51
Role of perceptual similarity in the acquisi4on of phonological alterna4ons: James White University of O3awa 1 A biased maximum entropy learning model

Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Role  of  perceptual  similarity  in  the  acquisi4on  of  phonological  alterna4ons:    

James  White  University  of  O3awa  

1  

A  biased  maximum  entropy  learning  model  

Page 2: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Role  of  perceptual  similarity  in  phonological  learning  

•  Does  perceptual  similarity  play  a  role  during  phonological  learning?  –  If  so,  what  is  that  role?  

•  Part  of  a  larger  quesCon:    Does  phoneCc  substance  play  a  role  in  phonological  learning?  – Are  there  substanCve  biases1?  

2  1.    Wilson,  2006  

Page 3: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Steriade’s  P-­‐map  proposal  

•  P-­‐map:    a  mental  representaCon  of  the  relaCve  perceptual  similarity  between  speech  sounds  in  a  given  context.1  –  Likely  based  on  an  individual’s  prior  perceptual  experience.  

•  Steriade  proposed  that  learners  are  biased  by  the  P-­‐map  when  learning  phonological  pa3erns.    –  Phonological  processes  assumed,  a  priori,  to  involve  minimal  perceptual  modificaCon.  

3  1.    Steriade,  2001/2008  

Page 4: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Experimental  evidence  that  similarity  plays  a  role  

•  AlternaCons  involving  a  1-­‐feature  change  easier  to  learn  than  those  involving  a  change  in  2  or  more  features.1  

–  [pamu  ~  tamu]  easier  than  [pamu  ~  zamu].  

•  Adults  learning  /ke/ à [tʃe] are  more  likely  to  generalize  to  /ki/  à  [tʃi] than vice versa.–  [k] and [tʃ] more similar before [i] than before [e].

4  1.    Skoruppa  et  al.,  2011          2.  Wilson,  2006  

Page 5: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Today’s  talk  

•  Goal:  InvesCgate  this  issue  by  comparing  learning  models  both  with  and  without  a  similarity  bias.  

•  Test  case:  Experimental  data  showing  that  adult  learners  disprefer  saltatory  alternaCons  (White,  in  press,  Cogni*on).  

=  a  type  of  alternaCon  involving  not  minimal  change,  but  excessive  change.  

5  

Page 6: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Roadmap  

1.  Overview  of  saltatory  alternaCons  

2.  Overview  of  experimental  results  

3. Modeling  

6  

Page 7: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

1.    Saltatory  alternaCon  

7  

Page 8: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Saltatory  alternaCon  

•  Phonological  alternaCon  where  an  intermediate  sound  is  “leaped  over”.1  

•  Campidanian  Sardinian:    –   /p/  ⟶  [β] / V ___V – no change for /b/.  

8  

[pãi] ⟶ [s:u βãi] ‘the bread’ [bĩu] ⟶ [s:u bĩu] ‘the wine’

1.    White,  in  press  

Page 9: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Saltatory  alternaCon  

•  Phonological  alternaCon  where  an  intermediate  sound  is  “leaped  over”.1  

•  Campidanian  Sardinian:    

9  1.    White,  in  press  

p     β    -­‐conCnuant  

-­‐voice  +labial  

+conCnuant  +voice  +labial  

2  feature  changes  

Page 10: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Saltatory  alternaCon  

•  Phonological  alternaCon  where  an  intermediate  sound  is  “leaped  over”.1  

•  Campidanian  Sardinian:    

10  1.    White,  in  press  

p     b     β -­‐conCnuant  

-­‐voice  +labial  

-­‐conCnuant  +voice  +labial  

+conCnuant  +voice  +labial  

2  feature  changes  

1  feature    difference  

1  feature    difference  

Page 11: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

2.    Experimental  results  

11  

Learners  prefer  to  avoid  saltatory  alternaCons.    

Page 12: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

ArCficial  language  experiments    (adult  learners)  

12  

1.    Exposure  phase  

[kamap]   [kamavi]  

Also:  non-­‐changing  fillers  like  [luman]                                  [lumani]      

Page 13: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

13  

1.    Exposure  phase  

2.    VerificaCon  phase  

3.    GeneralizaCon  phase  

[kamap]   [kamavi]  

[kamap]  [kamapi]              or  [kamavi]???  

[lunub]  [lunubi]              or  [lunuvi]???  

ArCficial  language  experiments    (adult  learners)  

Page 14: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

45%  

Crucial  results  to  be  accounted  for  

14  

Ambiguous  SaltaCon   Explicit  SaltaCon  

Test    condiCon  

Control    condiCon  

p

v

b 70%  

f

p

v

b

p

v

b p

v

b

f 16%  

21%  

21%  

7%  

Page 15: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

3.    Maximum  entropy  learning  model  

15  

For  previous  uses,  see  Golwater  &  Johnson,  2003;  Wilson,  2006;  Hayes  &  Wilson,  2008;  Hayes  et  al.,  2009;  MarCn,  2012;  others.    Implemented  using  the  MaxEnt  Grammar  Tool  (available  at  Bruce  Hayes’s  webpage).  

Page 16: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

2  things  the  learning  model  should  account  for  

1.  Saltatory  alternaCons  exist  and  thus  must  be  learnable  for  the  child.  

2.  This  type  of  alternaCon  is  dispreferred  by  learners.  

–  Can  we  model  the  experimental  results?  

16  

Page 17: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Overview  of  the  model  

17  

•  Set  of  OT-­‐style  constraints  •  Input  forms  (singular  words)  •  Candidate  output  forms  (plural  words)  •  Constraint  violaCons  

Training  data    (observed  input-­‐output  pairs)  

Grammar    (=weighted  constraints)  

Provide    the  model  

Predicted  probability    of  each  output  

Prior  (a  priori  preferred  weights)  

(Maxent    learning)  

Page 18: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Constraint  set  

•  Feature-­‐based  markedness  constraints,  which  moCvate  alternaCng.  – *V  [–voice]  V  – *V  [–conCnuant]  V  

•  Correspondence  constraints  banning  alternaCons  between  specific  pairs  of  sounds.1  – E.g.,  *MAP(p,v)  =  don’t  have  an  alternaCon  between  [p]  and  [v].  

18  1.    Zuraw,  2007,  2013  

Page 19: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Why  *MAP  constraints?  

•  TradiConal  faithfulness  constraints  (classical  OT)  cannot  generate  saltaCon.1,  2  –  True,  even  with  weighted  constraints.  

•  p  à  v  requires  two  changes,  whereas  b  à  v  would  only  require  one  change.  

•  SaltaCon  requires  a  short  journeys  (b  à  v)  to  be  banned  where  long  journeys  (p  à  v)  are  allowed.  

19  1.    Lubowicz,  2002              2.    Ito  &  Mester,  2003  

Page 20: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Training  data  

•  Same  as  the  training  data  in  the  experiments.  

•  Ambiguous  SaltaCon  experiment:  

20  

input possible outputs # observed

p v 18

p 0

f 0

b 0

input possible outputs # observed

t ð 18

t 0

θ 0

d 0

Page 21: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Prior  (=  the  bias)  

•  Biases  the  learning  towards  certain  outcomes,  based  on  a  priori  assumpCons.  –  In  this  case,  based  on  perceptual  similarity.  – Sos  bias,  not  an  absolute  restricCon.  

•  The  prior  is  Gaussian.    Provide:  – µ  =  preferred  weight  for  each  constraint.  – σ2 =  how  Cghtly  constraints  are  held  to  their  preferred  weight.  

21  

Page 22: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Measure  of  similarity  

•  How  people  judge  the  similarity  of  speech  sounds  is  likely  complex.1,  2,  3  

•  One  possiblity:    

22  1.    Steriade,  2001/2008          2.    Mielke,  2008          3.    CrisCa  et  al.,  2013    

p b

f v

voicing

cont

inua

ncy

1

1

1

1

Featural  similarity  

Page 23: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Perceptual  similarity  •  I  use  mutual  confusability  as  a  simplified  measure  of  perceptual  similarity.  –  Data  from  published  confusion  experiments  with  adult  English  speakers.1  

•  Example:  

23  

p

b f

v .153  

.039  

.045  

.013  .088  

1.  Wang  &  Bilger,  1973  

Features

p b

f v

1  

1  

1  

1  

Mutual confusability

Page 24: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Setng  the  prior  

•  Goal:    go  directly  from  confusion  proporCons  to  prior  constraint  weights.  (No  cherry-­‐picking  weights).  

•  SoluCon:  Train  up  a  separate  maxent  model  intended  solely  to  generate  prior  weights  (µ),  based  on  confusion  probabiliCes.  

•  IntuiCvely:    Represents  the  listener’s  perceptual  experience,  a  computaConal  version  of  the  P-­‐map.    

24  

Page 25: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Prior  weights  

25  

Constraints Substantively Biased

*V [-voice] V 0

*V [-cont] V 0

*MAP( p, f ) 1.34

( p, b ) 2.44

( p, v ) 3.65

( b, v ) 1.30

( b, f ) 1.96

( f, v ) 2.56

Page 26: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

2  other  models  compared  

1.   An4-­‐alterna4on:    All  *MAP  constraints  start  with  the  same  weight.  – prior  weight  =  average  of  prior  weights  in  the  substanCvely  biased  model.  

– A  priori  preference  to  avoid  any  alternaCon  equally,  regardless  of  similarity.  

2.   Unbiased:    Prior  weight  of  0  for  all  constraint.  

26  

Page 27: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Prior  weights  

27  

Constraints Substantively Biased

Anti-alternation Unbiased

*V [-voice] V 0 0 0

*V [-cont] V 0 0 0

*MAP( p, f ) 1.34 2.27 0

( p, b ) 2.44 2.27 0

( p, v ) 3.65 2.27 0

( b, v ) 1.30 2.27 0

( b, f ) 1.96 2.27 0

( f, v ) 2.56 2.27 0

Page 28: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Learning  procedure  

•  Find  the  set  of  constraint  weights  that  maximizes  this  funcCon:  

•  Model  will  provably  always  succeed  at  finding  the  “best”  grammar  by  this  criterion.1  

28  

[ ∑ log Pr (yj | xj) ] −

n

j=1

(wi − µi)2

2σi2

[ ∑ m

i=1 ]

Maximize  the  likelihood  of  the  training  data  

with  a  penalty  for  weights  that  vary  from  the  prior    

1.    Berger  et  al.,  1996  

Page 29: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

45%  

Returning  to  the  crucial  experimental  results  

29  

Ambiguous  SaltaCon   Explicit  SaltaCon  

Test    condiCon  

Control    condiCon  

p

v

b 70%  

f

p

v

b

p

v

b p

v

b

f 16%  

21%  

21%  

7%  

P:  64%  

P:  41%  

P:  22%  

P:  12%  

P:  27%  

P:  7%  

Page 30: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Model  performance  

30  

0

20

40

60

80

100

0 20 40 60 80 100

Exp

erim

enta

l res

ults

Model predictions

r2 = .95

Recall: No manipulation of prior weights by hand!

SubstanCvely  biased  model  

Page 31: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Compared  to  other  models  

31  

0

20

40

60

80

100

0 20 40 60 80 100

Exp

erim

enta

l res

ults

Model predictions

0

20

40

60

80

100

0 20 40 60 80 100

Exp

erim

enta

l res

ults

Model predictions

0

20

40

60

80

100

0 20 40 60 80 100

Exp

erim

enta

l res

ults

Model predictions

SubstanCvely  biased   AnC-­‐alternaCon   Unbiased  

r2  =  .95   r2  =  .67   r2  =  .25  

Page 32: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Where  do  the  control  models  go  wrong?  

•  Unbiased  model:  –  In  general,  predicts  too  much  generalizaCon  –  no  reason  to  avoid  posiCng  new  alternaCons.  

•  AnC-­‐alternaCon  model:  – Unable  to  account  for  subtler  variaCons  between  segments  (e.g.,  [b]  changed  to  [v]  more  osen  than  [f]).  

– Ends  up  predicCng  more  generalizaCon  in  the  control  case  than  in  the  saltaCon  case  –  opposite  of  the  actual  results!!  

32  

Page 33: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Discussion  

•  AnC-­‐alternaCon  model  outperforms  Unbiased  model.  –  Consistent  with  a  general  preference  for  avoiding  alternaCons  (e.g.,  OO-­‐Faith  set  high  by  default).1,  2  

•  SubstanCvely  biased  model  outperforms  AnC-­‐alternaCon  model.  –  Evidence  that  perceptual  similarity  plays  a  role  even  beyond  a  general  preference  to  avoid  alternaCons.  

•  General  framework  for  looking  at  the  role  of  perceptual  similarity  in  phonological  learning.  

33  1.    Hayes,  2000          2.    Tessier,  2012  

Page 34: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Prior  as  a  sos  bias  

•  The  prior  is  crucial  to  the  model’s  success.  It  allows  the  desired  learning  pa3ern:  – AlternaCons  between  dissimilar  sounds  are  iniCally  dispreferred.  

– But  with  enough  training  data,  the  prior  can  be  overcome  –  they  are  learnable.  

•  The  anC-­‐saltaCon  effect  seen  in  the  experiments  seems  to  fall  out  from  a  more  general  similarity  bias.  

34  

Page 35: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Evidence  with  infant  learners?  

•  12-­‐month-­‐olds  learning  potenCally  saltatory  alternaCon  generalize  to  intermediate  sounds.1  

•  12-­‐month-­‐old  English-­‐learning  infants  know                [d ~ ɾ],  but  not  [t ~ ɾ], despite  greater  support  for  [t ~ ɾ] in  their  input.2  

35  1.    White  &  Sundara,  2012,  submi3ed            2.    Sundara  et  al.,  this  conference  

Page 36: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Thank  you!  

•  Acknowledgments:  – For  help  and  discussion,  special  thanks  to  Bruce  Hayes,  Megha  Sundara,  Kie  Zuraw,  Robert  Daland,  Sharon  Peperkamp,  Adam  Albright,  and  audiences  at  UCLA  and  the  University  of  O3awa.  

– Thanks  to  my  undergraduate  research  assistants  as  well  as  research  assistants  at  the  UCLA  Langauge  AcquisiCon  Lab.  

36  

Page 37: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

CreaCng  the  prior  (details)  

•  Input  =  idenCficaCon  data  from  confusion  experiments.1  

•  Each  *MAP  constraint  is  weighted  according  to  how  likely  its  sounds  are  to  be  confused  for  each  other.  

•  Output  weights    à    Prior  of  main  model  

37  

E.g.,

1.  Wang  &  Bilger  1973  

Page 38: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Effect  of  different  confusion  data  

38  

Page 39: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

How  the  weights  change  during  learning  

39  

Constraints Prior weight Post-learning weight

*V [-voice] V 0 2.45

*V [-cont] V 0 1.05

*MAP( p, f ) 1.34 1.74

( p, b ) 2.44 2.94

( p, v ) 3.65 1.96

( b, v ) 1.30 2.02

( b, f ) 1.96 2.02

( f, v ) 2.56 2.56

Explicit  Salta4on  experiment  p  à    v  ,    b  à  b  

Page 40: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Effect  of  σ  

40  

130

prior has almost no practical effect on the constraint weights, leaving the weights to be almost

entirely dictated by the training data. As a result, all three models converge at (virtually) the

same predictions and thus have very similar r2 values.

Figure 11. Proportion variance explained (r2) by the substantively biased model, the high faith model, and the unbiased model, according to the value of !2.

4.4.5 Effect of different confusion matrices used to derive the prior

Given that the prior weights are calculated directly from confusion probabilities, the prior

weights, and thus the model’s performance, will vary depending on which confusion data are

used as input. Implicit in this design is the prediction that real language learners will learn

slightly differently depending on their own perceptual experience and language background. This

strikes me as a reasonable assumption.

For the model predictions reported above, I added together the confusion data listed in Table

2 and Table 3 from Wang and Bilger 1973 (henceforth WB). These data were chosen for several

Page 41: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

ProducCon  study  

41  

151

that the fit between the model predictions and the experimental results is not quite as good as in

the 2AFC task (see section 4.4.3), but the fit is still very good (r2 = .87).

Figure 12. Predictions of the substantively biased model plotted against the experimental results from the production experiment. Overall r2 = .87.

For comparison, the predictions of the unbiased model are plotted against the experimental

results in Figure 13. For the best comparison, the unbiased model was also augmented with a

*ALTERNATE constraint with the same prior values that it had in the biased model (i.e., µ of 1 and

a !2 of .0001). As the plot shows, the unbiased model is much less successful at predicting the

experimental results; as a result, the fit between the model predictions and the experimental

results is much lower (r2 = .39).

Page 42: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

42  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi *

kamapi * *

Explicit  Salta4on  experiment   p

v

b Training:

Page 43: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

43  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi *

kamapi * *

Explicit  Salta4on  experiment   p

v

b Training:

Input  form  and    output  candidates  

Page 44: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

44  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi *

kamapi * *

Explicit  Salta4on  experiment   p

v

b Training:

Constraint weights

Page 45: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

45  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi 1.96

kamapi 2.45 1.05

Explicit  Salta4on  experiment   p

v

b Training:

Page 46: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

46  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi 1.96 1.96

kamapi 2.45 1.05 3.50

Explicit  Salta4on  experiment   p

v

b Training:

e (− penalty)

∑ e (− penalty)

Sum

Page 47: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

47  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi 1.96 1.96 82 %

kamapi 2.45 1.05 3.50 18 %

Explicit  Salta4on  experiment   p

v

b Training:

Page 48: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

48  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi 1.96 1.96 82 %

kamapi 2.45 1.05 3.50 18 %

/lunub/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

lunuvi 2.02 2.02 27 %

lunubi 1.05 1.05 73 %

Explicit  Salta4on  experiment   p

v

b Training:

Page 49: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

PredicCng  probabiliCes  from  the  grammar  

49  

/kamap/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

kamavi 1.96 1.96 82 %

kamapi 2.45 1.05 3.50 18 %

/lunub/ *V[-voice]V

2.45 *MAP(b, v)

2.02 *MAP(p, v)

1.96 *V[-cont]V

1.05 Total

penalty Predicted

output

lunuvi 2.02 2.02 27 %

lunubi 1.05 1.05 73 %

Explicit  Salta4on  experiment   p

v

b Training:

Page 50: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Exp.  1  Results  

50  

0

10

20

30

40

50

60

70

80

90

100

Per

cent

cha

ngin

g pl

ural

opt

ion

chos

en

PotenCally  Saltatory   Control  

Stops              FricaCves   Stops              FricaCves  

Page 51: Role%of%perceptual%similarity%in%the ...ucjtcwh/index_files/White_BUCLD2013.pdfProducCon!study! 41 151 that the fit between the model predictions and the experimental results is not

Exp.  2  Results  

51  

0

10

20

30

40

50

60

70

80

90

100

Per

cent

cha

ngin

g pl

ural

opt

ion

chos

en (e

rror

s)

Saltatory   Control  

         Stops                      FricaCves  sub-­‐group              sub-­‐group  

         Stops                      FricaCves  sub-­‐group              sub-­‐group