6
eGaN® FET DATASHEET EPC2039 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 1 EPC2039 – Enhancement Mode Power Transistor V DS , 80 V R DS(on) , 25 mΩ I D , 6.8 A EPC2039 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 1.35 mm x 1.35 mm Applications • High Speed DC-DC conversion • Wireless Power Transfer • Lidar/Pulsed Power Applications Benefits • Ultra High Efficiency • Ultra Low R DS(on) • Ultra Low Q G • Ultra Small Footprint EFFICIENT POWER CONVERSION HAL G D S Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 80 V Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 96 I D Continuous (T A = 25°C, R θJA = 70°C/W) 6.8 A Pulsed (25°C, T PULSE = 300 µs) 50 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage –4 T J Operating Temperature –40 to 150 °C T STG Storage Temperature –40 to 150 Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 300 µA 80 V I DSS Drain-Source Leakage V DS = 64 V, V GS = 0 V 20 250 μA I GSS Gate-to-Source Forward Leakage V GS = 5 V 0.2 2 mA Gate-to-Source Reverse Leakage V GS = -4 V 20 250 μA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 2 mA 0.8 1.6 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 6 A 20 25 V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 2.5 V All measurements were done with substrate shorted to source. Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 3 °C/W R θJB Thermal Resistance, Junction-to-Board 28 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 81 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

EPC2039 – Enhancement Mode Power Transistor

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 1

EPC2039 – Enhancement Mode Power Transistor

VDS , 80 VRDS(on) , 25 mΩID , 6.8 A

EPC2039 eGaN® FETs are supplied only inpassivated die form with solder bumps Die Size: 1.35 mm x 1.35 mm

Applications• High Speed DC-DC conversion• Wireless Power Transfer• Lidar/Pulsed Power Applications

Benefits• Ultra High Efficiency• Ultra Low RDS(on)

• Ultra Low QG

• Ultra Small Footprint

EFFICIENT POWER CONVERSION

HAL

G

D

S

Maximum Ratings

PARAMETER VALUE UNIT

VDS

Drain-to-Source Voltage (Continuous) 80V

Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 96

ID

Continuous (TA = 25°C, RθJA = 70°C/W) 6.8A

Pulsed (25°C, TPULSE = 300 µs) 50

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage –4

TJ Operating Temperature –40 to 150°C

TSTG Storage Temperature –40 to 150

Static Characteristics (TJ= 25°C unless otherwise stated)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

BVDSS Drain-to-Source Voltage VGS = 0 V, ID = 300 µA 80 V

IDSS Drain-Source Leakage VDS = 64 V, VGS = 0 V 20 250 μA

IGSSGate-to-Source Forward Leakage VGS = 5 V 0.2 2 mA

Gate-to-Source Reverse Leakage VGS = -4 V 20 250 μA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 2 mA 0.8 1.6 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 6 A 20 25 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 2.5 VAll measurements were done with substrate shorted to source.

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 3

°C/WRθJB Thermal Resistance, Junction-to-Board 28

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 81

Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 2

50

40

30

20

10

00 0.5 1.0 1.5 2.0 2.5 3.0

I D –

Drai

n Cu

rrent

(A)

VDS – Drain-to-Source Voltage (A)

Figure 1: Typical Output Characteristics at 25°C

VGS = 5 V

VGS = 4 V

VGS = 3 V

VGS = 2 V

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 3.0 3.5 4.0 4.5 5.0

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 3 AID = 6 AID = 12 AID = 18 A

80

60

40

20

0

I D –

Drai

n Cu

rrent

(A)

1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

25˚C125˚C

VDS = 3 V

VGS – Gate-to-Source Voltage (V)

Figure 2: Transfer Characteristics

25˚C125˚C

VDS = 3 V

50

40

30

20

10

0

80

60

40

20

03.0 3.5 4.0 4.5 5.0

Figure 4: RDS(on) vs. VGS for Various Temperatures

25˚C125˚C

ID = 6 A

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V)

Dynamic Characteristics (TJ= 25˚C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

CISS Input Capacitance

VDS = 40 V, VGS = 0 V

210 260

pF

CRSS Reverse Transfer Capacitance 2

COSS Output Capacitance 115 175

COSS(ER) Effective Output Capacitance, Energy Related (Note 2)VDS = 0 to 40 V, VGS = 0 V

155

COSS(TR) Effective Output Capacitance, Time Related (Note 3) 190

RG Gate Resistance 0.5 Ω

QG Total Gate Charge VDS = 40 V, VGS = 5 V, ID = 6 A 1910 2370

pC

QGS Gate to Source Charge

VDS = 40 V, ID = 6 A

760

QGD Gate to Drain Charge 420

QG(TH) Gate Charge at Threshold 560

QOSS Output Charge VDS = 40 V, VGS = 0 V 7640 11500

QRR Source-Drain Recovery Charge 0

Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.

Page 3: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 3

All measurements were done with substrate shortened to source.

Capa

citan

ce (p

F)

1000

100

10

10 20 40 60 80

Figure 5b: Capacitance (Log Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 7: Reverse Drain-Source Characteristics50

40

30

20

10

0

25˚C

VGS = 0 V125˚C

Figure 9: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.600 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 2 mA

Capa

citan

ce (p

F)

0 20 40 60 80

Figure 5a: Capacitance (Linear Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

350

300

250

200

150

100

50

0

0 0.5 1.0 1.5 2.0

Figure 6: Gate Charge

V GS

– Ga

te-to

-Sou

rce V

olta

ge (V

)

QG – Gate Charge (nC)

ID = 6 AVDS = 40 V

5

4

3

2

1

0

Figure 8: Normalized On-State Resistance vs. Temperature

ID = 6 AVGS = 5 V

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

Page 4: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 4

Figure 10: Transient Thermal Response Curves

tp, Rectangular Pulse Duration, seconds

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce

0.5

0.050.02

Single Pulse

0.01

0.1

Duty Cycle:

Junction-to-Board

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

10-5 10-4 10-3 10-2 10-1 1 10+1

1

0.1

0.01

0.001

0.0001

tp, Rectangular Pulse Duration, seconds

Z θJC

, Nor

mal

ized T

herm

al Im

peda

nce

0.5

0.1

0.020.05

Single Pulse

0.01

0.2

Duty Cycle:

Junction-to-Case

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJC + TC

PDM

t1

t2

10-6 10-5 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

0.0001

Page 5: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 5

2039YYYYZZZZ EPC2039 2039 YYYY ZZZZ

Die orientation dot

Gate Pad bump is under this corner

Part #Marking Line 1

Lot_Date CodeMarking Line 2

Lot_Date CodeMarking Line 3

PartNumber

Laser Markings

DIE MARKINGS

YYYYZZZZ

TAPE AND REEL CONFIGURATION4 mm pitch, 8 mm wide tape on 7” reel

7” reel

a

d e f g

c

b

Dimension (mm) target min max a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (note 2) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (note 2) 2.00 1.95 2.05 g 1.5 1.5 1.6

Note 1: MSL 1 (moisture sensitivity level 1) classi�ed according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bump isunder thiscorner

Die is placed into pocketsolder bump side down(face side down)

Loaded Tape Feed Direction

Figure 11: Safe Operating Area 100

10

1

0.1

0.01 0.1 1 10 100

I D – D

rain

Curre

nt (A

)

VDS – Drain-Source Voltage (V)TJ = Max Rated, TC = +25°C, Single Pulse

Limited by RDS(on)

100 ms 10 ms 1 ms 100 µs

Pulse Width 100 ms

10 ms 1 ms

100 µs

EPC2039 (note 1)

2039

Page 6: EPC2039 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2039

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 6

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

RECOMMENDEDLAND PATTERN (measurements in µm) The land pattern is solder mask defined

Solder mask is 10 μm smaller per side than bump

DIE OUTLINESolder Bump View

Side View

DIM

Micrometers

MIN Nominal MAX

A 1320 1350 1380B 1320 1350 1380c 450 450 450d 210 225 240e 187 208 229

B

A

d c c

e

dc

c

Pad 1 is Gate;Pads 4, 5, 6, 7 are Drain;Pads 2, 3, 8, 9 are Source

3 6 9

2 5 8

1 4 7

165

+/−

17

815

Max

(625

)

Seating Plane

X9

1350

1350 2 5 8

3 6 9

1 4 7

225 225

450 450

450

450

200 +20 / - 10 (*)

* minimum 190

RECOMMENDEDSTENCIL DRAWING (measurements in µm)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

250

1350

1350

225 225

450 450

450

450

R60

Information subject to change without notice.

Revised April, 2021