37
Phương pháp đơn tinh thể quay ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP.HCM KHOA KHOA HỌC VẬT LIỆU. ….o0o…. Đề tài PHƯƠNG PHÁP ĐƠN TINH THỂ QUAY (The Rotating-Crystal Method) GVHD: Đinh Thị Mộng Cầm Sinh viên: Trần Ngọc Ánh 1019215 Huỳnh Đăng Khoa 1019248 Trương Minh Hiếu 1019237 Lâm Văn Kỵ 1019251 2013 1

ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Embed Size (px)

Citation preview

Page 1: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP.HCM

KHOA KHOA HỌC VẬT LIỆU.

….o0o….

Đề tài

PHƯƠNG PHÁP ĐƠN TINH THỂ QUAY

(The Rotating-Crystal Method)

GVHD: Đinh Thị Mộng Cầm

Sinh viên: Trần Ngọc Ánh 1019215

Huỳnh Đăng Khoa 1019248

Trương Minh Hiếu 1019237

Lâm Văn Kỵ 1019251

2013

1

Page 2: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

MỤC LỤC

A .GIỚI THIỆU TIA X:...........................................................................................6

I. Tia x:..............................................................................................................6

1.1 Các tính chất của tia X:..........................................................................6

1.2 Cách tạo ra tia X:.........................................................................................7

II. Nhiễu xạ tia X:...........................................................................................8

2.1 Hiện tượng nhiễu xạ tia x:........................................................................9

2.2 Định luật Vulf – Bragg:............................................................................10

2.3 Cường độ nhiễu xạ :.................................................................................13

2.3.1 Nhiễu xạ bởi điện tử tự do:....................................................................13

2.3.2 Nhiễu xạ bởi nguyên tử:.........................................................................13

2.3.4 Nhiễu xạ bởi ô mạng cơ bản:................................................................14

2.4 Các phương pháp phân tích đơn tinh thể bằng tia X :...............................14

B. PHƯƠNG PHÁP ĐƠN TINH THỂ QUAY:....................................................15

III. Tinh thể:........................................................................................................15

3. Cấu tạo :...................................................................................................15

3.1 Ô đơn vị :..............................................................................................16

3.2 Hệ tinh thể :...........................................................................................16

3.3 Phân loại mạng tinh thể :.....................................................................17

2

Page 3: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

3.4 Chỉ số Miller của mặt tinh thể :...........................................................17

IV.Mạng đảo:......................................................................................................18

4.1 Khái niệm mạng đảo :................................................................................18

4.2 Các tính chất của mạng đảo:.......................................................................19

4.3 Ý nghĩa vật lý của mạng đảo:.....................................................................19

V. Hình cầu Ewarld:............................................................................................19

V. Phương pháp tinh thể quay:............................................................................20

5.1 Qui trình.....................................................................................................20

5.2 Cấu tạo:......................................................................................................21

5.2.1 Ống pháp tia X:.......................................................................................21

5.1.2 Buồng nhiễu xạ:......................................................................................21

5.2.3 Phim chứa ảnh nhiễu xạ:.........................................................................22

5.3 Phân tích ảnh nhiễu xạ:.............................................................................22

5.4 kết quả:......................................................................................................24

5.5 Hạn chế:.....................................................................................................24

5.6 Kết luận:.....................................................................................................24

5.7 Ưu nhược điểm của đơn tinh thể quay:......................................................24

VI Trang thiết bị:..............................................................................................24

Máy nhiễu xạ tia x d8:........................................................................................25

TÀI LIỆU THAM KHẢO:.....................................................................................26

3

Page 4: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

LỜI NÓI ĐẦU

Dùng tia X để nghiên cứu cấu trúc vật liệu đã có cách

đây hơn một trăm năm, nhưng tia X vẫn là một trong những

công cụ chính để nghiên cứu cấu trúc vật liệu. Hầu hết các

phương pháp nghiên cứu cấu trúc vật liệu đều sử dụng tia X.

Chúng ta sử dụng tia X vì nó có bước sóng đủ nhỏ để thỏa

mãn định luật Bragg khi chiếu vào tinh thể, nó gây ra hiện

tượng nhiễu xạ, và cho ảnh trên phim.

Nghiên cứu cấu trúc vật liệu bằng tia X gồm nhiều

phương pháp như: phương pháp bột, phương pháp Laue,

phương pháp đơn tinh thể quay... Phương pháp nghiên cứu

đơn tinh thể quay là một trong những phương pháp lâu đời

nhất, nhưng hiện nay nó vẫn được sử dụng nhiều.

Trong tập tài liệu nầy, chúng tôi đã tìm hiểu phương

pháp nghiên cứu cấu trúc vật liệu – phương pháp đơn tinh thể

quay. Lịch sử ra đời của phương pháp đơn tinh thể quay, cơ sở

lý thuyết, cách tiến hành nghiên cứu và kết quả đều được thể

hiện trong tập tài liều nầy. Bạn sẽ đọc một số khái niệm như

nhiễu xạ tia X, định luật Vulf-Bragg, mạng đảo, hình cầu

Edwarld. Chúng được nhắc lại một cách tóm tắt và ngắn gọn.

Tập tài liệu đã được chúng tôi chắt lọc và chỉnh sửa,

nhưng vẫn không tránh khỏi thiếu sót. Mong thầy cô và bạn

đọc cho ý kiến để kịp thời sửa chữa trong những lần sau.

Chúng tôi xin chân thành cám ơn.

4

Page 5: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

TÁC GIẢ

5

Page 6: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

A .GIỚI THIỆU TIA X:I. Tia x:

-Tia X hay X quang hay tia Röntgen là một dạng của sóng

điện từ, nó có bước sóng trong khoảng từ 0,01 đến 1 nm

tương ứng với dãy tần số từ 30 PHz đến 30 EHz và năng

lượng từ 120 eV đến 120 keV.

Bước sóng của nó ngắn hơn tia tử ngoại nhưng dài hơn tia Gamma.

wihelm Conrad roentgen(1845-1923)

- Những tia X có bước sóng từ 0,01 nm đến 0,1 nm có tính đâm xuyên

mạnh hơn nên gọi là tia X cứng.

- Những tia X có bước sóng từ 0,1 nm đến khoảng 1 nm có tính đâm xuyên

yếu hơn được gọi là tia X mềm.

I.1 Các tính chất của tia X:

- Khả năng xuyên thấu lớn.

- Gây ra hiện tượng phát quang ở một số chất.

6

Page 7: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

- Làm đen phim ảnh, kính ảnh.

- Ion hóa các chất khí.

- Tác dụng mạnh lên cơ thể sống, gây hại cho sức khỏe.

1.2 Cách tạo ra tia X: Tia X được phát ra khi các electron hoặc các hạt mang điện khác bị hãm bởi

một vật chắn và xuất hiện trong quá trình tương tác giữa bức xạ γ với vật chất.

Thông thường để tạo ra tia X người ta sử dụng electron vì để gia tốc

electron đòi hỏi điện thế nhỏ hơn so với các trường hợp dùng các hạt mang điện

khác.

Tia X được tạo ra trong ống phát Röntgen thường làm bằng thuỷ tinh hay

thạch anh có độ chân không cao, trong đó có hai điện cực catốt bằng vofram hay

bạch kim sẽ phát ra electron và anốt dạng đĩa nghiêng 450 so với tia tới (H1).

Hình vẽ mặt cắt cấu tạo của ống phát tia X (H.1)

Các electron được tạo ra do nung nóng catot. Giữa catot và anot có một

điện áp cao nên các electron được tăng tốc với tốc độ lớn tới đập vào anot. Nếu

electron tới có năng lượng đủ lớn làm bứt ra các electron ở lớp bên trong

nguyên tử của anot thì nguyên tử sẽ ở trạng thái kích thích với một lỗ trống

trong lớp electron. Khi lỗ trống đó được lấp đầy bởi một electron của lớp bên

7

Page 8: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

ngoài thì photon tia X với năng lượng bằng hiệu các mức năng lượng electron

được phát ra.

Nếu toàn bộ năng lượng của electron đều chuyển thành năng lượng của

photon tia X thì năng lượng photon tia X được liên hệ với điện thế kích thích U

theo hệ thức:

Khi đó photon tia X có năng lượng lớn nhất hay bước sóng ngắn nhất.

Thực tế, chỉ khoảng 1% năng lượng của tia electron được chuyển thành tia X,

phần lớn bị tiêu tán dưới dạng nhiệt làm anot nóng lên và người ta phải làm nguội

anot bằng nước.

Trong đó, me: khối lượng tĩnh của

electron e0: điện tích của electron

F: điện tích hạt nhân hiệu dụng tác dụng lên electron và F = Z – σ, σ là hệ

số chắn. n1, n2: các số lượng tử chính (n1 < n2)

Chú ý rằng :

với c là vận tốc ánh sáng ,ta có :

R: hằng số Rydberg (109737)

Z: điện tích hạt nhân của kim loại dùng làm đối catot.

II. Nhiễu xạ tia X:

8

Page 9: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

2.1 Hiện tượng nhiễu xạ tia x:

Nhiễu xạ tia X là hiện tượng các chùm tia X nhiễu xạ trên các mặt

tinh thể của chất rắn do tính tuần hoàn của cấu trúc tinh thể tạo nên các cực

đại và cực tiểu nhiễu xạ. Kỹ thuật nhiễu xạ tia X (thường viết gọn là nhiễu

xạ tia X) được sử dụng để phân tích cấu trúc chất rắn, vật liệu... Xét về bản

chất vật lý, nhiễu xạ tia X cũng gần giống với nhiễu xạ electron, sự khác

nhau trong tính chất phổ nhiễu xạ là do sự khác nhau về tương tác giữa tia X

với nguyên tử và sự tương tác giữa electron và nguyên tử.

Nhiễu xạ là đặc tính chung của các sóng bị thay đổi khi tương tác với vật

chất và là sự giao thoa tăng cường của nhiều hơn một sóng tán xạ. Quá trình hấp

thụ và tái phát bức xạ electron còn gọi là tán xạ.

Mỗi photon có năng lượng E tỷ lệ với tần số f của nó: E = hf

Mặt khác tần số f liên quan tới bước sóng λ theo công thức sau: trong đó h

là hằng số Planck (h = 6,626.10–34 J.s), c là vận tốc ánh sáng (c = 3.10–8 m/s),

theo tính toán bước sóng tia X khoảng 0,2 nm (2Å).

Để mô tả hiện tượng nhiễu xạ người ta đưa ra ba thuật ngữ sau:

- Tán xạ (Scattering): là quá trình hấp thu và tái bức xạ thứ cấp theo

các hướng khác nhau.

- Giao thoa (Interference): là sự chồng chất của hai hoặc nhiều sóng

tán xạ tạo thành sóng tổng hợp.

- Nhiễu xạ (Diffraction): là sự giao thoa tăng cường của nhiều sóng tán xạ.

Chiếu lên tinh thể một chùm tia Rơnghen, mỗi nút mạng trở thành tâm

nhiễu xạ và mạng tinh thể đóng vai trò như cách tử nhiễu xạ.

9

Page 10: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Nếu tia X chiếu vào nguyên tử làm các electron dao động xung quanh

vtcb của chúng, khi electron bị hãm thì phát xạ tia X. Quá trình hấp thụ và tái

phát bức xạ electron này được gọi là tán xạ, hay nói cách khác photon của tia X

bị hấp thụ bởi nguyên tử và photon khác có cùng năng lượng được tạo ra. Khi

không có sự thay đổi về năng lượng giữa photon tới và photon phát xạ thì tán

xạ là đàn hồi, ngược lại nếu mất năng lượng photon thì tán xạ không đàn hồi.

Khi hai sóng rọi vào nguyên tử (có nhiều electron) mà chúng bị tán xạ bởi

electron theo hướng tới . Hai sóng phản xạ theo hướng tới cùng pha tại mặt

phẳng tới vì chúng có cùng quãng đường đi trước và sau tán xạ. Nếu cộng hai

sóng này sẽ được một sóng có cùng bước sóng nhưng có biên độ gấp đôi. Các

sóng tán xạ theo các hướng khác sẽ không cùng pha tại mặt sóng nếu hiệu

quang trình không bằng một số nguyên lần bước sóng. Nếu ta cộng hai sóng

này thì biên độ sẽ nhỏ hơn biên độ sóng tán xạ theo hướng tới.

Như vậy, các sóng tán xạ từ mỗi nguyên tử sẽ giao thoa với nhau, nếu

các sóng cùng pha thì xuất hiện giao thoa tăng cường, nếu lệch pha 1800 thì

giao thoa triệt tiêu.

2.2 Định luật Vulf – Bragg:

Khi chiếu tia X vào vật rắn tinh thể thì xuất hiện các tia nhiễu xạ với

cường độ và hướng khác nhau. Các hướng này bị khống chế bởi bước sóng của

bức xạ tới và bởi bản chất của mẫu tinh thể. Định luật Vulf – Bragg được đưa

ra năm 1913 thể hiện mối quan hệ giữa bước sóng tia X và khoảng cách giữa

các mặt phẳng nguyên tử.

10

Page 11: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Theo lý thuyết về cấu tạo tinh thể, những nguyên tử hay ion phân bố một

cách trật tự đều đặn trong không gian theo một quy luật xác định. Khoảng

cách giữa các nguyên tử (ion) khoảng vài Å.

Khi chùm tia X đập vào tinh thể thì xuất hiện các tia nhiễu xạ với cường độ

và các hướng khác nhau.

Định luật Bragg giả thiết rằng mỗi mặt phẳng nguyên tử phản xạ sóng

tới độc lập như phản xạ gương.

Giả sử có hai mặt phẳng song song AA’ và BB’ , có cùng chỉ số Miller h, k,

l và cách nhau bởi khoảng cách giữa các mặt phẳng nguyên tử dhkl.

Giả thiết rằng tia tới là tia đơn sắc song song và cùng pha với bước sóng λ

chiếu vào hai mặt phẳng này với một góc θ . Hai tia 1 và 2 bị tán xạ bởi

nguyên tử Q và P cho hai tia phản xạ 1’ và 2’ cùng với một góc θ so với các

mặt phẳng A, B.

Điều kiện để nhiễu xạ là hiệu quang lộ: δ = (2Q2’) – (1P1’) = nλ.

Suy ra: δ = SQ + QT = 2dhklsinθ = nλ với n là số nguyên (n = 1, 2, 3,…)

Phương trình Vulf – Bragg: (n được gọi là bật phản xạ ).

11

Page 12: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Phương trình này biểu thị mối quan hệ giữa góc các tia nhiễu xạ θ và bước

sóng tia tới λ, khoảng cách giữa các mặt phẳng nguyên tử d. Nếu định luật

Bragg không được thỏa mãn thì sẽ không xảy ra hiện tượng giao thoa.

Khi n > 1 các phản xạ được coi là phản xạ bậc cao và phương trình Bragg

có thể viết như sau : .thông số d/n là khoảng cách giữa các mặt phẳng

(hkl) và nh,nk ,nl là các khoảng cách Miller có khoảng cách bằng 1/n cách khoảng

giữa các mặt h,k,l

Định luật Bragg là điều kiện cần nhưng chưa đủ cho nhiễu xạ tia X, vì nhiễu

xạ chỉ có thể chắc chắn xảy ra với các ô đơn vị có các nguyên tử ở ô góc mạng.

Còn các nguyên tử không ở góc ô mạng mà ở trong các vị trí khác, chúng hoạt

động như các tâm tán xạ phụ lệch pha với các góc Bragg nào đó, kết quả là

mất đi một số tia nhiễu xạ theo phương trình phải có mặt.

Nhiễu xạ tia từ các mặt của họ mạng tinh thể.

Họ mặt có chỉ số Miller càng nhỏ có khoảng cách giữa hai mặt kế nhau càng

lớn và có mật độ các nút mạng càng lớn.

12

Page 13: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

2.3 Cường độ nhiễu xạ : Có thể tính toán được cường độ nhiễu xạ bằng cách cộng sóng hình sin với

pha và biên độ khác nhau. Hướng của tia nhiễu xạ không bị ảnh hưởngbởi loại

nguyên tử ở từng vị trí riêng biệt và hai ô mạng đơn vị có cùng kích thước nhưng

với sự sắp xếp nguyên tử khác nhau sẽ nhiễu xạ tia X trên cùng một hướng. Tuy

nhiên cường độ của các tia nhiễu xạ này khác nhau.

Để xác định cường độ nhiễu xạ thường tiến hành theo 3 bước sau:

- Nhiễu xạ tia X bởi điện tử tự do.

- Nhiễu xạ tia X bởi nguyên tử.

- Nhiễu xạ bởi ô mạng cơ bản.

2.3.1 Nhiễu xạ bởi điện tử tự do:

Thomson đã chứng minh được công thức xác định cường độ nhiễu xạ tia

X bởi một điện tử có điện tích e và khối lượng me tại khoảng cách r – khoảng

cách giữa tán xạ điện tử đến đầu dò detector là:

Trong đó I0 là cường độ tia X tới; c là tốc độ ánh sáng; 2θ là

hướng tán xạ. Biểu thức trên cho thấy năng lượng tán xạ từ các điện

tử đơn là rất nhỏ.

2.3.2 Nhiễu xạ bởi nguyên tử: Nguyên tử có nhiều đám mây điện tử quay xung quanh hạt nhân. Tia

tới bị tán xạ bởi điện tử và hạt nhân. Nhưng hạt nhân của nguyên tử rất lớn cho

nên có thể bỏ qua tán xạ bởi hạt nhân, do đó tán xạ toàn phần chủ yếu bởi các

điện tử riêng biệt.

13

Page 14: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Các điện tử quay quanh hạt nhân ở các vị trí khác nhau sẽ sinh ra sóng tán xạ

với pha khác nhau và sẽ giao thoa với nhau.

Đại lượng thừa số tán xạ nguyên tử f mô tả hiệu suất tán xạ trên một hướng

riêng biệt được xác định bằng tỷ số sau:

f =(biên độ sóng tán xạ bởi 1 nguyên tử)/(biên độ sóng tán xạ bởi 1 nguyên tử)

Giá trị f bằng số điện tử trong nguyên tử khi θ = 0, hay f = Z là nguyên tử

số, song giá trị này giảm khi θ tăng hay λ giảm.

2.3.4 Nhiễu xạ bởi ô mạng cơ bản:

Bây giờ ta hãy xem xét ảnh hưởng của vị trí nguyên tử trong ô cơ bản

đến biên độ sóng tán xạ. Vì ô cơ bản là phần tử nhỏ nhất lặp lại tuần hoàn tạo

thành tinh thể nên đây là bước cuối cùng trong trình tự xác định cường độ của

tia nhiễu xạ. Phương pháp tính toán cũng tương tự như đối với tán xạ bởi các

điện tử tại các vị trí khác nhau trong nguyên tử song ở đây có sự khác pha do

nguyên tử ở các vị trí khác nhau trong ô cơ bản.

Cường độ nhiễu xạ cho bởi công thức:

Trong đó, p là thừa số lặp, e–2µ là thừa số nhiệt, với là thừa

số Lorentz .

2.4 Các phương pháp phân tích đơn tinh thể bằng tia X :

Hai phương pháp chính để thực hiện nhiễu xạ đơn tinh thể là phương pháp ảnh

Laue và phương pháp xoay đơn tinh thể .Để thỏa mãn điều kiện nhiễu xạ Bragg

,trong phương pháp xoay đơn tinh thể chùm tia X đơn sắc ( không

đổi ) được chiếu lên đơn tinh thể quay ( thay đổi )quanh một phương tinh thể nào

14

Page 15: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

đó ,trong phương pháp ảnh Laue chùm bức xạ với phổ liên tục ( thay đổi) được

rọi lên đơn tinh thể đứng yên ( không đổi).

Phương pháp Laue Phương pháp đơn tinh thể quay

B. PHƯƠNG PHÁP ĐƠN TINH THỂ QUAY:

III. Tinh thể:3. Cấu tạo :

Trong khoáng vật học và tinh thể học ,một cấu trúc tinh thể là một sự sắp

xếp đặc biệt của các nguyên tử trong tinh thể .Một cấu trúc tinh thể gồm có

một ô đơn vị và rất nhiều các nguyên tử sắp xếp theo một cách đặc biệt ,vị trí

của chúng được lặp lại một cách tuần hoàn trong không gian ba chiều theo

một mạng Bravais.Kích thước của ô đơn vị theo các chiều khác nhau được gọi

là thông số mạng hay hằng số mạng.Tùy thuộc vào tính chất đối xứng của ô

đơn vị mà tinh thể đó thuộc vào một trong các nhóm không gian khác nhau.

Cấu trúc và đối xứng của tinh thể có vai trò rất quan trọng với các tính chất liên

kết ,tính chất điện,tính chất ,.. của tinh thể.

15

Page 16: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Cấu trúc tinh thể = mạng tinh thể + ô cơ sở

3.1 Ô đơn vị :

Ô đơn vị là một cách sắp xếp của các nguyên tử trong không gian ba chiều,

nếu ta lặp lại nó thì nó sẽ chiếm đầy không gian và sẽ tạo nên tinh thể. Vị trí

của các nguyên tử trong ô đơn vị được mô tả bằng một hệ đơn vị hay còn gọi là

một hệ cơ sở bao gồm ba thông số tương ứng với ba chiều của không gian (xi, yi,

zi).

Đối với mỗi cấu trúc tinh thể, tồn tại một ô đơn vị quy ước, thường

được chọn để mạng tinh thể có tính đối xứng cao nhất. Tuy vậy, ô đơn vị quy

ước không phải luôn luôn là lựa chọn nhỏ nhất. Ô nguyên tố mới là một lựa

chọn nhỏ nhất mà từ đó ta có thể tạo nên tinh thể bằng cách lặp lại ô nguyên tố.

Ô Wigner Seitz là một loại ô nguyên tố mà có tính đối xứng giống như của mạng

tinh thể.

Ô Wigner-Seitz của mạng Ô Wigner-Seitz của mạng lập phương tâm mặt lập phương tâm khối

3.2 Hệ tinh thể :

16

Page 17: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Hệ tinh thể là một nhóm điểm của các mạng tinh thể (tập hợp các phép đối

xứng quay và đối xứng phản xạ mà một điểm của mạng tinh thể không biến đối).

Hệ tinh thể không có các nguyên tử trong các ô đơn vị. Nó chỉ là những biểu

diễn hình học mà thôi. Có tất cả bảy hệ tinh thể. Hệ tinh thể đơn giản nhất và đối

xứng cao nhất là hệ lập phương, các hệ tinh thể khác có tính đối xứng thấp

hơn là: hệ sáu phương, hệ bốn phương, hệ ba phương (còn gọi là hình mặt

thoi), hệ thoi, hệ một nghiêng, hệ ba nghiêng. Một số nhà tinh thể học coi hệ

tinh thể ba phương là một phần của hệ tinh thể sáu phương

3.3 Phân loại mạng tinh thể :

Mạng Bravais là một tập hợp các điểm tạo thành từ một điểm duy nhất theo

các bước rời rác xác định bởi các véc tơ cơ sở. Trong không gian ba chiều

có tồn tại 14 mạng Bravais (phân biệt với nhau bởi các nhóm không gian). Tất

cả các vật liệu có cấu trúc tinh thể đều thuộc vào một trong các mạng Bravais

này (không tính đến các giả tinh thể)

Cấu trúc tinh thể là một trong các mạng tinh thể với một ô đơn vị và các

nguyên tử có mặt tại các nút mạng của các ô đơn vị nói trên.

3.4 Chỉ số Miller của mặt tinh thể :

Chỉ số Miller của mặt phẳng tinh thể được xác định là nghịch đảo giao điểm

phân số của mặt tinh thể cắt trên trục tinh thể x,y và z của ba cạnh không song

song của ô cơ bản. Chỉ số Miller được xác định như sau:

Chọn một mặt phẳng không đi qua gốc tọa độ (0,0,0).

Xác định các tọa độ giao điểm của mặt phẳng với các trục x, y và z của ô

đơn vị.Tọa độ giao điểm đó sẽ là các phân số.

Lấy nghịch đảo các tọa độ giao điểm này.

17

Page 18: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Quy đồng các phân số này và xác định tập nguyên nhỏ nhất của các tử số.

Các số này chính là chỉ số Miller, kí hiệu là h, k và l. Một bộ chỉ số (hkl)

biểu diễn không phải một mặt phẳng mà là biểu diễn một họ các mặt phẳng

song song nhau.

Trong cấu trúc tinh thể khoảng cách giữa các mặt phẳng song song gần nhau

nhất có cùng chỉ số Miller được kí hiệu là dhkl trong đó h, k, l là chỉ số Miller

của các mặt. Từ hình học ta có thể thấy rằng khoảng cách dhkl giữa các mặt

lân cận song song trong tinh thể lập phương là: với a là độ dài

vecto cơ sở của mạng lập phương (hay gọi là hằng số mạng).

Các mặt phẳng (hkl) và (nh nk nl) , n là số nguyên, là song song nhau, nhưng

khoảng cách giữa các mặt phẳng của mặt phẳng (nh nk nl) bằng 1/n khoảng cách

giữa các mặt phẳng (hkl).

IV.Mạng đảo:

4.1 Khái niệm mạng đảo : Mạng đảo là một khái niệm hết sức quan trọng do Gibbs (Josiah Willard

Gibbs, 1839-1903) đề xuất. Sự xuất hiện của mạng đảo là hệ quả tất yếu của tính

tuần hoàn tịnh tiến của mạng thuận.

Mặt phẳng trong không gian có thể biểu diễn bằng một nút mạng trong

không gian đảo.Ô cơ bản của mạng đảo được xác định bởi các vecto thỏa

mãn hệ thức sau: ,trong đó ,là

các vecto đơn vị tinh thể.

18

Page 19: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

4.2 Các tính chất của mạng đảo: Mạng đảo cũng là một mạng Bravais.

Mạng đảo của mạng đảo của một mạng Bravais chính là mạng bravais đã

cho.

Mỗi vectơ của mạng đảo đều trực giao với một họ mặt phẳng nào đó của

mạng thuận.

Khoảng cách giữa 2 mặt phẳng thuộc họ (hkl) của mạng thuận được xác

định theo công thức và thể tích của ô cơ sở mạng thuận và thể

tích của ô cơ sở mạng đảo liên hệ với nhau theo công thức

4.3 Ý nghĩa vật lý của mạng đảo: Mạng đảo là khung của không gian chuyển động.

Mạng đảo thể hiện tính chất: tinh thể tuần hoàn dẫn đến chuyển động cũng

tuần hoàn.

Ý nghĩa thực tế: Khi nghiên cứu cấu trúc tinh thể bằng phương pháp nhiễu

xạ tia X thì bức tranh thu được ảnh của chùm tia bị tinh thể nhiễu xạ. Bức

tranh này chính là ảnh mạng đảo của tinh thể và từ đó ta phải suy ra mạng

thuận.

V. Hình cầu Ewarld:Hình cầu Ewald được xây dựng giúp ta hình dung một cách đơn giản hướng cho phép nhiễu xạ tia X. Cách xác định hình cầu Ewarld:

19

Page 20: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Từ gốc O của không gian mạng đảo, vẽ vector sóng tới theo hướng tới của

tia X. Điểm cuối của là một nút của mạng đảo.

Vẽ vector sóng nhiễu xạ tạo với góc 2 và có

độ lớn bằng .

Từ định luật Bragg trong không gian đảo

ta xác định được điểm cuối của vector phải là

một nút của mạng đảo. Suy ra vector là các vector xuất phát từ O và tới

các điểm nằm trên đường tròn tâm O bán kính

V. Phương pháp tinh thể quay:

Trong phương pháp tinh thể quay, bước sóng tia tới được giữ nguyên, tinh thể xoay

nên các nút mạng đảo cũng xoay. Điều này cho phép nhiều nút mạng đáp ứng điều

kiện Bragg hơn. Tập hợp các vector sóng nhiễu xạ có dạng các hình nón chồng lên

nha (hình a) và khi chiếu lên mặt phẳng giấy sẽ có dạng như hình b.

20

Page 21: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

5.1 Qui trình Giữ nguyên bước sóng và thay đổi góc tới.

Phim được đặt vào mặt trong của buồng

hình trụ cố định

Mẫu đơn tinh thể được gắn trên thanh quay

đồng trục với buồng

Chùm tia x đơn sắc (với bước sóng là một hằng số) được chiếu liên tục lên đơn tinh thể

5.2 Cấu tạo:

5.2.1 Ống pháp tia X: Ống phát tia X hay ống Röntgen thường làm bằng thủy tinh hay thạch anh bên

trong là chân không cao. Hai điện cực cathode làm bằng vonfram hay bạch kim

được đốt nóng phát ra điện tử và được điện trường cao gia tốc đập vào anode nằm

ở phía đối diện có dạng hình dĩa đặt một góc nghiêng 450 so với điện tử tới. Vật

liệu làm anode sẽ quyết định bước sóng tia X đặc trưng phát ra.

21

Page 22: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Mô hình ống phát tia X Ảnh chụp Ống phát tia X

5.1.2 Buồng nhiễu xạ:Buồng nhiễu xạ hình trụ. Tia X đi vào qua trung tâm buồng và tia ló được đưa ra

phía đối diện. Phim được gắn phía trong mặt trụ đồng trục với buồng để ghi lại tia

nhiễu xạ giao thoa. Tinh thể gắn trên trục quay đồng trục với buồng và phim. Vị trí

cố định tinh thể rất quan trọng và quyết định tính chính xác của phương pháp đo

22

Page 23: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Buồng phát tia X Trục quay

5.2.3 Phim chứa ảnh nhiễu xạ:Phim được đặt vào mặt trong của buồng hình trụ cố định

5.3 Phân tích ảnh nhiễu xạ: Khi tinh thể quay được một vòng thì phía trên bên phải,

phía trên bên trái và phía dưới bên phải và phía dưới

bên trái của cùng một họ mặt mạng tinh thể sẽ nhiễu

xạ. Bốn hướng nhiễu xạ này cùng dựa trên khoảng cách

d của họ mặt mạng như nhau và cùng xảy ra theo

những phương đối xứng. Do đó, ảnh của đơn tinh thể

quay có hai mặt đối xứng là đường xích đạo và đường vuông góc với xích

đạo ở giữa phim.

Tất cả các mặt nguyên tử song song với trục quay sẽ tạo

nên các vết nhiễu xạ trong mặt phẳng xích đạo. Sau khi

phát triển các phim chụp ảnh, chúng ta thấy rằng các

điểm nhiễu xạ là liên kết trong đường song song, mà

không nhất thiết phải cách đều.

23

Page 24: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Các điểm trên mặt xích đạo là vết nhiễu xạ của các mặt . Tương tự,

hàng điểm nhiễu xạ đầu tiên phía trên đường xích đạo là của các mặt ,

hàng điểm nhiễu xạ đầu tiên phía dưới đường xích đạo là của các mặt .

Tuy nhiên, để biết loại mạng của tinh thể, có thể sử dụng quy luật

xuất hiện của các tia giao thoa, thông qua kí hiệu của chúng. Mỗi tia giao

thoa có kí hiệu ứng với mặt mạng liên quan, nó còn có cường độ. Đây đều

là những số liệu không thể thiếu nếu muốn đi sâu vào cấu trúc tinh thể. Các

tia phản xạ phân bố trên ảnh dưới dạng các nốt dày đặc trên hàng loạt

đường lớp. Sơ đồ chụp với độ phân giải thấp này không cho phép khai

thác những thông tin chuẩn xác về các tia này.

Phương pháp Weissenberg giúp tăng độ phân giải của phương pháp.

Theo sơ đồ buồng chụp, phương pháp này cho phép tấm phim hình ống

(với trục trùng với trục xoay của tinh thể) dao động thẳng đều dọc trục và

đồng bộ với chu kì xoay của mẫu. Nhờ vậy, các nốt nhiễu xạ được phân bố

rải rác khắp mặt phim, dọc các đường hình sin thay cho các đường lớp song

song. Có thể đánh giá cường độ tia giao thoa thông qua việc so sánh độ

đậm tương đối của các nốt trên phim. Cách làm này rất dày công, mà không

cho kết quả tin cậy.

24

Page 25: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

5.4 kết quả: Chùm tia X đơn sắc tới sẽ bị nhiễu xạ trên 1 họ mặt nguyên tử của tinh thể

với khoảng cách giữa các mặt là d khi trong quá trình quay xuất hiện những

giá trị thỏa mãn điều kiện Bragg

Tất cả các mặt nguyên tử song song với trục quay sẽ tạo nên các vết nhiễu

xạ trong mặt phẳng nằm ngang

5.5 Hạn chế:Trên ảnh chụp xuất hiện vết nhỏ giữa các điểm nhiễu xạ: chúng là bóng mờ do

khuyết tật tinh thể. Do đó yêu cầu nhiễu xạ đơn tinh thể nhỏ để giới hạn số lượng

khuyết tật.

Các phim chụp ảnh có thể bị biến dạng, do sự thiếu chính xác trong việc xử lý hoặc

các trục quay của tinh thể không hoàn toàn song song với mục tiêu.

5.6 Kết luận:Thường thì không quay tinh thể 3600 mà chỉ dao động trong 1 giới hạn góc nào đó,

nhờ vậy mà số vết nhiễu xạ có thể chập vào nhau sẽ giảm đi nhiều

5.7 Ưu nhược điểm của đơn tinh thể quay: Ưu điểm: - Chính xác

- Có thể tiến hành đo trong môi trường bình thường

- Nghiên cứu được cấu trúc bên trong vật liệu mà không cần

phá hủy

Nhược điểm:- Khó tìm được tinh thể hoàn hảo

- Không hiệu quả đối với các mạng tinh thể đối xứng thấp

hoặc vật liệu vô định hình

- Tia X có hại cho sức khỏe nên cần cẩn thận khi thao tác

VI Trang thiết bị:

25

Page 26: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Các ống phát tia X

Máy nhiễu xạ tia x d8:Mô tả thiết bị: Hệ máy nhiễu xạ tia X do hãng Bruker chế tạo là loại thiết bị có độ nhạy cao, được điều khiển hoàn toàn tự động bằng máy tính PC với hệ điều hành Win XP giúp người vận hành dễ dàng sử dụng với các giao diện thân thiện. Với đầy đủ phụ kiện và các chế độ đo đa dạng cho phép cố thể xác định cấu trúc của nhiều loại vật liệu khác nhau về cả định tính và định lượng.

Các thông số kỹ thuật chủ yếu:

Độ phân giải: 0,0001o Tốc độ quét: 0,00010/s đến 1,270/s Bước quét nhỏ nhất: 0,00010

26

Page 27: ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP

Phương pháp đơn tinh thể quay

Dải góc quét 2: tối thiểu -1100 đến 1680 (độ tuỳ thuộc vào phụ kiện) Ngôn ngữ hiển thị: Tiếng Anh

Các thông số của mẫu mà thiết bị có thể đo được:

Cấu trúc tinh thể của mẫu Độ đơn pha của mẫu Khoảng cách các mặt của tinh thể của mẫu Định hướng các pha có trong mẫu Kích thước hạt tinh thể

Đi u ki n làm vi c:ề ệ ệ

Nhi t đ phòng:ệ ộ   15-300 C Đ m:ộ ẩ  th p h n 70%ấ ơ Ngu n đi n:ồ ệ  220-250V, 50Hz, 5,5-6,0 kVA H th ng làm mát: Nhi t đ 2-20ệ ố ệ ộ 0 C

TÀI LIỆU THAM KHẢO:(1) Lê Khắc Bình, Nguyễn Nhật Khanh - Cơ sở vật lý chất rắn – nxb ĐH Quốc gia

TpHCM.(2) Đào Trần Cao –cơ sở vật lý chất rắn –nxb ĐH Quốc gia Hà Nội(3) Mạng tinh thể – Wikipedia(4)

27