352
0 rXl _ u_ ! ,-- r_ O, r- _0 0 g LLJ I--'Z C LL. Z _"_ "" "_' PL" _,j t_ _, F-cg L_ _ U_ 0 _ U t.D Zv}i ._. _ u'_ (J c_ _.J O" __': Z I-- .: ..J ;'O c% ,(i £.,._ https://ntrs.nasa.gov/search.jsp?R=19930013818 2018-05-19T04:22:01+00:00Z

O, r- - NASA · PDF file 2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

  • Upload
    trinhtu

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Page 1: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0

rXl _ u_

! ,-- r_

O, r-

_0

0

g

LLJ I--'Z C

LL. Z _"_ "" "_'

PL" _,j t_ _,

F-cg L_ _ U_0 _ U

t.D Zv}i

._. _ u'_ (J c_ _.J

O" __': Z I-- .: ..J ;'O

c%

,(i

£.,._

https://ntrs.nasa.gov/search.jsp?R=19930013818 2018-05-19T04:22:01+00:00Z

Page 2: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 3: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Space Transfer Concepts and Analysesfor Exploration Missions

NASA Contract NAS8-37857

Lunar Transportation FamilyImplementation Plan and Element Description Document

Boeing Aerospace and ElectronicsHuntsville, Alabama

" G.R. W'obdcdck "r "%STCAEM

Project ManagerBoeing Aerospace and Electronics

D615-10026-6 1

Page 4: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

e_o

q_

G_q_

G_

v

_ws

_4

Page 5: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Space Transfer Concepts and Analysesfor Exploration Missions

NASA Contract NAS8-37857

Lunar Transportation FamilyImplementation Plan and Element Description Document

Boeing Aerospace and ElectronicsHuntsville, Alabama

Docamaentation Set:

D615-10026-1 IP and ED Volume 1: Major Trades, Books 1 and 2D615-10026-2 IP and ED Volume 2: Cryogcnic/Acrobrakc Vehicle

D615-10(T26-3 IP and F_X)Volume 3: Nuclear Thermal Rocket VehicleD615-10026-4 IP and El9 Volume 4: Solar Electric Propulsion Vehicle

D615-10026-5 IP and ED Volume 5: Nuclear Electric Propulsion VehicleD615-10026-6 IP and ED Volume 6: Lunar Transportation Family

D615-10026-6 2

Page 6: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

¢}oJ

om

°._

E-

D615-10026-6

Page 7: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Transportation FamilyImplementation Plan and Element Description Document

Table of Contents

Section Paee

Cover Sheet .................................................................................... 1

Title Page ....................................................................................... 2

Table of Contents .............................................................................. 3

Symbols, Abbreviations and Acronyms .................................................... 4

II

II.

IVQ

V.

Evolution of the Concept ............................................................ 11

A. Reference Concept Development .......................................... 11B. Alternate Concepts .......................................................... 51C. Architecture Mawix .......................................................... 65

Requirements, Guidelines and Assumptions ..................................... 101Ao Level I, H and HI Requirements .......................................... 101B. Derived Requirements ....... :. ............................................. 109C. Assumptions ................................................................. 115

Mission Operations .................................................................. 119A. Mission Analysis and Performance Parameu'ics ........................ 119

B. Operating Modes and Performance ....................................... 139

Element Descriptions ................................................................ 153A. LTV/LEV Components ..................................................... 153B. Habitation Modules ......................................................... 163C. ACRV Modifications ....................................................... 205

D. Aerobrake .................................................................... 209E. Cost ........................................................................... 223

Commonality/Evolution ............................................................. 269A. System Commonality ....................................................... 269B. SmaUfMecLium/Large Scale Evolution .................................... 297

D615-10026-6 3

Page 8: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Symbols,

ACRVACSAFE

A&I

AI

ALARA

ALSALSPE

am

AR

ARGPER

ARSart-gasc

ASE

AU

BITBITEBLAPBFOBlVIR

CCABCAD/C.AMCAP

C_CELSS

CHCCG

cLctn

c/InCM

c/oCofF

conjCOSFAR

CO2

CryoC3

C&T

CTV

d

DDT&EDE

dogdcsc

Abbreviations and Acronyms

Advanced crew recov_ vchickAttitude control systemAcmbrake Flight _ntAttachment and inzgrationAluminum

As low as reasonably achievableAdvanced Launch SystemAnomalously large solar proton eventAtomic mass (unit)Arcaratio

Argument of p_g_

Atmosphcric revitalizationsystemArtificial gravityAscent

Advanced space engineAstronomical Unit (=149.6 million kin)

Built-in test

Buih-in t_st equipmentBoundary Layer Analysis ProgramBlood-forming organsBody mounted radiatm"

Dcgr_s Celsius

Cryogcaic/aezobraimComptcr-aide.dd_sign/computcr-aidcdmanufacturing

Cryogenic all-propulsive

Drag cocffaciemClosed Environmental L£fc Support SystemCrew health care

Center of gravityLift coefficientCentimeter = 0.01 meterOcw moduleC.cnter of massCheck out

Cost of facih'tics

ConjunctionCommisvc on Space Rcscm'ch of theIntomafionalC.ouncilof ScientificUnionsCarbon dioxid_

CryogenicHyperbolic excess velocitysquatw.d(inkm21s2)

Communications and Tclcn_try

Cargo Transport Vehicle (operates in Earth orbit)

yssign, dcvclopmcnt, testing, and evaluation

Dose _uivakmtDcgrccsDescent

"V

D615-10026-6,¢

Page 9: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

DMS

dV

EAEarrEcECCVECWSECLSSEPESA

¢.S.O.ETETOEVA

FD&DFewFEL

FfFraFiFIFnFo

FrsFSE

FsFss

FuFvFY88

gGCNRGCRGEOGN2GN&C

GPS

Gy

habHDHEIHLLVhrs

Data mana_mcnt systemVdocity change (AV)

Earth arrivalEarth arrival

Modulus of elasticity in compressionEarth crew capture vehicleElement control work station

Environment controland lifesupportsystem

ElcctricpropulsionEm'opean Space Agency

Engine startopportunityExternalTankEarth-to-orbit

Extra-vehicularactivity

CkculationefficiencyfactorFire Detectionand Differentiation

Lifesupportweight factorFirstclement launch

Specificfloorcount factorSpecificfloorareafactor

Acrobrakc i.nmgrafion factorSpecificlengthfactorNormalized spatial unit count factorPath options factorUsefulperimeterfactorPartscount factor

Proximityconveniencefactor

Plan aspectratio factorSectionaspectratiofactor

FlightsupportequipmentVaultfactor

Safe-haven splitfactor

Spatialunitnumber factorVolume rangefactor

FiscalYear 1988 (=October I,1987 toScptcmbcr 30, 1988.

otheryears)

Accelcrauon inEarth gravities(=acceleration/9.80665m/s2)Gas core nuclear rocket

Galacticcosmic raysGcosynchronous Earth Orbit

Gascous nitrogen

Guidance, navigation,and controlGlobal PositioningSystem

Gray (SIunitof absorbed radiationenergy = 104 crg/gm)

Habitation

High DensityHuman Exploration Initiative (obsolete for SEDHeavy lift launch vehicleHours

Similarlyfor

D615-10026-6 5

Page 10: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

hyg wHZEH2

H_

ICRP

IMLEOin.

inb_&ED

mgD

IspISRU

JEMJSC

kkeV

kgldbldbfkmKM

KM/SceKM/SECksi

LCCLIDLD

LDMLEO

LETLEV

LEVCM

Level IILH2

laOH

LLOLM

LOR

LOXLS

LTV

LTVCM

1.2

m

[M_Cnam[MARSlNMASEMAV

Hygeinc wamr

High atomicnumber and energyparticleHyarogenWater

InternationalCommission on RadiationProtectionInitialmass inlow Earthorbit

InchesInbound

ImplementationPlanand Element I_scriptionIndcl_ndant research and devclopmmatSpecific impulse (=thrust/mass flow rote)In-situresourceutilization

Japan Experiment Module (of SSF)Johnson Space C,cntcr

klb

Thousand e_ volt

Kilograms

Kilopounds (thousandsof pounds. Conversion to SI units=4448 N/klb)

Kilopound forceKilometers

Kilometers

Kilometerspea"second

Kilometersper second

Kilopounds per squareinch

Lifecyclecost

Lift-to-drag ratio

Low densityLong duralionmissionLOw Earth orbit

Linear energy transferLunar _cL_ion _hicleLunar excursionvehicle crew module

Space Explcranon Initiative project office, :Johnson Space CenmrLiquid hydrogenLi_um hydroxideLow Lunar orbitLunar ModukLunar orbit rendezvous

Liquid oxygenLunar surfaceLunar transf_ vehicleLunar transfer vehicle crow module

Lagrange point 2. A point _hind the Moon as sccn from the Earth whichhas the same orbitalperiodasthemoon.

Memrs

Western Union interplanetarytelegram]

Martianpornography]

Mission analysisand systems engineering(same asLevel IIq.v.)Mars ascentvehicle

D615-10026-6 6

Page 11: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

M/CDAMCRVme_OP

IV_V

MOC

MOI

modM&P

MPS

MR

ml_MSFC

mt

natMTBF

_e

m 3

N

NASANCRPNEPNERVANTPNSONTRN204

OSEOTISoutb02

PBRPcPEEK

PEGAP/LPOTV

pot wPPU

proppsiPV

Ballistic coefficient (mass / drag coefficient times area)Modified crew recovery vehicleMass of electron

Maximum expected operating pressureMillion electron voltMars excursion vehicle

Muiti-layer insulationMillimeter (=0.001 m_ter)MonomethylhydrazineManned Mars vehicle

Mars orbitcaptureMars orbitinsertion

Module

Materials and processesMain propulsion systemMixtme ratio

Meters per secondMarshall Space Flight CenterMillionpounds per square inchMelric tons (thousands of kilograms)Metric tonsMean time between failuresMars transfer vehicle

Megawatts electricCubic Meters

Newton. Kilogram-meters per second squaredNot applicableNationalAeronauticsand Space AdministrationNationalCouncilon RadiationProtection

Nuclear-electricpropulsion

Nuclearengineforrocketvehicleapplication

Nuclear thermalpropulsion(same as NTR)Nuclear safeorbitNuclear thermal rocket

Nitrogen tetroxide

Orbital support equipmentOptimal Trajectoriesby ImplicitSimulation programOutbound

Oxygen

Particle bed re.actor

Chamber pressu_Polyether--cthcr ketonePowered Earth gravity assist

PayloadPersonnel orbital transfer vehiclePotable water

Power processing unitPropellantPounds per square inchPhotovoltaic

D615-10026-6 7

Page 12: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

QQ

RAANRCSReRFRMLEOROIRPMRWAR&D

SAASAICSEISEPSISiCSMAsolSPESRBSSFSSMESTCAEM

stgsurfSv$1$2$3

t*

TBDTcTCSTEITEISt.f.THCTMITMISTPSTr&c

T/W

UN-W/25Re

VABVCSVinf

Heat flux (Joules per square centimeter)Radiation quality factor

Right ascension of ascending nod_Reaction control systmnReynolds numberRadiofrcquc yResupply mass in low Earth orbitReturn on invcsmmnt

Rcvolutiom per minut_Relative wind angleResearch and DevelopmentRendezvous and dock

South Atlantic AnomalyScience Applications Inttmmtional CorporationSpace Exploration InitiativeSolar-electric propulsionInternational system of units (tmtric systcm)Silicon carbide

Semimajor axisSolar day (24.6 hours for Mars)Soalr proton eventsSolid Rocket Boosm"

Space Station FreedomSpace Shuttle Main EngineSpace Transfer Concepts and Analysis for Exploration MissionsStageSurface

Sievicrt (SI unitof dose equivalent= Gy x Q)

Distance along aca'obralm surface forward of the stagnation pointDistancealongaea'obralmsurface afz of the stagnationpoint

Distance along aerohra_ surface starboard of the stagnation point

Metrictons(1000kg)To be demmined

Chamber _

Thermal controlsystem

Trans-Ea_ injectionTram-Earth injection stage

Tank weight factorTemperatu_ and humidity control

Trans-Mars injectionTram-Mars injectionstage

Thermal pmu=cfion s_r_znTracking,mlcmctry, and control

Thrust to weight ratio

Uranium nitride-Tungsten/25% Rhenium reactorfucl

VehicleAssembly Building

Vapor coolledshieldVelocityatinfinity

D615-I0026-6 8

Page 13: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

WBc2C/B4CWMS

W/OWP-01

w/_l cm

Tungsmn be_llium cabide/Boron cabid_ composit_Waste managcn_.at sys_mWithout

Work package 1 (of SSF)

Warts l_r square ce_tin_t_r (should be Wcm -2)

Z

ze_og

Atomic number

An unaccchwated fram$ of mfcmncc, free-fall

[order:. numbvrs followed by greek lcttea's]

100K7n7_k

.-cAV

$

_tg

_<100,000 particles per cubic mcmr larger than 0.5 micron in diamcmrWhere n=(0,2-6): Boeing Company jct transport moc_l numi_rsKelvin (K)Positive charge equal to charge on electronChar_ on electronChangc invelocity

Standard_viation

Microgravity ( also call_ z_r_-gravity)

D615-10026-6 9

Page 14: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

immm

Oo_

ct_

v

D615-10026-6 10

Page 15: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I. Evolution of the Concept

A. Reference Concept Development

PRE_=Y_f'/O P,_G,_ E:.P.I_;F_ _'_]OT FILMED

D615-10026-6 II

Page 16: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_Um

u

mm

e_O

om

e_

e_

V

D615-10026-6 12

Page 17: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I. Evolution of the Concept

During the 90 Day Study, NASA's two Office of Space Flight (Code M) Space Transfer Vehicle

(STV) contractors supported development of SEI lunar transportation concepts. This work treated

lunar SEI missions (and evolution to the support of later Mars missions) as the far end of a more

near-term STV program, most of whose missions were satellite delivery and servicing

requirements derived from Civil Needs Data Base (CNDB) projections. STCAEM's contribution

to that effort focused mainly on crew system design, since this was recognized as offering potential

for commonality with crew cab design for Mars excursion vehicles (MEVs).

Later, STCAEM began to address the complete design of a lunar transportation system.

Because of our Mars concept experience, our perspective was particularly sensitive to evolutionary

systems; the approach of looking back from a Mars mission perspective is thus complementary to

that of the parallel NASA studies. Our effort was guided by attention to two broad drivers. Fast

were precisely those technical requirements whose resolution had proved so intractable for earlier

concepts:

1) State-of-the-art understanding of constraints imposed by the detailed geometry of

aerobraking upon Earth return: non-symmetrical relative wind configurations for lifting flight

profiles; off-axis placement of composite mass-center (CM); and changing mass-balance conditions

due to sequential propellant expulsion.

2) The need to accommodate "mixed" payloads in a reasonable lunar exploration program:

versatility in the delivery of a wide variety of heavy-cargo payload manifests, rarely if ever mass-

split evenly; cargo processing and loading requirements in LEO; cargo exchange between transfer

vehicles and excursion vehicles; cargo offloading on the surface of the Moon; cargo placement on

manned flights; and shirtsleeve (IVA) exchange of crew between transfer and excursion vehicles.

3) Provision for transfer of cryogenic propellants: a typical scenario is supplying

I-2"I2, brought from Earth by a transfer vehicle, to a reusable lander based in low lunar orbit (LLO).

Cryogenic propellants are baselined, of course, because of the requirement for high-thrust

propulsion for planetary landing and ascent. (The use of nuclear thermal propulsion for lunar

transfer is potentially attractive, but still involves cryogenic propellant management.)

4) Potential for full system reusability: designs which drop tanks are better for limiting

aerobrake size, but have negative cost implications for advanced cryogenic storage technology, and

D615-10026-6 13

Page 18: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

negative operational implications via the accumulation of empty tanks in cis-lunar space and on the

lunar surface. Mission modes which posit multiple annual flights for several decades drive us to

consider full reusability.

Second, we recognized that over several decades of lunar operations, many mission modes

should be accommodated. What is n_dea:i is not so much a single vehicle or pair of vehicles, but

rather an evolving lineage of vehicles, fabricated on long-lived production lines, which can be

adapted gracefully and economically to handle contemporary requirements. Two observations

keyed this investigation:

1) Lunar flight hardware decisions will probably be made before final site selection decisions.

This means that the lunar wansponation architecture should be careful not to constrain site selection

to less than potentially global access. Many possible mission modes must be preserved by the

arch/tecture.

2) An early lunar surface operations capability can be obtained by using a tandem-direct flight

mode, in which one lunar transfer vehicle (LTV) boosts another, "campsite" LTV, to a fractional-

orbit, direct landing on the Moon. The crew would be sent separately on an identical profile,

lemming directly to Earth's surface in their heat-shielded crew capsule. No LLO operations, no

aerobrake, no LTV recovery, and no space station rendezvous upon return would be needed, nor

would a specialized lunar lander (LEV).

What resulted was a lunar mmsportation family (LTF) concept, consisting of various

"models" of two basic, cryogenic vehicle "chassis": an LTV with 110 t propellant capacity, and

an LEV with 25 t capacity. Particular vehicle combinations from this evolutionary family can

handle 11 distinct mission modes, to provide versatile, flexible service for decades as mission

requirements evolve. For instance, the addition of an aerobrake would permit unmanned recovery

of the boost-stage LTV, prodding invaluable flight qualification experience for later man-rating.

(Such an aerobrake can be essentially the symmetrical central core of the asymmetrical Mars-class

aerobrakes discussed later, since the L/D requirement is only about 0.25 for lunar missions;

aerobrake technology evolution is then enhanced.) A heavy-cargo lander would be a modest

upgrade to the campsite vehicle design. If the scale of the exploration architecture justified the

more efficient lunar-orbit-rendezvous (I.OR) mode, a dedicated lunar excursion vehicle (LEV)

could be introduced. For fully reusable operations, a version of the campsite habitation module

D615-10026-6 14

Page 19: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

would provide crew support during the ex_nded-walt required by remm orbit phasing. If electric

propulsion Mars missions were operated efficiently through a lunar libration-point, LTVs could

support these as weU as lunar operations. And LTVs could supply the f'mal capture propeUant to

an NTR vehicle returning from Mars. Lunar transportation operations can be upgraded to the use

of lunar-derived oxygen (LLOX) with this family of vehicles also. All combinations of crew and

cargo manifests identi_fied so far for lunar support, and all lunar-related SEI missions identified so

far, can be accommodated by the LTF.

D615-10026-6 15

Page 20: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

W

L.

Or_

Or_

_g=N.o _,_

_ _ F,_ ,__

_ r,¢l r.¢l e_

°.N

_ _._

D615-10026--6 16

Page 21: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Z_m

kl.l _

_'_ D615-10026-6 17

Page 22: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0aq_

¢1lm:=

I=

>

[-

v

D615-10026-6 18

Page 23: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

L@

0

D615-10026-6 19

Page 24: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

m

m

O

D615-10026-6 20

Page 25: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=

===

r./3

_=,

C/'J

;=,.

e_.O

[.,

PREO,EDtNG PAGE _,._-,_i,,-*' _' "" i_,!_; F_,LMED

D615-10026-6 21

Page 26: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

O

w

t._

O

. r_

m

¢,,,I

C,I

- E

om,,

._=

!-°1::._=.

ga,

D615-10026-622

Page 27: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r,.)

D615-10026-6 23

Page 28: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Omw

omuCam

O

[.,..1

.I

eq-6 _h

t.ul

m

.5._o-_

D615 -10026-624

Page 29: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

em

l

• • • •

D615-10026-6

°_

>.

olml

m

o_

o

r_z_25

,<

Page 30: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

N

.m

m

um

Ng_O

OM

g:

D615- I0026-626

Page 31: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 32: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

e_

Oom

I,,,

_UD

O

om

oN _

W-, t#}

D615-10020-628

Page 33: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

o_

ii

_x

O

D615-10026-6

29

Page 34: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

e_

e_

0

om

D615-IOn_

\\

e_

Page 35: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

om

Jom

m

om

m

>.

om

D615-I0026-631

Page 36: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10G_6"6

Page 37: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

33

Page 38: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

g_

m

m

um

O

e_

g_

eN

D615-I0026-6 34

Page 39: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 40: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mmDmm

S

_J

elm

0 =G. DJD

t_ 0[,.,_

t_

D615-10026-6 36

Page 41: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026-637

Page 42: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

omII

I

D615-10026-6 38

v

Page 43: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r_

i

_D

tn EE

D615-10026-6 39

Page 44: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

A _

m 9_

D615-I0026-6 4O

Page 45: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

41

Page 46: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

42

Page 47: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

¢=

!I

_ o__ i -_-_

m 9_

D615-10026-643

Page 48: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

\

I'

m o£

D6!5-10026-6 44

Page 49: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

om

D615-10026-6 45

Page 50: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_Z

J

m _I

D615-I0026-646

Page 51: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mom

!

/

tII9ID615-iOC;' .'-.;

<

%

<

J

47

Page 52: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r_omm

0o_

I-

0

D6_t5- i,_"S.,26-6... 48

Page 53: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

n

em

0

0

0m

NI

i'._615-10026-649

Page 54: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

u

m

t_um

t:O

q_

t_

m,

D615-10026-6 50

Page 55: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B. Alternate

PRE(]I,EDING PAGE BLANK NOT FfLMED

!2,6 :t5-10026-6

Concepts

51

Page 56: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 57: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C615-10026-653

Page 58: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

qmJ

E_m

(0

L.

EomJ

I.

G0

C:,

@

E-.

Z

r,jelm

@

i_

v

D6.!5-!0f'.7-.5 ".

54

Page 59: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

om

Z.__.

r3 _,

"_'_lddnsg_I _U_llgdoad 0_"I !

S 615-10026-6 55

Page 60: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar NEP

This section contains a preliminary parametric analysis of Lunar NEP performance

capabilities. The section contains the following

• IMLEO vs Isp for various powex levels

• PropeUant Mass vs Isp for various power levels

• Trip Time vs Isp for various power levels

• Payload Fraction vs Isp for various power levels

• Breakdown of IMLEO for various power levels - 10 kg/kW

• Breakdown of IMLEO for various power levels - 15 kg/kW

A power level of 3 MW (@ 5,000 sec Isp) will transfer 100 t of payload in less

than 6 months. The IMLEO of this vehicle is -150 L The analysis assumes constant bum

dme and uses fundamental electric propulsion equations.

4

4r ,

D615-10026-_ 56

Page 61: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

tt_

II

(3_I) sseIAI IV!_!uI

_121 days

133 dayst_

_ 152 days_P

184 days

_248 days

439 days

iL'515-!0026-6 57

Page 62: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

P,

II

o

102 days

_0

134 days

_16S days

_229 days_q

420 daysv,m

D6].5-I0026-6 58

Page 63: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

@

:.;.: ...¢•::. • ! •

W

!I

t

/' / ,p/_

! " | I I I

r,4

o

o

oo00

,,4p

o

o

m

¢3,,r,#'3

(3_1)O,"4"I_I

-" 1 59:- 6..5-10026..6

Page 64: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0m

0

_L

_L

.f

:.:.":._/

I " i " i " I ' I " I ' I " i

C_O

. O

Imm

000

0 r_0

00

000

0

(3_I)sselA[ _Uellodosd

D615-10026-_ 60

Page 65: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i !

I

Iaim !

i

0u

I ! ! !

0

_4P)iq

(s£_p) om!,L d!J&

26i5-10026-6 61

Page 66: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0m

Iu_

i ' i " i ' i I ' I ' I

.C_

_m

0O0

00

000

0U'_ 0

0

Lr_

i.m

uo! J t pBol Bd

i_515-10026-6

62

Page 67: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

, ii:

!

|

uo!;o_ PeOl£ed (s£ep) am!j., dgj,

!

|

" ....(3q) 03'II_I (3_I)ss'vlA[ _Uelladoad

63D615-10026-6

Page 68: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

m

oom

om

D615-10026-6 64

Page 69: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C. Architecture Matrix

PRE(]r_DING PAGE BLANK NO7 FILMED

D615 - 10026-6 65

Page 70: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

b,

OI.

q;)_J

J

_Jearn

O

k_

D615-10026-6 66

Page 71: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

.=.

m

m

_o

t._.

D615-10026-6 67

Page 72: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

vJQ,tI_

_J

r,jL.

<

0,m)

a)

E¢U

imm

Q,E

mm

I-OJO0L

v

D6!5-I0026-6 6_

Page 73: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i3f.1.5-10026-6 69

Page 74: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

7O

Page 75: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

ol

_/_ ",_ /

_/E_

'__. ==

=_ -_=.__= _=

i

0

,-- _,

°°_ "_ =----

"r. _"

D615-10026-6

<

71

Page 76: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_Jelm

qm$

Eq,)

mmom

C

0etlal

Hm

m

I

('4

<m)

I.N

D615-10026-6

72

v

Page 77: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-16026-673

Page 78: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_mr,#a:cpk,

.<

i

(b)

CP

CP

4#Bias

Nm

V

,_ r

_D615-I0026-6" "74

Page 79: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

"75

Page 80: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

;[

fq

k,q,)

,¢=S

Z

&)m-

w

f,,)G_

w

,G_JI,,

<

k.

m

E

v}0

L)imm

G,)lainm

D615-10026-6 76

Page 81: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

v

t,,,,

,..om

)D615-10026-6 77

Page 82: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

mm

O

on

D6i5-I0026-6 "/8

Page 83: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

,<

PREGED|NG PAGE BLANK NOT FILMED

D615-10026-5 '79

Page 84: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C_eelal

C_

cum

im

em

m

.<

D615-10026--6 80

Page 85: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 86: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r_eu

r_q,)

_m

r_

L_

f.)

elnl

_mr,.)k.

.<

I.

G,)

a:L_

qua)

r,_

D615-10026-6_2

Page 87: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

e_

D615 - 10026-683

Page 88: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

•amr_

immN

,<

(k)qmJ

[]O

elm

elm

mq,)

_m

B,J

b,

QJ

_m

k,.<

D615-10026-6 84

Page 89: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

l==

em

_'- : J J c._.I I _-, =,J

._. I I • I I l= .._ I

_ °

_=' _ ,

-'_ _ _" _=_ I

B

D615-I0026-685

Page 90: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B:0

m

Ck_

C:I,.

[..

4,t

=

_J

eem

.m;JI.,

.<

r_

t-I r_

o'_ o--="_ o

• " _Om_ m

"_ _

em

m _m em ql_

_._-_._ _ _ _

" ,_ _D -m := ..m

_) ,- _ _.,'_

.. _ r_ um _ tm

t_ml tam

D615-10026-686

Page 91: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026-687

Page 92: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

B

mm

Oo_

em

D615-I0026-6 88

Page 93: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I r_ =

== _=\

ell

•_- _,

'-Z_ _'_

O ,_.L_

_,-_ _.._

= X /"=":_ _ _ "_ _ _'- " e_ /

_ _ ./_ _"_ ______.__

I _-__

PRE(]IEDING PhGE BLANK NOT FILMED

D615 - 10026-6 89

Page 94: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Im

elm

I,,

O

lumunm

Ni-

i

fJ&)w

otmu

.[=

im

.<

D615-10026-6 90

Page 95: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=

E

j

em

D615-I0026-6 91

Page 96: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_B==

ellm

¢=

¢}t-

.<

O

0omW

¢=u

==W

Ww

.I=

1_,<

Ow

¢=W

Em

m_

Em

E¢=

I,..=.,

0=.=-=,_o' ._ =._=._z

=

__

._=!=_,m -m

• im (.3

_=-= 2_

:z__°_•u=o 0==_E=..=;-==_=S2=.=_

-- = ,.. =.=='==_._.. :" ..= ==..._

_'_° "o -= >,

°°=.=== - _' >=.__== _ -

_ __=_=.,="¢=B ,,-- ¢= ._

='2_ =.>

D615-I0026-6 92

Page 97: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

E

,== =

'-"

4(,

==_

"! '_ _ _

©=.'== . =- _=_, ==. ,=_= _=_ =,--== =,-- =,- =,._ _ "u', a.- .=_ ===., =,.="= =_ =,"=

_. = =°-.-_= o°==-= _=_. ,_ =. _ =.,.-° _= _=| .=L...m _ t._.

._= ,_= _=,= ,,,.- :a_= ,-

t._,

oe ._ "= ¢

T= .=:_ ..,._ z=u == = ,,,=

D615-I0026-6 93

Page 98: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mE

m

r4_

t--

em

Eeammime

L.

Omine

f,,

EO

[-

g_[-Z

em

@P_5,,

D615-10026--6 94

Page 99: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

l

em

Z._

Iq

! °D615-10026-6 95

Page 100: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

Bm

Om

D615-10026-6 96

Page 101: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

,IBm

m

= _.3. ==. =. =.=. =.

.==_

PRE(]I,EDING PAGE ,.,,.._,c'_,,_,lc.,,.,PlOT F!LMED

D615-10026-6 97

Page 102: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

Oem

em

E-

D615-10026--6 98

Page 103: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

<

PRIE_..£NNG PP_(-,E BLAI_K NOT FgLM/D

D615-10026-699

Page 104: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

O

" D615-I0026-6 'i00

Page 105: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

II. Requirements, Guidelinesand Assumptions

A. Level I, II and Ill Requirements

PRE(I_DING PAGE BLA_K NOT FtLMED

D615-10026-6- 101

Page 106: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mN

O

m

_m

D615-10026-6 102

Page 107: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar IP&ED Text

[Editorial note: viewfoil charts are referred to as 'charts'. If the convention in the

IP&ED documents is to refer to them as 'figures' or 'tables',do a find and replace

operation (_g H in Microsoft Word 4.0)]

II. Requirements and Assumptions

II.A. Levied Requirements

There is not a conn'olled baseline (system specification and configuration) for this study.This sectionincludesour bestunderstandingof what NASA would defineasrequirements

iftheyhad tobe baselinedatthistime.Italsoincludeslower levelrequirementsand

assumptionswe derivedor made respectively.

Level Irequirements(firstchart)arcconcernedwith overallprogram schedule,mission,

funding,and interfacetootherprograms. Level 11requirements(charts2 through4) aregrouped by systems:Earth-to-orbit(ETO) wansponafion,ETO supportfacilities,space

wanspormtion vehicles,crew u'ansfcrmodule, and Lunar surfacesystem interface.

The levelIrequirementofa fin'stcargolandingin2000 leadtolevelH requirementsfor

ETO n'anspormtiontestflightand Space StationFreedom (SSF) supportreadinessin 1999.The Level I requirement to use SSF leads to specific SSF accommodations requirements intheLevel IIrequirements.

Level IT[requirementsincludevehiclespecificrequimmenr,s.The fifthchartlists

requirementsleviedon the spacewanspormtionvehicles.These are.propulsioncharacteristics:cryogenicpropellantwithan aerobrake;designmargins;and operationalcharacteristics:boiloffofcryogens,propeUantu'ansfercapability,and baselineorbit.

II.B. Derived Requirements

Inthecourseofthe study,derivedre+quimmentswere developedfi'omthelevied

requirementsand theanalyses.In some caseschanges to theleviedrequirementsarcrecommended. Issuesaddressedby thederived requirementsinthemissionareaincludethereferencemission,basing,on-orbitassembly,modularity,and life(chartsix).Other

areasaddressedinderivedrequirementsarehabitationmodule, propulsion,and wansfcr

vehiclerequirements(chartseven),and excursionvehicleand aerobrakerequirements

(charteight).Excursionvehiclerequirementsincludeperformancerequirementsand design

requirements.

II.C. Assumptions

Assumptions have tobc made intheinitialcycleofanalysisbecauseallthedam requiredis

not yetavailable.Inlateranalysiscycles,theseinitialassumptionswilleitherbe validatedor replacedby more correctvalues.The subjectsforwhich assumptionshave been

recordedarecrew size,cargo capacity,acrobrakecharacteristics,ETO vehiclecapacity,

missionmode, and engineoutcapability.

HI. Mission Operation

PREOEDING PAGE _LANK P;O¥ FILI_ED

D615-10026-6 103

Page 108: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I!I

104

Page 109: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

O

_-_ D615-10026-6 105

Page 110: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

.=_

I06

Page 111: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

107

Page 112: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

itemej

_,-.".,@ _ _ "_ ,,.,_ _ II

=.___ __ , , , ,

o

D615-10026-6 108

Page 113: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B. Derived Requirements

D615-10026-6 109

Page 114: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

110

Page 115: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

(

0

< D615-10026-6111

Page 116: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

u

mu

e_O

e_

e_om

_I)

D615-10026-6 112

Page 117: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

PRE()EOING PAGE BLANK NOT F!L_ED

D615-10026-6113

Page 118: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

Im

OI

omu

v

D615-I0026-6 114

Page 119: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=

C. Assumptions

_.. _:.!_r_....

D615- I0026-6 115

Page 120: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

M

um

e_

a

e_

om

D615-10026-6 116

Page 121: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=

0

D615-10026-6 117

Page 122: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

mm

OI

a

I

v

D6!5-I0026-6118

V

Page 123: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

III. Mission Operations

A. Mission Analysis and Performance Parametrics

_, FILMEDPREOC"OII'_G PAGE E;LANK "'"-

D615-10026-6 119

Page 124: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

I

mu

Oel

om

_F2om

D615-I0026-6 120

Page 125: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

HI. Mission Operations

The mission operations section includes data on mission analysis studies and performancepammetrics as well as the operating modes and performance evaluations which include theSTCAEM recommendations.

A. Most of the lunar miss/on analysis and performance data was genera_'.zi during the90-day study time-frame. Included in this document is data on timing of translunartrajectories, the lunar orbit insertion AV for different arrival asymptotes, transit time, and

opportunity for lunar transit leaving fi'om the vicinity of Space Station Freedom.

B. Initially,we identifiedseven lunar vehiclemodes which could be implemented with apairof vehicles;an LTV-like and an LEV likevehicle.During the courseof configuring,

sizing and generating performance data on these vehicles,11 mission modes were

identifiedwhich can be implemented with 5 major elements;a 110 tpropulsionstage,a 25 t

propulsion stage,a transferhab, a crew cab and an aerobrake. Implementation of thevariousmissionmodes isaccomplished by "piecing"togethertherequiredelements. The

resultisa Lunar TransportationFamily (LIT) thatis flexibleand can evolve to meet

growing missionneeds and changing missionmodes.

pRE(!W!I)4NG PAGE BLANK 'dOT FILCheD

D615-10026-6 121

Page 126: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V

m

m

t._

•__

_o.S

.._.=_

O

D615-10026-6 122

Page 127: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6

!

1]

123

Page 128: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

.=_-

(_,ap) s_i_u_ aueld-jo-;n 0 124

Page 129: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 130: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

em

_J

c_

O

O

em

J=

=

=

_3Zm

"ILlQm

saas_p u! S_ll_UE au_ld

D615-10026-6

-J0-mO

O

O¢,D

r_

e_

O

O

o

126

Page 131: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

f,

mini

D615-10026-6 127

Page 132: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Zm

WOm

m

o

D615- I0026-6 128

Page 133: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_ Om

=

w

aLI

• • • • • em

H H H H H l fl

ID • • • • r,i 4

II ,

TI )

u'_ II ,

__r.. 1

E 3 i / /

/!/////•" ///_,

ea

_P

:)as_m 'A e_I_I

a

D615-10026-6 129

Page 134: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

o

=

,=

I!!I

II I

II

I/

//

D615-10026-6130

Lit

I

-r.

Page 135: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

,_unar-t_arm

Capture Plane Trajectories

Approach-path

BOEING

True anomaly(neg.) at eqmxor

ca'ossing

Lg"behind the

moon"

_sis

PeA'iIunc

ofhyperbola

Approachve_r

D615-10026-6 131

Page 136: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

o

=

Zm

wOm

.=_"_

W

D615-10026-6 132

Page 137: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

',DZILlO

>

_m

e_

D615- I0026-6 133

Page 138: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i

uJ0m

L=

B • • • • a 4

tt_

I i I i i

soa_

omaa

uGa

aOI..

[.=

AV uo!_aStrl _!qJO

D615-I0026-6 134

Page 139: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Zm

1,1,1O

iml

t...

gl

EO m

clJ

t...

i._

.,el-'

_m

m

D615-10026-6 135

Page 140: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

u

m

mm

Oon

I

D615-I0026-6 136

Page 141: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

l

em

em

m

D615-10026-6 137

Page 142: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mmm

n

n

m

a

es_

om

.mE-

D615-10026-6 138

Page 143: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B. Operating Modes and Performance

PRE(]r,EDING PAGE BLANK NOT FILMED

D615-10026-6 139

Page 144: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

0elm

f:,

4,)m

_J

{=

_a

O

7.,,

_lm .12

_,_ tm m qJ

_'- __ = _"-= _ _.._-- _

_" t,,. _']

I.., == _.m v .m '_ *" _la

• _ _._ _ _-, ..! _ _'i IJ _ .,m ;._ _.

0 "

D615-10026-6

140

Page 145: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

.i

D615-10026-6141

Page 146: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

U

mm

om

es_

oU

D615-10026-6 142

Page 147: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

RE@EDING PAGE BLANK NOT FILMED

_ ..== _= _=..=_ _=.._e_ == e_ == == == _ ..

"_ _Z _Z

_= g.=

=:©= =.

=_=_ _ ._== t,,,,=- _-,= -'_ .._ _ © =., -= ==-,.. == === ..=.

==_--= ===-- i=.=_ _. N_ ="= ,.., © E= _. =_ .= = _'"_ =

. =_.©;E _-- == = .= _= =- . _--_ =

.._.I" _=_ _ _ ,=_= = __-= ,_ =.= === == "_,- ao"= : = ,_,.. =,..,>, = ¢_

= .-= -== "_ e_

" --." ,,=_ _ ==_ ,_ = t., =,-,.,=,_ _,_ ,_. =1,1 ©.=E =,=

, -.= ,...° =.;_ _'=" = t'ql t_,¢; "= .=_ = ,..1"=_==-= .=_..==°- _=

I 143"-

D615 -10026-6

Page 148: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0(_ o..

m_

_ .

_. i _

._ -_

=N

D615-10026-6 144

Page 149: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

O

D615-I0026-6 145

Page 150: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026-6 146

Page 151: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V 0

0 0 0 0 O0 0 0 0

"1'(03"B'_ llq.zo qz,,,zl_ _ m. _ ll_.m'[

D615-10026-6147

Page 152: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

_m

U

mm

OI

_s

I

om

_m

V

D615-10026-6148

Page 153: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0 0 0 0 00 0 0 0

PREOEDING PAGE BLANK NOI FILMED

D615 - 10026-6 149

Page 154: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Oemm

em

E

emll

o Nemm

N

,Dim

b==

m_E

E_15- I0026-6 150

Page 155: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

151

Page 156: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

m

m

Om

G_

m

D615-I007.6-6 152

Page 157: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

IV. Element Descriptions

A. LTV/LEV Components

PRE01EDING PAGE BLANK NOT FILMED

D61.5-10026-6153

Page 158: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

u

m

u

Oo_

a

D615-I0026-6 154

Page 159: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

IV. Element Descriptions

Element descriptions for the lunar transportation family included in this document arc alisting of the LTV/LEV components, trade studies and mass analyses of the transfer andexcursion modules, ACRV (MCRV) modifications required to fulfill lunar operations, theaerobrake shape and L/D to be used, and some costing methods and results.

A. Component listings, assumptions and sizing criteria ar_ included for the LTV, LEV,ACRV and the service module (Apollo command module derivative). This information isprovided to give an overview of the major components of the lunar transportation familyand their related subsystems.

B. An LTV/LEV habitat trade module study was conducted to size crew modules forvarying crew sizes and mission durations. Two types of u'ansfer modules were evaluated,an acrobrakcd module and a direct entry (Apollo-type) module, as weU as a single moduleconcept for transfer and excursion (direct entry at Earth) and excursion modules. Crewsizes of 2, 4, 6, and 8 for transfers of 24 days and surface stays of 1, 14, 28 and 42 days.Sizes for these 36 modules were generated from historical spacecraft data, and massstatements were generated from SSF and STCAEM estimates. Results of this u'ade studyprovide good estimates as to the size and mass of lunar crew modules.

A trade study was also performed to determine what point it becomes more mass efficientto have a separate surface hab along with an excursion module, if a base is not availableand missions of the excursion/exploration class are being performed. Results show that 3-8 days is the crossover point.

C. The SSF ACRV was originally believed to be easily adaptable to small scale lunarmission, which would allow the use of "existing" hardware. For the small scale program,the ACRV was to be used for the reentry phase back at Earth. However, the ACRVcurrently envisioned for SSF will not fulfzU lunar mission needs because of its size. Theinternal volume is extremely Limited since it is designed for a 6 hour mission rather than 7to 24 day missions. In order to provide sufficient volume for crew operations andequipment storage, the interior volume would need to be increased approximately 250%(giving the same amount of free volume as the Apollo Command Module). Increasing thevolume requires major structural modifications and the resulting craft would be unlike thecurrent ACRV. Therefore, a more appropriate use for the ACRV is as a crew module forthe LTV in a direct-to-surface (tandem direct) mission scenario. Prior to Earth reentry, thecrew transfers to the ACRV and separates from the LTV, which is expended.

D. The aerobrake to be used in the lunar transportation family is envisioned as being an

early version of the Mars low L/D (L/D = 0.5) shape. The idea is to take the symmetricalcenter portion of the hyperboloid shape and fly at an L/D of about 0.25. This symmetricalportion of the Mars shape is about the right size to accommodate the LTF without having todrop tanks. Another variation to this concept is to have standard "additions" that can beadded to the outer rim of the brake to accommodate growing mission needs. When Mars

comes into the picture, an "addition" can be fabricated to accommodate these missions.

Heating analysis was performed on this shape, and it was found that the ballistic coefficientis very low in comparison with Mars and the heating temperatures only reach about 1870°Kat the stagnation point.

E. Costing for the lunar transportation family is being calculated for both hardware cost,using the Boeing Parametric Cost Model (PCM), and life-cycle cost, using a model

PREO_OfNG PAGF_. BLANK NO3 FfLMED

D615-10026-6 155

Page 160: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mm

iml

um

e_o

I

e_

m

D615-10026-6 156

Page 161: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

dcvclopcd by Madison Research. Preliminary costing date from PCM is included in _.isdocument, and the life-cycle cost da.ta is _ p_gr_ss an d will be reported in later documents(IPSdED updates, f'mal report, tcchmcal ditr.cuvcs, etc.).

D615-10026-6 157

Page 162: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

jt

m C_ _

Page 163: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026-6

Page 164: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6 160

k.,.,,4

Page 165: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_°_

i

D615-10026-6

t_<

161

Page 166: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V

m

N

mm

o_

o_

D615- i00_.6-6 162

Page 167: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B. Habitation Modules

PREGEUIi.,K_ .PAGE BL;,NK NOT FILMED

D615-1007.6-6 163

Page 168: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

°_

E,.'_

K

¢_ ,-,

D615-10026-6 164

Page 169: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

om,,i

°° ,_1- • _1 • • • •

D615-10026-6

,<

1"-

165

Page 170: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V

m

m

mm

O

al

m

D615-I0026-6 166

Page 171: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 172: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r_

o_m

o_

m

O

L_ t_

oN=E

_LT.1

=E-

o_

N

o_

z...

im Bm

D6_.5-10026-6 168

Page 173: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

'--' 0

(uosJad/£vm) omnloA :_U!:_adS

D615-10026-6169

Page 174: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

y.--

r_

b=L

,.-O

J

em

-=_

b4emm 5-..

_=

D615-I0026-6 170

Page 175: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

=

o

<

L.

_J

E _ e_ E

E

Oa

t_

E E

D615-I0026-6 171

Page 176: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

o_

°wt

k_ °m

m

D615- i0026-6

172

-_.j-

Page 177: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

173

D615-10026-6

Page 178: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

g_

m

_m

n

nm

ag_

I

g_I

D615-10026-6

174

Page 179: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Transfer Crew Module

24 day duration

Cre w SizeHabitable Volume (m3)

i

ECLSS Total

Atmosphere Revitalization System (ARS)ACS (tanks & I/'2 nec. SSF equip.)

Atmos. CompositionMonitorAssemblyThermal Control/Temp. & Humidity

Control (I/2SSF- av.airequip.)

PotableWater and StorageSysmm

Fire Detectionand SuppressionSystemStructureTotal

End cones(2)

Berthingring/mechanism(I)

Berthinginterfaceplate(I)

Cylinderprimarystructure

Cylindersecondarystmctu_Standoff/u_lilities/distribution

I-law_es(2)

W'mdows (4)

Couches/sleepersComman_ControL/Power total

ECWS (1/2 SSF)DMS/andio - visualFault detection and isolanon

Power system(solararrays,batteries,

onboard equipment)

Lights(1/2SSF)i

Man.Systems l oralWMSlwastc storage

EVA suits/spaceclosureballs

Medicalequipment(1/2surf.e.quip,mass)_LonstimaOleS l'Otmi

Food and packagingAtmospheric mak=-up and 3 r_pmsses

(20% reserve)Other (clothes,hygiene equip.,etc.)

Potablewater

uther Iota|

Personneland effects

Equipment sparesTools

Radiationshelter

mass tarowtn t ota_ (J__/o)i

Iotal Moaule _ylaSSi

1,272242

274125

479

29

123

1,47226613990

29535296

134

6O4O

$24

22

28O4O

132

50

41795

272

50

498120

206

28

144

l,USJ180

100

25778

3,8J..9

4

48i

1,317242

290125

479

58

123

t,S75266139

9O

322388

96134,

60

80762220280

4O

172

5O

45795

312

50

8$Z24O

269

55288

1,091

36O

104

25

1,202

017

7,A71

6

72

1,361242306125

479

86123

i

1,.978266139

90,,67

579

123

134

60

12o

802220280

40212

50

497

95

352

50

t,Z7836O

4O3

83432

54O

108

25

1,626090

S_ti

8

96iHi

1,406242322

125

479

115123

2,442266

139

90

6O8

765

220

13460

160842220

28040

252 "

5OJ

$3795

392

5O

L_7U4

480538

110

576

720112

25

2,050

Note:AllweightsarcinkilogramsLunar samplematerialmass notincluded

D615"10026"6E'LA.K i'-ILM .D 1"/5

Page 180: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

kV

m

m

m

m

O_

,Wm$

a

v

D615-10026-6 176

Page 181: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Transfer Crew ModuleDirect Entry

24 day duration

SOlTdUOJ I_l_u

Crew SiTe

_,_table Vol-me (m3)

E_-qS

Structure

_a'wnm Rn d/Co_n_l:rol/Powcr

M.--Sysmm_Con$11rrlahlo$

P_'3onnet and Eff_:tS, Spa_s, o_.

R_dlarinn She!tin"

$_vZh F_ntl_ H_A_tShield

E"Ja l_eovcr T Equipment

g_s Growth (15%)To_i Module M_

2

44

1,272

1,766

524

417

498

3O5

778

2.OO8

454

1,020

9,042

448

1-,317

1,890

762

457

852

489

1,202

2.149

547

1,180

I0,845

6

72

1,361

2,374

8O2

497

1,278

673

1,626

2,760

682

1,441

13.494

8

96

1,406

2,930

842

537

1,704

923

2,O5O

3r358825

1+712

16_..87

Note: All weights areinkilograms

Lunar sample materialmass not included

PREOEt)tN'3 P.ztG,: _:_!./-'.t;._ +.!Z:,

D615-10026-6 177,

Page 182: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

L,

r.#2

oomml

t#2

t#)

t--

z_

_,d I.+

o_

o_

.=_r_

_t"4

c)_r

D615-10026-6 17g

Page 183: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

__ ._=._ ._=._

_ e ._e_ ._e._e

D615-10026-6 179

Page 184: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

M

U

mU

O

e_

I

I

E-

D615-I0026-6 180

Page 185: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

$(Igluoa tllx_>u

Lunar Transfer/Excursion Crew Module

Direct Entry24 day duration*

I day and 14 day surface stays

Crew Size

Habitable Volume (m3)**

ECLSS

Strucn_re

Command/Conu'ol/Power| i

lvian-STsmmsConsumables

i

Personnel and E_cccs, Spares, cm.Radiation Shelter

Earth Entry Heat Shield

Ean_ Recovery _ui_ncnt

Mass Growth (15%),Total Module Mass

244

1,272

2,32i

524

417

498

305

778

2,008

487

1,109

9,719

488

1,317

3,145

762

457

832

489

1,202

3,181684

1,544

, 13,633 ,

6

132

1,361

3,901

8O2

497

1,278

673

"I,626

4,212

861

1,914

17,125

i|

8176

1,406

4,838

842

537

1,704

923

2,050

5,052

1,041

2,284

20,677

* 1 day surface stay or 14 day sur/ace stay

7 day round mp

24 day fr_ mmm abort - _ far worst case

** Volumes sized for 21 day nominal case

Note: All weights arc inIdlograms

Lunar sample mam'ial mass not includedPR]EL ARY

PRE6EDING P.-_GE BLANK NOT FILMED

D615-10026-6 181

Page 186: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Transfer/Excursion Crew ModuleDirect Entry

35 day duration*

28 day surface stay

Crew Size 2

Habitable Volume (m3) 66

!ECLSS 1.293

Su'uculm 2,801

Comm.-d/Con_rollPower 1,703

Man-S_-ms 417Consumabl_ 893

Personnel and Et_ Spares, e¢. 305p.H_._n, SheJ_r 778

Emh En_ 7 Heat Shied 2.600

Earth R_ov¢_ P_uipm_nt 647

Mass Growth (15%) I_376

Total Module Mass 12,813

4 6 8

132 198 264

1.835 2.692 3,549

3.901 4.838 6,045

2.476 3.232 4,021

457 497 537

1.718 2,578 3.436

489 673 923

1,202 1,626 2,050

4,212 5,501 6,581

977 1,298 1,629

2,190 2+878 3_581

19,457 25,813 32_352

* 28 day surface stay

7 day round trip time

Note: All weights are inkilogramsLunar sample materialmass not included

P tEL A] Y

D615-10026-6

182

Page 187: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

t.b t.bd tdUutt_ 2 t,J

Lunar Transfer/Excursion Crew ModuleDirect Entry

49 day duration*

42 day surface stay

Crew Size

Habitable Volume (m3)

ECLSS

Strucna'e

Command/Control/Power

2 4 6

84 168 . 252

1,693 2,403 3,546

3,145 4,586 6,002

1,703 2,476 3,232

457 497

2,289 3,435

489 673

1,202 1,626

4,943 6,456

1.131 1,528

2,511 3,359

22,487 30.,354

Man-Systems 417Consumables 1,146

Personnel and Effects, Spares, etc. 305Radiation Shelter 778

Earth Entry Heat Shield 3,094

Earth Recovery Equipment 737

Mass Growth (1_%) 1,673Total Module Mass 14,691

8

336

4,687

7,442

4,021

537

4,579

923

2,050

7,757

1,919

4,181

38_096

* 42 day surface stay

7 day round trip time

Note: All weights are in kilogramsLunar sample material mass not included

1?RE ARY

D615-10026-6 183

Page 188: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

mm

OI

I

m

a

D615-I0026-6 184

Page 189: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

%

PREIIEDING PAGE BLANK NOT FILMED 185!

D615'10026-6

Page 190: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

==

oeurd=t...

t...

_J

t...,

_D

"OO

Oom

f,J

O

elmt

emnl

m

"OO.j= t"4

u_ust'q

D615-I0026-6

186

V

Page 191: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

= =

EO

I!

' !JJ

-_4_ -I ___ "

OZ

D615 - I OO26-6

Page 192: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

-S

C_

r_

-=E

O

mmm

euoo

om

m

(D

V

D615-10026-6 188

Page 193: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

5 EEE_

= _,_*_ ,-_

G

._ ._

J

189

Page 194: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

O

I

I

z.6:,5..loo?+_ _9o

Page 195: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Excursion Crew ModuleI day duration

CIVw SizeHabitable volume (m3)ECLSS TotalARS/ACSIACMA

1 Repress (incL 40kg plumbing)Temperann'e and. Humidky Conn'olThermal Control SystemPotable Water Storage SystemStructure Total

Primary/Secondary S_Bera_g _g/me_ (1)Berthing interface plate (I)I-Ia_hcs (2)W'mdowsChaks

Vents/PlumbingCommand/Control/Power TotalEC'WS/DMSFault Detection & Isolation

Power System(Fuel ceils, cond. eq., solar arrays)LightsMan _ystem TotalWMS/Waste suragcPersonnel and EffectsTransfer EVA Suits with PLSSConsumaDles Total

Food and p_e__.gOther consumables

Tools

Weight t_row_ Total (15 %)

Total Module Mass

2 4

44 44

228 341

11 2195 95

96 192

20 206 13

L630 L6651,032 1,032

139 13990 90

134 134100 100

10 20

125 150

323 409100 100

173 259

50 50

504 1,0084 8

160 320

340 680

32 38

3 54 8

25 25408 5].9

3,125 3,980

6

44454

32

952882O19

1,7001,032

13990

134100

30175

495

100

345

50

1,49212

480

1,00045

812

25628

4,814

8.

44566

42

95

384

2025

L7351,032

13990

134

10040

2OO580

IO0

430

5O

L.q7616

640

1,32051101625

736

5,644

Nora: All weights arc in kilogramsLunar sample material mass not includ_l

F EL AXY

2615-10026-6

191

PRE($EDING PPlGE BLANK NOT RLMED

Page 196: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Excursion Crew Module14 day duration

crt, w Size

Habitable volume (m3)ECLSS Total

ARS/ACS/ACMA

2 Rep_s(100kg plumbing/pumps)Tempenmm: and Humidity Conm_t

Conu'ol Systempoutble Wamr Storage SystemStructure Total

Primary/Secondary StructureAirlock

:rthing ring/mech.(1)Berthing into'face plate (1)Har_s (2)W'mdowsChain

Vents/Plumbin$Comnmnd/Control/Power TotalECWS/DMS

Power System(Fuelcells, c.ond. _., solar axrays)LightsMan _ystem TotalWMS/Wasm storagePersonnel and Effec_Transfer EVA Suim with PLSSConsumal_les Total

Food and PackagingOther consumables

Tools

Weigllt Urowtll Total (1_%)

Total Module Mass

2

44$61147

21096

2088

2,1401,032

51013990

134100

10

125430100280

5O

55656

160340

6435

425

56.3

4,314

4

76

971

294

•290

192

2O

175

2,6231,480

510139

9O

134100

20

150

574i00424

50

LLt2112320

680

10370

825

807

6,190

6

114

t,397441385288

20263

3,1942,016

51013990

13410030

175714100564

50

L648168480

1,00014g105

1225

1,064

8,159

_,tt_ t _../t.._ t.t.t_t.,,_

g

152

1,S22588

480

384

20350

3,766

2,553510

13990

134

10040

200855100705

50

2,18,;224640

1,320181140

1625

1,321

10,129

Note:AllweightsareinkilogramsLunar samplematerialmass notincluded

192

Page 197: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Excursion Crew Module

28 day duration

Cr_ Siz_

Habitable volume (m3)ECLSS Total

ARS/ACS/ACMA

2Repn (100kg ptmb -g/p nps)Temperature and Humidity Conn"ol

Thermal Control System

Potable Wal_- Storage System

Structure Total

Primary/Secondary Structm_Airiock

Berthing dng/m_,h. (1)

Berthing intm-t'ace plate (1)

Har_s (2)W'mdows

Cha_

VenWPlumbingCommand/Control/Power Total

ECWS/DMS

Power System

(Fuel cells, cond. eq., solar arrays)

Ugt Man System Total

WMS/Waste storagePersonnel and

Transfer EVA Suits with PLSS

Consumables Total

Food. and pncl_n_ngOther consumables

Tools

Weigllt Growta Total (15 %)

Total Module Mass

2

60

835

294

250

96

20

175

2,373

1,265510

139

90

134

10010

125

1,703100

1,553

50

612

112

160

340

99

70

4

25

843

6,465

4

120

1,550

588

400

192

20

350

6 8

180 240

2,265 2,980882 1,176

550 700

288 384

20 20

525 700

3,267

2,124

510

139

9O

134

100

2O

150

4,029

2,851

510

139

90

134100

30

175

$,0103,797

510

139

90

134

100

40

200

2,476

100

2,326

5O

3,232

100

3,082

5O

1,816

4,021100

3,871

50

Z,40S224

320

680

173

140

8

25

X,_04

9,994

336

480

1,000

247

210

12

25

4.48

64O

1,320

321

280

16

25

2,211

16,951

sd_06Juneg0

Note: All weights are in kilograms

Lunar sample mamdal mass not included

_£15-.10026-6193

Page 198: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

U

U

m

0om

I

DC15-i0026--6 194

Page 199: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Excursion Crew Module42 day duration

Crew Size

Fmbimble volume (_)ECLSS TotalARS/ACS/ACMA

2 Repress(100kg plumbing/pumps)Temperanm: and _ Control'1'hesmal Conu'ol SystemPotable Water Storage SystemStructure Total

Primary/Secondary SnuctumAirlock

Bcm:hing rin_ (1)B_hing inmrfa_ pla_ (1)_s (2)W'mdowsCba_

VenudPlumbingCommand/Control/Power TotalECWS/DMS

Pow_ System

_ucl cells, cond. cq., solar arrays)Lighu

Man bystem TotalWMS/Waste storagePersonncl and EffectsTransfer EVA Suks with PLSS

Consumal)les Total

Food and PackagingOther consumablesTools

WeJgl]t Grow_ Total (15%)

Total Module Mass

2

80

1,120441300

9620

263

2,6521,544

510

1399O

134100

10125

1,703100

1,553

50

66816816034O1.34105

4

25942

7,219

4

160

2,11.98825OO

19220

525

3_A

2,6815101399O

134100

2O150

2.,476I00

2,326

50

33632O680

2108

25

J._oo

1.1,498

6

240

1,323700288

20788

4,9'753,797

510

13990

13410030

175

3,232100

3,082

50

t, gS45O4480

1,000352315

12

25

2,,O49

15,711

8

320

4,118

1,764900

384

2O

1,050

6,1464,933

510

13990

13410040

200

4,021100

3,871

50

2,632672

640

1,320461420

16

25

Z,607

sch:JO6JuncgO

Note:Allweights are in kilogramsLunar samplematerialmass not included

PREOEDIMG PAGE BLANK i'..,'OT_Z.P._E'.DD625.._10026-6

195

Page 200: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

t..._9

0emW

L..

|

t_0

OEE0

.=.

"00 o

B_

==om

m

o

m

m

,...._ee 0ro ,.,_

D615-10026-6

196

Page 201: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 202: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

u

u

OOM

I

I

D615-10026-6

198

Page 203: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

"¢t

_J

=

¢t

,,I.

E

199

Page 204: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

o

i0

em

__ oo_

°

-_ 200_,6_5-I00:t6-6

Page 205: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_J

#.,. #=

:. _#[_ *m m

.I=

=

,_.._

_ tr_

_^_.=

_0.__. _ _', .:=_/_.._ ,_ _"•_ _ ::,.0_ TM

::. N

.. 0m .m

L__. G.

m _m

m ._ ,..., 0

:-'; = N

D615-I0026-6 201

Page 206: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

!

D615-10026-_ 202

Page 207: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

@b

,,0

i

", ',\\ \ll• ',, ,=\_ _,I_ k

'%, "_, _, _ I _l /

"', ",, ",_\ "ll

_. "-', '','_°\ "_I i == ,, ,,\,,\ _, _

C3 " _ " _ " C3 " C3 " C3

t_

203

Page 208: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

e_

u

mmm

mU

Oemq_

e_

e_

D615-10026-6 204

Page 209: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C. ACRV Modifications

pRE'GEDING PAGE BL_;"_, NO1 _..iblED

D615-1002(>-6205

Page 210: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r,

. 00O

( _ D615 - 100.26-_ 206

Page 211: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

<

em

r,F3

=m

aP.

te_

I

(ua)am) ;q_taH

D6i5-10026..6

r.,,,,

v_

,,q.

f,q

o

o

Sv

t_=IS

ee

r._

207

Page 212: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V"

Page 213: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D. Aerobrake

D615-10026-6 209

Page 214: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mImm

Otu

L..

t_

E

o_

D615-I0026-6 210

Page 215: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

000000_0

m

G)

_0_0_ .,-_ I_ r,.J -,_

_0_

0_0_

_,_ 000",-_-_ • _ _•r-_ _ Q,O

0

IIIII

I

0_000000

I

D615-I0026-6

I OO

211

Page 216: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

m

u

O

e_

D615-I0026-6 2J.2

Page 217: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

J

c_

em

/

/

//

//

!

/--/ /

, //

/

PRE(_tEEHNGPAGE BLANK NOI ;:ILBIiD

D615-I0026-6 213

Page 218: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

OJD

em

[]

emm

0

Oom

N

OJO

L.O

[..,

V

D615-10026-6 214

Page 219: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 220: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

ol

G,)

mmm

L

[..,

_._ _ o

v

D615-10026.-6 216

Page 221: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

1=

_aC=

I,mJS,.

C=_a

II

|

/;/_a)" _a

.., ;p,.f,,a '-"-

m _ID ella

IIII

I

( z m:_/M) o:leH 3u!_eOH

D615- I0026-6

|

217

Page 222: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026--6 218

Page 223: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i

_=E

J

II

mm

*m

*m

,mm

r_r#)

*m

m

Iml _ml lml _i Iml m

(_I) oJnleJodmox

Id

m

Igl

O

'9,

!

r,l)

irl

II

_ u

J /

}):219

Page 224: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Oem

.mmm

om

i-.

¢Bt..

g_

f-

° |

D615-10026-6 220

Page 225: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

em

t.,

em

t,..

t-,C.I_=EC.)

.=.

II '_ ,_ b"...

• Q • • • •

D615-10026-6 221

Page 226: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

u

mu

Oa

_t0

' 4"

D615-I0026-6222

V

Page 227: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

pRE@ECNNG PAGE BLANK NOT F_LMED

D615-10026-6

E. Cost

223

Page 228: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

nn

Oa

D615-I0026-6

224

Page 229: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Lunar Family

Programmatics

The objectives of the Programmadcs task during the current phase of the study were: (1)

realistic initial schedules that include initial critical path program elements; (2) initial

descriptions of new or unique facilities requirements; (3) development of a stable, clear,

responsive work breakdown structure (WBS) and WBS dictionary; (4) initial realistic

estimates of vehicle, mission and program costs, cost uncertainties, and funding profile

requirements; (5) initial risk analysis, and (6) early and continuing infusion of

programmatics data into other study tasks to drive rexluirements/design/ffad= decisions.

The issues addressed during the study to dam included: (1) capturing all potential long-lead

program items such as precursor missions, technology advancement and advanced

development, related infrastructure development, support systems and new or modified

facility construction, since these are as important as cost and funding in assessing goal

achievability; (2) incorporating sufficient operating margin in schedules to obtain high

probability of making the relatively brief Mars launch windows; (3) the work breakdown

structure must support key study goals such as commonality and (4) cost estimating

accuracy and uncertainty are recurring issues in concept definition studies.

Introduction

The study flow, as required by MSFC's statement of work, began with a set of strawman

concepts, introduced others as appropriate, conducted "neckdowns", and concluded with a

resulting set of concepts and associated mconanendations.

As the study progressed, much discussion among the SEI community centered on

"architecua'es". In this study, architectures were more or less synonymous with concepts,

since the statement of work required that each concept be fully developed including

operations, support, technology, and so forth.

We started with ten concepts as shown in the "Overall Study Flow" chart. After the

"neckdown" was completed, significant effort was put into programmatics.

D615-10026-6

PREOe_-'I.-_CNGPAGE BLANK NO.,"r "" MF..D 225

Page 230: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

As was indicatedearlier,we establishedthr_ levelsof activityto cvaluat_ in-space

transportationoptions. The minimum was justenough tomeet the President'sobjectives;

in fact "returnto the Moon to stay" was interpretedas permanent facilitiesbut not

permanent human presence.The minimum program had onlythr_ missionstoMars. The

median (fullscience)program aimed atsatisfyingmost of thepublishedscienceobjectives

forLunar and Mars exploration.The maximum program aimed forindustrializationofthe

Moon, forreturnof practicalbenefitsto Earth,and forthe beginnings of colonizationof

Mars. The range of activitylevels,as measured by people and materieldeliveredto

planetarysurfaces,was about a factorof 10.The range ofEarth-to-orbitlaunchrams was

less,sincewe adopted resultsof preliminarytradestudies,selectingmore advanced in

space transportationtechnologiesas baselinesforgreateracdvitylevels.The high level

schedules developed for these three levelsof activityarc shown in the "Minimum

Program", '_FuliScienceProgram" and "Industrializationand SettlementProgram" charts

and a comparison of them for both Lunar and Mars is shown in the "Lunar Program

Comparison" and "Mars Program Comparison" charts.

Schedule/Network Development Methodology

A PC sysmm calledOpen Plan by WST Corporationwas used,which allowsdirectcontrol

and lower costover alarger(mainfl'amc)system. The network was purposelykeptsimple.

Summary activitieswere used indevelopment of thenetworks. When detailedtoa lower

level,some activitieswillrequirea differentcalendarthan we used. One calendarwith a

five day work week - no holiday was used. Utilizingmulticalendarson a summary

network could confuse the development. The PreliminaryWBS Structtn_Level 7 was

followed for selectionof work to bc detailed.An example of Level 7 is: MEV Ascent

Vehicle Sn-ucture/Mechanisms.We thendeveloped a genericlogicstringof activitieswith

standarddurationsforlikeactivities.This logicwas thenappliedagainsteach WBS Level

7 element. To establishinterfacetiesbetween logicstringsand determinationof major

events,we used the Upper Level Summary Schedule and Summary I.avelTechnology

Schedule.

D615-10026-6

226

Page 231: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Goals/Purpose

There were two goals for the schedule/network development These were:

a. Guidelines for Future Dcvelopn_nt. The schedules are a preliminary road map to

follow in the development program.

b. Layout Basis Framework forNetwork. The networks can be used forfuturedetail

network development. This development can be in phasesretainingunattended logicfor

areaswhich can bc be derailed.

Status

Six preliminarynetworks have been d_velopeA They are:

- Lunar minimum

- Lunar fullscience

- Lunar indusmaliz_on

- Mars missions

- Mars fullscience

- Mars serdemcm

These networks willbc fltrtherdeveloped asinformationbecomes availableThe technology

developmem plan schedulesarc shown inthe Schedulessectionof thistext;an example of

the standard 6 year program phase C/D schedule isshown in the "Reference 6 yr.Full

ScaleDevelopment Schedule" chart. The network schedulesdeveloped duringthe study

am availableintheFinalReport CostDam Book.

Facilities

The facility requirements and approaches are discussed in the Facilities section of this text.

D615-10026-6

227

Page 232: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Work Breakdown Structure

The approach to d_veloping a W'BS tree and dictionary was to use the Space Station

Freedom Work Package One WBS as a point of departure to capture commonality,

modularity and evolution potentials. We worke, d with MSFC to evolve the WBS illustrated

in the six WBS charts given in this section. The WBS dictionary _mils are provided with

the WBS u_ in a separa_ dclivvrablc document.

Cost Data

Overall Approach

Space transfer concept cost estimates were developed through parametric and detail

estimating techniques using program/scenario plans and hardware and software

descriptions combined with NASA and subcontractor data. Our estimating approach

simulates the aerospace development and production env/ronment. It also re_ program

options not typical of aerospace programs. This flexibility allows assessment of innovative

program planning concepts.

Several tools were emPloyed in thisanalysis. For developing estimatesthe Boeing

ParametricCost Model (PCM) designed specificallyforadvanced system estimatingwas

used. Itutilizesa company-wide, uniform computerized dam base containinghistorical

dam compiled since1969. The second major toolisa Boeing developed LifeCycle Cost

Mod_l. The thirdtoolistheBoeing developedRcun'n on Investment('ROD Analyses.

The approach to cost estimating was to use the PCM to establishDDT&E and

manufacturing costof major hardware components orto use otherestirnatcs,(e.g.Nuclear

Working Croup estimator)fftheywere consideredsuperiorand thenfce._ithem totheLCC

model. Variationson c,quipment hardware or mission aitcmativescan be run through the

LCC and thencompared forareturnon investment.This flow isillustratedinthe"Costing

Methodology Flow" charts. We were able to investigatealternativeconcepts quickly,

giving system designersmore data for evolving scenario/missionresponsive concepts.

Transportationconcepts, tradestudies,and "neckdown" effortswere supported by this

approach.

D615-10026-6

228

Page 233: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Parametric Cost Model

PCM develops costfrom the subsystem leveland buildsupward to obtaintotalprogram

cost. Costs are estimated from physical hardware descriptions(e.g.,weights and

complexities)and program parameters (e.g.,quantifies,learningcurves,and integration

levels). Known costs are input directlyinto the estimate when available;the model

assessesthe necessarysystem engineeringand system testeffortsneeded for integration

intotheprogram. The PCM working unitisman-hours, which allowsrelationshipsthattie

physicalhardware descriptionsfirsttodesignengineeringor basicfactorylabor,and then

through the organizationalstructureto pick up functional areas such as systems

engineering, test,and development shop. Using man-hours instead of dollarsfor

estimatingrelationshipsenablesmore reliableestimates.The PCM features,main inputs,

and resultsarc shown in the "Boeing Parametric Cost Model (PCM)" chart. The

applicablePCM results,in constant1990 dollars,are then put intothe Life Cycle Cost

Model to obtaincostspreads forthe variousmissions/programs. The varioushardware

components costed for the threedifferentmissions/programs arc shown in the "LCCM

Hardware Assignments" chart.

The development of space hardwa_m and components needed to accomplish the three

differentLunar/Mars missions wcrc identified.These components are grouped intothree

differentcategoriesdefinedbelow.

HLLV(I-leavy LiftLaunch Vehicle)istheboosterrequiredto liftpersonnel,cargo and

fuelsintoLEO and supporttheLEO node operations.

Prouulsion Includesthe space propulsionsystem requiredto transferpeople,cargo and

equipment out of LEO and intospace. Space means Lunar, Mars and Earth destinations.

PropulsionSystems alsoincludean all-propulsivecryogenicTrans Mars InjectionSystem

(TMIS) for the Minimum Mission, the Nuclear Electric Propulsion Stage for the

Settlement/IndustrialMissions.

Modules Include the space systems thatare required to transferpeople, cargo and

equipment from LEO toLunar and Mars orbit;tode-orbitand sustainlifeand operationson

theLunar and Mars Surface;and,finally,toreturnpersonneland equipment toLEO.

D615-10026-6

229

Page 234: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

CostBuildups

ThePCM cost Model can be used directly to obtain complete DDT&E cost, including

productionof major testarticles,by enteringintothemanufacturing sectiontheequivalent

numbers of unitsforeach item,includingthefirstflightarticle.However, when opcxatedin

thisway, PCM does not give the fn'stunitcost.To save time,we ol:_1"atedPCM so as to

givefirstunitcost,which we _ forlifecyclecostanalyses,and used the firstunitcost

tomanually estimatethetesthardware contentof theDDT&E program. The "wrap factors"

shown in the costbuildup sheetswe,re derived from the PCM runs as the factorthatis

appliedtodesign engineeringcostto obtaincomplete design and development costs,e.g.

includingnon-recurringitemssuch as sysmms engineeringand toolingdevelopment.

v

Life Cycle Cost Model

The LCCM costdataisa composite of HLLV costs,launch base facilitiescostestimate

based on $1sq.ft.and parametricestimatesderivedfrom the ParametricCost MOd_I. The

principalsource of informationisfrom the PCM. All hardware costestimates,with the

exceptionof HLLV, have been developed withthismodel.

The LCCM consistsof threeindividualmodels. One model isforthe Minimum Program

Scale;the second isfor theFull Science Program Scale;while the thirdmodel isfor the

Scttlemcnt/tnduswializationProgram Scale. The Minimum Program meets thePresident's

Space ExplorationInitiative(SEI)objectives.These capabilitiesincludepermanent Lunar

facilitiesbut not permanent human prcseneeand thr_ missionstoMars. The FullScience

program not only meets the President'sSEI objectivesbut alsoprovides for long term

bases for far-ranging surface exploration. The Setflement/Induswializationprogram

accomplishes the objectivesof the Minimum and Full Science program scalesand

additionallyreturnspracticalbenefitsto Earth. These models were developed using the

thr_ architecturelevelsdescribedinthe Boeing manifestworksheets. Totalcostforeach

system aretabulatedby yearand each year'stotalsfeedintoa summary sheetthatcalculams

the totalprogram costforeach level.Since theLCCM resultsam missionr_la_L notjust

vehiclerelated,theyarc not provided herebut arcavailablein theFinalReport Cost Data

Book. The LCCM was developed using MicrosoftExcel version2.2 for theMacintosh

computer. Any Macintosh equipped withExcel 2.2can be used toexecutethemodel

v

D615-10026-6

230

Page 235: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Return On Investment

One of the principal uses of the LCCM is to develop trades and return on investment for

technology options.As shown in the "CostingMethodology Flow" chart,two separate

lifecyclecostmodels (which includeDDT&E and productiohcostdataderivedfrom the

parametriccostmodels ) must be developed for each ROI case;a reference,and a case

utilizinga technologyoption. The two lifecyclecoststreamsarcseparatelyentered,and

the ROI model isexecuted.The flow alsoillustratesthatnot allof thedataenteredintothe

lifecyclecostmodel isderivedfrom availablecostingsoftware.Technical analysismust

accompany thisdata. For example, the number of unitswhich must be produced for the

DDT&E program must be determined. This isdone at the subsystem levelbased on

knowledge of past programs, and proposed system/subsystem tests. Since the ROI

analysisismission related,not justvehiclerelated,the dataisnot presentedhere but is

availableintheFinalReportCost Data Book.

Results

A summary of the costdata produced by the PCM for the lunarfamily of vehiclesare

given in the PCM summaries included in thissection.The PCM program was used to

produce DDT&E and productioncostestimatesforeach of our referenceMars and lunar

vehiclestothe subsystem level.The DDT&E costsgeneratedby thePCM do not include

allof the necessaryhardware forthefirstmission vehicle.Hence allnecessaryadditional

units(prototypes,testunits,lab units,etc.)were added intothe vehiclecost buildups as

shown in the "Lunar Cost Buildup" charts.The totalDDT&E includesadditionalcosts

(e.g..additionalunitsintheDDT&E program), contractorfeesand theengineeringwrap

factor.The totalDDT&E from the costbuildup and the unitcostfrom the PCM are the

primary vehicle cost inputs to the LCC model

D615-10026-6

231

Page 236: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Risk Analyses

Risk analyses were conducted to develop an initial risk assessment for the various

architectures. This presentation of risk analysis results considqrs development risk, man-

rating requirements, and several aspects of mission and operations risk.

Development Risk

All of the architectures and technologies investigated in this study incur some degree of

development risk; none are comprised entirely of fully developed technology.

Development risks are correlated directly with technological uncertainties. We identified

the following principal risks:

Cryogenics - High-performance insulation systems involve a great many layers of multi-

layer insulation (MLI), and one or more vapor-cooled shields. Analyses and experiments

have indicated the efficacy of these, but demonstration that such insulation systems can be

fabricated at light weight, capable of surviving launch g and acoustics loads, remains to be

accomplished. In addition, there are issues associated with propellant transfer and zero-g

gauging. These, however, can be avoided for early lunar systems by proper choice of

configuration and operations, e.g. the tandem-direct system recommended elsewhere in this

report. This presents the opportunity to evolve these technologies with operations of initial

flight systems.

Engines - There is little risk of being able to provide some sort of cryogenic engine for

lunar and Mars missions. The RL- 10 could be modified to serve with little risk; deep

throttling of this engine has already been demonstrated on the test stand. The risk of

developing more advanced engines is also minimal. An advanced development program in

this area serves mainly to reduce development cost by pioneering the critical features prior

to full-scale development.

Aerocapture and aerobraking - There are six potential functions, given here in approximate

.ascending order of development risk: aero descent and landing of crew capsules returning

from the Moon, aerocapture to low Earth orbit of returning reusable lunar vehicles, landing

of Mars excursion vehicles from Mars orbit, aero descent and landing of crew capsules

returning from Mars, aerocapture to low Earth orbit of returning Mars vehicles, and

D615-10026-6

232

Page 237: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

acrocapun'eto Mars orbit of Mars excursion and Mars transfer vehicles. The "Development

Risk Assessment for Aerobraking by Function" chart provides a qualitative development

risk comparison for these six functions.

Aerocapture of vehicles requires large aerobrakes. For these to be efficient, low mass per

unit area is required, demanding dfficient structures made from very high performance

materials as well as efficient, low mass thermal protection materials. By comparison, the

crew capsules benefit much less from high performance structures and "rPS.

Launch packaging and on-orbit assembly of large aerobrakes presents a significant

development risk that has not yet been solved even in a conceptual design sense. Existing

concepts package poorly or arc difficult to assemble or both. While the design challenge

can probably be met, aerobrake assembly is a difficult design and development challenge,

representing an important area of risk.

)

Nuclear thermal rockets - The basic technology of nuclear thermal rockets was developed

and demonstrated during the 1960s and early 1970s. The development risk to reproduce

this technology is minimal, except in testing as described below. Current studies arc

recommending advances in engine performance, both in specific impulse (higher reactor

temperature) and in thrust-to-weight ratio (higher reactor power density). The risks in

achieving these are modest inasmuch as performance targets can be adjusted to technology

performance.

Reactor and enginetestsduringthe 1960s jettedhot,slightlyradioactivehydrogen directly

intothe atmosphere. Stricterenvironmentalcontrolssincethattime prohibitdischargeof

nuclearengine effluentintothe atmosphere. Design and development of fullcontainment

testfacilitiespresentsa greaterdevelopment riskthan obtainingthe needed performance

from nuclear reactors and engines. Full- containment facilities will be required to contain all

the hydrogen effluent, presumably oxidize it to water, and remove the radioactivity.

Electric Propulsion Power Management and Thrusters - Power management and thrusters

are common to any electric propulsion power source (nuclear, solar, or beamed power).

Unique power management development needs for electric propulsion are (1) minimum

mass and long life, (2) high power compared to space experience, i.e. megawatts instead of

kilowatts, (3) fast arc suppression for protection of thrusters. Minimizing mass of power

distribution leads to high distribution voltage and potential problems with plasma losses,

D615-10(Y26-6

233

Page 238: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

arcing, and EMI. Thus while pow_" management is a mam._ technology, the unique

rcqui_m_nts of electricpropulsionintroducea number ofdevelopment risksbeyond those

usuallyex1_riencedin spacepower systems.

Electricthrustertechnology has be,cn under development sincethe beginningof the space

program. Small tb.rustcrsarc now operational,such as the r_sistance-heat-augmented

hydrazinethrusterson certaincommunications spacecraft.Small arc and ion thrustersarc

nearingoperationaluse forsatcUitcstationke,cping.

Space transfer demands on electric propulsion performance place a premium on high power

in the jet per unit mass of electric propulsion system. This in turn places a premium on

thrusterefficiency;power in the jet,not electricalpower, propels spaceships. Space

transferelectricpropulsion alsorequiresspecificimpulse in the range 5000 to 10,000

seconds. Only ion thrustersand magnetoplasmadynamic (MPD) arcthrusterscan deliver

thisperformance. Ion thrustershave acccptabl_efficiencybutrelativelylow power perunit

of ion beam emittingarea. MPD thrustertechnologycan cl_liverthe needed Isp withhigh

power per thruster,but has not yetreached cfflciencicsof interest.Circularion thrusters

have been builtup to50 cm diameter,with sphericalsegment ion beam grids.These can

absorb on the order of 50 kWe each. A 10 MWe system would need 200 operating

thrusters.The development alternativesallhave significantrisk:(I)Advance the smm of

the artof MPD thrustersto achievehigh efficiency;(2)Develop propulsionsystems with

largenumbers of thrustersand controlsystems;or (3)Advance the stateof the artof ion

thrusterstomuch largersizeper thruster.

(

Nuclear power for electricpropulsion - Space power reactor technology now under

development (SP-100) may bc adequate;needed advances arc modest. Advanced power

conversion systems arc requiredto obtainpower-to-mass ratiosof interest.The SP-100

baselineisthermoelectric,which has no hope of meeting propulsionsystem performance

needs. The most likelycandidatesarcthe closedBrayton (gas)cycle and the potassium

Rankine (hquid/vapor)cycle. (Potassium provides the bestmatch of liquid/vaporfluid

propertiesto desired cycle tcmperatu_s.) Stiflingcycle,thermionics, and a high-

temperaturethermally-drivenfuelcellarcpossibilities.The basictechnology forBrayton

and Rankine cycles arc mature; both arc in widespread industrialuse. Prototype space

power Brayton and Rankine turbineshave run successfullyfor thousands of hours in

laboratories.The development riskhcrcisthatthesearcvery complex systems;thereisno

experiencebase forcoupling a space power reactortoa dynamic power conversioncycle;

D615-I0026-6

234

Page 239: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

there is no space power experience base at the power levels needed; and these systems, at

power levels of interest for SEI space transfer application, are large enough to require in-

space assembly and checkout. Space welding will be required for fluid systems assembly.

Solar power for space transfer propuls, ion - Solar power systems for space propulsion must

attain much higher power-to-mass ratios than heretofore achieved. This implies a

combination of advanced solar cells, probably muiti-band-gap, and lightweight structural

support systems. Required array areas arc very large. Low-cost arrays, e.g. $100/watt,

arc necessary for affordable system costs, and automated construction of the large area

structures, arrays, and power distribution systems appears also necessary. Where the

nuclear electric systems arc high development risk because of complexity and the lack of

experience base at relevant power levels and with the space power conversion technologies,

most of the solar power risk appears as technology advancement risk. If the technology

advancements can be demonstrated, development risk appears moderate.

Avionics and software - Avionics and software requirements for space transfer systems are

generally within the state of the art. New capability needs are mainly in the area of vehicle

and subsystem health monitoring. This is in part an integration problem, but new

techniques such as expert and neural systems are likely to play an important role.

An important factor in avionics and software development is that several vehicle elements

having similar requirements will be developed, some concurrently. A major reduction in

cost and integration risk for avionics can be achieved by advanced development of a

"standard" avionics and software suite, from which all vehicle elements would depart.

Further significant cost savings are expected from advancements in software development

methods and environments.

Environmental Control and Life Support (ECI_) - The main development risk in ECLS is

for the Mars transfer habitat system. Other SEI space transfer systems have short enough

operating durations that shuttle and Space Station Fre_om ECLS system derivatives will

be adequate. The Mars transfer requirement is for a highly closed physio-chemical system

capable of 3 years' safe and dependable operation without resupply from Earth. The

development risk arises from the necessity to demonstrate long life operation with high

confidence; this may be expensive in cost and development schedule.

D615-10026-6

235

Page 240: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Man-Rating Approach

Man-rating includes thr_ elements: (1) Design of systems to manned flight failure tolerance

standards, (2) Qualification of subsystems according to normal man-rating requirements,

and (3) Flight demonstration of critical performance capabilities and functions prior to

placing crews at risk. Several briefing charts follow: the first summarizes a recommended

approach and lists the subsystems and elements for which man-rating is needed;

subsequent charts present recommended man-rating plans.

Mission and Operations Risk

These risk categories include Earth launch, space assembly and orbital launch, launch

windows, mission risk, and mitigation of ionizing radiation and zero-g risk.

Earth launch - The Earth launch risk to in-space transportation is the risk of losing a

payload because of a launch failure. Assembly sequences are arranged to minimiz_ the

impact of a loss, and schedules include allowances for one make-up launch each mission

opportunity.

Assembly and Orbital Launch Operations - Four sub-areas arc covered: assembly, test and

on-orbit checkout, debris, and inadvertent re-cnu'y.

Assembly operationsriskisreduced by verifyinginterfaceson the ground priortolaunch

of elements. Assembly operationsequipment such as robot arms and manipulators will

undergo space testingatthe node toqualifycriticalcapabilitiesand performance priorto

initiatingassembly operationson an actualvehicle.

Assembly risk varies widely with space transfer technology. Nuclear thermal rocket

vehicles appear to pose minimum assembly risk; eryo/aerobraking are intermediate, and

nuclear and solar electric systems pose the highest risk.

Test and on-orbit checkout must deal with consequences of test failures and equipment

failures. This risk is difficult to quantify with the present state of knowledge. Indications

are: (1) large space transfer systems will experience several failures or anomalies per day.

Dealing with failuresand anomalies must be a routine,not exceptional,part of the

operationsor theoperationswillnot bc abletolaunchspace transfersystemsfrom orbit;(2)

D615-10026-6

236

Page 241: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

vehiclesmust have highly capable self-test systems and must be designed for repair,

remove and replace by robotics where possible and for ease of repair by people where

robotics cannot do the job; (3) test and on-orbit checkout will run concurrently with

propellant loading and launch countdowns. These cannot take place on Space Station

Freedom. Since the most difficult part of the assembly, test and checkout job must take

place off Space Station Freedom the rest of the job probably should also.

Orbitaldebrispresentsriskto on-orbitoperations.Probabilitiesof collisionarclargefor

SEI-classspace transfersystemsin low Earth orbitfortypicaldurationsof a yearor more.

Shieldingismandatory. The shieldingshould be designed tobe removed beforeorbital

launch and used againon the nextassembly project.

Creationof dc'brismust alsobe dealtwith. This means that(I)debrisshieldingshould be

designed tominimize creationof addiuonaldebris,especiallyparticlesof dangerous size,

and (2)operationsneed tobe rigorouslycontrolledtopreventan inadvertentlossof tools

and equipment thatwillbecome a debrishazard.

Inadvertentre-entryisa low but possiblerisk. Some of the systems, especiallyelectric

propulsionsystems,can have verylow ballisticcoefficientand thereforerapidorbitaldecay

ram. Any of the SEI space transfersystems willhave moderately low ballisticcoefficient

when not loaded withpropellant.While designdetailsam not farenough along tomake a

quantitativeassessment,partsofthesevehicleswould probably survivereentrytobecome

ground impact hazards in case of inadvertentreentry. For nuclear systems, itwillbc

necessarytoprovide specialsupportsystems and infrastructuretodrivethe probabilityof

inadvertentreentrytoextrernclylow levels.

Launch Windows -Launch windows forsingle-bum high-thrustdeparturesfrom low Earth

orbitare no more than a few days be.causeregressionof the parking orbitlineof nodes

causes relativelyrapid misalignmcnt of the orbitplane and _partu_ vector. For lunar

missions,windows recuratabout 9-day intervals.

For Mars, the recurrence is less frequent, and the interplanetary window only lasts 30 to 60

days. It is important to enable Mars launch from orbit during the entire interplanetary

window. Three-impulse Mars depamn'es make this possible; a plane change at apogee of

the intermediate parking orbit provides alignment with the departure vector. Further

D615-10026-6

237

Page 242: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

analysis of the tlu'_-burn scheme is needed to assess penalties and identify circumstances

where it does not work.

Launch window problems are generally minimal for low-thrust (electric propulsion)

systems.

Mission Risk - Comparative mission risk was analyzed by building risk trees and

performing semi-quantitative analysis. The next chart presents a comparison of several

mission modes; after that are the risk trees for these modes.

Ionizing Radiations and Zero G - The threat fi'om ionizing radiations is presented elsewhere

in this document. Presented here are the mitigating strategies for ionizing radiations and

zero g.

Nuclear systems operations present little risk to flight crews. Studies by University of

Texas at Austin showed that radiation dose to a space station crew f_om departing nuclear

vehicles is very small provided that sensible launch and flight strategies are used. On-

board crews are protected by suitable shielding and by arrangement of the vehicle, i.e.

hardware and propellant between reactors and the crew and adequate separation distances.

After nuclear engines are shut off, radiation levels drop rapidly so that maneuvers such as

departure or return of a Mars excursion vehicle are not a problem. On-orbit operations

around a returned nuclear vehicle are deferred until a month or two after shutdown, by

which time radioactivity of the engine is greatly reduced.

Reactordisposalhas not been completelystudied.Options includesolarsystemescapeand

parkinginstableheliocentricorbitsbetween Earthand Venus.

Crew radiationdose abatement employs "stormshelters"forsolarflares,and eitheradded

shieldingof the entirevehicleor fasttransfers(or both) to reduce galacticcosmic ray

exposure.Assessments axe inprogress;tradeoffsof shieldingversusfastnips have yetto

be completed. Expected impact for lunar missions isnegligibleand for Mars missions,

modest.

"D615-10026-6

238

Page 243: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6 239

Page 244: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

w

D615-I0026-6 240

Page 245: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6

<

241

Page 246: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

v

g_

U

m

U

m

g_O

a

g_

om

I

D615-I0026-6 '242

Page 247: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

243

m

w,<

Page 248: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

uo.cmdo..i -'v.un_ D615-10026--6

._=.

i

<

24._

Page 249: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

Ii

I

I

I

I

I

lI

II

I

w

r

I

I

i

)

I.,

mAw

*m

,ms

m

A

m

r

" ........, _/:-_. _ I I

sd!_ 'I.sJ_]_ _A!:I'el'nmnD

x

.rob,v

........."_ i _ _ =| I

_-_ ,,-_ _ ._

"I'Pe01,':ed PaJ_A!I_G _A!:IgTnmn"_

o

go

w,

.............i: ir.m

A

- D615-10026-6

245

Page 250: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

iIr

D615-I0026-6 246

Page 251: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Z

Ze

O._..a

r._

Z

Z

t"r,,aZ

r,r,1

Z

==F-,

=1

¢=1 ='

z

_J_.,.,_,ZI==1

m

Ill

z

D615-10026-6

o

2a..7

Page 252: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Z

Z0If:.<

0

,<Z,,<

7,,<

mr.,,;7O

r__

Z,,<

r_.<rj_

. i

- _ _o_ |

IIII .1 ..

- _,=1_ ,-, -. _

|

|

i ! i 0 I i JII II IIII

: __=__ - -

<

D61_-i_" ::; d 248

Page 253: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Z

r.

_1

t_

0

mt_

t¢i

-o i _

lli i

i liiTiIi

D615-!_.._. 249

Page 254: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mO

.n

@

_s

,cL

D615-_.C,C:_6

[!L_i

II

250

Page 255: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0

_o

z0

l

iO

i!_.!I

n_

° i

i_ ° -

i _i! llili °iii_tm

D615-_. 2,21;.£.-,. 251

Page 256: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i

!ii,J!i''!i!

!i

_ _ _ _i_ i__"-:

lilil iil

ii!!iiii !i

O

" D615-).0C:._,: 252

Page 257: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C

.Or

iP

t

_ .=_

!

!

\ /

|

• all,mt

D615-?._('; .E-_'

E

,<

253_

Page 258: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_..')£1_5-_,_.(26-62.54

Page 259: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

LCCM Hardware Assignments

HLLV

Propuhton

Modules

Components

Cargo Career & CoreSTMERecov PA ModStd Avion|m Suite

II

Adv Space Engine,_TR "Funks

MOC TankMOC Core

N_TR Stnge

,NTR Engine

NF_PStaReN'EP Engine

TMIS EngineTMIS TankTMIS Core

LEO "ranker

LTV HabLTV

:LEVLEV Crew Module

MTV

MTV Crew ModuleIII

MEV

RMEV

imlnl.MEV

MEV Crew Module

Lunar AerobrnkeMTV Aerobrake

MEV Aer_)shetlMCRV

Minimum

X

X

X

Xi

X

XX

X

X

XX

X

XX

X

X

XX

X

X

XX

Lunar/Mars

Furl S_¢nceX

X

X

X

X

X

X

X

X

X

X

X

Xm i

X

X

X

X

X

X

Settle/lad

X

X

X

X

X

X

X

X

XX

X

X,X

XX

X

X

XX

X

X

X

X

X

• ,-try _ .."L,u, j-._ • .,._.-,_255

Page 260: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

11

• • • • • • ° • • • •

I :I :I I

II II I! I

I _ I_ '_, _ , I _I I I

,,, :_

' ' ' _ V'_e_! ! I I

I-

_m

°C

v

D615-;CQ2_-6 256

Page 261: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

on

@

|

11

0@

o

..I

0 oQ wa.m

ew_

_j@ mCktu

1]

257

Page 262: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

III

1

g|

258

Page 263: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

0

m • ."sl

l[111

D615-IC_,£-_ 259

Page 264: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

26O

v

r

Page 265: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

261

Page 266: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I0

I.

E

E i

I

I r_ e,_ -...!

I II I! !I II !I !| !! !

I II II !

I I! II !! !

c_

el

Eell

1,1

1

I

I-,

_..___ _ = _'_

_ ._.____°_-.-._-._- .

_____ . -_ _E

D615-I0026-6. 262

v

Page 267: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

mm em '_

=___ °IL

;1

N_D

_- !I!I _ _ _"

D615 -10026-6 263

Page 268: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C_

OOIOOOO

OU

W

<

v

D515-i0026..6 26,4

Page 269: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

,..,i

O

..I

tt_

t,O

Gu_

m

_ ',-" '_J ¢',,1 .,-- ¢Xl t'_

,,_,, i 'r''

I_ t,O

tl

_O

¢xl

D615-100.7,6-6 265

Page 270: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

m

m

OI

m

266D615-I0026-6

Page 271: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

oRgan

J

o:

i.<

r,/,j• Ilill

,,l,,a

o:

J

._zz

__z=,,'_

i

Z

Z

7

m

:= ,-,m

D615-1002 6-6 26"7

pRE.I31,EDING PAGE BLANI¢, NOT FILMf,..I.)

Page 272: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

.m

t_m

e_O

a

e_

a

I

D615-I0026-6 268

Page 273: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

Commonality/Evolution

A. System Commonality

D615-10C26-6

PrtIEO_.Ul,_ P,_t_E i_,LP,NK NO-I" F_LM_D

269

Page 274: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

I=O

em8

e_

qmt

emel

_fJa

D615-I0026-6 270

Page 275: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V. Commonality/Evolution

A. Commonality - Having identified commonality as having high cost-effectiveness leverage,

ST_ d_veloped an evolutionary strategy for facilitating it and benefitting from it. The greamst

commonality challenge is between early systems designed for lunar missions and later systems

d_signcd for Mars missions. Because of similar flight regimes, crew systems requirements and

durations, excursion vehicle crew cabins for lunar and Mars uses proved most amenable to strict

commonality; for conceptual purposes the LEV and MEV crew cabs can be considered just sl.ighdy

different "models" of the same element.

An effort was made to extend the commonality approach to entire excursion vehicle designs

for the Moon and Mars. This extreme degree of commonality was found to appear conceptually

feasible only for a particular size class of vehicle (a 25 t propellant-capacity vehicle typical of

LEV designs is comparable to a so-called "mini-MEV", which would take 3 crew and 1 t

payload to the surface of Mars). Except for this special case, the differing gravity levels of the

Moon and Mars, and configuration complications arising from aerobraking upon descent at Mars,

tend to drive LEV and MEV designs apart. The LEV and MEV are likely to come on line years

apart in any case, and we found a more productive way to introduce commonality.

We found it useful to consider commonality at three program levels: (1) mission design,

using the same mission design to accomplish different programmatic architectures (a problematic

category because mission designs are by clef'tuition tied to unique requirements); (2)functional

element, using end-items from the same production line to f'dl different roles within a given

mission design (the most appropriate example we developed is the evolutionary LTF described

earlier); and (3) performing subsystem, using system assemblies or components from the same

production line in different functional elements (a sensible way to standardize industry, get

predictable performance and facilitate product longevity). This latter approach, applied to engines,

sensors, processors, some structural components and modular life support hardware, shows great

promise for cost-effectiveness and preserving program resiliency. At the component level,

extensive commonality can be worked into the fabric of SEI.

Another application of this subsystem/component commonality-for-evolution approach is

the potential use of hardware systems developed mostly for lunar transportation, augmented by

long-ditration crew systems, for early Mars missions staged out of high-orbit node locations Like

Earth-Moon L2. TMI AV for this mission mode is such that the need for a large TMIS is obviated

altogether, as is the need for a large cryogenic space engine. The use of chemically-propelled

D615-I0026-6

P_cE@,EDING PAGE BLANK NOT FILMED

271

Page 276: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-1002,6-6 272

Page 277: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6 273

Page 278: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-!0026-6 2"74

Page 279: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

°i++

i.+J

D_mD

=_ _

.. _._ _.

_ e

a

D615- i0026-6 275

Page 280: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6 276

Page 281: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

O

z_ _ <_..2_

D615-10026-6 277

Page 282: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

v

278D615-I0026-6 ,

Page 283: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

s_

279

Page 284: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

{DI

I

m

O

D615-I0026-6 280

Page 285: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_=

i<

====

.=_

==|0

L-

,0 L ,.,

o= __ __=E

)

< _-.= ;._-=

!

PI-_G_ b;L,_,,',iK N(J_- FILMIEI_ 615-10026"6 ?.81

Page 286: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-I0026-6 282

Page 287: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 288: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V

mm

m

mm

O

,flint

m

D615-10026-6_84

Page 289: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 290: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615-10026-6 286

Page 291: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

==,

|1

¢r

t/

[' /'

/!t/

L/ •

°_

_. -_ }

D615-10026-6 287

Page 292: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

earnmm

0

S=E_=0 r_

_=r,j

Om

earn

_= -..,©;=

mg= ImI,, _)

G,)

L

=_= __._. _

_'J tm mm

4m_

E-._

U 4)

0 _'-- ,., G G

D615- I0026-.6 288

Page 293: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 294: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D615 -10026-6 290

Page 295: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

o

°= .- _

ol _ D615-I0026-6 291

Page 296: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_i _

.

D615-I0026-6

292

Page 297: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_ Om

w

-_ D615-10026-6 2_3

Page 298: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

f,_ m

O

"O

O

°

D615-I0026--62_4

Page 299: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

r,_

Q,;

eII

._ :__ x xxxx x x xo®GO0@@ OeG _-

®ex x GO ×_ O,@G_JG

x x x x!x x x x_@O _0!@0@ @00

• x:Ox @0 x'x 0_06@@ _ _®

0 Q x x O@x x,@ 0!0_0Q !0_0

x x x_x, xx x x OOO O0

" !_ _ _ I_ ._ _; _

D615-10026-6 295

Page 300: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

O

m

.m

k _

D615-10026-6 296

Page 301: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

B. Small/Medium/Large Scale Evolution

PREC_D{i'_iG PAGE BLANK NUi" FILMEDD615-10026-6

297

Page 302: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

m

m

O

_s_

E-

D615-I0026-6298

Page 303: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

V. Commonality/Evolution

B. Program Scale Evolution - The lunar programs are classified into three scaleswhich utilize the transportation architectures in varying degrees. Each scale has a definedobjective and is limited to accomplishing the goal by varying assumptions. The smallscale scenario is a man-tended scientific outpost. Crews of four will remain on the lunarsurface overnight in a small "campsite". The medium scale develops a permanent basefor a crew of six. In addition to the scientific nature of the base, lunar oxygen wK! beproduced by the year 2010. The most ambitious program, the large scale, eventuallyleads to permanent settlement. The base continuously grows to accommodate 18 to 24

people by the year 2025. Along with the lunar oxygen plant, industrialization is veryimportant. Without specifying the type of the product, the industrial capabilities areequivalent to a I GWe Helium-3 plant.

After the program scales were established, a determination on required mass on the surfacewas determined along with cargo sizes and volumes for manifesting purposes. Eachprogram scale's mass-to-the-surface requirements vary depending on the amount of ISRU,number of inhabitants, mission durations, and level of industrialization. The mass for themedium scale program in the first 10 years is almost equivalent to that needed by the largescale program. The difference is seen in the subsequent 15 years of the two programs.The medium scale program continues without major modifications to the base or number ofinhabitants while the large scale program is always growing towards permanent settlementwith increasing personnel.

The number of cargo flights must be based upon the mass required by the program scale.Understanding the crew rotation before scheduling the cargo flights is very important. Inorder to build-up the base personnel, some flights will return to the Earth without all 6 crewmembers on-board. The small scale program requires 13 flights of cargo and cargo in 21years to accomplish its goals. The medium scale must have 56 flights and the large scalerequires 113 flights, both within 25 years. The cargo flights are manifested as tandemLTVs since they are capable of delivering 55 t in one mission. If LOR flights with lunaroxygen are used, the number of flights increases dramatically. These flights are capable ofdelivering 25 t of cargo when the LEV is already in orbit around the Moon, and 15 t if theLEV is delivered from Earth.

The end product of this analysis was a fairly detailed manifesting analysis. For the smallscale program, the flight rate of 13 flights in 21 years does not indicate the actual number ofETO launches and tankers that are needed to support the lunar program. For the mediumscale, approximately 700 t of cargo is required on the lunar surface by 2010. After thisdate, the tonnage is much less. By the end of the program, 56 flights of cargo and crewhave been made. At the end of the large scale program, more than 7,500 t of cargo is

placed on the lunar surface. Based on the amount of material manufactured at the base, 113flights are necessary to deliver the remaining cargo and crews. The HLLV (10 x 30 mshroud) flights are primarily based on the component masses. The aerobrake is volume-Limited and thus a separate flight. The LTV is designed to be launched intact in one flight.

The "campsite" and its associated LTV are also launched in a single flight. The propeLlantis launched separately and is transferred to the L'IWs while in LEO.

PRE@,EDING PAGE BLANK

D615-10026-6

NOT F!LMED

299

Page 304: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

lu

"='=

c_

r._ _°="._.--- __ =.

D615-10026-6 300

v

Page 305: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

u

r._ r-

D615-10026-6

§

k_

301

Page 306: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

oU

m

N

J

om p,_

L.

D615-I0026-6302

Page 307: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

D6 l 5-10026-6 303

Page 308: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU
Page 309: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

t_

t_

,d

t_

.<

.<Z

em

el

em

,d

.It-

O

D615-10026-6

m

m

m.

e'q

um

¢,dr_

ii

.d

.,<

.1(.

§

.<

305

Page 310: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

u

2I

emil

r._

eU

T.,

=

C>elmW

:==

II

I.,

f.4

[a

Io_ D615-10026-6 306

Page 311: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

u

m

m

|

.m

1.1

.iw

mm N

m

m_

,.: ,,d

A

m m

o _._.

L _ _ L

D615-10026-6307

Page 312: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_=

i _ == == == == ==I

-_ _ ._ _-o o

=_ _ <

0 ._- ,K- ._- * "_-

D615 - 10026-6 308

v

Page 313: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

ooo ooo

:_I" _= ::_,_ --____ =:

I(_ * * * * * * _"D615-10026-6 309

Page 314: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

t_

310

Page 315: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

u

em

e_

em

m_

6

m

e_

rd_

e_

e_

t,,,,.

[]

em

E : :=. _ "Ne_

D615-I0026-6311

Page 316: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

1I I

-j

o !

el

|

em

i !D615-10026--6 312 "

Page 317: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

v

° i!

313D615-I0026-6 '

Page 318: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

i

o _ "_ D615-I0026-6 314

Page 319: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

=

=

em

em

L-

E _ _ °_

°E E" ,-

o

o

m m

_J

em

om

m

D615-10026-6

<

315

Page 320: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

| O

t_

D615-10026-6 316

V

Page 321: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=.

r_

J

oi

m

0

¢J

0 _ 0 0 0

('_ t",l t_l t_ t'q t'N CN t'Q

!

°_

D615-10026-6317

,<

.<

Page 322: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

m

mm

m

ou

Cl_

.. D615-I0026-6 318

Page 323: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

=_

oU

_)

D615-10026-6

v

<

<

319

Page 324: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

==

>

.9.0 _

• !_ o _ _- < -_

0

_-

C5D615-10026.-6 320

Page 325: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

oli

I,i

I_ _

°@ D615-10026-6 321

Page 326: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

:2t,,.

=

i_.\ _ _.

.__.=

r.njw m

=Z

._'_ _.j

_._. =

D615-10026-6 322

<

u.I<

Page 327: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

.om

r..)

t.....

r,.)

m

,.d

L..

mm

,mN

°_t_

m

m

°_

a,_...,

wt"N

°_

ed_

ed_

_d

¢.)m

o°_

n

t...,

D615-10026-6 323

e,

.<

o.-

Page 328: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

e_

m

m

mm

e_o

e_

[...,

D615-10026-6324

v

L /

Page 329: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

=.=

Im

I

=

om

L.

{/}

E

;=

=

.J

_D r_. _ _ _ "_

i_ _ _ _ .-,,., ,., ,_ ,.- ('9

=

_. v'_ _ 1_ oO _ _ .-, (_1 (_ _" _'_

,.., ,_ ,.., ,., ,...4 (',4 f_l (_1 ('9 _ (_

_._, ,._ NOT FILMED

"3

e-

E_

o_ --1

m

_" e-

[..,_

_sZ

D615-10026-6

e,.

<

325

Page 330: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

|

o --.,,C:J

w

_d

v

D615-10026-6 326

Page 331: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C ("4(',4("4

<

<¢,.,)

D615-10026-6 32"7

Page 332: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

{b_',

$

_ +_-

_ - ._o ....

.R_r,

<oo

_J

<

v

D615-I0026-6 328

Page 333: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

JU

o_

I

m

r,¢2

o_

I/_ _

m

u om

m

t...01110

,.]_.

n

m

w _,_°_

om el _._m

w

oi

.-_w ___.v

<

D615-I0026-6 329

Page 334: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

I

Im

DmU

0'N

@

• • @ • D • •

D615-I0026-6

_o

330

Page 335: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

oIIl

r._

_ v'h u'_ 0

D615-10026-6

(J

331

Page 336: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

r_

|

=.

°_

0

0 D615-I0026-6

m

332

Page 337: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

|

*m

m

Mii

II

D615-I0026-6

--s<

I,M<

333

Page 338: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

U

t.,,

I

U

oil

t,.

'(5

¢_ _ I_- _ r'_ (_1i

D615- !0026-6

¢"4

Ud

334

V

Page 339: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

|

J

omU

m

_3

0 0 0 0 0 0 0 0 0 0 _ 0 0 0

d

(_ D615-10026-6

-.a,<

Ud

,<(..)

335

Page 340: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

@

|

J

om

U

,=_m

,=,

c) c) .=_

w,,,c) c)

L_ L_

('q ('q C'4 C'4 C'4 _ t"q C'q

1

D615-I0026-6 336

Page 341: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

|

0em

L_.

eq ¢q

¢q ¢'n

¢q r,n

e-°_

IN

coe"

mo_

&)

E

°_

("4

¢-

r.a

o_

°_CU_

E

-o

m

_ot_

m

._o

°_ "l

°,mCa

./D *.

oZ

e_

U_

<%0

337

Page 342: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

l

l

i

l

O

g=

m_u'J

..m

V

D615-10026-6338

Page 343: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

m

|

em

r..)

r,.)

g,O

E.-a

,..2

t"q eq t'q

m

t"-. cl_

'_ I".- l'_

t_ _ _ I"_

_.r-.

-=

t....

m

.mm

o_

m

X

X

t"qm

om

o_.m..m

m.mrd_

=

t_

C

--1C_

r-'

omo')

.-- _d,

_--.__

o_

o_

=_.,om

e- .-.N

[..,_

oZ

d -4 D615-10026-6

I

.<

339

Page 344: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

nn

V'_

°CD615-10026-6 340

Page 345: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

==

• ¢m ¢m

_ ..1 .I -.1

h-

D615-10026-6

._--;>m

l

i

wm

m

..I

4)

<::0

<:

341

Page 346: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

II

v

D615-10026-6 342

Page 347: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

|

emm

=

QO

.<

F-

D615-10026-6 343

Page 348: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

C

m

m

t_mm

t:O

m

gt

g:

,m

..... 1)615-I0026-6 344

Page 349: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

v

iii i= <

Z

<Z

I

|

I

eI

m

0

MII

'ii! "

ii

w

oi

.,=:

w

_._

0

D615-10026-6

<

t.rd<

345

Page 350: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

_a

%.

(suo3 _!.tJ,am) ssc]_ £lddns-aH

o \

i i I i i i

(suo_ o!a3am) _!_de D _lueJ. AJ.I

o8 8 8 8

(suo__!.t_m)O_III_

D615-I0026-6

w

_..-

E

=_

c_

_=.

m

0

°7_E

+ "i

0-- Z

II0

N

e_

e_

.<

346

Page 351: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU

QD615-10026-6

:d

<

347

Page 352: O, r- - NASA · PDF file  2017-11-28T09:02:49+00:00Z. Space Transfer Concepts and Analyses for Exploration Missions ... PEGA P/L POTV pot w PPU