38
Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High Energy cosmic-Radiation Detection October 17-18, 2012 IHEP CAS, Beijing Martin Pohl, Pierre Saouter Center for Astroparticle Physics University of Geneva Alberto Oliva CIEMAT Madrid

Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Embed Size (px)

Citation preview

Page 1: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 1

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Ion charge measurementwith the AMS-02 silicon tracker

1rst Int. Workshop on High Energy cosmic-Radiation DetectionOctober 17-18, 2012IHEP CAS, Beijing

Martin Pohl, Pierre SaouterCenter for Astroparticle Physics

University of Geneva

Alberto OlivaCIEMAT Madrid

Page 2: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 2

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Si Tracker Charge Measurement

Strip crosstalk

Gain (at VA level, using H, He and C)

Charge loss (position/angle dependence)

MIP scale conversion (saturation, non-linearities)

From ADC to energy deposition

Detector related corrections

From energy deposition to floating point charge estimators (Q)

From floating point chargeestimator to integer charge (Z)

Pathlength correction

Beta/Rigidity correction (layer dependent)

PDFZ(Edep)

Likelihood

Page 3: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 3

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Si Tracker Charge Measurement

• Physics:

• From physics to ADC:• Si material properties• Nuclear charge: z2

• β and βγ: eV/μm• Path length in Si: dx• Ionisation yield: eV fC• Charge collection efficiency on strips• ASIC response function• Channel cross talk: ADC

Page 4: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 4

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

The AMS Silicon Tracker

9 planes: 18 to 26 ladders Ladder : 7 to 15 double-sided silicon sensors. Implantation pitch p(n) side 27.5 (104) μm Readout pitch p(n) side 110 (208) μm (1/4 and 1/2 strips read out)

Ionization Energy Loss

• Signal usually collected by several adjacent strips (cluster)• Double threshold to eliminate insignificant strips

Cluster Amplitude

Page 5: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 5

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

VA64hdr

Front-end electronics

10 VAs on the p-side (Y direction) 6 VAs on the n-side (X direction)

Each VA reads 64 channels

• Each VA produces a signal with different characteristics • In particular differences in the gain are observed• FEE response curve is deliberately non-linear, different for p and n

p-side

n-side

Page 6: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 6

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Example of Gain Differences for He for p-side VAs of Ladder +307

Raw

AD

C

Typical ~10%, max ~35%

x 10

Helium Sample

Page 7: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 7

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

• Landau function convoluted with a Gaussian• MPV to characterize the gain of a given VA

Single VA Distribution forProton.

Amplitude distribution (protons, single VA)

Page 8: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 8

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Cluster pulse integral (single ladder) as function of ion charge

Alpat B. & al., 2004 (2003 Cern and GSI Test Beam)

Si

B

1. Two sides behave differently:• Maximum dynamic range• Good resolution at low charge

2. Two ~ linear response regimes

3. Same behavior expected for all VA

n side

p side

Page 9: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 9

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Charge Calibration Sample Selection

• Uncalibrated charge response with rather good resolution• Define charge samples using truncated mean of hits on n side, corrected for impact angle • 1σ selection ranges around MPV

Avoid any bias in selection: • separate ranges for each layer • truncated mean excluding layer under study

• (see later)

HHe

LiBe

BC

NO

Page 10: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 10

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

X-s

ide

Clu

ster

s

VA Number

• Proton• Helium• Carbon

Charge Calibration Sample Selection

Page 11: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 11

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Reference MPV values for each charge

• Proton• Helium• Carbon

Readout Region

Individual VA gains equalized on reference value

Page 12: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 12

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Good linearity of VA64 response

• Gain factor inde-pendent of particle impact location

• Small offset due to thresholds on seed and adjacent strips

Gain Corr. Fact

Page 13: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 13

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Offset must be taken into accountin gain correction!

Gain Correction Factors and Offsets

At most 10% correctionneeded.

Page 14: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 14

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Deviation of VA MPV values from Linear Fit

Systematic error ~ 3%

Page 15: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 15

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Gain Correction Effect on H, He and C Samples

• No Correction• Gain Correction• Including Offsets

RMS improvesby factor of 3.5

Page 16: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 16

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Gain Systematics

• Each point is mean of VA response per layer, with RMS as error• RMS is larger for layer 1• Systematics less than 0.5% << statistical error on gain factor

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Page 17: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 17

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Nu

mb

er

Nu

clei

C

BeB N

O

F

Ne

Na

MgSi

Li

He

HBefore CorrectionAfter Gain Corrections

Track Truncated Mean n Side

Page 18: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 18

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

C

Be

BN

O

F

Ne

Na

Mg

Si

log

(N

um

ber

Nu

clei

) Before CorrectionAfter Gain Corrections

Zoom on High Charges n Side

Page 19: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 19

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Resolution of Charge Estimator After Gain Correction

A. Oliva

• n side before correction• n side after gain correction

Page 20: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 20

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Nu

mb

er

Nu

clei

C

BeB O

Ne

Li

He

H

Before CorrectionAfter Gain Corrections

Track Truncated Mean p Side

Page 21: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 21

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Charge Collection Efficiency

Particle very near a readout strip.

Particle passes in between two readout strips.

Capacitive coupling between strips allows to estimate impact positionof the traversing particle (COG).

Charge loss ~30 % for Helium

0

Loss of collection efficiency in thenon-readout region

Page 22: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 22

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Charge Collection: Impact Point and Angle

ZXZ Projected Track

θXZ

X

X

Y

Z

Page 23: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 23

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Implant structure and n/p side differences

• n - side: 1 out of 2 strips read out + saturation• p - side: 1 out 4 strips readout + non linearity at low charges (B,C,O)

different charge collection behavior

Charge Loss For Carbon Sample

N-Side / Z=6 / ~28%P-Side / Z=6 / ~35%

ADC ADC

Page 24: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 24

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Ne

O

C

B

Be N

F

• No Corr• Gain Corr• Gain + Charge Loss

Track Truncated Mean n Side

Page 25: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 25

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Resolution of Charge Estimator After Correction

Page 26: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 26

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

OC

Mg

FeSi

BBe

Li

Track Truncated Mean p Side

Page 27: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 27

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Path Length Correction

Normalization to 300 μm of Silicon traversed.

Page 28: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 28

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Beta Correction: Layer-by-Layer (II)

Z = 1 Z = 2

Z = 2 Z = 1 Layer 4 Layer 4

Layer 1Layer 1

Effect of TRD + upper TOF

Effect of TRD + upper TOF

Page 29: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 29

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Beta Correction: Layer-by-Layer (III)

Z = 1 Z = 2

Z = 2 Z = 1 Layer 8Layer 8

Layer 9Layer 9

Effect of RICH + lower TOF

Effect of RICH + lower TOF

Page 30: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 30

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Beta CorrectionProtons

Helium

TOF measures

β inside AMS

β > βTOF

βTOF

β < βTOF

Page 31: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 31

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Tracker Charge Measurement

Z>10 should use p-side

n

Track Truncated Mean p–Side (c.u.)

Trac

k Tr

unca

ted

Mea

n n–

Sid

e (c

.u.)

Page 32: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 32

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

 MIP Correction • Transforms corrected response into charge units.• Accounts for saturation and non-linearity• Directly provided as an outcome of the charge loss correction

• Gives almost linear charge estimator• Some residual deviation left in the non-linearity regions

n side

p side

Page 33: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 33

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

• Combine the n and p measurement with a weighted sum. • Weights depend on the number of hits used• Weights assumed to be independent of Z (approximately correct)

H x 10-3

He x 10-2

Be

C

O

Si

Fe

 Joint Track Charge Estimator 

Page 34: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 34

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Going to PDF

1 23

45

6

78

9

1012

14

26

• This shapes should be understood in detail• Tails from wrong hit associated to tracks, interactions…• Specific ladder behavior • Dependencies on external parameters: t, T …

Layer 2 charge distributions

Page 35: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 35

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

ZTRK_L1=6.1

ZTRD=5.9

ZTOF_UP=5.9

ZTOF_LOW=5.8

ZTRK_IN=5.8

ZRICH=6.1

Carbon: Rigidity=215 GV, P=1288 GeV, Ekin/A=106 GeV/n

Page 36: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 36

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

ZTRK_L1=4.9

ZTRD=4.5

ZTOF_UP=5.0

ZTOF_LOW=5.1

ZTRK_IN=4.9

ZRICH=5.2

Boron: Rigidity=187 GV, P=935 GeV, Ekin/A=93 GeV/n

Page 37: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 37

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Tracker and ToF

HHe

LiBe B

CN O

FNe

NaMg

AlSi

Cl Ar K Ca Sc Ti

V Cr

P SFe

Ni

Page 38: Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High

Page 38

Martin Pohl

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Conclusions• AMS Si tracker shows excellent nuclear charge

identification:– Excellent charge separation– Simple unfolding of species

• Complete calibration chain in place:– Floating point charge estimator– Probabilistic approach based on PDF

• Redundancy of subdetectors is key to systematic accuracy:– Tracker– ToF– RICH

• Chemical composition of cosmic rays GeV to TeV