15
Nuclear Chemistry

Nuclear Chemistry - Springer

Embed Size (px)

Citation preview

Nuclear Chemistry

Maheshwar Sharon • Madhuri Sharon

Nuclear ChemistrySecond Edition

123

Maheshwar SharonWalchand Centre for Research inNanotechnology & BionanotechnologyWalchand College of Arts and ScienceSolapur, Maharashtra, India

Madhuri SharonWalchand Centre for Research inNanotechnology & BionanotechnologyWalchand College of Arts and ScienceSolapur, Maharashtra, India

ISBN 978-3-030-62017-2 ISBN 978-3-030-62018-9 (eBook)https://doi.org/10.1007/978-3-030-62018-9

Jointly published with ANE Books Pvt. Ltd.In addition to this printed edition, there is a local printed edition of this work available via Ane Books inSouth Asia (India, Pakistan, Sri Lanka, Bangladesh, Nepal and Bhutan) and Africa (all countries in theAfrican subcontinent).ISBN of the Co-Publisher’s edition: 9789386761552

2nd edition: © The Author(s) 2021This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whetherthe whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, andtransmission or information storage and retrieval, electronic adaptation, computer software, or by similaror dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publishers, the authors, and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publishers nor theauthors or the editors give a warranty, express or implied, with respect to the material contained herein orfor any errors or omissions that may have been made. The publishers remain neutral with regard tojurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

— Acharya Kanad— (Founder of Atomic Theory)

As the founder of “Vaisheshik Darshan”—one of six principal philosophies of India—Acharya Kanad was a genius in philosophy.He is believed to have been born in PrabhasKshetra near Dwarika in Gujarat. He was thepioneer expounder of realism, law ofcausation and the atomic theory. He hasclassified all the objects of creation into nineelements, namely: earth, water, light, wind,ether, time, space, mind and soul.

He says, “Every object of creation is made ofatoms which in turn connect with each otherto form molecules”. His statement ushered inthe Atomic Theory for the first time ever in theworld, nearly 2500 years before John Dalton.Kanad has also described the dimension andmotion of atoms and their chemical reactionswith each other.

The eminent historian, T. N. Colebrook, hassaid, “Compared to the scientists of Europe,Kanad and other Indian scientists were theglobal masters of this field”.

Foreword

I have read your manuscript with great interest. I am sure that the book will be wellreceived as a clear and concise treatment of radiation detection and measurement.The book is also attributed in large measure to teach undergraduate, graduate andother educational courses.

Byung-Hun LeeProfessor of Nuclear Engineering

Department of Nuclear EngineeringCollege of Engineering

Hanyang UniversitySeoul, Korea

vii

Preface

We are glad to learn that this book has been appreciated by readers so much that its2nd edition is published. In this 2nd edition, we have added some new topicsconsidering the syllabus of the M.Sc. course dealing with Nuclear Chemistry likethe Shell model, fission/fusion reaction, natural radioactive equilibrium series,nuclear reactions carried out by various types of accelerators, etc. It is hoped thatthis 2nd edition will be appreciated by readers and graduate and postgraduatestudents.

It has been our experience that students of different disciplines desirous of usingthe tracer technique face the problem of selecting an isotope most suitable for theirwork. Having selected the isotope, the next problem they face is in selecting thetype of counter, type of source sample, duration for which the counting must bemade, and selecting the radiation emitted by the isotope for its efficient detection.This book is an effort toward guiding the readers on these aspects. Though there aremany books available on this topic, they are either very advanced or very ele-mentary. Students have, therefore, been requesting the author for many years towrite a book of this nature. This book is, thus, an outcome of the lectures given toEngineering and Science graduate and postgraduate students who have had verylittle exposure to the field of radioactivity. It has been tried to explain topics fromthe experience the author gained while teaching this subject in England and India.The author has also given a few results obtained by him while developing someexperiments for students studying this course.

It has been the experience that students often resort to memorizing the decayprocess without actually understanding the logic of various decay processes.Similarly, it is observed that students invariably select a counting procedure withoutunderstanding the reasons behind its selection. A novel concept is, therefore,developed to explain not only the decay processes but also the selection of countingprocedures for the detection and measurement of radioactivity. It is hoped thatstudents would get an exposure to select the counting procedures rather than simplygetting bookish knowledge of the subject. This book, thus, concentrates on thetechniques concerned with the detection and measurement of radioactivity.However, in order to appreciate the subject, an introduction to properties of

ix

radioactivity, e.g., law of decay of radioactivity, type of decay, and interaction ofradiation including particulate radiation with matter are dealt with appropriately.This book builds up its foundation from the nature of the interaction of radiationwith matter, which brings out the differentiations among ionization counter, scin-tillation counter, and solid-state detector. Based on decay properties like nature ofradiation, its energy, and abundances (which are given in the decay scheme), anattempt is made to select the type of counter for measuring radioactivity. Similarly,the selection of the form in which a sample should be prepared for counting is alsodiscussed. The statistics of counting is enumerated, which can assist to decide someof the routine-type corrections like subtraction and division of standard deviationcalculation. Finally, an effort is made to make the reader aware that there is adifference between an ordinary chemical laboratory and a radiochemical one. Thereis a need to understand that in designing a radiochemical laboratory, various con-siderations are needed which normally are not essential for an ordinary chemicallaboratory. Accordingly, these aspects of design of a radioactive laboratory havebeen discussed. At the end, various possible questions related to counting arementioned so that the reader after solving them would become more familiar withthis field.

It is hoped that the 2nd edition of the book would suffice the need of readers.However, it would be the pleasure of the authors to receive valuable comments andsuggestions from readers so that the next edition could be further improvised.

Solapur, India Maheshwar [email protected] Sharon

[email protected]

x Preface

Contents

1 Nuclear Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Nuclear Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.5 Binding Energy of Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . 41.6 Fission Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Thorium Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.6.2 Fusion Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Stability of Nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Emission of Nuclear Particles . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Interconversion of Nucleons Within the Nucleus . . . . . . . . . . . 16

2.3.1 Conversion of Neutrons into Protons . . . . . . . . . . . . . 162.3.2 Conversion of Proton to Neutron . . . . . . . . . . . . . . . . 17

2.4 Transition Between Nuclear Energy Levels WithoutEmission or Interconversion of Nucleons . . . . . . . . . . . . . . . . 20

2.5 Natural Radioactive Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.6 Decay Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Rate of Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.6.2 Half-Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.6.3 Radioactive Equilibrium . . . . . . . . . . . . . . . . . . . . . . 26

3 Nuclear Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2 Reactions Initiated by Charged Particles . . . . . . . . . . . . . . . . . 333.3 Reactions Initiated by Uncharged Particles . . . . . . . . . . . . . . . 34

xi

3.3.1 Thermal Neutron Reaction . . . . . . . . . . . . . . . . . . . . 353.3.2 Fast Neutron Reaction . . . . . . . . . . . . . . . . . . . . . . . 353.3.3 Nuclear Fission Reaction . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Particle Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.5 Conservation of Mass and Energy . . . . . . . . . . . . . . . . . . . . . 383.6 Reaction Cross-Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.7 Some Features of Nuclear Reactions . . . . . . . . . . . . . . . . . . . 41

3.7.1 The Purity of the Target Material . . . . . . . . . . . . . . . 413.7.2 Conservation of Mass Relationship . . . . . . . . . . . . . . 413.7.3 Nature of the Products . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Applications of Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . 42

4 Interaction of Radiation with Matter . . . . . . . . . . . . . . . . . . . . . . . 454.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2 Types of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2.2 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Interactions with Particulate Radiation . . . . . . . . . . . . . . . . . . 464.3.1 a-Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.3.2 b-Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Interaction with Electromagnetic Radiation . . . . . . . . . . . . . . . 474.4.1 Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . . . 474.4.2 Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 484.4.3 Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.4.4 Pair Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Consequences of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 504.5.1 Process of Excitation . . . . . . . . . . . . . . . . . . . . . . . . 504.5.2 Process of Ionization . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Types of Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Ionization Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.2 Ionization Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.3 General Design of an Ionization Chamber . . . . . . . . . . . . . . . 54

5.3.1 Current–Voltage Characteristics of the IonizationChamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Nature of Gas to be Used in Ionization Chamber . . . . . . . . . . 585.5 Regions Suitable for Counting Purposes . . . . . . . . . . . . . . . . . 595.6 Nature of Pulses Produced in Ionization Chamber . . . . . . . . . . 60

5.6.1 Conversion of Triangular Pulses to Square TypePulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6.2 Pulses Due to a- and b-Particles . . . . . . . . . . . . . . . . 625.6.3 Relationship Between Energy of Radiation and Pulse

Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii Contents

5.7 Ionization Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.8 Proportional Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8.1 Design of a Gas Flow Proportional Counter . . . . . . . . 665.8.2 Process of Ion-Pair Formation . . . . . . . . . . . . . . . . . . 675.8.3 Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . 685.8.4 Type of Radioactivity Measurable by the Counter . . . 695.8.5 Background Counting . . . . . . . . . . . . . . . . . . . . . . . . 705.8.6 Pulse Height Analyzer in Proportional Counter . . . . . 705.8.7 Advantages of Gas Flow Proportional Counter . . . . . . 72

5.9 Geiger–Müller Counter (G.M. Counter) . . . . . . . . . . . . . . . . . 755.9.1 Design of the End-Window G.M. Counter . . . . . . . . . 755.9.2 Principle of a G.M. Counter . . . . . . . . . . . . . . . . . . . 76

5.10 Liquid Geiger–Müller Counter . . . . . . . . . . . . . . . . . . . . . . . . 775.10.1 The Assembly of the Liquid G.M. Counter . . . . . . . . 785.10.2 Thickness of the Window and Density Correction . . . 785.10.3 Necessary Precautions While Using Liquid G.M.

Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785.11 Current–Voltage Characteristics of the G.M. Counter . . . . . . . 825.12 Dead Time of Geiger–Müller Counter . . . . . . . . . . . . . . . . . . 84

5.12.1 What is a Dead Time? . . . . . . . . . . . . . . . . . . . . . . . 845.12.2 Impact of Dead Time on the Anode . . . . . . . . . . . . . . 855.12.3 Correction of Lost Counts . . . . . . . . . . . . . . . . . . . . . 875.12.4 Determination of Dead Time of the Counter . . . . . . . . 87

5.13 Chemically Quenched G.M. Counter . . . . . . . . . . . . . . . . . . . 905.13.1 Organic Gas Quenched G.M. Counter . . . . . . . . . . . . 905.13.2 Halogen Quenched G.M. Counter . . . . . . . . . . . . . . . 91

5.14 Window Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.15 Limitations of Ionization Counters . . . . . . . . . . . . . . . . . . . . . 92

6 Scintillation Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.2 Scintillation Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.3 Principle of Scintillation Counter . . . . . . . . . . . . . . . . . . . . . . 966.4 Components of a Scintillation Counter . . . . . . . . . . . . . . . . . . 976.5 Design of Photomultiplier Tube . . . . . . . . . . . . . . . . . . . . . . . 986.6 Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6.1 Inorganic Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . 1006.6.2 Organic Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.6.3 Composition of Scintillator . . . . . . . . . . . . . . . . . . . . 101

6.7 Precautions Liquid Scintillation . . . . . . . . . . . . . . . . . . . . . . . 1026.7.1 Size of the Sample Holder . . . . . . . . . . . . . . . . . . . . 1026.7.2 Composition of Sample for Counting . . . . . . . . . . . . . 103

6.8 Gel Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.9 Filter Paper Soaked with Scintillator . . . . . . . . . . . . . . . . . . . 104

Contents xiii

6.10 Parameters Controlling The Scintillation Counter . . . . . . . . . . 1056.10.1 c-radiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.10.2 b-particulate Radiations . . . . . . . . . . . . . . . . . . . . . . . 1066.10.3 a-particulate Radiations . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 Optimum Conditions for Counting . . . . . . . . . . . . . . . . . . . . . 1066.11.1 Calibration of Pulse Height Analyzer . . . . . . . . . . . . . 107

6.12 b-counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096.12.1 Counting Conditions for b-particles . . . . . . . . . . . . . . 109

6.13 Quenching Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.13.1 Internal Standard Technique . . . . . . . . . . . . . . . . . . . 1126.13.2 Channel Ratio Technique . . . . . . . . . . . . . . . . . . . . . 1136.13.3 External Standard Source Techniques . . . . . . . . . . . . 115

6.14 Effect of Multiple Type Radiations on Counting . . . . . . . . . . . 117

7 Non-conventional Detection Techniques . . . . . . . . . . . . . . . . . . . . . 1197.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197.2 Semiconductor Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197.3 Principle of Semiconductor Detectors . . . . . . . . . . . . . . . . . . . 119

7.3.1 Formation of Band Gap . . . . . . . . . . . . . . . . . . . . . . 1217.3.2 Fermi Energy in a Material . . . . . . . . . . . . . . . . . . . . 1227.3.3 n- and p-Type Materials . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Formation of p : p Junction . . . . . . . . . . . . . . . . . . . . . . . . . . 1237.4.1 Formation of Space Charge Region . . . . . . . . . . . . . . 1237.4.2 Distribution of Carrier Concentration . . . . . . . . . . . . . 1247.4.3 p�n Junction vis-a-vis Diode . . . . . . . . . . . . . . . . . . 125

7.5 Effect of Radiation on the p�n Junction . . . . . . . . . . . . . . . . 1267.5.1 Design of a Semiconductor Detector . . . . . . . . . . . . . 1277.5.2 Advantage of a Semiconductor Detector . . . . . . . . . . 128

7.6 Silicon- and Germanium Lithium-Drifted Detectors . . . . . . . . . 1287.7 Nuclear Emulsion Techniques . . . . . . . . . . . . . . . . . . . . . . . . 129

7.7.1 Silver Grains in Photographic Plate by a-Particles . . . 1297.7.2 X-ray Film Badges . . . . . . . . . . . . . . . . . . . . . . . . . . 1307.7.3 Emulsion Radio Chromatography . . . . . . . . . . . . . . . 131

7.8 Solid-State Track Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.9 Low-Level Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.9.1 Anti-coincidence Counting System . . . . . . . . . . . . . . 1357.9.2 Co-incidence Counting System . . . . . . . . . . . . . . . . . 137

8 Sample Preparation for Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 1398.1 Sample Preparation Techniques . . . . . . . . . . . . . . . . . . . . . . . 139

8.1.1 Counting of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 1398.1.2 Counting in Form of Suspension . . . . . . . . . . . . . . . . 1398.1.3 Counting by Spreading Sample over a Filter Paper . . . 1408.1.4 Deposition of Sample by Electrolysis . . . . . . . . . . . . . 140

xiv Contents

8.1.5 Vacuum Evaporation Technique . . . . . . . . . . . . . . . . 1418.1.6 Electrospraying Technique . . . . . . . . . . . . . . . . . . . . 141

8.2 Solid Sample Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418.2.1 Planchet Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448.2.2 Preparation of Solid Sample from Liquid Sample . . . . 1448.2.3 Source from a Slurry . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Factors Affecting the Counting Efficiency . . . . . . . . . . . . . . . . . . . . 1479.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479.2 Geometrical Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2.1 Self-absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499.2.2 Backscattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.2.3 External Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 1529.2.4 Background Activity . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3 Decay Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539.3.1 Tritium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549.3.2 Sodium-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559.3.3 Sodium-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559.3.4 Strontium-90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1569.3.5 Cesium-137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10 Identification of Radioactive Isotopes . . . . . . . . . . . . . . . . . . . . . . . 15910.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15910.2 Counter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15910.3 Energy Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16010.4 b-Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.4.1 b-Absorption Law and Its Spectrum . . . . . . . . . . . . . 16010.4.2 Feather Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16310.4.3 Graphical Absolute Method . . . . . . . . . . . . . . . . . . . . 16310.4.4 Determination of Emax . . . . . . . . . . . . . . . . . . . . . . . . 165

10.5 Determination of Energy of a-Particles or c-Rays . . . . . . . . . . 16610.6 Photographic Emulsion Technique . . . . . . . . . . . . . . . . . . . . . 16610.7 Half-Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16710.8 Half-Life Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11 Statistics of Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17111.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17111.2 Statistical Error in Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 17211.3 Gaussian Distribution Curve . . . . . . . . . . . . . . . . . . . . . . . . . 174

11.3.1 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . 17411.3.2 Advantages of Standard Deviation Calculation . . . . . . 17611.3.3 Representation of Activity . . . . . . . . . . . . . . . . . . . . . 177

11.4 Sums and Differences of Counts . . . . . . . . . . . . . . . . . . . . . . 17711.5 Multiplication or Division to Recorded Count . . . . . . . . . . . . . 178

11.5.1 Division by a Constant Factor . . . . . . . . . . . . . . . . . . 178

Contents xv

11.5.2 Multiplication by Another Count . . . . . . . . . . . . . . . . 179

12 Health Hazards and Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18312.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18312.2 Biological Effect of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 18312.3 External Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18512.4 Internal Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18612.5 Units of Radiation Dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

12.5.1 Curie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18812.5.2 Rad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18812.5.3 Rem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18912.5.4 Maximum Permissible Level . . . . . . . . . . . . . . . . . . . 18912.5.5 Maximum Permissible Level of External

Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19012.5.6 Maximum Permissible Body Burden . . . . . . . . . . . . . 19012.5.7 Dose Rate Calculation . . . . . . . . . . . . . . . . . . . . . . . 191

12.6 Protection from External Hazard . . . . . . . . . . . . . . . . . . . . . . 19312.6.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19312.6.2 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19312.6.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

12.7 Instruments for Detection and Measurement of Radiation . . . . 19412.7.1 Portable Hand Monitor . . . . . . . . . . . . . . . . . . . . . . . 19412.7.2 Pocket Dosimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . 19412.7.3 Photographic Film Badge . . . . . . . . . . . . . . . . . . . . . 19512.7.4 Monitors for Survey Work . . . . . . . . . . . . . . . . . . . . 195

12.8 Design of a Radioactive Tracer Suit . . . . . . . . . . . . . . . . . . . . 19512.9 Decontamination of Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 197

12.9.1 Process of Decontamination . . . . . . . . . . . . . . . . . . . 19812.9.2 Disposal of Radioactive Waste . . . . . . . . . . . . . . . . . 199

12.10 Discipline in the Radioactive Laboratory . . . . . . . . . . . . . . . . 199

13 Radiochemical Separation Techniques . . . . . . . . . . . . . . . . . . . . . . 20113.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20113.2 Separation and Purification Techniques . . . . . . . . . . . . . . . . . . 20213.3 Co-precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

13.3.1 Carriers for the Separation . . . . . . . . . . . . . . . . . . . . 20213.3.2 Condition for Effective Use of Carrier . . . . . . . . . . . . 204

13.4 Solvent Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20413.5 Electrochemical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20513.6 Volatilization and Distillation . . . . . . . . . . . . . . . . . . . . . . . . . 20513.7 Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

13.7.1 Paper Chromatography . . . . . . . . . . . . . . . . . . . . . . . 20613.7.2 Paper Electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . 20813.7.3 Ion-Exchange Method . . . . . . . . . . . . . . . . . . . . . . . . 209

xvi Contents

13.7.4 Nuclear Recoil-Method . . . . . . . . . . . . . . . . . . . . . . . 21113.8 Activation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

13.8.1 Theory of the Activation Analysis Technique . . . . . . . 21213.8.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . 21413.8.3 Advantages/Disadvantages of This Technique . . . . . . 215

14 Hot Atom-Nuclear Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21714.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21714.2 Szilard-Chalmers Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 217

14.2.1 Szilard-Chalmers Reaction with OrganicSubstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

14.2.2 Szilard-Chalmers Reaction with InorganicSubstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

14.3 Application of Szilard-Chalmers Reactions . . . . . . . . . . . . . . . 221

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Contents xvii

About the Authors

Late Prof. Maheshwar Sharon obtained Postgraduate Advance Diploma inNuclear Power from Strachclyde University, Glasgow (1962); PostgraduateDiploma (Radiochemistry), Leicester Polytechnic (1964) and Ph.D. from LeicesterUniversity (1967). At Manchester University and Bolton Institute of Technology,he was a Postdoctoral Fellow where he studied (n, y) reactions using UniversityResearch Thermal Reactor at Risely, UK. After a brief spell at Himachal and PuneUniversities, respectively, he joined as a Professor in Chemistry at IIT, Bombay, in1978 and retired in 2003. Thereafter he joined Birla College, Kalyan, as an AdjunctProfessor and started a Nanotechnology Research Center. He was awardedProfessor Emeritus (CSIR) 2003–2005. He was awarded Professor Emeritus by theUGC. He had been awarded the Man of the Year 1990, 1992, 1994 and 1996 by ABInc, USA and was a Fellow of Royal Society of Chemistry, London (1965–2003).He had more than 150 research publications in National and International journals.He had many international research collaborations, namely with Japan, France andUK (with Prof. H. W. Kroto, FRS, Nobel Laureate). Unfortunately, he passed awayin December 2020, while this book was in production.

Dr. Madhuri Sharon a Ph.D. from University of Leicester (1969), has more thanfour decades of teaching and research experience. She also worked as aPostdoctoral Fellow at Bolton Institute of Technology, UK, and joined BoltonTechnical College, UK, as a teaching faculty. After returning to India, she joined asCSIR Pool Officer and worked at Sabour Agricultural University and Central PotatoResearch Institute. She joined as a Lecturer in Department of Botany, University ofPune, in 1973, where apart from teaching Masters students, she carried out researchfor 7 years. She has held senior positions in the industries like Gufic (as aVice-President) and Reliance Industries (as Director).

xix