33
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 6: PLL Transient Behavior

ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN620: Network TheoryBroadband Circuit Design

Fall 2014

Lecture 6: PLL Transient Behavior

Page 2: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Announcements, Agenda, & References

• HW1 is due today by 5PM

• PLL Tracking Response• Phase Detector Models• PLL Hold Range• PLL Acquisition

• Chapter 5 of Phaselock Techniques, F. Gardner, John Wiley & Sons, 2005.

• Chapter 4 of Phase-Locked Loops for Wireless Communications, D. Stephens, Kluwer, 2002.

2

Page 3: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Linear PLL Model

• If the phase input amplitude is small, then the linear model can be used to predict the transient response

( ) ( )( ) ( ) ( )

NsFKKs

s

NsGs

ssEVCOPDref

e

+=

+=

ΦΦ

=1

1

• Ideally, we want this to be zero• Phase error generally increases with

frequency due to this high-pass response

3

Page 4: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Phase Step Response

( )( ) ( )

step decayingly exponentiaan is ResponseTransient

:ResponseTransient

step phase a with zero be shoulderror Phase

0limlim :Theorem Value Final theUsing

1

2

00

tK

DC

DCss

DCeKss

s

KsssssE

s

−−

→→

∆Φ=

+

∆Φ

=+∆Φ

=

∆Φ

L

First-Order PLL Tracking Response

( ) ( )N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , , ==

+=

+== ω

ω

4

Page 5: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Frequency Offset (Step) Response

( )( ) ( )

( )

step risingly exponentiaan is ResponseTransient

1 :ResponseTransient

offsetfrequency again with loop the tonalproporitioinversely iserror phase The

limlim :Theorem Value Final theUsing

21

2

2

020

tK

DCDC

DCDCss

DCeKKs

ss

KKsssssE

s

−−

→→

−∆

=

+

∆=

+∆

=

ωω

ωωω

L

First-Order PLL Tracking Response

( ) ( )N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , , ==

+=

+== ω

ω

5

Page 6: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Frequency Ramp Response

( )

( )

( )( ) ( )

( )1 :ResponseTransient

finite is ifinfinity togrow error will phase The

limlim :Theorem Value Final theUsing

2

rad/sec of rate aat ith timelinearly w changing isfrequency input that theAssume

231

3

2

030

2

2

−+Λ

=

+

Λ

∞⇒+Λ

=

Λ

Λ=

Λ

−−

→→

tKDC

DCDC

DC

DCss

ref

DCetKKKs

ss

K

KsssssE

s

tt

L

φ

First-Order PLL Tracking Response

( ) ( )N

KKKKs

s

NKKKs

ssEKsF VCOPDdBDC

dBVCOPD

13

311 , , ==

+=

+== ω

ω

6

Page 7: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

( ) ( ) ( )NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

=

++

+

++

+

+=

++

+

=++

+= ,

1

1

2 ,

11

2121

22

2122

2

21

2

τττττ

ττωζω

ω

τττ

• Phase Step Response

( )( )

yourself thiscompute Try to

1

1

:ResponseTransient

step phase a with zero be shoulderror Phase

01

1

limlim :Theorem Value Final theUsing

2121

22

211

2121

22

21

2

00

++

+

++

+

+

∆Φ

=

+

+

+

++

+

+∆Φ=

∆Φ

→→

τττττ

ττ

τττττ

ττ

DCDC

DCDCss

KsKs

ss

s

KsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

7

Page 8: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

( ) ( ) ( )NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

=

++

+

++

+

+=

++

+

=++

+= ,

1

1

2 ,

11

2121

22

2122

2

21

2

τττττ

ττωζω

ω

τττ

• Frequency Offset (Step) Response

( )( )

yourself thiscompute Try to

1

1

:ResponseTransient

offsetfrequency again with loop the tonalproporitioinversely iserror phase The

1

1

limlim :Theorem Value Final theUsing

2121

22

212

1

2121

222

21

2

020

++

+

++

+

+

∆=

+

+

+

++

+

+∆=

→→

τττττ

ττω

ω

τττττ

ττω

ω

DCDC

DCDCDCss

KsKs

ss

s

KKsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

8

Page 9: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

( ) ( ) ( )NKKK

KsKs

ss

ssKK

NsssE

sssF VCOPD

DCDCDCnn

VCOPD

n

=

++

+

++

+

+=

++

+

=++

+= ,

1

1

2 ,

11

2121

22

2122

2

21

2

τττττ

ττωζω

ω

τττ

• Frequency Ramp Response

( )( )

yourself thiscompute Try to

1

1

:ResponseTransient

finite is ifinfinity togrow error will phase The

1

1

limlim :Theorem Value Final theUsing

2121

22

213

1

2121

223

21

2

030

++

+

++

+

+

Λ

∞⇒

+

+

+

++

+

+Λ=

Λ

→→

τττττ

ττ

τττττ

ττ

DCDC

DC

DCDCss

KsKs

ss

s

K

KsKss

ssssE

s

L

Second-Order Type-1 PLL Tracking Response

9

Page 10: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Phase Step Response

( )( )

++

∆Φ

=

++

∆Φ=

∆Φ

→→

RCKKss

ss

RCKKsss

sssEs ss

2

21

2

3

00

:ResponseTransient

step phase a with zero be shoulderror Phase

0limlim :Theorem Value Final theUsing

L

Second-Order Type-2 PLL Tracking Response

( ) ( )N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

=++

=++

=

+

= ,2

,

1

2

2

22

2

ωζω

10

Page 11: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

++

∆Φ−

RCKKss

ss 2

21 :ResponseTransient L

Second-Order Type-2 PLL Phase Step Response

KRCRCn

21

2==

ωζ

11

Page 12: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Frequency Offset (Step) Response

( )( )

++

=

++

∆=

→→

RCKKss

ss

RCKKsss

sssEs ss

2

2

21

22

3

020

:ResponseTransient

PLL 2-Type a with zero togoeserror phase The

0limlim :Theorem Value Final theUsing

ω

ωω

L

Second-Order Type-2 PLL Tracking Response

( ) ( )N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

=++

=++

=

+

= ,2

,

1

2

2

22

2

ωζω

12

Page 13: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL Frequency Step Response

KRCRCn

21

2==

ωζ

++

∆−

RCKKss

ss 2

2

21 :ResponseTransient ω

L

13

Page 14: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

• Frequency Ramp Response

( )( )

++

Λ

Λ=

++

Λ=

Λ

→→

RCKKss

ss

RCKKsss

sssEs n

ss

2

2

31

223

3

030

:ResponseTransient

lag phase dynamic a with rampfrequency acan track PLL 2-order type-secondA

limlim :Theorem Value Final theUsing

L

ω

Second-Order Type-2 PLL Tracking Response

( ) ( )N

RKKK

RCKKss

sss

ssEs

RCsR

sF VCOPD

nn

=++

=++

=

+

= ,2

,

1

2

2

22

2

ωζω

14

Page 15: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL Frequency Ramp Response

KRCRCn

21

2==

ωζ

++

Λ−

RCKKss

ss 2

2

31 :ResponseTransient L

15

Page 16: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Ideal Phase Detector

• An ideal phase detector has the same gain (slope) over a ±2π range

• This allows the linear PLL model to be used for all phase relationships

16

Page 17: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Real Phase Detectors

• Many phase detectors are nonlinear and do not display the same gain for a given phase relationship

• This implies that the PLL cannot be described by the linear model for large input phase deviations

17

Page 18: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

PLL Frequency Step Response:Linear vs Behavioral Model

• Due to non-linearities in loop components (primarily the PD), a real PLL’s response can vary significantly from the linear model

18

Page 19: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

PLL Hold Range (Sinusoidal PD)• A PLL Hold Range is the input frequency range over which the PLL can

maintain static lock

( )rad/sec :Range Hold

todconstraine isfrequency lock the,1 exceedcannot sine Since

sin

iserror phase thedetector, phase sinusoidal aWith

:2-TypeOrder -Second

:1-TypeOrder -Second

:Order-First

isError Phase State-Steady theModelLinear w/

1

DCH

DC

DCe

DC

VCOPDDC

VCOPDDC

DCe

K

K

K

K

NKKK

NKKKK

K

=∆

≤∆

∆=

∞=

=

=

∆=

ω

ω

ωφ

ωφ

• The hold range is finite for a type-1 PLL, and theoretically infinite for a type-2 PLL. However in practice it will be limited by another PLL block, such as the VCO tuning range.

19

Page 20: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

( )

( )

( )

orefref

o

ePD

cVCOo

t

K

tvK

KsF

ωωωω

ω

φ

ω

−=∆

+

==

and is phaseinput

thesuch that , fromdifferent frequency aat is signalinput theAssume

sin :OutputDetector Phase Sinusoidal

:Frequency ousInstantane VCO

1

PD sinusoidal a with PLLorder -first simple a Assuming

1

20

Page 21: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) PDVCOee

out

t

oePDVCOorefoutrefe

out

t

oePDVCOoout

t

ocVCOoout

KKKtKdt

t

dKKt

dKKtdvKtt

=−∆=

−−−=−=

++=++=

∫∫

wheresind

equation aldifferentinonlinear following theyields time w.r.t. thisatingDifferenti

0sin

iserror phase PLL The

0sin0

is phaseoutput PLL The

φωφ

φττφωωφφφ

φττφωφττωφ

21

Page 22: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

First-Order PLL Hold Range (Sinusoidal PD)

( ) ( )( )

( )

K

K

Kdt

t

e

ee

≤∆

∆=

=−∆=

ω

ωφ

τφωφ

todconstraine isfrequency lock the,1 exceedcannot sine Since

sin

0sind

locked, is PLL theIf

( )rad/sec :Range Hold KH <∆ω

22

Page 23: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

First-Order PLL Phaselock Acquisition (Sinusoidal PD)

( )ee

KKφωφ sin

Kby equation aldifferenti PLLorder -first thegNormalizin

−∆

=•

unstable are nulls slope-positive while

points,lock stable are nulls slope-Negative

0 wherenulls 2 are thereplot, plane-phase In the =dt

d eφ

• Every cycle (2π interval) contains a stable null, thus φecannot change by more than one cycle before locking

• There is no cycle slipping in the locking process• A cycle slip occurs when the phase error changes by more

than 2π without locking

Ke

•φ Error,Frequency Normalized

eφ Error, Phase

23

Page 24: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

( )ee

KKφωφ sin−

∆=

0 Here =∆Kω

First-Order PLL Phaselock Acquisition Time (Sinusoidal PD)

( ) ( )( ) ( )

( ) ( )

( ) ( )

( )

tlysignifican increasecan andion approximatlinear thisfrom

deviate willresponse thelarge, is 0 if However,

0

response step phase modellinear theissolution eapproximat the

,sinsuch that small, is 0 and zero is If

0sin

solveformally toneed we time,acquistionphaselock thefind order toIn

e

Ktoute

eee

out

t

oePDVCOe

et

dKKtt

φ

φφ

φφφω

φττφωφ

−−=

≈∆

−−∆= ∫

24

Page 25: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

( )ee

KKφωφ sin−

∆=

1.1 −=∆Kω

• If the frequency offset exceeds the PLL hold range, the phase error will oscillate asymmetrically as the PLL undergoes cycle slips

First-Order PLL Lock Failure (Sinusoidal PD)

First-Order PLL VCO Control Voltage

( )rad/sec :Range Hold KH <∆ω

25

Page 26: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

( )

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( ) ( )0sin1sin0

is phaseoutput PLL The

sin1sin1

as expressed becan domain - timein the responsefilter The

11

PD sinusoidal a with PLL 2-order type-second a Assuming

0 010 1

2

011

2

011

2

11

2

1

2

out

t t

e

t

ePDVCOoout

t

ocVCOoout

t

ePDePD

t

eec

dddKKtdvKtt

dKKdvtvtv

ssssF

φτττφτ

ττφττωφττωφ

ττφτ

τφττττ

τττ

τττ

ττ

+

++=++=

+=+=

+=+

=

∫ ∫∫∫

∫∫

26

Page 27: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

( ) ( )( ) ( )( ) ( )

( ) ( )

+−=

+−−=−=

•••

∫ ∫∫

eeePDVCOe

out

t t

e

t

ePDVCOorefoutrefe

KK

dddKKt

φτ

φφττφ

φτττφτ

ττφττωωφφφ

sin1cos

equation aldifferentinonlinear following theyields time w.r.t. twice thisatingDifferenti

0sin1sin

iserror phase PLL The

11

2

0 010 1

2

27

Page 28: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

( ) ( ) 0sincos2

following theyieldsequation aldifferentinonlinear theinto thisngSubstituti

4 ,

arefactor damping andfrequency natural thePLL, 2-TypeOrder -Second For this

2

1

22

1

2

=++

==

•••

eneene

VCOPDVCOPDn

KKKK

φωφφζωφ

ττζ

τω

• No closed form solution exists, and numerical techniques are required to solve

28

Page 29: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order Type-2 PLL PhaselockAcquisition (Sinusoidal PD)

( ) ( ) 0sincos2 2 =++•••

eneene φωφφζωφ

Acquisition with a phase error

time vs and •

ee φφee φφ vs :Plot Plane Phase

29

Page 30: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order PLL Phase Plane Plots (Sinusoidal PD)

( ) ( ) 0sincos2 2 =++•••

eneene φωφφζωφ

• An unstable singularity is called a Saddle Point

• A trajectory that terminates on a saddle point is called a “Separatrix”

• If a trajectory lies between the 2 separatrices, it will lock without cycle slipping

• If a trajectory lies outside the 2 separatrices, it will cycle slippling one or more times before locking (if at all)

30

Page 31: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order PLL Pull-Out Range and Lock Time (Sinusoidal PD)

( )

( )

( )

( )

(Hz) 41

2

,11 Assuming

(Hz)

bandwidth noise PLL theis Here,

10% than lesserror phasefor

2.44

as edapproximat becan timeacquistion PLL therange,out -pull than theless is stepfrequency a If

1.4 and 0.5between for

18.1

11

2

1

2

0

2

3

2

+=

+=+

=

=

∆+=+=

+≈∆

∫∞

ζζω

τττ

ττ

ω

ζ

ζωω

nL

L

L

Lnfreqphaseacq

nPO

B

ssssF

dffHB

B

Bfttt

• The Pull-Out Range is the maximum frequency step that can occur before the loop locks without cycle slipping

31

Page 32: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Second-Order PLL Locking Outside of the Pull-Out Range (Sinusoidal PD)

• Multiple cycle slips are observed before the loop locks

32

Page 33: ECEN620: Network Theory Broadband Circuit Design Fall 2014...• PLL Tracking Response • Phase Detector Models • PLL Hold Range • PLL Acquisition • Chapter 5 of PhaselockTechniques,F

Next Time

• Phase Detector Circuits

33