Click here to load reader
View
4
Download
0
Embed Size (px)
Sam Palermo Analog & Mixed-Signal Center
Texas A&M University
Lecture 10: Simple OTA
ECEN474/704: (Analog) VLSI Circuit Design Fall 2018
Announcements
• HW2 is due today
• No class on Thursday Mar 8
2
Announcements & Agenda
• Simple OTA Parameters • OTA w/ Cascode Load & Tail Current
Source
• References • Razavi Chapters 4, 6, 9.8-9.11 • Sedra/Smith Section 9.5.5
3
OpAmps and OTAs
• High voltage gain • High input impedance • Voltage source output
(low impedance) 4
OpAmp OTA
• High “voltage” gain • High input impedance • Current source output
(high impedance)
Operational Transconductance Amplifier
• Important Parameters • Differential Gain • Gain-Bandwidth Product • Common-Mode Input Range • Common-Mode Gain • Common-Mode Rejection
Ratio (CMRR) • Power-Supply Rejection Ratio
(PSRR) • Slew Rate
5
M1 M2Vi+ Vi-
VDD
VSS
Rbias
Itail
M5 M6
M3 M4
CL
Vo
OTA Differential Gain
6
M1 M2Vi+ Vi-
VDD
VSS
Rbias
Itail
M5 M6
M3 M4
CL
Vo
idoutmo
mmmm
id outm
m
mid outmo
id i
id i
vrgv gggg
vrg g gvrgv
vVvV
1
6521
6 5
1 2
and design By 22
2 and
2 Let
26
1 1
oo
m outm
id
o DM gg
grg v vA
TAMU-ELEN-474 2009 Jose Silva-Martinez
- 7 -
Frequency Response
id1
IB
M1 M1
v1
id2
iout id1
0.5gmvd RXCX
Vx
gdndbndgpdbpgspX
mpmpPX
d XX
Xm X
CCCfactormillerCCC
ggrrR
V CSR RgV
12
/1/1|||| 1
5.0
001
Magnitude
gmRX
1/RXCX
VX
Consider node VX
v2
2 dv
2 dv
TAMU-ELEN-474 2009 Jose Silva-Martinez
- 8 -
Low Frequency Response
0.5gmvd 1/gmp’CX
Vx
gmR0
gmpvx
CO
Vo
-0.5gmvd
Ro
Vout
OPONO RRR
id1
MP
id1
IB
M1 M1
v1
id2
iout VX
MP’
odmo
mp x
ompx d
mo d
mo
Rvgv
g R
RgRvgRvgv
1 222
dv 2 dv
TAMU-ELEN-474 2009 Jose Silva-Martinez
- 9 -
Frequency Response
0.5gmvd 1/gmp’CX
Vx
gmR0
1/R0C0
gmpvx
CO
Vo
-0.5gmvd
Ro
Vout
AV1
AV2
OPONO RRR
id1
MP
id1
IB
M1 M1
v1
id2
iout VX
MP’
mp
x
mp
x
oo
d omo
mp
xoo
d omo
oo
omp
mp
x
mpd m
oo
od mo
g Cs
g Cs
CsR vRgv
g CsCsR
vRgv
CsR Rg
g Cs
gvg CsR
Rvgv
1
2
1 1
2
1
11 1
1 2
11
1
212 2 dv
2 dv
OTA Gain-Bandwidth Product (GBW)
10
M
m pm
L
oo po
pmpo
oo
m DM
C g
C gg
gg gA
526
26
1
,
node mirror"" theat and nodeoutput theat
poles 2 have willcircuit The
L
m
L
oo
oo
m poDMdBDM C
g C
gg gg
gAAGBW 126 26
1 3
dominates and spaced widely are poles the Assuming po
OTA Common-Mode Input Range
11
• Common-mode input range set by transistor saturation conditions • Low-end set by tail current source
saturation 1
14
14 2
Tn
oxn
tail
oxn
tail SSGSDSATSSicm V
L WC
I
L WC
IVVVVV
• High-end set by differential pair saturation
15
5
151 TnTp
oxp
tail DDTGSDDTocmicm VV
L WC
IVVVVVVV
15
5
1
14
2 TnTp
oxp
tail DDicmTn
oxn
tail
oxn
tail SS VV
L WC
IVVV
L WC
I
L WC
IV
OTA Common-Mode Gain
12
• Ideally, common-mode perturbations are suppressed by the differential amplifier, i.e. Acm = 0
• Finite common-mode gain exists due to amplifier asymmetries and finite tail current source impedance
• Note transistor numbers are different from previous slides, as I borrow figures from Sedra/Smith text
[Sedra]
OTA Common-Mode Gain
13
[Sedra]
• Modeling the input transistors as a transconductance current source with a parallel output resistance
icm
m oSS
oSS icms v
g rR
rR vv
1 1
1
12
2
SSicm
o mcm
SS
icm o
Rv iG
R vi
2 1
2
OTA Common-Mode Gain
14
[Sedra]
2222
1111
22
22
2 1
oSSmoSSo
oSSmoSSo
SSicm
o mcm
rRgrRR
rRgrRR
Rv iG
3 3144
3 313
1
1
m ooicmmcmm
m ooicmmcmg
g rRvGgi
g rRvGv
OTA Common-Mode Gain
15
KCL at vo
Since Ro2>>ro4 and Ro1>>ro3 and gm3=gm4
[Sedra]
3 3144
1
m ooicmmcmm g
rRvGgi
3 314
24
22 4
11 2
0
m oom
SS
oo icmo
o
o
o
o icmmcm
g rRg
R Rr
vv
r v
R vivG
SSm CM
omSS
o
icm
o CM
Rg A
rgR r
v vA
3
33
4
2 1
1 1
2
OTA Common-Mode Gain & Rejection Ration (CMRR)
16
• To improve (lower) common-mode gain, we need a high tail current impedance
cm
dm
A ACMRR 10log20
462 1
omCM
o cm rgv
vA
• An amplifier figure-of-merit is the common-mode rejection ratio (CMRR)
46 26
1 1010 2log20log20 om
oo
m
cm
dm rg gg
g A ACMRR
OTA Power-Supply Rejection Ration (PSRR)
17
SSo
dm 10
DDo
dm 10
vv Alog20PSRR
vv A
log20PSRR
42
1
42
1
1