Author
changzianli
View
25
Download
3
Embed Size (px)
DESCRIPTION
using abaqus 2D
QUESTION 1
A sign of dimensions 2.0 m x 1.2 m is supported by a hollow circular pole having outer
diameter 220 mm and inner diameter 180 mm as shown in Figure 1. The sign is offset 0.5
m from the centerline of the pole and its lower edge is 6.0 m above the ground.
Determine the Principle stress and maximum shear Stress due to a wind pressure of 2.0
kPa against sign.
MODELLING TECHNIQUE,MESHING,BOUNDARY CONDITION
1) MODELLING TEHNIQUE
PART SELECTION
it use for modelling and analyze beam selection
In the Create Part dialog box (shown above) name the part and
Select “2D Planar”
Select “Deformable”
Select “Wire”
Set approximate size = 20
PROPERTY SELECTION
1)Material selection
The technique to create material based on the question it use steel with the young moduulus 200GPA or 200e9
2)Profile
Double click on the “Profiles” node in the model tree
Name the profile and select “T” for the shape
Note that the “T” shape is one of several predefined cross‐sections
Enter the values for the profile
3.Section and section assignment
Name the section “BeamProperties” and select “Beam” for both the category and the type
Leave the section integration set to “During Analysis”
Select the profile created above (T‐Section) and select the material created above (Steel).
Assign the section will be selected the entire geometry and then select the section beam properties
5.Assemly and step
The assembly for the modelling technique.choose create instance and the dependent mode
Step is the general procedure to choose the name load .In this case i choose the static general load.
Edit the output variable will be choose and i choose stress,displacement and force.
2) BOUDARY CONDITION
Users need to identify the location of the loads and types of load to be applied on nodes/ keypoints. Also the location of the constraints.Boudary condition is one of the load procedure.
In this case we are fixed and encastre the bottom.
The force will put on the sign as shown in the figure.
3)MESHING
The process of applying and controlling nodes and elements to the model.
Highlight all members in the viewport and select Done
Select “Standard” for element type
Select “Linear” for geometric order
Select “Beam” for family
In the toolbox area click on the “Seed Part” icon
a. Set the approximate global size to 0.02
Encastre(fixed)
Distributed load
RESULT AND DISCUSSION
a) Von misses
b) Maximum principle of stress
C)Minimum principle stress
The minimum principal stress is simply the eigenvalue that has the lowest magnitude.
Based on the result the red colour mean the mininum principle stress it can gived. Based
on the result minimum stress it can gived .The result show the minimum stress it can
gived until 0.It mean until no stress have.The maximum principal stress is the most
tensile (least compressive) and the minimum principal stress is the least tensile (most
compressive).
QUESTION 2
A tubular post of square cross section supports a horizontal platform as shown in Figure
2. The tube has outer dimension b=6 in. and wall thickness t=0.5 in. The platform has
dimensions 6.57 in. x 24.0 in. supports a uniformly distributed load of 20 psi acting over
its upper surface. The resultant of this distributed load is a vertical force P1. Determine
Principle stress and maximum shear Stress.
2) MODELLING TEHNIQUE
i. PART
In the Create Part dialog box (shown above) name the part and
Select “2D Planar”
Select “Deformable”
Select “Wire”
Set approximate size = 100
ii. PROPERTY
- Create material
- Name : steel
- Select a mechanical, elasticity and elastic
- Young modulus E= 200Kpsi
- Poisson’s ratio = 0
- Create section- Assign section- Assign beam orientation
iii. ASSEMBLY- Create instance- Independent- OK
iv. STEP- Step manager- Create Field Output- Check: MISES,MISEMAX,E,UT,RT
v. LOAD
- Create boundry condition
- Create load
- Load : 20Kpsi
- Moment: 29160
vi. MESH
-Highlight all members in the viewport and select Done
-Select “Standard” for element type
-Select “Linear” for geometric order
-Select “Beam” for family
-in the toolbox area click on the seed part icon
-set a approximate global by number 4
vii. JOB
3) RESULT
i. Mises
ii. Maximum Principal Stress