BTL kĩ thuật đồ họa slide.pptx

  • View
    241

  • Download
    1

Embed Size (px)

Text of BTL kĩ thuật đồ họa slide.pptx

B TI NGUYN V MI TRNG TRNG I HC TI NGUYN V MI TRNG H NI *****************************

B TI NGUYN V MI TRNGTRNG I HC TI NGUYN V MI TRNG H NI*****************************

BO CO BI TP LNK THUT HA Ti: Cc Php Bin i Tnh Tin Trong Khng Gian Hai ChiuLp: C12CNTH v Tn: Nguyn nh HiM SV: CD01200731

Li Cm nTrn thc t khng c s thnh cng no m khng gn lin vi nhng s h tr, s gip d t hay nhiu, d l trc tip hay gin tip ca ngi khc. Trong sut thi gian t khi bt u hc tp ging ng i Hc n nay, chng em nhn c rt nhiu s quan tm, gip ca Thy C, gia nh v bn b.Vi lng bit n su sc nht, chng em xin gi n Thy C Khoa Cng Ngh Thng Tin Trng i Hc Ti Nguyn v Mi Trng H Ni cng vi tri thc v tm huyt ca mnh truyn t vn kin thc qu bu cho chng em trong sut thi gian hc tp ti trng. V c bit, trong k ny, Khoa t chc cho chng em c tip cn vi mn hc rt hu ch i vi sinh vin ngnh Cng Ngh Thng Tin. l mn: K Thut Ha.Em xin chn thnh cm n c Ph Th Hi Yn tn tm hng dn chng em qua tng bui hc trn lp cng nh nhng bui ni chuyn, tho lun v mn hc. Trong thi gian c hc tp v thc hnh di s hng dn ca c, chng em khng nhng thu c rt nhiu kin thc b ch, m cn c truyn s say m v thch th i vi b mn K Thut HaMc d rt c gng hon thin bi tp vi tt c s n lc, tuy nhin, do tm hiu v xy dng bi tp trong thi gian c hn, v kin thc cn hn ch, nhiu b ng, nn bi tp ln ny chc chn s khng th trnh khi nhng thiu st. Em rt mong nhn c s quan tm, thng cm v nhng ng gp qu bu ca cc thy c v cc bn bi tp ny ngy cng hon thin hn.Sau cng, Em xin knh chc cc thy c trong Khoa Cng Ngh Thng Tin v c Ph Th Hi Yn di do sc khe, nim tin tip tc thc hin s mnh cao p ca mnh l truyn t kin thc cho th h mai sau!!!

3Cc i tng phng trong ho 2 chiu m t tp cc im phng. im trong ho 2 chiu biu din thng qua to , vit di dng ma trn gi l vect v tr.C 2 dng biu din:Mt hng v 2 ct:

Hai hng v 1 ct:

Gi s ta c im P = [ x y ] trong mt phng vi [x y] l vect v tr ca P, k hiu l [P]. Gi ma trn T l ma trn bin i s c dng:

y P P

Hnh 1. Php bin i v tr x

i xng qua y P Pyi xng qua x yxPi xng qua trc ta PPyxP

C P khng thay i gi tr to x, cn y thay i ph thuc vo c b v xXt b = 0

Ch : im gc to P[0 0] bt bin vi mi php bin i

Php bin dng theo trc yP

P y=bx+ybxPhp bin dng theo trc xP Pcy

C >0 ngc chiu kim ng h

Php quay trn 2D y

y

y P

P x x x xPhng php bin i s dng php nhn ma trn vi to im thng qua cc vect v tr tht s hiu qu v em li cng c mnh v ho cho ngi s dng. Nhng thc t cc thao tc thng cn khng ch mt m nhiu php bin i khc nhau. Ta c php hon v khi nhn ma trn l khng thc hin nhng kh nng t hp cc php nhn li cho php to ra mt ma trn bin i duy nht. Lm gim bt ng k khi lng tnh ton trong qu trnh bin i, lm tng tc cc chng trnh ng dng v to iu kin cho vic qun l cc bin i trong ng dng

Gi s ta c P vi [X] = [x y], c hai php bin i [T1] quay quanh gc to 90

V [T2] ly i xng P qua gc to :Ta c:

2.6 Php bin i tng hp

Gi s [T3] l ma trn tng hp [T1] v [T2]

T =Ta c im P sau php bin i thnh P c gi tr Thc thi php bin i ng trn 1 im nh s ng vi ton b i tng.[X]*[T] = [x y]*=Hay ta c: x = ax + cy y = bx + dy Khi : a = d =1 v b = c = 0 v ma trn cho php bt bin l:T=*Vy x=x v y = y hay l P = P chng t bt bin qua php bin i. Nu d=1 v b = c = 0 th ma trn bin i l T= x=xa y=y*P dch chuyn theo trc x vi t l a xc nh.Nu b = c =0 th ma trn bin i l: T=*Hay tng qut hn gi Sx, Sy ln lt l t l theo trc x v trc y, th ma trn t l s l:T=Khi Sx , Sy >1 gi l php phng to Khi Sx, Sy