in the designProcess: Integrate Demand Responseand Anticipative Management

State of charge of the battery

Optimal strategycontrol

• "Sketch Systemic Optimal Design Integrating Management Strategy, Thermal Insulation, Production And Storage Energy Systems (Thermal And Electrical): Application To An Energy- Positive Train Station"F. WURTZ, J. POUGET, X. BRUNOTTE, M. GAULIER, Y. RIFONNEAU, S. PLOIX AND B. L’HENORET , IBPSA 2013 – FRANCE, http://www.ibpsa.org/proceedings/BS2013/p_2376.pdf

• “On The Sizing Of Building Enveloppe And Energy System Integrating Management Strategy In Sketch Phase”, IBPSA 2015, http://www.ibpsa.org/proceedings/BS2015/p2142.pdf

Électricité prise sur le réseau

Electricity fromthe network

• 39

The approach used: Optimization

But also possible with: MILP after linerizarion of the models

With :

Ej: the optimisation variable

P: parameters fixed during the optimisation

Fob: objective function, cost, comfort,Si: constraints,

Formulation : We explored Non linear optimisation approach

Solved with : Matlab

CPLEX (Ilog)Own developed tools (CADES, SML – Composer)

, GUROBI – Linear approach

P1⇒

minp

fob(p)

avec gi(p)≤ 0 i=1,l

gi(p) 0= i=l+1,m

pjmin

≤ pj

pjmax≤ j=1,k

P1⇒

min fob(E,P)

Ej

Smax i≤Si(E,P) ≤ Smax i

Emin j ≤ Ej ≤ Emax j

avec

We are exploring: SQP

Optimal design of buildings integrating Demand Side Management and Demand Response

"Optimal Household Energy Management and Economic Analysis: From Sizing To Operation Scheduling",T. T. HA PHAM, C. CLASTRES,F. WURTZ, S. BACHA, and E. ZAMAI, publié dans Advances and Applications in Mechanical Engineering and Technology, Vol. 1, n° 1, pp. 35-68https://halshs.archives-ouvertes.fr/halshs-00323581

,Non Linear approach

Optimal design of buildings integrating Demand Side Management and Demand Response

• 40

User

Geographical localization

Preferences of the user

Typical loads

(devices, typical practices …)

Sizes:� Power of the photovoltaic panels: 4 kW

� Capacity of the batter y: 1140 Ah

� Power subscription on network: 9 kW

� Rated power of generating set : 0 kW

� Option : Ecology

� Option : Economy

� Option : Autonomy

�Option : Confort

Optimizer

Data

base

Sizing including anoptimal control strategy

The approach used: Resulting optimisation tools

Parametric set of sizes

or

Set of solutions in case of Compromises – Pareto Fronts

or

"Optimal Household Energy Management and Economic Analysis: From Sizing To Operation Scheduling",T. T. HA PHAM, C. CLASTRES,F. WURTZ, S. BACHA, and E. ZAMAI, publié dans Advances and Applications in Mechanical Engineering and Technology, Vol. 1, n° 1, pp. 35-68https://halshs.archives-ouvertes.fr/halshs-00323581

Optimal design of buildings by optimisation ?

• 41

The kind of model we use

Electric Equivalentcircuits

The right level of model composed at system level

« Optimal Sizing Of A Complex Energy System Integrating Management Strategies For A Grid-connected Building »,Van-Binh Dinh, Benoit Delinchant, and Frederic Wurtz, IBPSA 2015, http://www.ibpsa.org/proceedings/BS2015/p2141.pdf

P1⇒

minp

fob(p)

avec gi(p)≤ 0 i=1,l

gi(p) 0= i=l+1,m

pjmin

≤ pj

pjmax≤ j=1,k

P1⇒

min fob(E,P)

Ej

Smax i≤Si(E,P) ≤ Smax i

Emin j ≤ Ej ≤ Emax j

avecMethods:- Déterministes Non Linéaires (Gradient SQP)

Model composer CADES V3.0

Projet VEGEP

Solved optimisation problem

Optimal modeling and design of buildings ?The example of an Energy positive railway Station

An example of use case

« Les enjeux de la conception en phase d'esquisse pour les systèmes du génie électrique : illustration sur le cas des systèmes énergétiques pour les bâtiments », F. Wurtz , B. Delinchant , Van Binh Dinh , Julien Pouget , Xavier Brunotte, SGE 2014 - Symposium de Génie Electrique 2014, Cachan : France (2014), http://hal.archives-ouvertes.fr/hal-01024644

Optimiser CADES

• Dynamic tarifof energy

5 c€/kWh

70 c€/kWh

• Area

• Cost of technology- Building- Systems (PV, Battery,heating, co-generator,…)

• Life-time (30 ans)

• Discount rate

•Optimal results

•Building Envelop

•Systems

•Management•strategy

Optimisation with hundreds to thousantsParameters and constraints

Parametrizedoptimisation results

179 m²

85 m²

5 c€/kWh

70 c€/kWh

6 c€/kWh

9 c€/kWh

Dynamic tarification

Yellow tariff

Optimal modeling and design of buildings ?The exemple of an Energy positive railway Station

The tools developed and some results

• "Sketch Systemic Optimal Design Integrating Management Strategy, Thermal Insulation, Production And Storage Energy Systems (Thermal And Electrical): Application To An Energy- Positive Train Station"F. WURTZ, J. POUGET, X. BRUNOTTE, M. GAULIER, Y. RIFONNEAU, S. PLOIX AND B. L’HENORET , IBPSA 2013 – FRANCE, http://www.ibpsa.org/proceedings/BS2013/p_2376.pdf

• “On The Sizing Of Building Enveloppe And Energy System Integrating Management Strategy In Sketch Phase”, IBPSA 2015, http://www.ibpsa.org/proceedings/BS2015/p2142.pdf

Multi-physic modeling

• 44

Modelisation, multi-physics and inter-operabilityfor buildings

* Thèse Sana Gaaloul, «Interopérabilité basée sur les standards Modelicaet composant logiciel pour la simulation énergétique des systèmes de bâtiment », https://hal.archives-ouvertes.fr/tel-00782540* "A New Co-Simulation Architecture for Mixing Dynamic Building Simulation and Agent Oriented Approach For Users Behaviour Modelling"S. GAALOUL, HOANG-ANH DANG, A. KASHIF, B. DELINCHANT AND F. WURTZ, IBPSA2013,Le Bourget du Lac, FRANCE, http://www.ibpsa.org/proceedings/BS2013/p_1312.pdf

Experimental platforms

G2Elab – Predis

Grenoble, FRANCE

• 46

Smart Building Platform V1 inGrenoble

12/8/2016•47

Motor / Speed driver WattmeterPower Switch

Wirelesssensors

• Complete description: http://predis.grenoble-inp.fr/• « Modélisation en vue de la simulation énergétique des bâtiments :

Application au prototypage virtuel et à la gestion optimale de PREDIS MHI», thèse del’université de Grenoble, 04 Novembre 2013, http://tel.archives-ouvertes.fr/tel-00957613

• "Building Simulation of Energy Consumption and Ambient Temperature: Application to The Predis Platform« , HOANG-ANH DANG, S. GAALOUL, B. DELINCHANT, AND F. WURTZ, IBPSA 2013 , http://www.ibpsa.org/proceedings/BS2013/p_2096.pdf

• Measures and characterization• Design and operation of buildings• User behavior

Deploiement of plug and play communication architecture for sensors&actuators – Monitoring supervision solutions

• 48

Smart Building Platform V1 inGrenoble

Complete description: http://predis.grenoble-inp.fr/

• 49

Modeling and optimisation tools

From the Smart Building Platform to prototype and real smart-buildings

Smart building platformAdvanced prototypes

Canopea - Presentation Movie - Solar Decathlon 2012:https://www.youtube.com/watch?v=p28tFxd9MZY

Real housesProject COMEPOS: Deploiement of energy positiv housesIn France

http://www.comepos.fr/

modification of the energy

management strategies

recomputation of energy management strategies

proposition of energy management strategies

New Experimental building platform

GreEn-ER

Imagined and specified thanks to the experiment of the first platform

Grenoble, FRANCE

• 50

Smart Building Platform V2 inGrenoble

• 51

Smart Building GreEn-ER – Building of G2ELAB since July 2015

22 000 m² - 2000 usersHighly efficient – Massive use of sensors

Inside GreEn-ER: an autonomous and energy positive platforms

Smart Building Platform V2 inGrenoble

CPV : Concentrating Photovoltaics,2-axis sun tracker. 10kWp (9x1.14kWp)

Eolian : vertical axis, (1kW per unit)

CHP : Combined Heat & power(10kW electric, 25kW thermic)

• 52

GreEn-ER – MHI*

*MHI: Monitoring et Habitat Intelligent – Monitoring and Smart House Platform

600 m², autonomous micro-grid, 50 users, …

Complete description will be soon available at: http://predis.grenoble-inp.fr/

7° SB: A complexity calling new scientific approaches and challenges

Physics, modeling and optimisation with the right level of complexity

The necessity to introduce the humain in the loopPro’sumer as active consumer

Pro’sumer as active investorSmart-Building & Human in the loop

The real key pillar of the energy transition ?The need of Living lab

• 53

Physics, modeling and optimisation with the right level of complexity

Example of equivalent circuit model for optimal anticipative control

• 54

Efficient models are not the more complexBuilding

Physical thermal Equivalent circuit

From 2 to 15 parameters

(Thermal resistance and capacities)

Measures

WinterNumber of parameters

Err

orof

the

mod

el There is the good compromisein complexity

From phd defense A. Le Mounier, « Méta-optimisation pour la calibration automatique de modèles énergétiques bâtiment pour le pilotage anticipatif », 29 juin 2016, Thèse en génie électrique de la communauté université Grenoble Alpes, soon available

Physics, modeling and optimisation with the right level of complexity

• 55

Jan

Hen

sen

,“B

uild

ing

perf

orm

ance

sim

ulat

ion:

curr

ent

stat

ean

dch

alle

nges

”,E

xper

tm

eetin

gon

“Eva

luat

ing

and

Mod

ellin

gN

ear-

Zer

oE

nerg

yB

uild

ings

;ar

ew

ere

ady

for

2018

?”30

-31

Janu

ary

2012

,Uni

vers

ityof

Str

athc

lyde

,Gla

sgow

(UK

)

Fro

mph

dde

fens

eA

. Le

Mou

nier

, «

Mét

a-op

timis

atio

n po

ur la

cal

ibra

tion

auto

mat

ique

de

mod

èles

éne

rgét

ique

s bâ

timen

t po

ur le

pilo

tage

ant

icip

atif

», 2

9 ju

in 2

016,

T

hèse

en

géni

e él

ectr

ique

de

la c

omm

unau

té u

nive

rsité

Gre

nobl

e A

lpes

, soo

nav

aila

ble

Analytic Semi analytic Numeric0D 1D 2D 3D

Static Dynamic

Users:The main

Uncertainty !

Necessity to introducethe human in the loop !

For Demand Response will everything be automatic ?

Was our first idea, but …

Our current hypothese is that the user/inhabitants must be involved

• Inhabitant want to decide, must understand, …• If they can not decide, and do not understand -> Reject

The consumer will becomean active pro’sumer

Smart-Building & Human in the loop – The concept of pro’sumer as active consumer

modification of the energy management strategies

recomputation of energy management strategies

proposition of energy management strategies

Usersunderstanddecide, …

Dynamic prices

Nudges EnvironmentalSignals

Demand Response

Sell/exchangeof energie

Consumptionof Energy

Advices, help, …

The pro’sumer can invest and own the system of energyproduction mainly situated over/near from Smart-buildings

Smart-Building & Human in the loop – The concept of pro’sumer as active investor

• 57

« Centrales villageoises » (See http://www.centralesvillageoises.fr )Cooperatives of citizens invest ang manage PV stations

Installed on roofs

14 initiatives in France100 kWc

cover (in average) the electrical needs

of the investors (heating excluded)

With ethic fundinghttp://energie-partagee.org/

Credible Scenario in the context of the3rd industrial industrial revolution

popularized by Jeremy Rifkin* (among others)

Five pillars of the Third Industrial Revolution neededfor the energy transitions

The second one is:

• Transforming the building stock of every continent into greenmicro–power plants to collect renewable energi es on-site

Revolution of Internet of Energie (EnerNet) -> Is arrivinghttp://www.revolutions-energetiques.com/interview-de-joel-de-rosnay/ orEnerNet, Internet de l'énergie – YouTube (see https://www.youtube.com/watch?v=jl53-LAziXg)

What means that

Citizens in « smart-building » can create cooperative able by agregation to be as big and powerful than the existing group of production and distribution of Energy and Electricity ?

Smart-Building & Human in the loop – The real key pillar of the energy transition ?

• 58

A dream ? Can really the final users in their « smart-building » take the power and promote the energy transition ?

•https://en.w

ikipedia.org/wiki/T

he_Third_Industrial_R

evolution_(book)

Can really the final users in their « smart-building » take the power and promote the energy transition ?

http://videos.tf1.fr/jt-we/2014/ils-achetent-groupe-pour-diminuer-leur-facture-d-electricite-8511534.html

In Espagna 500 000 famillies joigneda cooperative and negociate newtarification for their Electric BillUp to 20 % of price decrease

https://www.quieropagarmenosluz.org/

http://www.placedesenergies.com/achats-groupes-electricite.php

Emerging initiativesin France

Extrapolate if citizens with their« smart-buildings » will exchange

their own produced energie-> Enernet !

Smart-Building & Human in the loop – The real key pillar of the energy transition ?

• 59

GreEn-ER-MHI ournew platfom is aLiving Lab

Producingscience and technology

Test it with real users

Those users caninnovate

See what works(or not) withreal users

« Google » innovation strategy !

User can become designers of the building (and reciprocally)

Experiments with the « Human in the loop »

Measure and modeling of comfort directly feeled by the users

• 60

Smart-Building & Human in the loop – The need of the concept of living lab

Users can modify,Model, diagnose

the « smart-building »

Benoit Delinchant, Frédéric Wurtz, “The Grenoble PREDIS – Building platform: A living lab and experimentallab for the study of energy and comfort in Smart-Buildings”, Third ELECON Workshop , url: http://www.elecon.ipp.pt/images/Workshop3/Presentations/Elecon3.pdf

Inácio Bianchi, Antonio Faria Neto,Benoit Delinchant, Frederic Wurtz, Samer Alabrach“Energy Saving Using Ceiling Fans in Environmental Comfort Systems”,Third ELECON Workshop, url: http://www.elecon.ipp.pt/images/Workshop3/Presentations/Elecon9.pdf

Conclusions & Perspectives

• 61

• 62

Conclusions & Perspectives

Need of an energy transition

Based and Smard-grids with Smart-Buildings as a key Pillar

New frontier for electrical engineering:

New scientific and technological development

• High efficient components and materials• Models, optimisation tools• Design tools, optimal control tools

Electrical engineering and science are the conditions of the transition But the final user must be and will be placed at the center of the game

The key research point: the right level of physic, automatisation, …

Pro'sumer

Not only a techno push approach

But also a user centered services approach

That must be imagined in lab, but tested in living-labs (platforms) with the final user as “human in the loop”

Need of a new inter-disciplinary research approach !

If you want a 1 page summary in french

• 63

http://www.liberation.fr/debats/2016/01/14/le-batiment-intelligent-cle-de-la-transition-energetique_1426468See also:

https://lejournal.cnrs.fr/billets/le-batiment-intelligent-cle-de-la-transition-energetique

12/8/2016

Dautreppe Conference, 5-9 december 2016

Frederic WURTZ

Benoit DELINCHANT