65
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN620: Network Theory Broadband Circuit Design Fall 2019 Lecture 7: Voltage-Controlled Oscillators

ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN620: Network TheoryBroadband Circuit Design

Fall 2019

Lecture 7: Voltage-Controlled Oscillators

Page 2: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Announcements

2

• Exam 1 Tuesday Oct 15• One double-sided 8.5x11 notes page allowed• Bring your calculator• Covers through Lecture 7

Page 3: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Agenda

• VCO Fundamentals• VCO Examples• VCO Phase Noise

• Phase Noise Definition and Impact• Ideal Oscillator Phase Noise• Leeson Model• Hajimiri Model• Phasor-Based Phase Noise Analysis

• VCO Jitter

3

Page 4: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

4

Page 5: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Voltage-Controlled Oscillator

• Time-domain phase relationship

5

VDDVDD/20

0 1KVCO

tvKtt cVCOoutout 00

dtdt tvKtt cVCOoutout Laplace Domain Model

out(t)

Page 6: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Voltage-Controlled Oscillators (VCO)

• Ring Oscillator• Easy to integrate• Wide tuning range (5x)• Higher phase noise

• LC Oscillator• Large area• Narrow tuning range (20-30%)• Lower phase noise

6

Page 7: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Barkhausen’s Oscillation Criteria

• Sustained oscillation occurs if

• 2 conditions:• Gain = 1 at oscillation frequency 0

• Total phase shift around loop is n360 at oscillation frequency 0

7

jHjH

1Closed-loop transfer function:

1jH

n

[Sanchez]

Page 8: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Agenda

• VCO Fundamentals• VCO Examples• VCO Phase Noise

• Phase Noise Definition and Impact• Ideal Oscillator Phase Noise• Leeson Model• Hajimiri Model• Phasor-Based Phase Noise Analysis

• VCO Jitter

8

Page 9: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Ring Oscillator Example

9

[Sanchez]

Page 10: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Ring Oscillator Example

10

• 4-stage oscillator – work this one out yourself• A0 = sqrt(2)• Phase shift = 45°

• Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage, but it will oscillate at a lower frequency

Page 11: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC Oscillator Example

221

22211

221

22

12

11

1

1

1

CRCL

LRjsZ

sCRsCLsLRsZ

S

Seq

S

Seq

LC tank impedance

• Oscillation phase shift condition satisfied at the frequency when the LC (and R) tank load displays a purely real impedance, i.e. 0 phase shift

Page 12: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC Oscillator Example

• Transforming the series loss resistor of the inductor to an equivalent parallel resistance

12

SPP

SP R

LRCCLRLL

221

1221

2

1 ,,1

PPCL1

1

RP

[Razavi]

Page 13: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC Oscillator Example

13

12 PmRg

PPCL1

1

Loop Gain

• Phase condition satisfied at

• Gain condition satisfied when

[Razavi]

• Can also view this circuit as a parallel combination of a tank with loss resistance 2RP and negative resistance of 2/gm

• Oscillation is satisfied when

Pm

Rg

1

Page 14: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

• Noise in the system will initiate oscillation, with the signals eventually exhibiting rail-to-rail swings

• While the small-signal transistor parameters (gm, go, Cg, etc…) can be used to predict the initial oscillations during small-signal start-up, these parameters can vary dramatically during large-signal operation

CMOS Inverter Ring Oscillator

14

[Razavi]

Page 15: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

• For this large-signal oscillator, the frequency is set by the stage delay, TD

• TD is a function of the nonlinear current drive and capacitances of each stage

• As an “edge” has to propagate twice around the loop

CMOS Inverter Ring Oscillator

15

[Razavi]

number stage oscillator theis N where2

1or ,6

1

DDosc NTTf

Page 16: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Supply-Tuned Ring Oscillator

16

thc

stageDVCO VV

nCnTT

22

stagec

VCOVCO nCV

fK2

[Sidiropoulos VLSI 2000]

Page 17: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Current-Starved Ring Oscillator

17

[Sanchez]

Page 18: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Capacitive-Tuned Ring Oscillator

18

Page 19: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Symmetric Load Ring Oscillator

19

[Maneatis JSSC 1996 & 2003]

• Symmetric load provides frequency tuning at excellent supply noise rejection

• See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk)

2ID

Page 20: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Pseudo-Differential Ring Oscillators

20

[Frans JSSC 2015]

• Often supply-tuned with a regulator• Band select is possible with adjustable capacitors and main path

inverter strength• Due to even stages, there is a potential for the oscillator to be stuck in

a non-differential mode• Adjustable ratio between cross-coupled and main inverters, initially

large, ensures startup in differential mode. This can be reduced during normal operation.

Page 21: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC Oscillator

• A variable capacitor (varactor) is often used to adjust oscillation frequency

• Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range

21

fixedtunePPPosc CCLCL

11

Page 22: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Varactors

• pn junction varactor• Avoid forward bias region to prevent oscillator nonlinearity

22

• MOS varactor• Accumulation-mode devices have better Q than inversion-mode

[Perrott]

n-well[Razavi]

Page 23: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Agenda

• VCO Fundamentals• VCO Examples• VCO Phase Noise

• Phase Noise Definition and Impact• Ideal Oscillator Phase Noise• Leeson Model• Hajimiri Model• Phasor-Based Phase Noise Analysis

• VCO Jitter

23

Page 24: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Oscillator Noise

24

Jitter

[McNeill]

Page 25: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phase Noise Definition

• An ideal oscillator has an impulse shape in the frequency domain• A real oscillator has phase noise “skirts” centered at the carrier frequency• Phase noise is quantified as the normalized noise power in a 1Hz

bandwidth at a frequency offset from the carrier

25

dBc/Hz P

1Hz ,Plog10carrier

sideband

oL

Page 26: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phase Noise Impact in RF Communication

• At the RX, a large interferer can degrade the SNR of the wanted signal due to “reciprocal mixing” caused by the LO phase noise

• Having large phase noise at the TX can degrade the performance of a nearby RX

26

RX Reciprocal Mixing Strong Noisy TX Interfering with RX

Page 27: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Jitter Impact in HS Links

27

• RX sample clock jitter reduces the timing margin of the system for a given bit-error-rate

• TX jitter also reduces timing margin, and can be amplified by low-pass channels

Page 28: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Ideal Oscillator Phase Noise

28

2tank

22

2

is voltagenoise squared-mean theofdensity spectral The

4

noisethermalintroducewillresistance tank The

Zfi

fv

RkT

fi

nn

n

Page 29: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Tank Impedance Near Resonance

29

2

2tank

tank

22tank

2tank

2

2

1 Tank

12221

resonance toclose sfrequencieConsider

1 :Frequency Resonance

11

QRZ

QRjZ

QR

CCRQ

Cj

LCLj

LCLCLCLjZ

LC

LCLjLj

CjZ

o

o

oo

o

oo

o

oo

o

o

o

Page 30: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Ideal Oscillator Phase Noise

30

carrier thefromaway slope 20dB/dec- adisplay willnoise thermal todue noise Phase

dBc/Hz 2

2log102

421

log1021

log10

phase. and amplitudebetween 21evenly

split ispower noise thisTherefore, equal. arepower noise-phase and amplitudem,equilibriuin that,states 2000] JSSC [Lee Theoremion Equipartit The

24

24

22

22

2

222

tank

22

QPkT

Qv

kTR

vfv

L

QkTR

QR

RkTZ

fi

fv

o

sig

o

sigsig

n

oonn

• Phase noise improves as both the carrier power and Q increase

Page 31: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Other Phase Noise Sources

• Tank thermal noise is only one piece of the phase noise puzzle

• Oscillator transistors introduce their own thermal noise and also flicker (1/f) noise

31

[Perrott]

Page 32: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Leeson Phase Noise Model

32

• Leeson’s model modifies the previously derived expression to account for the high frequency noise floor and 1/f noise upconversion

• A empirical fitting parameter F is introduced to account for increased thermal noise

• Model predicts that the (1/)3

region boundary is equal to the 1/f corner of device noise and the oscillator noise flattens at half the resonator bandwidth

dBc/Hz 12

12log1031

2

fo

sig QPFkTL

Noise Floor

1/f Noise

Page 33: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

33 ELEN620-IC Design of Broadband Communication circuit

A 3.5GHz LC tank VCO Phase Noise

MeasurePhasenoise

-30dB/decade-20dB/decade

-105dBc

Page 34: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

34 ELEN620-IC Design of Broadband Communication circuit

RBW=10K

PN=-85dBm-(-20dBm)-10log10(10e3)

=-105dBc

VCO Output Spectrum Example

-85dBm

-20dBm

dBc---in dB with respect to carrier

Make sure to account for the spectrum analyzer resolution bandwidth

Page 35: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Leeson Model Issues

35

• The empirical fitting parameter F is not known in advance and can vary with different process technologies and oscillator topologies

• The actual transition frequencies predicted by the Leeson model does not always match measured data

Page 36: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

YCLOAMSC-TAMU 36

Harjimiri’s Model (T. H. Lee) Injection at Peak (amplitude noise only)

Injection at Zero Crossing (maximum phase noise)

Page 37: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

37 ELEN620-IC Design of Broadband Communication circuit

A time-Varying Phase Noise model: Hajimiri-Lee model

Impulse applied to the tank to measure its sensitivity function

The impulse response for the phase variation can be represented as

fin

2

is the impulse sensitivity function ISFqmax, the maximum charge displacement across the capacitor, is a normalizing factor

Page 38: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Impulse Sensitivity Function (ISF) Model

• The phase variation due to injected noise can be modeled as

38

• The function () is a time-varying proportionality factor called the “impulse sensitivity function”• Encodes information about the sensitivity of the oscillator

to an impulse injected at phase (0 to 2)• Phase shift is assumed linear to charge injection• ISF has the same oscillation period as the oscillator

• The phase impulse response can be written as

Page 39: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

39 ELEN620-IC Design of Broadband Communication circuit

How to obtain the Impulse sensitivity function for a LC oscillator

() can be obtained using CadenceConsider the effect on phase noise of each noise source

Page 40: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

YCLOAMSC-TAMU 40

Typical ISF Example The ISF can be estimated analytically or calculated from simulation. The ISF reaches peak during zero crossing and zero at peak for typical LC and ring oscillators.

Page 41: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phase Noise Computation

41

diq

dith

tuq

th

t

o

o

max

max

1,t

function impulse noise phase th thecurrent wi noisearbitrary any

theof integral on)(convolutiion superposit by the computed becan then noise phase The

,

functionimpulsenoisephase obtain thetousedisfunction y sensitivit impulse The

Page 42: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

ISF Decomposition w/ Fourier Series

42

ts.coefficien ISF the toaccording scaled andbandsfrequency different fromdown mixed is noisecurrent they,Essentiall d.deteremine are tscoefficien

Fourier ISF theonce computed be tosource noisearbitrary an from phase excess theallows This

cos2

1t

by computed becan then noise phase The.irrelevant is phase relative their and ed,uncorrelat are components noise that theassumed isit as

ignored, typicallyis Note, harmonic. ISFth theof phase theis and real are tscoefficien thewhere

cos2

seriesFourier aasexpressedbemay it periodic,isISFthebecauseandinsight,further gain order toIn

1

0

max

1

0

no

t

n

t

nnn

nnono

dnicdicq

nc

ncc

Page 43: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phase Noise Frequency Conversion

43

.1 toalproportion ispower that thisNote

4log10

powerth carrier wi about the symmetric sidebands ightedequally we twobe will there,cos

waveformsinusoidal a Assuming .at sidebands equal twoshow willspectrumfrequency resulting The

2sin

other than

termsall fromon contributi negligible a be will thereintegral,n computatio noise phase theperformingWhen

cos

frequencyn oscillatio theof multipleinteger

an near isfrequency osecurrent whnoisesinusoidalahave we wherecase simple aconsider First

2

2

max

max

ω

ωqcIP

tttv

ωqωtcItφ

mn

tmIti

m

mmSBC

oout

mm

om

low-frequency noise noise near o

noise near 2o

noise near 3o

Page 44: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phase Noise Due to White & 1/f Sources

44

.1 and by weightedand teddownconver getscarrier theof multiplesinteger higher near noise White

carrier. near the stays and 1 and by weightediscarrier near the noise White

carrier. near the noise 1 becomes noise 1 so ,t coefficienby weightedd,upconverte gets dcnear Noise

.1by weightedare and itself

carrier near the fold allfrequency carrier theof multiplesinteger near components noise Here

4log10

in resultssourcenoisewhiteaofcasegeneral the toanalysis previous theExtending

2

21

30

2

22max

0

22

fc

fc

ffc

ω

ωq

cfi

P

m

mm

n

SBC

Page 45: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

How to Minimize Phase Noise?

45

s.frequencie allat noise phase thereduce will reducing Thus,

2log10

as expressed becan region 1 in the spectrum The

21

theoremsParseval' Usingminimized. be should tscoefficien ISF thenoise, phase minimize order toIn

22max

22

2

2

0

22

0

2

rms

rmsn

rmsm

m

n

ωqfi

L

f

dxxc

c

Page 46: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

1/f Corner Frequency

46

noise. 1in reductions dramaticfor potential theis e then thersymmetry, time-fall and -risethrough

minimized is If corner. noisecuit device/cir 1 thelower thangenerally is This

4

isfrequency corner 1 theThus,

8log10

slide previous theFrom

frequencycorner 1 theis where

content 1 includes which noisecurrent Consider

2

12

20

11

3

122

max

20

2

1

1221,

3

f

f

c

f

ωq

cfi

L

f

ii

f

dc

rms

dcf

rmsff

f

n

f

fnfn

Page 47: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Cyclostationary Noise Treatment

47

xxx

xi

ttiti

n

nn

NMF

0

00

ISF effectivean formulatecan we this, Usingunity. of peak value aith function w unitless periodic a is and source, noise

onarycyclostati theof that toequal is peak value whosesource noise whitestationary a is Here

function. periodic a and noise whitestationary ofproduct theasit gby treatin thishandleeasily can model LTV The

cycle.oscillatoran over ly dramaticalchangecan noise,thusandcurrent,drain Transistor

Page 48: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Key Oscillator Design Points from Hajimiri Model

48

• As the LTI model predicts, oscillator signal power and Q should be maximized

• Ideally, the energy returned to the tank should be delivered all at once when the ISF is minimum

• Oscillators with symmetry properties that have small dc will provide minimum 1/f noise upconversion

Page 49: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Reducing LC-VCO Noise in FinFET Processes

49

• NMOS only current-limited LC-VCO avoids the high flicker noise present in PMOS transistors

• Stacked devices further reduced flicker noise

• Regulator noise reduced with RC filtering

• Low current multiplication factor to minimize tail current noise

• MOM cap switches designed to improve tank Q [Turker ISSCC 2018]

Page 50: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC-VCO Capacitor Switch

50

• When sel=0, high impedance stacked transistors pull nodes A & B higher to minimize Q degradation due to M1 leakage [Turker ISSCC 2018]

Sel=1

Sel=0

Page 51: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Filtering LC-VCO Regulator Flicker Noise

51

• RC filter at reference input• Regulator designed with transistor stacking, double gate

contacts, and large width & lengths• Programmable sub-threshold FET resistor to realize kHz

range filter

[Turker ISSCC 2018]

(A & B)

Carrier frequency = 16GHzA B C

(C) Further improves noise by ~3.5dB

Sub-threshold FET R~= 1M-ohm to 50M-ohm

Page 52: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Low-Noise Charge Pump

52

• Low mirroring ratio between input diode-connected transistor and charge pump current source

• Large replica bias transistors to set PMOS current• Extra filtering in PMOS bias• Stacked transistors utilized

[Turker ISSCC 2018]

Page 53: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

CMOS Circuit Noise Reduction

53

• Important to maintain fast edge rates (<10ps) in CMOS circuits to reduce flicker noise impact

[Turker ISSCC 2018]

Page 54: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phasor-Based Phase Noise Analysis

54

• Models noise at 2 sideband frequencies with modulation terms

• The 1 and 2 terms sum co-linear with the carrier phasor and produce amplitude modulation (AM)

• The 1 and 2 terms sum orthogonal with the carrier phasor and produce phase modulation (PM)

Page 55: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Phasor-Based LC Oscillator Analysis

55

• This phasor-based approach can be used to find closed-form expressions for LC oscillator phase noise that provide design insight

• In particular, an accurate expression for the Leesonmodel F parameter is obtained

dBc/Hz 2

2log102

QP

FkTL o

sig

Page 56: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

LC Oscillator F Parameter

56

• 1st Term = Tank Resistance Noise• 2nd Term = Cross-Coupled Pair Noise• 3rd Term = Tail Current Source Noise

dBc/Hz 2

2log102

QP

FkTL o

sig

• The above expression gives us insight on how to optimize the oscillator to reduce phase noise

• The tail current source is often a significant contributor to total noise

Page 57: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Tail Current Noise

57

• The switching differential pair can be modeled as a mixer for current source noise

• Other than low-frequency noise, only the second-order harmonic is converted close to the carrier• The other frequencies are filtered by the LC tank

• Introducing a tail-current filter to attenuate this second-order harmonic can improve phase noise performance

[Hegazi JSSC 2001] Output PSD

Page 58: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Tail Current Filter

58

• Large capacitor in parallel with current source shorts high-frequency noise to ground

• Series inductor resonating with differential transistors’ source capacitors at 20 provides a high impedance and reduces tank loading

• Provides near 7dB phase noise improvement

[Hegazi JSSC 2001]

Tail Current Top Bias

Page 59: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Agenda

• VCO Fundamentals• VCO Examples• VCO Phase Noise

• Phase Noise Definition and Impact• Ideal Oscillator Phase Noise• Leeson Model• Hajimiri Model• Phasor-Based Phase Noise Analysis

• VCO Jitter

59

Page 60: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Open-Loop VCO Jitter

• Measure distribution of clock threshold crossings• Plot as a function of delay T

60

[McNeill]

T

Page 61: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Open-Loop VCO Jitter

• Jitter is proportional to sqrt(T)• is VCO time domain figure of merit

61

TTOLT

[McNeill]

Page 62: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

VCO in Closed-Loop PLL Jitter

62

• PLL limits for delays longer than loop bandwidth L

LL f 21

[McNeill]

Page 63: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Ref Clk-Referenced vs Self-Referenced

63

[McNeill]

Ref Clock for Frequency Synthesis PLL

• Generally, we care about the jitter w.r.t. the ref. clock (x)• However, may be easier to measure w.r.t. delayed version of output clk

• Due to noise on both edges, this will be increased by a sqrt(2) factor relative to the reference clock-referred jitter

CDR Example

Page 64: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Converting Phase Noise to Jitter

64

• Actual integration range depends on application bandwidth• fmin set by asumed CDR tracking bandwidth• fmax set by Nyquist frequency (f0/2)

• Most exact approach

2 22

0

4 sinToS f f T df

• RMS jitter for T accumulation

• As T goes to ∞ 22 2

0

2 20To oR S f df

[Mansuri]

02 22

20

2

2

where is the system jitter transfer function

f

T syso

sys

S f H f df

H f

Page 65: ECEN620: Network Theory Broadband Circuit Design Fall 2019ece.tamu.edu/~spalermo/ecen620/lecture07_ee620_vcos.pdf• VCO Jitter 23. Oscillator Noise 24 Jitter [McNeill] Phase Noise

Next Time

• Divider Circuits

65