41
ELEC 590 Directed Study Course Renewable Energy in Smart Grid Systems Supervisor and instructor: Prof. Dr. Aaron Gulliver Summer term 2014 Author: Abdullah Rehan Email: [email protected]

ELEC590 Smart Grids

Embed Size (px)

Citation preview

Page 1: ELEC590 Smart Grids

 

 

 

ELEC  590  Directed  Study  Course  

 

Renewable  Energy  in  Smart  Grid  Systems  

 

 

 

 

Supervisor  and  instructor:  Prof.  Dr.  Aaron  Gulliver  

 

Summer  term  2014  

 

 

Author:  Abdullah  Rehan  

E-­‐mail:  [email protected]  

 

 

 

Page 2: ELEC590 Smart Grids

1  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Acknowledgement  This  work  has  been  made  possible  by  the  endless  efforts  and  guidance  of  my  supervisor  Prof.  Dr.  Aaron  Gulliver,  Department  of  Electrical  Engineering  at  University  of  Victoria,  BC,  Canada.  I  am  thankful  for  his  support,  motivation  and  assistance  starting  from  the  proposal  development,  

continuing  till  the  completion  of  the  report.  

 

Abstract  

Background:   The   main   motivation   of   this   project   is   the   level   of   greenhouse   gases   that   has  increased  drastically  over  a  period  of  time  merely  because  of  using  conventional  sources  of  power.  Burning  coal  and  natural  gas  to  fulfill  our  energy  requirements  is  a  practice  which  if  continued  will  have  irreversible  negative  impacts  on  the  environment.  Smart  grid  technology  is  a  modern  system  that   administers   the   efficient   delivery   and   management   of   power   which   when   integrated   with  renewable  energy  systems  can  be  a  solution.  

 

Objective:   The   main   objective   is   to   evaluate   the   feasibility   of   all   renewable   energy   resources  available  so  that  a  way  to  integrate  them  with  smart  grid  technology  can  be  more  efficient,  feasible  and  reliable.    

 

Methodology:  The  working  principle  and  construction  procedure  of  each  type  of  renewable  energy  and   smart   grid   technology   is   studied.   Then   the   financial   and   power   feasibility   for   all   renewable  energy  technologies  and  smart  grid  technology  is  analyzed.    

 

Results:  After  comparing  values  and  statistics  of  all  renewable  energy  and  smart  grid  projects,  the  most   feasible   renewable  energy   is   figured  out.  A  model   system   integrating  smart  grid   technology  and  renewable  energy  technologies  is  proposed.  

 

Conclusion:   Smart   grid   system   costs   generally   remain   the   same   regardless   of   which   renewable  energy   technology   is   integrated,   but   the   costs   are   predicted   to   decline   in   the   future  with   better  technology.  The  cheapest  renewable  energy  systems  are  wind  and  solar  power  systems.  If  enough  capital   is   available,   the   most   energy   efficient   and   feasible   systems   are   geothermal   and   biomass  power  stations  in  the  long  run.  

 

 

Page 3: ELEC590 Smart Grids

2  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Table  of  Contents    

Chapter  1:  Introduction  ...............................................................................................................................  3  

Chapter  2:  Smart  grid  technology  ................................................................................................................  5  

Chapter  3:  Renewable  energy  technologies  ................................................................................................  8  

3.1  Solar  power  .......................................................................................................................................  10  

3.1a  Construction  of  a  photovoltaic  system  .......................................................................................  12  

3.1b  Solar  fuel  cells  .............................................................................................................................  13  

3.2  Wind  power  ......................................................................................................................................  14  

3.2a  Construction  of  a  wind  farm  .......................................................................................................  16  

3.3  Biomass  power  ..................................................................................................................................  18  

3.3a  Construction  of  a  biomass  power  plant  ......................................................................................  19  

3.4  Hydroelectric  power  .........................................................................................................................  21  

3.4a  Construction  of  a  hydroelectricity  power  plant  ..........................................................................  22  

3.5  Emerging  renewable  energy  technologies  ........................................................................................  23  

3.5a  Geothermal  energy  .....................................................................................................................  23  

3.5b  Ocean  wave  energy  ....................................................................................................................  24  

3.5c  Tidal  wave  energy  .......................................................................................................................  26  

3.5d  Innovative  renewable  energy  technologies  ................................................................................  26  

Chapter  4:  Feasibility  study  on  renewable  energy  ....................................................................................  28  

Chapter  5:  Designing  a  smart  grid  system  .................................................................................................  30  

Chapter  6:  Conclusion  and  discussion  .......................................................................................................  32  

6.1  Feasibility  of  renewable  energy  technologies    .............................................................................  34  

6.2  Future  of  integrated  smart  grid  technology  with  renewable  energy    ..........................................  36  

6.3  An  ideal  system  integrating  smart  grid  and  renewable  energy  technology    ................................  36  

Chapter  7:  References  ................................................................................................................................  39  

 

 

 

 

Page 4: ELEC590 Smart Grids

3  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Chapter  1  Introduction:  

The  world   is   currently   dependant   on   an   energy   infrastructure   that   heavily   relies   on   fossil   fuels  which  

have   high   chances   of   getting   depleted.   Such   energy   resources   are  major   contributors   of   green  house  

gases   and   carbon   dioxide.   If   current   practices   of   energy   generation   are   continued,   excessive   Carbon  

dioxide   emissions   will   degrade   the   environment.   Carbon   emission   rates   need   to   be   maintained   at  

present  levels  by  implementing  carbon  neutral  energy  resources  immediately  in  a  cost  efficient  manner.  

Optimized  energy  systems  with  minimal  production,   transmission  and  maintenance  costs  are   required  

which  provide  constant  energy  with  minimal  losses.  There  is  a  huge  scope  for  learning  more  about  the  

technicalities  of  how  solar  energy  can  be  utilized  by  photovoltaic  systems  and  solar  fuel  cells  in  addition  

to   biomass,   wind,   and   other   types   of   renewable   energy   resources   for   meeting   clean   energy  

requirements.  

 

 

Table  1:  Effects  of  carbon  economy  on  the  environment  

Source:  Nathan  S.  Lewis  and  Daniel  G.  Nocera,  “Powering  the  planet:  Chemical  challenges  in  solar  energy  utilization”,  PNAS  

vol.103  no.43,  pages  15729-­‐15735,  October  24,  2006.  

 

Page 5: ELEC590 Smart Grids

4  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

According   to   consumption   rates,  50-­‐150  years  of  oil   reserves,  207-­‐590  years  of  natural   gas  and  1000-­‐

2000  years  of  coal  is  left  to  be  used  as  energy  resources  which  can  account  to  up  to  25-­‐30TW  of  energy  

consumption  rate  worldwide  for  centuries  to  come.  A  more  hazardous  issue  than  depletion  is  the  rate  of  

emissions  by  using  fossil  fuels  as  energy  resources.  In  the  next  50  years,  the  energy  consumption  rate  is  

expected  to  increase  to  27.6  TW  from  13.5TW  which  will  account  to  an  increase  in  carbon  emission  rate  

to  13.5  billion  metric   tons  GtC/yr   from  6.6  billion  metric   tons  GtC/yr.  These  carbon  emissions   tend   to  

accumulate  between  the  ocean  surface  and  the  atmosphere.  The  mixing  time  between  the  near  surface  

and  deep  oceans  varies  between  400-­‐  thousands  of  years  which  means  that  until  severe  intervention  is  

done  to  remove  these  emissions  actively,  these  gases  will  stay  in  surplus  to  the  new  emissions.  Hence,  

the   CO2   in   the   atmosphere   should   now   be   limited   to   550ppm   and   for   that   entirely   carbon-­‐neutral  

energy   resources   are   required   immediately   because   if   the   process   of   this   shift   from   a   “high   carbon  

economy”  to  a  “low  carbon  economy”  is  even  delayed  by  20  years,  carbon  neutral  power  equal  to  the  

amount  of  power  produced  by  all  the  energy  resources  existing  combined  will  be  required  to  maintain  

the  level  of  550ppm  of  CO2  in  the  atmosphere.  [1]  

 

It   is   time   to   reform   the   environment-­‐degrading   energy   infrastructure   into   a   sustainable   and   resilient  

energy   infrastructure   that   is  more  environmental   friendly.  One  of   the  main  problems   that   the  energy  

sector   faces   is   the   renewable   energy   transportation   costs   over   long  distances  when   compared   to   the  

more   conventional   energy   coming   from   resources   such   as   the   fossil   fuels.   Another   issue   that   arises  

when  analyzing  the  feasibility  of  renewable  energy  production  is  with  the  generation  process.  Since  the  

primary  source  of  such  energy  is  nature  itself,  the  output  is  not  constant  and  the  fluctuation  makes  it  an  

unstable   resource   of   energy.   An   ideal   solution   to   these   particular   problems   would   be   the   one   that  

incorporates  maximum   use   of   renewable   energy   resources  mitigating   the   affects   of   fluctuation   in   its  

production  by  the  use  of  smart  grid  systems  (further  explained  in  Chapter  2).  

Page 6: ELEC590 Smart Grids

5  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

In   the   modern   age   of   today,   proposals   and   models   need   to   be   set   up   in   order   to   solve   the   two  

bottleneck   energy   investment   problems   of   transmission   and   fluctuation   of   renewable   energy  

development  during  the  planning  phase.  These  long-­‐term  investment  planning  models  will  be  an  aid  for  

analysts,   investors   and   policy  makers   for   finding   out  methods   to  make   extensive   use   of   current   and  

emerging   renewable   energy   technologies   in   order   to   support   the   development   and   enhancement   of  

renewable   energy   so   that   the  world’s   energy   infrastructure   can   be   transformed   into   a  much   cleaner  

system  over  a  period  of  perhaps  the  next  40  years.    

Chapter  2  Smart  grid  technology:  

 

Figure  1:  General  layout  of  smart  grid  systems  

Image  source:  http://www.powergenasia.com/conference/smartmeter.html.  

“Smart  grid”  nowadays  is  considered  as  a  general  term  that  refers  to  a  type  of  technology  that  people  

use  to  transform  utility  electricity  systems  that  are  used  for  delivery  into  modern  21st  century  delivery  

systems  with  the  help  of  computer-­‐based  remote  control  and  automation.  These  particular  systems  can  

be  made  incorporated  today  by  two  way  communication  systems  and  technology  along  with  the  regular  

Page 7: ELEC590 Smart Grids

6  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

computer   processing  practices   that   have  been  used   for  many   years   in   various   industries.   In   the  most  

recent  years,  they  are  beginning  to  be  used  on  electricity  networks,  from  the  different  power  plants  and  

wind  farms  all  the  way  to  the  customers  and  consumers  of  the  electricity  for  commercial,  domestic  and  

industrial  purposes.  Such  systems  are  able  to  offer  numerous  benefits  to  utilities  and  consumers  mostly  

in  terms  of  higher  efficiency  and  improvements  in  delivery  of  the  electricity  grid  for  energy  users’  homes  

and  offices.  The  general  idea  of  such  a  system  can  be  seen  in  figure  1.  

The   invention  of   such   systems  has   changed   the  nature  of  work   that   the  workers   of   utility   companies  

have  to  do  as  well.  For  almost  a  century  now,  workers  of  the  utility  companies  have  had  to  go  out  and  

gather  much  of  the  data  needed  to  provide  and  regulate  electricity.  In  order  to  do  this,  the  workers  have  

to   read  meters,   search   for  broken  equipment  and  measure  voltage  which  only   covers  a   fraction  what  

they  have  had  to  do  every  day.  Most  of  the  devices  that  the  utility  companies  use  to  deliver  electricity  

efficiently   were   not   automated   and   computerized   but   because   of   the   smart   grid   technology,   many  

options  and  products   are  now  being  made  available   to   this   industry   to  help  modernize   the  electricity  

generation  process.    

The   conventional   “grid”   is   basically   the   network   that   carries   electricity   from   the   plants   where   it   is  

generated  to  consumers  that  have  a  demand  for  it.  This  grid  consists  of  wires,  substations,  transformers,  

switches  and  a  lot  more.  

Exactly  like  the  way  that  a  “smart”  phone  nowadays  merely  means  a  phone  that  has  a  computer  in  it,  a  

smart  grid  means  the  electric  utility  grid  that  has  now  been  computerized  and  can  entirely  be  controlled  

by   a   computer   system.   One   of   the   main   tasks   associated   with   it   is   adding   a   two-­‐way   digital  

communication  technology  to  all  the  devices  that  are  associated  with  the  grid  and  its  functionality.  The  

devices  are  responsible  for  carrying  out  the  same  function  designated  to  them  as  before  but  the  means  

Page 8: ELEC590 Smart Grids

7  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

of  collecting  that  information  for  the  relative  functionality  is  now  through  the  use  of  sensors.  Devices  on  

the   network   now   use   sensors   in   order   to   gather   data   from   power  meters,   voltage   sensors   and   fault  

detectors.  The  whole  process  is  made  possible  by  a  two-­‐way  digital  communication  between  the  devices  

in   the   field   and   the   utility’s   network   operations   center   from   where   everything   is   administered   and  

controlled.  One   key   feature   that   justifies   the  use  of   smart   grid   systems   is   the   automation   technology  

that   now   lets   the   utility   adjust   and   control   each   individual   device   and   millions   of   devices   from   one  

central  location  now  matter  how  remote  that  is.  

As  inferred  from  principal  characteristics,  smart  grid  systems  are  able  to  use  digital  technology  in  order  

to   improve  reliability,   resiliency,   flexibility,  and  efficiency  both   in  terms  of  economy  and  energy  of  the  

electric  delivery   system.   The  advantages  and  additional  options  offered  by   smart   grid   systems   can  be  

analyzed  from  figure  2.  

 

Figure  2:  Importance  of  smart  grid  systems  and  smart  meter  benefits  

Image  source:  Wave  3  –  SGCC  consumer  pulse  and  segmentation  research.  Base=Total  consumers,  n=1089.  

Page 9: ELEC590 Smart Grids

8  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Chapter  3:  Renewable  energy  technologies  

Renewable   energy   is   basically   the   energy   that   is   generated   from   resources,   which   are   naturally  

replenished.   These   resources   include   sunlight,  wind,   rain,   tides,  waves  and  geothermal  heat.  By  using  

these  renewable  energy  resources  for  energy  generation,  we  fulfill  multiple  needs  of  the  21st  century:  

• Electricity  generation  

• Hot  water/  space  heating  

• Fuels  for  motors  

• Rural  off-­‐grid  or  remote  areas  energy  services  

Renewable   energy   is   an   important   technology   sector   in   the  world  of   today  because  of   the  numerous  

benefits  it  has  to  offer.  The  key  environmental  benefit  attained  is  through  the  cleanliness  of  renewable  

energy  technologies  because  of  the  use  of  clean  and  green  sources  of  energy  which  have  a  very  minimal  

impact   on   the   environment.   Since   one   is   not   dependant   on   conventional   sources   such   as   fossil   fuels,  

renewable   energy   resources  will   not   run  out   and   this   type  of   energy  will   stay   in   the  world   for   future  

generations  to  come.  Such  technology   is  also  economically   feasible   in  the  way  that   it  creates   jobs  and  

helps   the   economy.  Most   renewable   energy   investments   are   known   to   be   used   up   on  materials   and  

workmanship  in  order  to  construct  and  sustain  the  facilities,  in  contrast  to  costly  energy  imports.  These  

investments  are  mostly  spent  within  the  country  of  origin,  often  in  the  same  state  and  town.  This  means  

that  the  energy  dollars  stay  at  home  creating  employment  opportunities  while  fueling  local  economies.  

Meanwhile,  the  renewable  energy  technologies  which  are  developed  by  each  country  can  also  be  sold  

overseas,  in  turn  providing  a  boost  to  the  country’s  trade  deficit.    

Almost  about  16%  of   the  global   final  energy  needs  today  are  met   from  renewable  resources,   in  which  

10%  [2]   of   the   energy   is   generated   from   traditional  biomass,   (main   use   is   for   heating)   and   3.4%  

Page 10: ELEC590 Smart Grids

9  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

from  hydroelectricity.   New   renewable   energy   resources   such   as   small   hydro,   modern   biomass,   wind,  

solar,  geothermal,  bio-­‐fuels  and  other  emerging  technologies  are  responsible  for  another  3%  which  are  

growing  rapidly   [3].At  country   level,  at   least  30  countries  all  over   the  world  already  have  a  renewable  

energy  contribution  of  more  than  20%  of  the  total  energy  supply.  The  exact  figures  of  renewable  energy  

contribution  to  the  total  world  energy  consumption  can  be  seen  in  figure  3.  

 

Figure  3:  Renewable  energy  share  of  total  energy  consumption  2010  

Image  source:  Renewables  2011,  global  status  report.  

 

 

 

 

 

Page 11: ELEC590 Smart Grids

10  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

3.1:  Solar  power    

 

Figure  4:  Solar  photovoltaic  total  world  capacity  

Image  source:  Renewables  2011,  global  status  report.  

The   solar   cell   is   an   integral   part   of   the   PV   system   and   its   operation   is   based   on   the   fact   of   a   direct  

conversion   of   the   electromagnetic   radiation   from   the   sun   which   is   received  mainly   consisting   of   the  

visible  light  of  the  wavelength  (400  nanometers  to  750  nanometers)  into  the  usable  electricity  with  the  

help  of  the  photovoltaic  effect.  This  photovoltaic  effect  is  usually  composed  of  the  conversion  of  energy  

from   the   incident   photons   that   come   into   electrical   potential   energy   that   is   transferred   to   charge  

carriers   inside   a   semiconductor   material,   which   enables   them   to   transfer   in   between   the   different  

voltage  bands  within  the  material  which  effectively  results  in  the  accumulation  of  voltage  between  the  

two  electrodes   that   in   turn   represents   the  output  voltage  of   the   solar   cell.   The   total   capacity  of   solar  

photovoltaic  systems  can  be  seen  in  figure  4.    

 

Page 12: ELEC590 Smart Grids

11  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Various  types  of  solar  cells  now  exist   in  the  market  which  can  be   integrated  into  photovoltaic  systems  

depending  on  their  efficiency  and  cost.  Multi-­‐junction  solar  cells  contain  several  p-­‐n  junctions  and  one  of  

each  junction  is  tuned  to  a  wavelength  of  light  that  is  different  from  each  other  so  that  light  is  wasted.  

By   increasing   the   number   of   junctions,   higher   efficiency   can   be   achieved   but  with   three   junctions   an  

efficiency   of   about   43%   can   be   achieved.   In   contrast   to   the  multi-­‐junction   solar   cells,   single   junction  

solar   cells  are  only  made  up  of  a   single  p-­‐n   junction  and  have  a   lower  efficiency  of  about  30%.  These  

cells  are  usually  175um  thick  and  have  dimensions  of  7cm  by  7cm  are  normally  weldable  and  solderable.  

Crystalline  silicon  solar  cells  are   the  kind  widely  available  and  up  till  now  the  most  efficient  solar  cells  

that  provide   stable  power.  These  cells  have  a  practical  efficiency  of  22.5%  and  are   the  most   frequent  

options  when  designing  a  PV  system.  

The  output  of  PV  system  depends  on  the  fill   factor  of  a  solar  cell.  The  higher  the  fill   factor,  higher  the  

efficiency  of  the  solar  cell.  These  relationships  can  be  seen  from  numeric  calculations  below:  

These relationships can be seen from equations 1 and 2.

𝐹𝐹 =   !!"  ×  !!"!!"  ×  !!"

….(1)

ƞ =   !!"×!!"  ×!!  !!"

….(2)

where  𝐹𝐹  is the fill factor, 𝐼!" is the current at maximum point, 𝑉!" is the voltage at maximum point, 𝐼!"   is short

circuit current, 𝑉!" is open circuit voltage, ƞ is the efficiency and 𝑃!" is the input power. PV  systems  are  capable  

of  producing  1000kWh/kWpeak  of  energy  per  nominal  power  with  20-­‐30  years  of  proven  durability  with  

output  that  can  be  DC  or  high  quality  AC  via  an  inverter.  Such  systems  are  easily  scalable  for   less  than  

1W   to   greater   than   10MW   of   power.   The   maintenance   costs   are   generally   very   low   until   hit   by  

hazardous  storms  making   these  systems  cost  marginal.  With  10%  efficiency  and  $300/m^2  along  with  

balanced  maintenance  cost  of  $3/W,  an  optimal  electricity  price  of  $0.35  kW/hr  can  be  achieved  which  

Page 13: ELEC590 Smart Grids

12  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

can  be  considered  when  comparing  to  the  cost  of  $0.02-­‐0.05  kW/hr  for  fossil  fuels  generated  energies  

[4].    

The  energy  from  solar  power  can  be  easily  stored  if  inexpensive  batteries  become  available  which  have  

lifetimes   of   about   30   years.   An   alternative   to   this   approach   can   be   pumping   water   uphill   through   a  

turbine  powered  by  solar  power  and  storing  the  energy  mechanically  but  till  now,  a  feasible  system  that  

does   not   require   charge   and   discharge   every   24hours   is   unavailable.   A   third   method   of   storing   this  

energy   is  by  using  an  artificial  photosynthesis  procedure  to  produce  a  solar  fuel  cell   in  which  chemical  

bonds  are  broken  and  then  formed.  

PV  power  is  that  it  is  time  sensitive.  On  a  sunny  day,  the  output  power  will  be  great  but  at  night  time,  a  

cloudy  day  or  winter  season  when  the  sun  is  only  out  for  a  few  hours,  the  use  of  PV-­‐systems  as  source  of  

energy  is  not  suggested.  PV  systems  are  also  temperature  sensitive  since  a  rise  in  temperature  accounts  

to  a  fall   in  the  solar  cell  performance;  hence  these  systems  are  inefficient   in  extremely  hot  conditions.  

The  environmental   impact  of  PV  power   is  almost  negligible.  Crystalline  solar  cells  make  use  of  Cadium  

which  is  a  carcinogen  and  not  disposable  in  a  recycling  program.  PV  systems  are  easily  funded  by  banks  

worldwide  since  it  is  the  most  developed  form  of  renewable  energy  that  exists.  

3.1a)  Construction  of  a  Utility  PV  system  

 

A   PV   system   consists   of   a   solar   module,   voltage   converter/charge   controller,   a   storage   unit   and   an  

inverter  that  converts  AC  into  DC.  The  output  might  be  connected  directly  to  a  load  or  to  a  power  grid.  A  

solar  panel  consists  of  series  and  parallel  connected  solar  cells.  Typically,  the  cells   in  one  panel  should  

match  well  otherwise  a  big  difference  reduces  the  overall  efficiency  and  even  destroys  the  weakest  cell.  

Group   cells   are   sometimes   connected   in   parallel   so   that   reverse   current   does   not   become   an   issue  

because   of   shadowing   of   a   high   number   of   cells.   A   solar   generator  will   then   finally   have   PV  modules  

Page 14: ELEC590 Smart Grids

13  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

connected   in   series   and   parallel.   Each  module   should   be   regulated   actively   and   connected   in   series.  

Conversion  of   input  power  to  output  power  can  be  done  by  choosing  between  linear  regulators,  buck,  

buck-­‐boost,  boost  and   fly-­‐back  converters.  Each  converter  has  a  different  power   input   to  output   ratio  

and  efficiency  so  the  choice  depends  on  each  application.  The  storage  of  this  power  generated  can  be  

done  by  using  big   loads  of   lead  acid  accumulators  or  by  storing  the  power  directly   into  a  grid  where  it  

can  be  shared  from  with  other  users  immediately  after  generation.  

 

For  an  ideal  PV  system,  the  ambient  temperatures  need  to  be  lower  and  surveys  need  to  be  done  before  

the  area  is  selected  so  that  it  is  made  sure  that  the  site  receives  a  favorable  amount  of  sun.  A  practical  

example   of   a   large   scale   PV   system   can   consist   of   150   KVA,   98.9%   efficient,   208   to   480   air   cooled  

transformer.   The   ground   surface   preparation   can   be   set   +/+   one   inch   vertical   in   10   feet   horizontal.  

About   250  MCM  of   copper   can   installed   on   ground   for   protection   from   lightening   equipment.   A   high  

efficiency  PV  module  can  be  set  at  300   feet  north-­‐south  by  140   feet  east  west  on  ground.  The  wiring  

design  has  to  be  for  around  0.5%  drop  of  maximum  voltage  from  the  furthest  point  in  the  array  to  the  

inverter.  By  smartly  designing  the  system,  the  installation  costs  of  such  power  systems  can  be  reduced  

down   to  $0.30  per  DC  watt  of  PV  capacity.  Crystalline   solar   cells   are  usually  used  because  of  a   stable  

performance.  The  capacity  of  such  a  system  can  generally  be  up  to  495  MW  with  a  renewable  energy  of  

861,143  MWh  with  expected  values  of  $30.85/MWh  of  energy.  

3.1b)  Solar  Fuel  Cells  

In   one   hour,   4.1*10^20   J   of   energy   strikes   the   earth  which   is  much   greater   than   the   4.1*10^20   J   of  

energy  that  the  planet  uses  in  one  year  [1].  This  energy  is  stored  by  an  innovative  process  called  artificial  

photosynthesis.  During  this  process,  water  reduction  and  oxidation  catalysts  are  combined  with  a   light  

collection  and  charge  separation  system  ultimately  capturing  spatially  separated  electron  hole  pairs  to  

Page 15: ELEC590 Smart Grids

14  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

make   bonds   of   hydrogen   and   oxygen.   This   hydrogen   is   then   combined   with   Carbon   dioxide   in   the  

atmosphere   to   produce   solar   fuels   which   can   store   the   sun’s   energy   for   later   use   as   a   renewable  

resource  of  energy.  This  process  can  be  performed  by  a  solar  fuel  cell  in  which  hydrogen  and  oxygen  are  

combined   to   generate   an   electron   and   proton   flow   through   a   membrane.   Light   is   used   to   run   the  

electron   and   proton   flow   in   reverse   and   the   coupling   of   electrons   and   protons   to   photo   catalysts  

(Titanium  dioxide  doped  with   small   amounts  of   iron  or   chromium   [5])  breaks   the  bonds  of  water  and  

produces   Hydrogen   at   the   cathode   and   oxygen   at   the   anode,   effecting   solar   fuel   production.   This  

process  between  the  cathode  and  the  anode  results  in  a  flow  of  electric  current.  A  schematic  diagram  of  

a  solar  fuel  cell  can  be  seen  in  figure  4.  

 

Figure  4:  Working  principle  of  a  solar  fuel  cell  

Image  Source:  Nathan  S.  Lewis  and  Daniel  G.  Nocera,  “Powering  the  planet:  Chemical  challenges  in  solar  energy  utilization”,  

PNAS  vol.103  no.43,  pages  15729-­‐15735,  October  24,  2006.  

 3.2  Wind  power    The  main  operating  principle  lies  in  the  fact  of  converting  the  wind  energy  into  a  useful  form  of  energy  

known   as   the   electrical   energy.   We   use   wind   turbines   to   make   electrical   power,   windmills   for   the  

mechanical  power  and  wind  pumps  for  water  pumping  or  drainage.  Wind  generators  have  a  capacity  of  

500-­‐2000   kW  with   larger   units   having   a   capacity   of   up   to   5000kW   or  more   in   off   shore   areas.   Such  

systems  have  high  capital  costs  because  of  expensive  equipment  and  also  a  very  large  maintenance  cost  

since   the   generators   are   complicated   to   fix,   once   undergone   defects.   The   operating   costs   for   wind  

power  generators  tend  to  be  low  though  [4].  

Page 16: ELEC590 Smart Grids

15  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Typical  wind  generating  power  systems  are  capable  of  an  output  of  2000  kWh/kWpeak  with  scalability  

problems   for   systems  with   output   under   50kW.   This   power   is   proportional   to   a   third   power   of  wind  

speed  which  is  not  as  good  as  the  power  from  PV.  Power  from  wind  generators  is  AC  and  is  of  variable  

frequency.   The   theoretical   maximum   efficiency   of   such   systems   is   about   59%   although   conversion  

efficiency  comes  at  a  price.   In  order  for  this  to  be  a  primary  renewable  energy  resource,  the  price  per  

kWh   needs   to   be   minimized.   Practical   efficiencies   of   modern   wind   generators   vary   from   25-­‐30%   in  

contrast  to  the  traditional  wind  mill’s  5%  [4].  This  is  a  very  effective  form  of  energy  because  it  produces  

no  green  house  gases  and  uses  very  little  land.  Ideally  wind  generators  should  have  a  large  diameter  and  

should  be  installed  in  places  with  high  wind  speeds  and  high  probability  of  wind.  Their  height  should  be  

as  much  as  possible  and  the  temperature  of  the  surroundings  should  be  lower  since  the  density  of  wind  

decreases  in  such  conditions.  The  numerical  relationship  between  the  power  and  these  factors  is  shown  

in  equation  3.  

 

𝑃𝑜𝑤𝑒𝑟 =   !!×𝜌×𝐷!×𝑣!  …..(3)  

Where  𝜌  is  density  (Kg/𝑚!),  𝐷  is  diameter  (m),  𝑣  is  velocity  (m/s).  

 

A  typical  drawback  of  this  technology  lies  in  the  faulty  gear  box  of  a  wind  generator.  Fast  torque  changes  

cause   untypical   compression   of   the   gearbox   in   the   axis   direction,   reducing   the   lifetime   of   wind  

generators   to   7   from   the   projected   number   of   15   years.   This   typical   problem   is   a  major   topic   under  

research  now.  Environmentally,  wind  generators  shed  ice  in  the  winter,  cause  shadowing  and  noise  and  

also  spoil  the  pristine  looks  of  the  countryside.  The  exact  figures  of  global  wind  power  capacity  and  its  

growth  can  be  seen  in  figure  5  and  6.  

 

Page 17: ELEC590 Smart Grids

16  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

 Figure  5:  Wind  power  capacity  2011  

Image  source:  Renewables  2011,  global  status  report.  

 Figure  6:  Wind  power  capacity  growth  by  country    Image  source:  Renewables  2011,  global  status  report.  

3.2a)  Construction  of  a  Wind  farm    

Constructing   and   planning   the   development   of   a   wind   farm   requires   the   successful   completion   of  

several  steps  listed  below.  

1) Municipal  consultations  in  which  the  residents  and  community  of  the  area  around  the  potential  

wind  farm  are  taken  into  dialogue  and  kept  in  constant  contact  throughout  the  process.  

2) Wind   assessment   in  which   engineers   and   experts   use  meteorological  masts   to  measure  wind  

speed  and  climatic  conditions  so  that  an  estimation  of  energy  potential  can  be  calculated.    

Page 18: ELEC590 Smart Grids

17  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

3) Wind  farm  design  in  which  engineers  are  able  to  model  wind  flow,  turbine  performance,  sound  

levels,  design  access   roads,   turbine   foundations,   local  electric  network,   and  connection   to   the  

electricity  or  smart  grid.  

4) Environmental  study  in  which  assessments  mitigate  the  negative  environmental  impacts  on  the  

surroundings.  

5) Land  acquisition  in  which  developers  negotiate  terms  in  order  to  use  the  land.  

6) Permitting  and  public  consultation  in  which  federal  requirements  and  permissions  are  sought.  

7) Economic  and  financial  analysis  in  which  the  economic  viability  of  the  project  is  demonstrated.  

8) Manufacturing  of  the  wind  turbine  parts.  

9) Site  preparation  and  construction.  

10) Commissioning   in   which   the   electrical   collection   network   is   installed   and   connected   to   the  

regular  or  smart  grid  system.  

11) Operation  and  maintenance  

The  tower  construction   is  done  not  only  regarding  the  weight  of  the  nacelle  and  rotor  blades,  but  also  

with  regard  to  the  absorption  of  large  static  loads  which  are  caused  by  the  different  power  of  the  wind.  

Examples  of  tower  heights:  

• hub  height  40-­‐65  m:  approx.  600rated  power  and  approx.  40  to  65  m  rotor  diameter  

• hub  height  65  to  114approx.  1.5  to  2rated  power  and  approx.  70  m  rotor  diameter  

• hub  height:  120  to  130approx.  4.5  to  6rated  power  and  approx.  112  to  126  m  rotor  diameter  

Page 19: ELEC590 Smart Grids

18  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

 

Figure  7:  Working  principle  of  a  wind  turbine    Image  source:  “Wind  Energy”,  EcoPlanetEnergy  Renewable  Energy  Resources,  http://www.ecoplanetenergy.com/all-­‐about-­‐eco-­‐

energy/overview/wind/.  

For   wind   turbines   with   higher   power,   doubly-­‐fed   asynchronous   generators   are   the   ideal   choice.   The  

operating   rotation   speed   can   be   changed,   unlike   when   using   the   more   conventional   asynchronous  

generators.  Another  option  could  be  using  the  synchronous  generators.  A  connection  to  the  smart  grid  

system  of  synchronous  generators  is  only  made  possible  with  the  help  of  transformers,  because  of  the  

behavior  of  fixed  rotation.  The  control  system  is  complicated  but  it  is  offset  by  the  overall  efficiency  and  

better  grid  compatibility.  

3.3  Biomass  power    

By  using  thermal  and  chemical  conversion  processes,  biomass  can  be  converted  into  bio  fuels  and  other  

forms   used   as   a   resource   of   renewable   energy.   Biomass   is   usually   used   for   the   production   of   power  

and/or   heat,   and   a   part   of   it   is   transformed   into   liquid   bio-­‐fuel  which   is   used   for   transportation.   The  

technologies  that  are  used  for  generating  electricity  from  biomass  include  direct  firing  or  co-­‐firing  (with  

Page 20: ELEC590 Smart Grids

19  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

coal   or   natural   gas)   of   solid   biomass,   municipal   organic   waste,   bio-­‐gas,   and   liquid   bio-­‐fuels.   Typical  

sources  of  bio-­‐mass  energy  are  ethanol,  pulp  and  residues  of  paper  industry,  wood  and  forest  residues.  

The  global  production  of  ethanol  and  biodiesel  can  be  analyzed  from  the  plots  below  in  figure  8.  

 

     

Figure  8:  Production  of  ethanol  and  biodiesel    Image  source:  Renewables  2011,  global  status  report.  

3.3a)  Construction  of  a  Biomass  Power  plant    Biomass  energy  is  generated  by  a  properly  defined  method  hence  outlining  a  general  map  of  a  biomass  

power  plant.  Typically  when  constructing  a  biomass  power  plant,  a  few  process  and  sections  need  to  be  

defined:  

 

• Fuel  feeding  systems  

• Combustion  technology  

• Boiler  systems  

• Plant  control  

 

A  biomass  power  plant  will  only  be  efficiently  put  to  use  if  there  is  mechanism  of  constant  supply  of  fuel.  

After  a  thorough  analysis  of  the  available  fuel  by  looking  at  its  moisture  content,  grain  size  and  specific  

Page 21: ELEC590 Smart Grids

20  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

density   is   it   decided   which   feeding   system   is   to   be   used.   Typically,   underfeed   stoker,   multiple   shaft  

screws,   flap-­‐gate   locks,   hydraulic   fuel   feed   and   pneumatic   blow   in   equipment   are   a   few   choices.   The  

next  step  is  to  decide  on  which  combustion  technology  is  to  be  used  because  this  determines  efficiency  

and  effectiveness  of   the  plant,   its  performance  and   longevity,   its  emission   levels  and  profitability.  The  

efficiency   of   the   combustion   system   is   determined   by   the   fine-­‐tuning   of   combustion   chamber   by  

designing  its  outer  surfaces  (cool  or  uncool),  optimized  position  of  the  fuel  feeding  system  and  burning  

gate,  the  delivery  and  regulation  of  the  combustion  air  and  safe  an  regular  removal  of  ash.  The  options  

of   combustion   methods   are   usually   in   feed   grate   combustion,   ring   burner,   under-­‐freed   and   blow   in  

combustion.  Boiler  systems  are  application  specific.  Various  types  of  boiler  systems  using  water,  steam  

or   thermal   oil   as   the   heat   transfer  medium  are   usually   the   options.   Control   and   error   analysis   of   the  

power   plant   is   done   with   the   help   of   field   devices   that   can   be   placed   throughout   the   plant   for   the  

execution   of   command   functions,   taking   measurements   and   reporting   on   conditions.   There   are   also  

cabinet   devices   which   are   integrated   in   a   central   electric   control   box   for   receiving   measurement  

information,   making   and   processing   system   queries   and   sending   out   commands   [6].    

 

Figure  9:  Biomass  power  plant    Image  source:  http://www.lambion.de/en/biomasse-­‐kraftwerke/anlagenbau/waermeverteilung-­‐kwk.html.  

 

Page 22: ELEC590 Smart Grids

21  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

3.4  Hydroelectric  power    Hydroelectricity   is  a  form  of  renewable  energy  that  generates  electricity  from  hydropower.   It  uses  the  

principle   of   the   gravitational   force   of   the   falling   or   flowing  water.   It   accounts   for   almost   16%   of   the  

global  Generation  processes  and  it’s  also  expected  to  increase  by  3.1  %  each  year  for  the  next  25  years  

[3].  Hydropower  is  converted  into  electricity  by  different  ways  and  some  include:  

 

• Conventional  hydroelectric  systems  in  hydroelectricity  dams  

• Run  of  the  river  hydroelectricity  that  uses  the  kinetic  energy  of  the  rivers  and  streams    

• Small  hydro  projects  having  no  artificial  reservoirs  (Typical  output  is  10  MW)  

• Micro  hydro  projects  supply  electricity  to  homes,  villages  or  isolated  industries  

• Conduit   hydroelectricity   projects  which   use   the  water   that   has   already   been   directed   for   use  

elsewhere    

• Pumped  storage  hydroelectricity  that  stores  water  pumped  in  times  of  low  demand  in  order  to  

be  used  for  power  purposes  when  the  demand  is  high  

 

All   the   projects   of   generating   electricity   mentioned   above   follow   a   simple   mathematical   formula   of  

which  states  the  amount  of  power  available  from  falling  water  and  this  relationship  can  be  described  by  

the  equation:  

 𝑃 =  ƞρ𝑄𝑔h    P  is  the  power  in  watts  ƞ    is  the  efficiency  of  the  turbine  ρ  is  the  density  of  water  in  kilograms  per  cubic  meter  Q  is  the  flow  in  cubic  meters  per  second  g  is  the  acceleration  due  to  gravity  h  is  the  height  difference  between  inlet  and  outlet        

Page 23: ELEC590 Smart Grids

22  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

3.4a)  Construction  of  a  hydroelectric  power  plant    

 

Figure  10:  Hydroelectric  power  plant  and  a  wind  turbine    Image  source:  http://en.wikipedia.org/wiki/File:Hydroelectric_dam.svg  

Image  source:  http://ga.water.usgs.gov/edu/graphics/hydroturbine.jpg  

 

The   typical   layout   of   a   hydroelectric   dam   and   a   wind   turbine   can   be   seen   in   figure   10.   The   main  

components  of  a  hydro  electricity  power  plant  are:  

• Area  • Dam  • Reservoir    • Penstock  • Storage  tank  • Turbines  and  generator  • Switchgear  and  protection  

 

The   area   chosen   to   build   the   power   plant   has   sufficient   and   unimpeded   flow   of   water   with   suitable  

topography  to  build  a  dam.  The  main  function  of  the  dam  is  to  control  the  flow  of  water  in  a  way  that  it  

can  be  reserved  for  power  purposes  in  the  reservoir.  The  reservoir  saves  the  water  for  the  turbines  to  

generate  electricity  of   it.  The  penstock  is  a  pipe  that  connects  the  dam  and  turning  blade  and  its  main  

Page 24: ELEC590 Smart Grids

23  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

job  is  to  increase  the  kinetic  energy  of  the  water  by  maintaining  a  high  pressure.  A  storage  tank  is  only  

used  in  an  emergency  situation  when  the  pressure  of  water  is  lower  and  it  is  directly  connected  to  the  

penstock.   After   this,   the  water   falls   onto   the   turbines  which   convert   kinetic   energy   of   the  water   into  

mechanical  energy  which  is  converted  into  electrical  energy  with  the  help  of  the  generator.  The  control  

equipment  of  the  power  plant  includes  circuits,  instrumentation  for  warning,  control  devices  connecting  

to   the  main  board.  After   the  generation  of  electricity  at   low  voltage,  a  step  up  transformer   is  used  to  

provide  a  voltage  of  132KV,  220KV  and  400KV  as  per  requirement.  

3.5:  Emerging  renewable  energy  technologies  

3.5a)  Geo-­‐thermal  energy  

 

Figure  11:  Geothermal  power  plant      Image  source:  http://www.geothermie.de/  

The  Geothermal   energy   is   generated   and   stored   in   the   earth.  Geothermal   energy  originates   from   the  

formation  of  the  planet  itself  and  from  the  radioactive  decay  of  the  minerals  and  works  by  the  principle  

of   the   geothermal   gradient.   In   flash   geothermal   conversion   process,   higher   temperature   geothermal  

sources  (>180°C)  are  used.  Because  of  the  pressure  difference  between  the  subsurface  environment  and  

Page 25: ELEC590 Smart Grids

24  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

the  Earth’s   surface,  water  exists  as  a   liquid  at  higher   temperatures.  The  water  with  high   temperature  

and  pressure  is  brought  to  surface,  entering  a  low  pressure  chamber  ultimately  flashing  into  steam.  The  

pressure  created  by  the  steam  channels  through  a  turbine,  spinning  to  generate  electrical  power.  Also,  

when  a  liquid  is  heated  into  a  vapor,  the  pressure  drives  a  turbine.  When  temperatures  are  too  low  for  

‘flash’  water  in  a  binary  system,  the  heat  of  water  needs  to  be  transferred  to  a  separate  liquid  having  a  

lower  boiling  temperature  called  the  ‘working  fluid’.  When  hot  geothermal  water  comes  up  to  surface  

from  deep  underground,   it  runs  through  a  ‘heat  exchanger’  transferring  the  heat  from  the  geothermal  

water   to   the   liquid  working   fluid.  Because   this  working   fluid  has   low  boiling  point,   it   vaporizes   rapidly  

with  less  geothermal  heat,  and  the  vaporization  in  turn  produces  enough  pressure  to  drive  a  turbine.  

3.5b)  Ocean  wave  energy  

Ocean  wave  is  used  as  a  resource  of  renewable  energy  when  the  energy  transported  by  ocean  surface  

waves   is   captured   for   generating   electricity.   There   are   several   modern   methods   that   are   used   for  

converting  this  energy  into  electricity  mainly  named  as:  

• Point  absorber  buoy  

• Surface  attenuator  

• Oscillating  water  column  

• Overtopping  device  

When   using   point   absorber   buoys,   the   device   floats   on   the   surface   of   the  ocean   attached   to   cables  

which  keep  it  in  place  by  a  connection  to  the  seabed.  These  buoys  mainly  make  use  of  the  rise  and  fall  of  

swells   for   driving   hydraulic   pumps   in   order   to   generate  electricity.  The   surface   attenuator   acts   in   a  

similar   fashion   to  point  absorber  buoys,  but   it  has  multiple   floating   segments  which  are   connected   to  

each   other   oriented   perpendicularly   to   incoming  waves.   The   swells   then   create   a   flexing  motion   that  

Page 26: ELEC590 Smart Grids

25  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

drives  hydraulic  pumps  in  turn  generating  electricity.  The  oscillating  water  column  devices  can  be  either  

be   located  on  shore  or   in  deeper  waters  offshore  with  an  air  chamber   incorporated   into  the  device   in  

which  the  swells  compress  air  in  the  chambers  ultimately  forcing  air  through  an  air  turbine  to  generate  

electricity.  Overtopping   devices   are   longer   and   use  wave   velocity   to   fill   a   reservoir   to   a   higher  water  

level   when   compared   to   the   surrounding   ocean.   The   potential   energy   in   the   reservoir   height   is   then  

captured  with  low-­‐head  turbines.  These  devices  can  be  either  on  shore  or  floating  offshore.  

 

Figure  12:  Idea  of  ocean  wave  energy    Image  source:  http://www.seabased.com/  

Page 27: ELEC590 Smart Grids

26  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

3.5c)  Tidal  energy  

Tidal  power  is  a  type  of  hydropower  in  which  the  energy  from  the  tides  is  converted  into  power  that  is  

used   for  generating  electricity  and  other  useful   forms.  This   is  an   important   form  of   renewable  energy  

because   tides  are  more  predictable  and  provide  a  more  stable   resource  of  energy,  currently  at  a  high  

cost  because  of   limited  choices  of   sites   that  offer  high   tidal   ranges  and   flow  velocities,   tidal  energy   is  

expected   to   be   more   readily   available   as   this   technology   matures   with   time.   There a number of

methods to generate tidal power:  

• Tidal  stream  generator  • Tidal  Barrage  • Dynamic  tidal  power  • Tidal  lagoon  

In  a  tidal  stream  generator,  the  kinetic  energy  of  the  tides  is  used  to  power  a  turbine  which  generates  

electricity.  The  tidal  barrage  uses  the  potential  energy  in  the  difference  of  height  between  high  tides  and  

low   tides.   The   potential   energy   is   stored   by   the   use   of   specialized   dams   and   then   converted   to  

mechanical  energy  which  is  then  turned  into  electrical  power  with  the  help  of  generators.  Dynamic  tidal  

power,  a  relatively  new  method  is  still  untested  and  is  based  upon  the  idea  of  using  interaction  between  

kinetic  and  potential  energies  of  tidal  flows.  A  tidal  lagoon  consists  of  circular  walls  that  are  embedded  

with  turbines  which  capture  the  potential  energy  of  tides  and  convert  it  into  electrical  power.  The  only  

difference  between  this  system  and  tidal  barrages  is  the  absence  of  an  already  existing  ecosystem.    

3.5d)  Innovative  renewable  energy  technologies  

Tidal   energy   can   be   divided   into   two  main   techniques;   generating   energy   from   tidal   stream  and   tidal  

range.  Tidal  stream  uses  fast  flowing  tidal  currents  generally  found  in  constrained  channels.  Tidal  range  

uses   high   and   low   tides   found   in   estuarine   areas.   In   energy   generated   from  marine   biomass,  we   use  

micro-­‐algae  cultures  to  produce  bio  fuels.  

Page 28: ELEC590 Smart Grids

27  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

 

   

Figure  13:  Working  principle  of  Reverse  Electro  Dialysis      

Image  source:  “Reverse  Electrodialysis  technology”,  REAPower,  http://www.reapower.eu/project-­‐scope/reverse-­‐electrodyalisis-­‐technology.html  

 Salinity   gradient   energy   can   be   produced   by   Reverse   Electro   Dialysis   (RED)   and   Pressure   Retarded  

Osmosis   (PRO).  The  processes  can  be  seen   in   figure  13  and  figure  14  respectively.   In  RED,   fresh  water  

and  saline  water  is  kept  separate  using  a  selective  ion  membrane  in  the  presence  of  alternating  cathode  

and  anode  exchange  membranes.    

 

Figure  14:  Working  principle  of  Pressure  Retarded  Osmosis      

Image  source:  http://newenergyandfuel.com/http:/newenergyandfuel/com/2008/12/05/osmotic-­‐energy-­‐potential/  .  

The  chemical  potential  difference  between  the  salt  and  fresh  and  water  then  generates  a  voltage  over  

each  membrane  and  the  system  has  a  total  potential  equal  to  the  sum  of  all  the  potentials.  PRO  has  a  

Page 29: ELEC590 Smart Grids

28  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

similar  working  principle  but  in  this  case  the  difference  between  water  potential  of  fresh  water  and  salt  

water  corresponds  to  a  pressure  of  26  bars  which  is  equivalent  to  a  hydraulic  head  270  meters  high  and  

electricity  is  produced  from  it  [7].  The  Geothermal  energy  is  also  a  form  of  renewable  energy  resource  in  

which  electricity  is  generated  and  stored  in  the  earth.  Geothermal  energy  originates  from  the  formation  

of   the  planet   itself   and   from   the   radioactive   decay  of   the  minerals   and  works   by   the  principle   of   the  

geothermal  gradient.  

Chapter  4:  Feasibility  study  on  renewable  energy  technologies    

Power  Plant   Type  

Nominal  Capacity  

kW  

Overnight  Capital  Cost  

($/kW)  

Fixed  O&M  Cost  

($/kW)  Plant  Life  

Construction  Time  (Years)  

Fuel  Cost  Per  

MWH  Capacity  Factor  

Advanced  PC  Single  Unit*   Coal   650,000   $3,167   $35.97   40   4   2.44   80%  Conventional  

NGCC*  Natural  Gas   540,000   $978   $14.39   30   3   3   55%  

Dual  Unit  Nuclear  

Uranium  

2,236,000  $5,335   $88.75   60   7   3.00   94%  

Biomass  CC*  Biomass  

20,000   $7,894  $338.7

9   30   4   0   80%  

Biomass  BFB*  Biomass  

50,000   $3,860  $100.5

0   30   4   0   80%  Onshore  Wind   Wind   100,000   $2,000   $28.07   20   1   0   30%  Offshore  Wind   Wind   400,000   $4,500   $53.33   20   1   0   40%  Solar  Thermal   Solar   100,000   $2,500   $64.00   25   1   0   25%  

Small  Photovoltaic   Solar   7,000   $2,500   $26.04   25   1   0   15%  

Large  Photovoltaic   Solar   150,000   $1,600   $16.70   25   1   0   17%  Geothermal  –  Dual  Flash  

Geothermal   50,000   $5,578   $84.27   40   4   0   80%  

Geothermal  –  Binary  

Geothermal   50,000   $4,141   $84.27   40   4   0   80%  

Hydro-­‐electric   Hydro   500,000   $3,076   $13.44   80   4   0   50%  Pumped  Storage   Hydro   250,000   $5,595   $13.03   80   4   0   60%  

Table  2:  Characteristics  of  power  plants  [17]  

• Advanced  PC  single  unit  stands  for  Pulverized  coal  power  plant.  

Page 30: ELEC590 Smart Grids

29  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

• NGCC  stands  for  National  Gas  Combined  Cycle  plant  

• Biomass  CC  stands  for  Combined  Cycle  plant  

• BFB  stands  for  Bubbling  Fluidized  Bed  

The  values   recorded  suggest   that  wind  power   stations  normally  have   the  ability   to   supply   the  highest  

nominal  capacity  available  followed  by  hydro  power  stations.  In  terms  of  nominal  capacity,  geothermal  

stations  are  the  least  feasible  option  because  of  the  way  the  technology  operates.  The  overnight  capital  

costs  depict  that  Biomass  power  stations  are  the  most  expensive  to  build  followed  by  geothermal  power  

stations.  The  cheapest  overnight  capital  costs  make  large  photovoltaic  systems  the  most  feasible  option.  

Overnight   capital   costs   are   usually   just   a   factor   of   comparison   since   this   cost   does   not   include   any  

possible   interest   rates   and  money   value.   The   operation   and  maintenance   costs   follow   a   trend   that   is  

very   similar   to   the   overnight   capital   costs.   Biomass   and   geothermal   power   stations   have   the   highest  

operation  and  maintenance  costs  whereas  solar  and  hydro  power  stations  have  the  least.  This  cost  plays  

a  great   role   in   the  decision  making  process  of   selecting  which   renewable  energy   technology  might  be  

the  most  feasible  option.  Hydro  and  geo  thermal  power  stations  are  recorded  to  have  the  highest  plant  

life  whereas  solar  and  wind  power  stations  have  the  lowest  plant  life.  

 The  plant   life  of  a  power   station  normally  does  not  play  a  huge  part   in   the   feasibility  of  a   renewable  

energy   technology   unless   there   is   a   drastic   difference   to   its   counterpart’s   because   usually   the   typical  

energy  costs  and  operation  and  maintenance  costs  are  able  to  offset  this  value.  Photovoltaic  and  wind  

power  plants   are   the   fastest   to   construct  when   compared   to  other   construction   times.   This   is   a  huge  

advantage   because   associated   project   costs   are   kept   to   a   minimum   as   well.   When   compared   to  

conventional  power  plants,  all  renewable  energy  power  plants  provide  the  advantage  of  having  no  fuel  

costs  based  on   the  working  principle  which  becomes   the  main   reason  of  a   shift   from  conventional   to  

renewable   sources  of   energy.   The   capacity   factor   values   suggest   that  biomass   and  geothermal  power  

Page 31: ELEC590 Smart Grids

30  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

stations  are  the  most  feasible  options  because  solar  and  wind  power  stations  provide  a  very  low  value.  

The  reason  or  this  is  the  resource  that  is  being  used.  Wind  and  solar  power  can  vary  greatly  from  initial  

predictions   but   biomass   and   geothermal   resources   remain   rather   constant.   This   is   a   very   important  

factor   in   the   decision  making   process   as   it   shows   the   actual   operating   capacity   of   a   power   plant   as  

opposed  to  its  predicted  or  theoretical  counterpart.  

Chapter  5:  Designing  a  smart  grid  system  

The  main  purpose  of   installing   smart   grid   projects   is   to  manage,  monitor   and   control   the   generation,  

transmission  and  distribution  of  electrical  energy.  These  systems  are  able  to  distribute  power  generation  

from   renewable   sources   of   energy   and   maximize   profits   from   asset   utilization   and   an   efficient  

management   system.   Driving   forces   of   developing   smart   grid   projects   all   over   the   world   include  

reliability   and   improved   power   quality,   asset  management,   renewable   energy,   customer   satisfaction,  

energy  efficiency,  and  emissions  reduction.  Smart  grid  projects  are  best  suited  for  provinces  that  have  

economic   importance   and   have   a   high   electricity   demand   for   example   industrialized   cities   with   a  

customer  base  consisting  of  households,  businesses,  industries,  hotels  and  offices.    

A  large  scale  project  can  be  divided  into  three  stages.  The  first  stage  (approx.  4  years)  usually  consists  of  

planning   and   launching   a   pilot   project.   During   the   phase,   conceptual   designs   are   improved   and  

implemented  followed  by  feasibility  studies  to  create  pilot  projects  for  demonstration.  The  second  stage  

(approx.  4  years)  is  composed  of  large  scale  expansion.  During  this  phase,  renewable  energy  systems  are  

developed  and  upgraded  and  the  old  equipment   is  moved  to  other  areas   for  possible  usage.  The  new  

systems   are   implemented   and   connected   for   smooth   transition   and   operation   of   the   new   smart   grid  

technology.   The   third   stage   (approximately   4   years)   is   power   quality   and   service   efficiency  

Page 32: ELEC590 Smart Grids

31  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

improvement.  During  the  phase,  a  large  scale  expansion  to  cover  all  the  areas  in  the  plan  is  carried  out  

in  order  to  ensure  the  optimization  of  service  efficiency.  

Equipment  required  for  the  completion  of  the  project  [8]:  

• Installation  of  the  Smart  meter   116,308   Sets  

• Installation  of  the  Energy  Storage  System       2   Units  

• Installation  of  the  Mobile  Workforce   1   Unit  

• Installation  of  the  Solar  Rooftop         3   Units  

• Installation  of  the  Substation  Automation   3   Stations  

• Installation  of  the  IT  Integration  System           1   System  

• Installation  of  the  Electric  Vehicle  Charging  Station          

- Quick  charging   3   Units  

- Normal  charging       3   Units  

- For  EV       1   Unit  

• Procurement  of  the  electric  vehicle  3  units          

- EV    Car         2   Units  

- EV  Bus   1   Unit  

Page 33: ELEC590 Smart Grids

32  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

 

Figure  14:  Smart  grid  project  

Image  source:  http://www.fujitsu.com/global/Images/outlook-­‐img01_tcm100-­‐916953.jpg  

5.1  Outcomes  of  integrating  renewable  energy  and  smart  grid  systems  

The   cost   of   meter   reading,   connecting   and   disconnecting   is   reduced.   Since   there   is   electricity’s  

transgression,  reduced  non  technical  Loss,  low  cost  of  current  coil,  loss  of  voltage  coil  and  reduced  non  

technical   loss,   there   is   reduced   loss   of   revenue.   The   investment   requirements   of   additional   electrical  

capacity  are  also  significantly  lower  since  the  overall  system’s  peak  load  is  reduced.  The  power  would  be  

sold  more  readily  and  there  would  be  lower  outage  costs  since  the  reason  and  fault  for  electricity  failure  

can   be   immediately   spotted  with   the   help   of   the   new   system.   This  way   there   is   also   reduced   cost   of  

operation  and  maintenance.    

Page 34: ELEC590 Smart Grids

33  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Because  of  such  projects,  installations  will  get  a  better  insight  into  how  the  energy  storage  and  testing  

strategies  can  be  improved  along  with  providing  opportunities  for  supplying  other  services  such  as  the  

energy  information  services.  Since  the  new  system  is  more  automated  and  easily  accessible,  customers  

will  be  able  to  keep  track  of  their  electricity  usage  by  themselves  in  order  to  help  them  economize  and  

also  enabling  the  state  departments  of  electricity  to  introduce  systems  such  as  prepaid  metering.    

Project  location   Operational  Since   Comments  

Enel,  Italy   2008   378,000   energy   customers   are  

catered  for.  [9]  

Pecan  Street  Inc.  Austin,  Texas   2003   Caters   1   million   consumers   and  

43000  businesses.  [10]  

Xcel  Energy,  Boulder,  Colorado   2008   Installed   23,000   smart   electric  

meters.  [11]  

Hydro  One,  Ontario     2008   Serves   more   than   1.3   million  

customers.  [12]  

Model  city  of  Mannheim   2012   Uses   Broadband   Power   Lines.  

[13]  

Adelaide,  Australia   -­‐   7000   electricity   smart   meters.  

[14]  

Evora,  Portugal   2010   Supports   an   entire   world  

heritage  site.  [15]  

Amsterdam  smart  city   2012  -­‐  2013   10,000   inhabitants   of  

Amsterdam  are  supported.  [16]  

Table  4:  Current  smart  grid  projects  

Page 35: ELEC590 Smart Grids

34  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Chapter  6:  Conclusion  and  discussion  

6.1  Feasibility  of  renewable  energy  technologies  

 

Table  3:  Typical  energy  costs  

Image  source:  http://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf  

Page 36: ELEC590 Smart Grids

35  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Analyzing  the  data  from  both  the  table  2  in  chapter  4  it  can  be  seen  that  renewable  energy  power  plants  

offer   the   advantage   of   having   no   fuel   costs.   The  most   viable   renewable   energy   technologies   include  

solar   and   wind   power   since   they   do   not   require   a   lot   of   capital   and   there   is   enough   research   and  

technology  that  already  exists  to  provide  a  ready  source  of  technology   in  association  with  smart  grids.  

According  to  the  values  recorded  as  per  North  America,  Biomass  and  geothermal  power  plants  have  the  

highest  capacity  factor  which  independently  would  make  them  the  most  feasible  choices.  Photovoltaic  

power  plants  have  the  least  capacity  factor.  On  the  contrary  to  the  capacity  factor  values,  photovoltaic  

and   hydroelectric   power   plants   have   the   lowest   operation   and  maintenance   costs   and   with   biomass  

power  plants  having  the  highest  costs.  Since  biomass,  geothermal  and  hydroelectric  power  plants  have  

complicated  and  large  equipment  involved,  the  construction  time  for  them  is  about  the  same  and  about  

4  times  longer  than  that  of  photovoltaic  and  wind  farms.  The  overnight  capital  costs  are  recorded  to  be  

the   highest   for   geothermal   and   hydroelectric   stations   whereas   they   are   the   lowest   for   photovoltaic  

power  plants.  Drawing  a  conclusion  from  these  feasibility  figures,  wind  and  solar  power  stations  will  be  

the   cheapest   and   fastest   options   as   renewable   energy   resources.   If   enough   capital   was   available,  

geothermal  and  hydro  power  stations  would  be  the  ideal  solutions.      

As   it   can  be   seen   from  table  3  above,  biomass  and  geothermal  power  plants  provide  excellent  power  

capacity   and  hence  would   be   the  most   efficient   ones   if   connected  with   a   smart   grid.   Since   the   initial  

capital   required   for   these  power  plants   is   very  high  and   relatively   less   related   technology   is   available,  

these   resources   can   only   be   used   if   economies   are   strong   enough   and   can   spare   the   capital   to   erect  

biomass   and   geothermal   power   plants.   If   that   is   the   case,   the   power   capacity   produced   would   be  

significantly   higher   and   the   power   plants   used   in   collaboration  with   the   smart   grids  would   last  much  

longer.  This  can  be  proven  by  the  typical  energy  costs   in  table  3.  The  energy  costs  for  geothermal  and  

Page 37: ELEC590 Smart Grids

36  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

biomass  power  are  recorded  to  be  the  least  while  for  solar  and  wind  power  they  are  recorded  to  be  the  

highest.  

6.2  Future  of  integrated  smart  grid  technology  with  renewable  energy    

The  installation  of  smart  grid  systems  is  a  perfect  solution  to  the  world  energy  crisis.  The  new  system  is  

efficient,   automated,   more   reliable   and   most   of   all,   capable   of   integrating   all   renewable   energy  

resources   together.   Since   such   projects   improve   the   prospect   of   these   resources   to   be   used   more  

efficiently,  the  energy  costs  of  each  renewable  resource  are  likely  to  decrease  as  well.  For  example,  the  

solar  energy  costs  are  predicted  to  decrease  to  6-­‐25c/kWh  from  25-­‐125  c/kWh,  biomass  costs  are  likely  

to  decrease  to  4-­‐10  c/kWh  from  5-­‐15  c/kWh.  Similarly,  wind  energy  costs  are  likely  to  come  down  to  3-­‐

10   c/kWh   from   5-­‐13   c/kWh   with   geothermal   energy   costs   reducing   to   2-­‐8   c/kWh   from   2-­‐10   c/kWh.  

These   systems   are   likely   to   become   more   main-­‐stream   in   the   near   future   as   the   investment   trends  

suggest.  In  2010,  211  billion  dollars  was  the  global  investment  in  renewable  energy  which  shows  a  32%  

growth  from  the  investment  in  the  previous  year.  Wind  power  showed  a  growth  of  investment  of  30%,  

solar  power  showed  a  growth  of  52%  and  geothermal  a  growth  of  44%  in  just  one  year  with  Europe  and  

North  America  taking  the  lead.    

6.3  An  ideal  system  integrating  smart  grid  and  renewable  energy  technology  

The  working  principle  of   smart   grid   technology   can  be   seen   in   chapter  2. Now   that   the   technology   is  

receiving  more  attention,  the  number  of  applications  that  can  be  used  on  the  smart  grid  after  the  data  

communications   technology   is   instilled   and   deployed   is   increasing   with   growth   as   fast   as   inventive  

companies   are   capable   of   creating   and   producing   them.   The   advantages   of   using   the   smart   grid  

technology  includes  improved  cyber-­‐security  and  handling  sources  of  electricity  coming  from  wind,  solar  

power,  biomass,  hydro  and  other  forms  of  renewable  energy.  The  companies  and  corporations  that  are  

Page 38: ELEC590 Smart Grids

37  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

making   smart   grid   technology   offering   the   services   mentioned   above   include   long   term   technology  

giants,  established  communication   firms  and  even   fresh  technology   firms.  Due  to   the   incorporation  of  

smart  gird  technology  into  the  electricity  network,  we  have  several  things  to  gain  out  of  it  and  some  of  

them  are  listed  below:  

• Self-­‐recovery  from  events  causing  power  hindrance  

• Enabling  active  participation  by  consumers  in  demand  response  

• Resilience  of  operation  against  physical  and  cyber  attacks  

• Delivering  improved  power  quality  to  meet  the  needs  of  21st  century  

• Introducing  and  accommodating  numerous  generation  and  storage  options  

• Mitigating  the  effects  of  power  fluctuation  of  various  renewable  energy  resources  

• Combining  the  output  and  renewable  and  nonrenewable  resources  of  energy  

• Enabling  new  products,  services,  and  markets  

• Optimizing  assets  and  operating  efficiently  

The  construction  requirements  and  procedure  of  each  type  of  renewable  energy  power  station  can  be  

seen  in  chapter  3.  Solar  power   in  combination  with  all   the  other  forms  of  renewable  energy  that  exist  

today  can  result   in   feasible  energy  systems.   Integration  of  major   renewable  energy  resources   through  

the  use  of  smart  grid  systems  utilizes  the  topography  of  earth  efficiently  and  cuts  transmission  costs  and  

losses   of   electricity.   Such   systems   can   compose   of   PV   systems   in   areas   where   sun   is   abundant,  

hydroelectric  power  in  areas  that  can  support  dams,  wind  power  in  regions  where  the  wind  speed  and  

probability   is   high,   geothermal   and   biomass   power   where   the   resources   are   enough   to   operate   and  

maintain   the   technology.  Chapter  5  describes  and  explains  a  model   system   that   integrates   renewable  

energy   technologies   and   smart   grid   system   together   successfully.   As   it   can   be   seen   from   table   4   in  

Page 39: ELEC590 Smart Grids

38  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

chapter  5,  this  technology  has  already  been   implemented   in  certain  parts  of  the  world.  This  table  also  

highlights  who  leads  the  current  projects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 40: ELEC590 Smart Grids

39  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

Chapter  7:  References  

[1]  Nathan  S.  Lewis  and  Daniel  G.  Nocera,  “Powering  the  planet:  Chemical  challenges  in  solar  energy  utilization”,  PNAS  vol.103  

no.43,  pages  15729-­‐15735,  October  24,  2006.  

[2]  IEA  publications,  “World  energy  outlook  2006”,  Chapter  15  energy  for  cooking  in  developing  countries,  2006.  

[3]  REN21  publications,  “Renewables  2011  Global  Status  Report”,  2011.  

[4]  Prof.  Dr.  Werner  Bergholz,  “Expansions  from  PV  systems  in  2  dimensions”,  Lectures  Energy  Systems,  Jacobs  University  

Bremen,  Fall  2012.  

[5] Akira  Fujishima,  Tata  N.  Rao,  Donald  A.  Tryk,  “Titanium  dioxide  photocatalysis”,  Journal  of  Photochemistry  and  

Photobiology  C:  Photochemistry  Reviews,  Volume  1,  Issue  1,  29  June  2000,  Pages  1-­‐21.  

[6]  Lambion  energy  solutions,  “Energy  from  Biomass”,  http://www.lambion.de/en/biomass-­‐plants/bio-­‐residue-­‐technology.html,  

retrieved  on  June  7th  2014.  

[7]  Statkraft,  “OsmoticPower”,http://www.statkraft.com/energy-­‐sources/osmotic-­‐power/default.aspx,  retrieved  on  28th  Nov  

2013.  

[8] Power  gen-­‐Asia,  “Smart  grid  project”,  http://www.powergenasia.com/conference/smartmeter.html,  retrieved  on  June  8th  

2014

[9]  Enel,  “Smart  cities  in  Italy”,  http://www.enel.com/en-­‐GB/innovation/smart_grids/smart_cities/italy/,  retrieved  on  14th  June  

2014.  

[10]  "Building  for  the  future:  Interview  with  Andres  Carvallo,  CIO  —  Austin  Energy  Utility".  Next  Generation  Power  and  Energy  

(GDS  Publishing  Ltd....)  (244).  Retrieved  2008-­‐11-­‐26.  

[11]  Betsy  Loeff  (March  2008).  "AMI  Anatomy:  Core  Technologies  in  Advanced  Metering".  Ultrimetrics  Newsletter  (Automatic  

Meter  Reading  Association  (Utilimetrics)).  

[12]  Betsy  Loeff,  Demanding  standards:  Hydro  One  aims  to  leverage  AMI  via  interoperability,  PennWell  Corporation  

Page 41: ELEC590 Smart Grids

40  ELEC  590  Smart  Grids  in  Renewable  Energy  Technology    

[13]  "E-­‐Energy  Project  Model  City  Mannheim".  MVV  Energie.  2011.  Retrieved  May  16,  2014.  

[14]  “Solar  city  Adelaide”,  http://www.sgiclearinghouse.org/Oceania?q=node/2571&lb=1,  retrieved  on  14th  June  2014.  

[15]  “Evora  Smart  City”,  http://www.inovcity.pt/pt/Pages/homepage.aspx,  retrieved  on  14th  June  2014.  

[16]  “Amsterdam  Smart  City”,  http://amsterdamsmartcity.com/,  retrieved  on  15th  June  2014.  

[16]  “US  Energy  Information  Administration”,  http://www.eia.gov/,  retrieved  on  16th  June  2014.