TEXTBOOK OF FINITE ELEMENT ANALYSIS - BOOKOF FINITE ELEMENT ANTextbook of Finite Element Analysis P. Seshu ‡ † ™

  • View
    279

  • Download
    33

Embed Size (px)

Text of TEXTBOOK OF FINITE ELEMENT ANALYSIS - BOOKOF FINITE ELEMENT ANTextbook of Finite Element Analysis...

  • Textbook of

    Finite ElementAnalysis

    P. Seshu

  • Rs. 250.00

    TEXTBOOK OF FINITE ELEMENT ANALYSISP. Seshu

    2003 by PHI Learning Private Limited, New Delhi. All rights reserved. No part of this book may bereproduced in any form, by mimeograph or any other means, without permission in writing from thepublisher.

    ISBN-978-81-203-2315-5

    The export rights of this book are vested solely with the publisher.

    Tenth Printing January, 2012

    Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught Circus,New Delhi-110001 and Printed by Mohan Makhijani at Rekha Printers Private Limited,New Delhi-110020.

  • Respectfully Dedicated to

    My Parents and Teachers

  • ! "

    #$!%!$!&'(

    ) * $+#$!%! ,#%- " #. ,/-) $#$!%! (012#$!%! !#.

    ) *3 45 ( ) $#. ) * 64!7) " 64!8 3

    !" ## 9! ** ) !01) * ,-

    %$:%;$! 3

  • 45()&)$! " 7 )! $ ) " 64!87! $

    ) " 3 )1 "

    $ %&'" #($$ + ) $ 4! "< + ) )1 7) < $?!7 =

    0 $ ) = =

    3 7 3 @! ! 3 0 $ ) "3 &$2!!!&$$!$!

  • ! " # $ % & "

    '"' !"' $%

    ' ' '" # & (

    # ' &" $

    $""'

    '

    ) " * ! & " " " $"

    *

    CHAPTER 1

  • $ & "

    " " " & ! "

    $ & $ & $ + +

  • ! "

    "

    " " $ ,#-#",#$.,")/#" $ $

    '

    $ " " ' 0" " ' ) '" '

    " '

    2

    2 0d f

    AC qdx

    + =

  • " " " -1" $ '" " " " ' $" '

    #" ' " " ' " ' ! " ' '

    $ " !"" " "

    ) ) " "

    ! " 2

    " " ""

    ) ' " $" 3 4" + 5 6 +7"888'"" $ 9#/-,

    & ) + 7 & #

    ' " "

  • ! "#

    $ "% ! #&

    + : ;+

  • ' $( !& $%

    ) $( !#* $%

    + $( ! $%

    , $( !! * $%

    !

    "

    "

    !

  • #$ & #$ & #$ &

    -

    ! ! " '((

    + =

    $ 4" $ " $ *

    + > & $& 7"

    " $

    ! "#$

  • Central core

    Broad face

    Narrow face

    *' "

    " $ ' + +8 *% + ++"

  • $ $+ +5?- $

    588@ $ $" '

    %&$

    ' ( " ( ) (

    "!! " .

    *+,&

    +,&

    ! "#$

  • $ ' 7A " B5" A

  • $ /! #! !) )*

    ' ' 01 /! #! !) )*

    ! "#$

  • & ' $ & $' + +C

    ) (* #!) )*

    '

    $-

    +

    !"

    4/.

    Undeformed model

    Deformed model

    Undeformed model

    Deformed model

    Fn=296 Hz Fn=584 Hz

    Undeformed model

    Deformed model

    Undeformed model

    Deformed model

    Undeformed model

    Deformed model

    Undeformed model

    Deformed model

    Fn=296 Hz Fn=584 Hz

    5

    4

    5

    4

    , 6 789 *:, 6 ;

  • ) ) $ $" '+88 " ' & 4

    +

  • - # !!! ( $!*/*

    ) " " * " '" " " " "+ +=

    ) + +> $"* "" " D"

    "

    $ ' '

    2* " ' " * '

    F ( " $

  • 3 " ! # !!! ( $!*/*

    )$$

  • !

    "#$

    % % & '

    () ()%'*&() $! ' & *& *& ( & +

    ! '

    "

    % , ' -

    CHAPTER 2

  • %+'!

    % . / / / 0 1%

    % % 2 3 4 34%

    5 & 0%

    &

    & 6 ' '

    6%34 ' '

    ( '

    '

    7 '

    + 1

    2

    02 0

    d uAE q

    dx 11%

    8% . 8 = 0.x L

    du

    dx =

  • ! "

    "'7

    "

    % % . / / 19%

    8% . 8 . 8 . :1

    % . : 1% 1;%

  • 2

    2 + cos = 0

    d vg

    dx 1A%

    . . . . .

    0

    0x

    dv

    dx == 6 % 1B%

    % . 8 %

    " %

    "

    % v % . / / 18%C

    1 2

    2

    dvc c x

    dx= + 1%

    + . 8 . :

    v % . : % 11%

    . 1% / 19%

    6 C

    2cos

    2

    gc

    = 1;%

    2 2( )

    cos ( )

    2xg

    v L x

    = 1=%

    ! " #

    + 19

    4

    04 0

    d vEI q

    dx = 1>%

    8% . 8 (0) = 0dv

    dx

  • ! "

    (

    " v % . / /

    / /

    + v 8% . 8 v # 8% . 8 . 8 .

    .

    . :9 : > . :; 1A%

    % 1B%

    (

  • 4

    04 0

    d vEI q

    dx =

    8% . 82

    2(0) 0

    d v

    dx= 111%

    % . 82

    2( ) 0

    d vL

    dx=

    ( F' 19 C & "

    % v % . #% 119% !

  • ! "

    40

    4

    2( ) sin

    q L xv x

    EI L= 11?%

    ( 6 ' + 1= v %

    '

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Rd(L/4)=0Rd(L/3)=0Rd(L/2)=0 SOM

    Normalised Axial location on the beam

    Tra

    nsve

    rse

    Def

    lect

    ion

    +1>'

    '(

  • ( !

    . #% % #% / 9 #%

    % 9 #% : 11B%

  • ! "

    ) '6 !

    0 ( ) ( ) 0

    L

    i dW x R x dx = 19=% $ % & (

    +'!& ($ %

    6% !"#$%&"% ' ' & #% 9#%"*& !

    % v % . #% 19>%

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Residual Rd(L/4 & L/3)=0

    . / ,-'! (0 0* 1 2

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.1 0.3 0.5 0.7 0.9

  • . #%

    % #% : 19?%

    2 *& 4

    1 00

    ( ) ( )

    sin sin 0

    d

    L

    w x R x

    x xc EI q dx

    L L L

    =

    19A%(

    42

    1 00 0

    sin sin L Lx x

    EIc dx q dxL L L

    = 19B% . 8898?

    # 4

    0( ) 0.013071 sin q L x

    v xEI L

    = 1;8%

    +1B v %

    ' ! *&

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    defl

    ecti

    on

    SOM

    Galerkin Solution

    $

    3 #4 (#56*789,#!$ !! ()!*

    ! 789AI + 18 *&

    ( ' ( 6

  • ! "

    ( 6 5:5 $ %. : % .

    *&

    % . % / % % 1;%

    % % % & ! % $ % .#. % %

    (( & ' *&() ,''

    20

    2

    1 0

    qd T dT

    r dr kdr+ + = 1;1%

    2 / $ 78 4 ()! *

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    resi

    dual

    Galerkin Residual

    0.2

    0.4

    0.6

    0.8

    1

  • & % . &

    20 = ( )(2 )

    r R

    dTq R L k RL

    dr

    = 1;9%

    . ( &

    ( : %

    "

    & . / : % / : % 1;;%

    + . & . : #1"%

    & . D& : #1"% : %E / : % 1;=%

    &. %/% %% %. :%

    $ %

    . 1 / #" / #%D: #1"% / 1 : %E 1;>%

    (

    #%

    %' #% ' 1%

    [ ]20

    2 ( ) 0R

    dL r R R r dr = 1;?%

  • ! "

    8% . 8 0x L

    duAE

    dx ==

    ' F' 1 "

    % % . / / / 1=8%

    +

    . 8 . : 1 / 9% 1=%

    % .

    : 1% / : 9% 1=1%

    . 1 / >% / 1=9%

    *&

    $ % .

    : 1% $ % . : 9%

    22 3

    0( 2 )[ (2 6 ) ] 0

    Lx Lx AE c c x ax dx + + = 1=;%3 2

    2 30

    ( 3 )[ (2 6 ) ] 0L

    x L x AE c c x ax dx + + = 1==%%% 1=>%

    % . # >%% 9 : % '

    !

    C

    + & '

    1