16
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN474: (Analog) VLSI Circuit Design Fall 2010

Lecture 5: MOS Transistor Modeling

Page 2: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Announcements

• Lab 1 this week

• Reading for next time• Johns/Martin 2.1, 2.3-2.5

2

Page 3: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Agenda

• Threshold voltage dependencies on W,L• Temperature dependencies• Process corners• Technology characterization for design

• Adapted from Prof. B. Murmann (Stanford) notes

3

Page 4: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

VT Dependency on W

• Gate-controlled depletion region extends in part outside the gate width

• VT monotonically increases with decreasing channel width

4

WW

CWqNV

VVV

T

ox

TAT

TTwideT

=∆

∆+=

L=0.6u

L=4u

W

[Pierret]

Page 5: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

VT Dependency on L

• Source and drain assist in forming the depletion region under the gate

• With simple model, VTmonotonically decreases with decreasing channel length

5

−+−=∆

∆+=

121j

Tj

ox

TAT

TTlongT

rW

Lr

CWqNV

VVV

W=50u

W=1.5u

[Pierret]

Page 6: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Temperature Dependence

• Transistor mobility and threshold voltage are dependent on temperature• Mobility ∝T-3/2 due to increased scattering• Threshold voltage decreases with

temperature due to reduced bandgap energy

6

23

0300

=

Tµµ

W=2.4u, L=0.6u

ID vs Temperature

W=2.4u, L=0.6u

VT vs Temperature

11081002.716.1

24

−=−

TTEg

-23% -3%

Page 7: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Process Corners

• Substantial process variations can exist from wafer to wafer and lot to lot

• Device characteristics are guaranteed to lie in a performance envelope

• To guarantee circuit yield, designers simulate over the “corners” of this envelope

• Example: Slow Corner• Thicker oxide (high VT, low Cox), low µ, high R�

7

FF

FS

SF

SS

TT

[Razavi]

Page 8: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Inverter Delay Variation with Process & Temperature

8

0.13µm CMOS

• CMOS inverter delay varies close to ±40% over process and temperature

[Woo ISSCC 2009]

Page 9: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

How to Design with Modern Sub-Micron (Nanometer) Transistors?• Hand calculations with square-law model can deviate

significantly from actual device performance• However, advanced model equations are too tedious for design

• Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs• “Spice Monkey” approach

• How can we accurately design when hand analysis models are way off?

• Employ a design methodology which leverages characterization data from BSIM simulations

9

Page 10: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

The Problem

10

[Murmann]

Page 11: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

The Solution

11

[Murmann]

Page 12: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Device Figures of Merit

• Transconductance efficiency• Want maximum gm for minimum current

• Transit frequency, fT• Want maximum gm for minimum Cgg

• Cgg = total gate cap = Cgs + Cgd +Cgb

• Intrinsic gain• Want maximum gm/gds

12

D

m

Ig

gg

mT C

g=ω

ds

m

gg

TGSOV

OV

VVVV

−=

=2

only assuming gsgg

OV

CCLV

=

≅ 223 µ

OVVλ2

Square-Law

Page 13: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Technology Characterization for Design

• Generate data for the following over a reasonable range of gm/ID and channel lengths• Transit frequency (fT)• Intrinsic gain (gm/gds)• Current density (ID/W)

• Also useful is extrinsic capacitor ratios• Cgd/Cgg and Cdd/Cgg

• Parameters are (to first order) independent of transistor width, which enables “normalized design”

• Do design hand calculations using the generated technology data

• Still need to understand how the circuit operates for an efficient design!!!

13

Page 14: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Our 0.6um Technology Simulation Data

14

NMOS W=2.4um

Page 15: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Our 0.6um Technology Simulation Data

15

NMOS W=2.4um

Page 16: ECEN474: (Analog) VLSI Circuit Design Fall 2010spalermo/ecen474/lecture05_ee474_mos_mode… · ECEN474: (Analog) VLSI Circuit Design Fall 2010 Lecture 5: MOS Transistor Modeling

Next Time

• Layout Techniques

16