2
HAL Id: hal-02879734 https://hal.archives-ouvertes.fr/hal-02879734 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, Valentin Iovene, Guillaume Lemaitre, Guillaume Favelier, Demian Wassermann To cite this version: Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, Valentin Iovene, Guillaume Lemaitre, et al.. NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries. Organization of Human Brain Mapping, Jun 2020, Montreal, Canada. hal-02879734

NeuroLang: Representing Neuroanatomy with Sulcus-Specific

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NeuroLang: Representing Neuroanatomy with Sulcus-Specific

HAL Id: hal-02879734https://hal.archives-ouvertes.fr/hal-02879734

Submitted on 24 Jun 2020

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

NeuroLang: Representing Neuroanatomy withSulcus-Specific Queries

Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, ValentinIovene, Guillaume Lemaitre, Guillaume Favelier, Demian Wassermann

To cite this version:Antonia Machlouzarides-Shalit, Nikos Makris, Gaston Zanitti, Valentin Iovene, Guillaume Lemaitre,et al.. NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries. Organization of HumanBrain Mapping, Jun 2020, Montreal, Canada. �hal-02879734�

Page 2: NeuroLang: Representing Neuroanatomy with Sulcus-Specific

1 Introduction

Discussion & Conclusions

References

NeuroLang: Representing Neuroanatomy with Sulcus-Specific Queries

Contact - [email protected] http://team.inria.fr/parietal/

PARIETAL - INRIA - FRANCE

4

[3]

- 6 subjects

1 Parietal Team, CEA, Inria Université Paris-Saclay, France2 Psychiatry Neuroimaging Laboratory, BWH, HMS,Boston, United States

Top

Destrieux, C., Fischl, B., Dale, A. and Halgren, E. (2010). ‘Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.’ NeuroImage, 53(1), pp.1-15.

Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350.

Rademacher, J., Caviness, V., Steinmetz, H. and Galaburda, A., 1993. Topographical Variation of the Human Primary Cortices: Implications for Neuroimaging, Brain Mapping, and Neurobiology. Cerebral Cortex, 3(4), pp.313-329.

[1]

[2]

[4]

http://team.inria.fr/parietal/

OHBM 2020, Virtual

Poster explainer video:https://youtu.be/bIgX-80mKKw

Acknowledgements:

This work acknowledges the support of ANR NeuroRef and ERC-StG NeuroLang

Materials & Method2

3 Results

Antonia Machlouzarides-Shalit1, Nikos Makris2, Gaston Zanitti1, Valentin Iovene1, Guillaume Lemaitre1, Guillaume Favelier1, Demian Wassermann1

Objective: To identify and label subject-specific sets of sulci. We developed NeuroLang, a query-based mapping language which labels sulci according to the spatial relationships to primary sulci. We assess sensitivity of our sulcus-specific queries and prevalence of tertiary sulci in a population.

Sulci may vary greatly in morphology, while their relative locations to primary sulci are what define them.

Template atlases use this characteristic to find landmarks of the brain and wrap around it to label the same set of sulci for any subject.

Tertiary sulci have high variability in their existence and morphology, while their location remains relatively constant. They are usually omitted from template atlases or else grouped with their neighbouring gyri1.

Tertiary sulci can have relationships with cognitive functions, comparative neuroanatomy or cytoarchitectonic boundaries2.

NeuroLang has 36 sulcus-specific queries which identify and label sulci on an individual level, designed in relation to each subject's primary sulci using the Destrieux atlas to ensure reliability.

20 sulci had Destrieux atlas counterparts (secondary sulci) and 16 were omitted from the Destrieux atlas or included as part of their surrounding gyrus (tertiary sulci).

We present a new method for the labelling of a subject-specific atlas of sulci, with varying sets of sulci according to individual cortical organisation.

NeuroLang is intended as a complement to current template-based methods for brain mapping.

0.0 0.2 0.4 0.6 0.8

Proportion

Q_anterior_occipital, No corresponding Destrieux sulcus

Q_anterior_occipital, R_S_oc_temp_lat

Q_callosomarginal, R_S_central

Q_callosomarginal, No corresponding Destrieux sulcus

Q_collateral, R_S_orbital_lateral

Q_collateral, No corresponding Destrieux sulcus

Q_inferior_frontal, No corresponding Destrieux sulcus

Q_inferior_temporal, R_S_temporal_inf

Q_inferior_temporal, L_S_temporal_inf

Q_intralingual, No corresponding Destrieux sulcus

Q_intraparietal, No corresponding Destrieux sulcus

Q_jensen, No corresponding Destrieux sulcus

Q_jensen, L_S_interm_prim_Jensen

Q_middle_frontal, No corresponding Destrieux sulcus

Q_middle_frontal, R_S_front_middle

Q_middle_frontal, L_S_front_inf

Q_occipitotemporal, L_S_temporal_inf

Q_occipitotemporal, R_S_temporal_inf

Q_olfactory, No corresponding Destrieux sulcus

Q_orbital_H_shaped, No corresponding Destrieux sulcus

Q_postcentral, L_S_central

Q_postcentral, R_S_central

Q_precentral, L_S_front_sup

Q_precentral, R_S_precentral_sup_part

Q_subparietal, L_S_subparietal

Q_subparietal, R_S_subparietal

Q_superior_frontal, L_S_front_sup

Q_superior_frontal, R_S_front_sup

Q_superior_rostral, No corresponding Destrieux sulcus

Q_superior_temporal, L_S_temporal_sup

Q_superior_temporal, R_S_temporal_sup

Query

Nam

e,

Most

Com

mon M

atc

h

HemisphereLeft

Right

Seconday queries(Fig. 2)Queries were assessed by the proportion of the most common Destrieux match with the query result.Some query results had no match with a Destrieux sulcus, possibly due to the fact that the extracted sulci had a wider variety in shape and size.

NeuroLang includes the identification and labelling of lesser-labelled sulci which can contribute to the uniqueness of a brain.

Individually, subject-specific sulci sets may shed more light on structure-function relationships3.

On the population level, tertiary sulci statistics may aid in understanding the evolution of the human brain4.

Mindboggle3 was used to extract an average of 33 sulci per hemisphere in 52 subjects of the Human Connectome Project.

Fig 1. Example of the 33 (LH) and 37 (RH) unlabelled folds in subject 212823 of the Human Connectome Project, extracted using mindboggle3.

Fig 2. Bar plot of results for secondary queries. Each query is labelled, next to the Destrieux sulcus which was most often matched with the result of the query.

Fig 3. Probability maps of the results of some of the tertiary queries, thresholded at 0.1, and theproportion of subjects with results.

Armstrong, E., Zilles, K., Curtis, M. and Schleicher, A., 1991. Cortical folding, the lunate sulcus and the evolution of the human brain. Journal of Human Evolution, 20(4), pp.341-348.

Tertiary queries(Fig. 3)Queries were assessed by success of their locations in the probability maps. Examples from each lobe are shown, with the proportion of subjects with a result.

x=-14 x=-10x=-40

Left Q_paracingulate, 0.85

x=-14 x=-10x=-40

Left Q_cingulate, 0.88

L R

y=-45

L R

y=-15

L R

y=-83

Left Q_lunate, 0.81

L R

z=32

L R

z=50

L R

z=14

Left Q_superior_parietal, 0.85

L R

z=0

L R

z=24

L R

z=-26

Left Q_inferior_occipital, 0.81

L R

z=-30

L R

z=-6

L R

z=-32

Left Q_rhinal, 0.77

x=34 x=38x=10

Right Q_paracingulate, 0.83

x=10 x=12 0

0.25

0.5

0.75

1

x=8

Right Q_cingulate, 0.94

L R

y=-87

L R

y=-85

L R

y=-89

Right Q_lunate, 0.19

L R

z=-6

L R

z=18

L R

z=-32

Right Q_inferior_occipital, 0.98

L R

z=46

L R

z=70

L R

z=20

Right Q_superior_parietal, 0.15

L R

z=-36

L R

z=-12

L R

z=-38

Right Q_rhinal, 0.9

(open in internet provider for hyperlink)