27
5/1/2011 1 Session 2: Fundamentals 1 by definition is the ratio of potential difference of the wire ends to the total current flowing through it. 2 12 . . L A d V R I ds σ - = E l E W T H 1 R L WT σ =

Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

1

Session 2: Fundamentals

1

by definition is the ratio of potential difference of the wire ends to the total current flowing through it.

2

12.

.

L

A

dVR

I dsσ

−=∫

E l

E

W

T

H

1R

L WTσ=

Page 2: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

2

At high frequencies, current tends to distribute near the surface of a conductor

3

1

π µσ≜

Scale of GSI interconnections is continually shrinking toward dimensions

comparable with the mean free path of the electrons.

At the same time, interconnects operate at higher frequencies such that skin

depth becomes in the same order of mfp of electrons.

4

2002 2004 2006 2008 2010 2012 2014 2016 201810

100

1000

Technology node

Dim

en

sio

n

s

12 pitch

skin depth

3 Fclkδ

×

nm

Cuλ

Page 3: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

3

5

Nucleus

+

Core electrons

Valance electrons

In D-L-S model the metal is divided into 2 different subsystems

The kinetic theory of gas is applied to the metal gas

t

v

v

4τ2

*

neJ nev E E

m

τσ= = =

Fvλ τ=

v eE mτ=

v

6

D

p = specularity parameter(the fraction of electrons that

have elastic collisions at the

wire surfaces) (0<p<1)

diffuse

scattering

specular

scattering

DJ

⇒J

Dλ << Dλ ≈

bρ ρ≈ (1 (1 ) )

bp

D

λρ ρ≈ + −

0p =

1p =

λ λ

Page 4: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

4

7

Skin effectAnomalous skin effect

D

D δ λ> >>

λ λ

δ δ

D

bfδ ρ πµ=

D δ λ> ≈

fδ ρ πµ= (1 )b

λρ ρ

δ= +

12R f∝

23R f∝

w λ

δ λSize Effects

Skin Effects

Anomalous

Skin Effects

LowTemp

GSI

@ room temperature:

39Cu

nmλ ≈ nmAl 21≈λ

nmGHzCu 600

10≈δ

1≈

1≈

Page 5: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

5

o A capacitor is a passive

electronic component that stores

energy in the form of an

electrostatic field.

9

In its simplest form, a capacitor consists of two conducting

plates separated by an insulating material called the

dielectric. The capacitance is directly proportional to the

surface areas of the plates, and is inversely proportional

to the separation between the plates.

12

S

L

dsQC

V d

⋅=

D

E l

≜i

10

1 10 12 13 12 13 1

2 12 20 12 23 23 2

3 13 23 30 13 23 3

Q C C C C C V

Q C C C C C V

Q C C C C C V

+ + − − = − + + − − − + +

Page 6: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

6

11

B.C.

0v =1.

0dv dn =2.

mC

C C

, ; ,m mc c c c⇒ ⇒1. 2.ր ց ց ր

Volume-based method: (finite-element, finite-difference)

+ : accuracy, any complex structure

- : time consuming

Software: Maxwell, HFSS, Raphael

12

1( , )

4G r r

r rπ′ =

′−

Surface-based method: (integral equation)

Green’s function

Software: Boundary Elements Method, FASTHENRY

( , ) ( )surface

V G r r r daσ′ ′ ′= ∫Integral equation(panel method, method of moments)

( )surface

Q r daσ ′ ′= ∫

Page 7: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

7

13

1

1( )

N

center square i

i

V V xN =

= ∑

Random-walk method: (stochastic)

Software: Random Logic Corp, QuicCap

Random walk: best for self cap for complicated netSurface based: best for small coupling capacitanceVolume based: best for dealing with multiple dielectrics

14

W

S

T

H

mC

C C

Page 8: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

8

15

m

W TC C

H Sε ε= =

16

0.222

1.08 0.32 1.38

1.15 2.8

1.82 2.8 0.43m

C W T

H H

C T W S

H T H

ε

ε

= +

= + +

Page 9: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

9

o An inductor is a passive

electronic component that

stores energy in the form of a

magnetic field.

17

In its simplest form, an inductor consists of a wire

loop or coil. The inductance is directly proportional

to the number of turns in the coil. Inductance also

depends on the radius of the coil and on the type of

material around which the coil is wound

18

Using parallel plate approximation

( ) (1 )t RC

c ddv t V e−= −

0.5 0.693t RC=

0.9 2.3t RC=

2

0.5 0.693L

tTH

ρε=

Page 10: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

10

19

( ) ( )( )

( , )sinh 1 coshsL

in

RC

s Lc r

V sV L s

src sRC R C s sRC=

+ + +

20

( )1 2

1 2( , ) 1t t

ddV t L V K e K eδ δ= + + +⋯

1

4

11 2

11.01

1.04

(2 )

T T

T T

T T T T

R CK

R C

RC R C R C

π

δσ

π

+ += −

+ +

−= =

+ + +

2

0.9

0.5

1( (2 ) ) ln( ) 0.1

1

2.3( )

0.69( ) 0.38

T T T T

s L s L

s L s L

t RC R C R C RC

t R C R C RC RC

t R C R C RC RC

υ πυ

= + + + +−

= + + +

= + + +

Page 11: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

11

21

Two coupled lumped RC lines

Two coupled distributed RC lines

22

Combining these equations

Assuming and simplifies to:

2

1 1 1 22

1

2

2 2 2 12

2

1( , ) ( ) ( , ) ( , )

1( , ) ( ) ( , ) ( , )

m m

m m

V x t c c V x t c V x tr x t t

V x t c c V x t c V x tr x t t

∂ ∂ ∂= + −

∂ ∂ ∂

∂ ∂ ∂= + −

∂ ∂ ∂

2

1 2 1 22

2

1 2 1 22

( ) ( )

( ) ( 2 ) ( )m

V V rc V Vx t

V V r c c V Vx t

∂ ∂+ = +

∂ ∂

∂ ∂− = + −

∂ ∂

1 2r r r= = 1 2c c c= =

Page 12: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

12

23

Boundary conditions

Transformation

1 1 2 2

1 1 2 2

( ) (0, ) (0, ) ; (0, ) (0, )

( , ) ( , ) ; ( , ) ( , )

dd s s

L L

V u t I t R V t I t R V t

I L s C V L s I L s C V L st t

− = − =

∂ ∂= =

∂ ∂

2

2

( ) (0, ) (0, )2

( , ) ( , )

dds

L

V rc Vx t

Vu t I t R V t

I L t C V L tt

+ +

+ +

+ +

∂ ∂=

∂ ∂

− =

∂=

1 2 1 2( ) 2 ; ( ) 2V V V V V V− += − = +

Solution:

2

2( 2 )

( ) (0, ) (0, )2

( , ) ( , )

m

dds

L

V r c c Vx t

Vu t I t R V t

I L t C V L tt

− −

− −

− −

∂ ∂= +

∂ ∂

− =

∂=

24

Sakurai single line solution

Plus solution

1

4

1 2

11.01

1.04

(2 )

T T

T T

T T T T

R CK

R C

R C R C

π

σπ

+ += −

+ +

=+ + +

1

1( , ) (1 exp( ))t

dd RCV t x l V K

σ−= ≈ +

2

1.04 1

2 (2 )4

1( , ) 1 1.01 exp( )dd

T T T T

V T T tRC R C R C

T T

R CV t x L

R C ππ + +

+

−+ + + + +

+ += ≈ −

+ +

Minus solution

2

1.04 1( 2 )2 (2 )

4

1( , ) 1 1.01 exp( )dd

m T T T T

V T T tR C C R C R C

T T

R CV t x L

R C ππ − −

−− +− + + +

+ += ≈ −

+ +

Page 13: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

13

25

Active line1

2

V VV + −+

= Quiet line 22

V VV + −−

=

Pt

PV

26

Solving for t :

Assuming simplifies to:

1 1 1 1

1 1

ln2 ( 2 )

P

m m

K Ct

K C C R C C RC

σ σ σ

σ

− − − +

+ +

= −

+ +

2

4

21 11.01

2 2 2 2

mC C

dd m mTP

T m m m

V C CR CV

R C C C C C Cπ

+= ≈

+ + + +

LC C<<

1

2

T S

W H T S+

1

2

mP

dd m

CV

V C C≈

+

parallel plate

approximation

Page 14: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

14

Finite rise time?!

27

Solution:

Transient voltage

28

parameters

Page 15: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

15

Time delay expressions:

29

As Trise�0 converges to Sakurai

Generalized delay formula for RC>Trise

30

Coupled line solutions:

Page 16: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

16

Hspice comparison

31

Peak crosstalk expression

32

Page 17: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

17

Hspice comparison

33

Length dependence

34

1

2

T S

W H T S+

1

2

mP

dd m

CV

V C C≈

+parallel plate

approximation

Scaling independent:

Page 18: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

18

Scaling dependence

35

Material dependence

36

Page 19: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

19

Driver resistance dependence

37

o An inductor is a passive

electronic component that

stores energy in the form of a

magnetic field.

38

In its simplest form, an inductor consists of a wire

loop or coil. The inductance is directly proportional

to the number of turns in the coil. Inductance also

depends on the radius of the coil and on the type of

material around which the coil is wound

Page 20: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

20

39

Inductance of rectangular wires with return path at infinity

40

Inductance of rectangular wires with return path in

perfect ground plane

Page 21: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

21

41

Loop inductance for coplanar ground lines

42

In its simplest

SV S

R→ ∞

x← →

inf( , )V x t

Page 22: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

22

43

2 20inf 0

0

02

2 2 1 2

1

( , ) [ ( ( ) )

( )1

( ( ) ) 4 (1 ) ]1

t

S

S

k

k

k

k

ZV x t V e I t x lc

Z Ru t x lc

t x lcI t x lc

t x lc

σ σ

σ

∞−

=

= − +

+ −

− − − Γ + Γ − Γ +

0

0

2 ; S

S

R Zr l

R Zσ

−= Γ =

+where

020inf

0

( , )rx Z

S

S

ZV x x lc V e

Z R

− =

+ Note that:

44

SV SR

l← →( , )finV l t

Delay model:

Page 23: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

23

45

Capacitive load

Delay model:

+

- CL

Rtrx=0 x=L

( )

2

0

max ,0.37 0.69

0.69 0.65 0.36

d F S

L S

t t rcL R cL

C rL R Z

≈ +

+ + +

46

• Transmission line effects should be considered when the rise or fall time of

the input signal (tr ,tf) is smaller than the time-of-flight of the transmission line

(tflight).

tr (tf) << 2.5 tflight

• Transmission line effects should only be considered when the total

resistance of the wire is limited:

R < 5 Z0

• The transmission line is considered lossless when the total resistance is

substantially smaller than the characteristic impedance

R < Z0 /2

Page 24: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

24

47

n=1 n=10

n=50 n=500

48

Page 25: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

25

49

50

2 coupled distributed RLC

interconnects

A (active) and Q (quiet).

3 coupled distributed RLC

interconnects

Page 26: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

26

51

n=1 n=10

n=50 n=500

52

Page 27: Introduction to VLSI Interconnect Design 2ee.sharif.edu/~sarvari/Interconnect/VLSI Interconnect02.pdfCu. 5/1/2011 3 5 Nucleus + Core electrons Valance electrons In D-L-S model the

5/1/2011

27

53

1

2

mP

dd m

CV

V C C≈

+

2 line RC:

4

mP

dd m

CV

V C C

π≈

+

2 line RLC:

43

3

mP

dd m

CV

V C C

π≈

+

3 line RLC: