Transcript
Page 1: 1.What is meant by finite element?

UNIT 1

1.What is meant by finite element?

A small units having definite shape of geometry and nodes is called finite element.

2. What is meant by node or joint?

Each kind of finite element has a specific structural shape and is inter- connected with

the adjacent element by nodal point or nodes. At the nodes, degrees of freedom are

located. The forces will act only at nodes at any others place in the element.

3. What is the basic of finite element method?

Discretization is the basis of finite element method. The art of subdividing a structure

in to convenient number of smaller components is known as discretization.

4. What are the types of boundary conditions?

I. Primary boundary conditions

II. Secondary boundary conditions

5. State the methods of engineering analysis?

I. Experimental methods

II. Analytical methods

III. Numerical methods or approximate methods

6. What are the types of element?

I. 1D element

II. 2D element

III. 3D element

7. State the three phases of finite element method.

1. Preprocessing

2. Analysis

3. Post Processing

8. What is structural problem?

Displacement at each nodal point is obtained. By these displacements solution stress and

strain in each element can be calculated.

9. What is non structural problem?

Temperature or fluid pressure at each nodal point is obtained. By using these values

properties such as heat flow fluid flow for each element can be calculated.

10. What are the methods are generally associated with the finite element analysis?

1. Force method

2. Displacement or stiffness method.

11. Explain stiffness method.

Page 2: 1.What is meant by finite element?

Displacement or stiffness method, displacement of the nodes is considered as the

unknown of the problem. Among them two approaches, displacement method is

desirable.

12. What is meant by post processing?

Analysis and evaluation of the solution result is referred to as post processing. Postprocessor

computer program help the user to interpret the result by displaying them in graphical form.

13. Name the variation methods.

1. Ritz method.

2. Ray-Leigh Ritz method.

14. What is meant by degrees of freedom?

When the force or reaction act at nodal point node is subjected to deformation. The

deformation includes displacement rotation, and or strains. These are collectively known as degrees

of freedom

15. What is meant by discretization and assemblage?

The art of subdividing a structure in to convenient number of smaller components is known

as discretization. These smaller components are then put together. The process of uniting the

various elements together is called assemblage.

16. What is Rayleigh-Ritz method?

It is integral approach method which is useful for solving complex structural problem,

encountered in finite element analysis. This method is possible only if a suitable function is

available.

17. What is Aspect ratio?

It is defined as the ratio of the largest dimension of the element to the smallest dimension. In

many cases, as the aspect ratio increases the in accuracy of the solution increases. The conclusion of

many researches is that the aspect ratio

18. What is truss element?

The truss elements are the part of a truss structure linked together by point joint which

transmits only axial force to the element.

19. What are the h and p versions of finite element method?

It is used to improve the accuracy of the finite element method. In h version, the order of

polynomial approximation for all elements is kept constant and the numbers of elements are

increased. In p version, the numbers of elements are maintained constant and the order of

polynomial approximation of element is increased.

20. Name the weighted residual method

1. Point collocation method

2. Sub domain collocation method

3. Least squares method

4. Galerkins method.

Page 3: 1.What is meant by finite element?

21. Distinguish ID bar element and Beam Element (May/June 2011)

1D bar element: Displacement is considered.

1D beam element: Displacement and slope is considered

22. What do you mean by Boundary value problem?

The solution of differential equation is obtained for physical problems, which satisfies some

specified conditions known as boundary conditions.

The differential equation together with these boundary conditions, subjected to a boundary

value problem.

Examples: Boundary value problem.

d2y/dx

2 - a(x) dy/dx – b(x)y –c(x) = 0 with boundary conditions, y(m) = S and y(n) = T.

23. What do you mean by weak formulation? State its advantages. (April/May 2015), (May/June

2013)

A weak form is a weighted integral statement of a differential equation in which the

differentiation is distributed among the dependent variable and the weight function and also

includes the natural boundary conditions of the problem.

A much wider choice of trial functions can be used.

The weak form can be developed for any higher order differential equation.

Natural boundary conditions are directly applied in the differential equation.

The trial solution satisfies the essential boundary conditions.

24. Why are polynomial types of interpolation functions preferred over trigonometric functions?

(May/June 2013)

Polynomial functions are preferred over trigonometric functions due to the following

reasons:

1. It is easy to formulate and computerize the finite element equations

2. It is easy to perform differentiation or integration

3. The accuracy of the results can be improved by increasing the order of the polynomial.

25. What do you mean by elements & Nodes?(May/June 2014)

In a continuum, the field variables are infinite. Finite element procedure reduces such

unknowns to a finite number by dividing the solution region into small parts called Elements. The

common points between two adjacent elements in which the field variables are expressed are called

Nodes.

26. What is Ritz method?(May/June 2014)

It is integral approach method which is useful for solving complex structural problem,

encountered in finite element analysis. This method is possible only if a suitable function is

available. In Ritz method approximating functions satisfying the boundary conditions are used to

get the solutions.

27. Distinguish Natural & Essential boundary condition (May/June 2009)

There are two types of boundary conditions.

They are:

1. Primary boundary condition (or) Essential boundary condition

The boundary condition, which in terms of field variable, is known as primary

boundary condition.

Page 4: 1.What is meant by finite element?

2. Secondary boundary condition or natural boundary conditions

The boundary conditions, which are in the differential form of field variables, are

known as secondary boundary condition.

Example: A bar is subjected to axial load as shown in fig.

In this problem, displacement u at node 1 = 0, that is primary boundary condition.

EA du/dx = P, that is secondary boundary condition.

28. Compare Ritz method with nodal approximation method.(Nov/Dec 2014), (Nov/Dec 2012)

Similarity:

(i) Both methods use approximating functions as trial solution

(ii) Both methods take linear combinations of trial functions.

(iii) In both methods completeness condition of the function should be satisfied

(iv) In both methods solution is sought by making a functional stationary.

Difference

(i) Rayleigh-Ritz method assumes trial functions over entire structure, while finite element method

uses trial functions only over an element.

(ii) The assumed functions in Rayleigh-Ritz method have to satisfy boundary conditions over entire

structure while in finite element analysis, they have to satisfy continuity conditions at nodes and

sometimes along the boundaries of the element. However completeness condition should be

satisfied in both methods.

29. What do you mean by elements & Nodes?

In a continuum, the field variables are infinite. Finite element procedure reduces such

unknowns to a finite number by dividing the solution region into small parts called Elements. The

common points between two adjacent elements in which the field variables are expressed are called

Nodes.

30. State the discretization error. How it can be reduced? (April /May 2015)

Splitting of continuum in to smallest elements is known as discretization. In some context

like structure having boundary layer the exact connectivity can’t be achieved. It means that it may

not resemble the original structure. Now there is an error developed in calculation. Such type of

error is discretization error.

To Reduce Error:

(i) Discretization error can be minimized by reducing the finite element (or) discretization

element.

(ii) By introducing finite element it has a curved member.

Page 5: 1.What is meant by finite element?

31. What are the various considerations to be taken in Discretization process?

(i) Types of Elements.

(ii) Size of Elements.

(iii) Location of Nodes.

(iv) Number of Elements.

32. State the principleofminimum potential energy. (Nov/Dec 2010)

Amongallthedisplacementequationsthatsatisfiedinternalcompatibilityandthe

boundaryconditionthosethatalsosatisfytheequationofequilibriummakethe potential energy minimum

is a stable system.

UNIT-1

PART-B

1. The following differential equation is available for a physical phenomenon. 𝑨𝑬 = π’…πŸπ’–

π’…π’™πŸ+

𝒂𝒙 = 𝟎, The boundary conditions are u(0) = 0, 𝑨𝑬 = 𝒅𝒖

𝒅𝒙 𝒙=𝑳

= 𝟎 By using Galerkin’s

technique, find the solution of the above differential equation.

Given Data:

Differential equ. 𝐴𝐸 = 𝑑2𝑒

𝑑π‘₯2 + π‘Žπ‘₯ = 0

Boundary Conditions 𝑒 0 = 0, 𝐴𝐸 = 𝑑2𝑒

𝑑π‘₯2 + π‘Žπ‘₯ = 0

To Find:

u(x) by using galerkin’s technique

Formula used

𝑀𝑖 𝑅 𝑑π‘₯ = 0

𝐿

0

Solution:

Assume a trial function

Let 𝑒 π‘₯ = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 + π‘Ž3π‘₯3 . …….. (1)

Apply first boundary condition

i.e) at x=0, u(x) = 0

1 ⟹ 0 = π‘Ž0 + 0 + 0 + 0

π‘Ž0 = 0

Apply first boundary condition i.e at x = L, 𝐴𝐸 =𝑑𝑒

𝑑π‘₯= 0

βŸΉπ‘‘π‘’

𝑑π‘₯= 0+π‘Ž1 + 2π‘Ž2π‘₯ + 3π‘Ž3𝐿2

⟹ 0 = π‘Ž1 + 2π‘Ž2𝐿 + 3π‘Ž3𝐿2

Page 6: 1.What is meant by finite element?

⟹ π‘Ž1 = βˆ’(2π‘Ž2𝐿 + 3π‘Ž3𝐿2)

sub π‘Ž0 and π‘Ž1 in value in equation (1)

𝑒 π‘₯ = 0 + βˆ’ 2π‘Ž2𝐿 + 3π‘Ž3𝐿2 π‘₯ + π‘Ž2π‘₯2 + π‘Ž3π‘₯3

= βˆ’2π‘Ž2𝐿π‘₯ βˆ’ 3π‘Ž3𝐿2π‘Ž2π‘₯ + π‘Ž2π‘₯2 + π‘Ž3π‘₯3

= π‘Ž2 π‘₯2 βˆ’ 2𝐿π‘₯ + π‘Ž3(π‘₯3 βˆ’ 3𝐿2π‘₯) ……… (2)

We Know That

Residual, 𝑅 = 𝐴𝐸𝑑2𝑒

𝑑π‘₯2+ π‘Žπ‘₯ ………. (3)

(2) βŸΉπ‘‘π‘’

𝑑π‘₯= π‘Ž2 2π‘₯ βˆ’ 2𝐿 + π‘Ž3(3π‘₯2 βˆ’ 3𝐿2)

𝑑2𝑒

𝑑π‘₯2= π‘Ž2 2 + π‘Ž3(6π‘₯)

𝑑2𝑒

𝑑π‘₯2= 2π‘Ž2 + 6π‘Ž3π‘₯

Sub 𝑑2𝑒

𝑑π‘₯2 value in equation (3)

3 ⟹ 𝑅 = 𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯

Residual, 𝑅 = 𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯ ……… (4)

From Galerkn’s technique

𝑀𝑖 𝑅 𝑑π‘₯ = 0

𝐿

0

. . …… . . . (5)

from equation (2) we know that

𝑀1 = π‘₯2 βˆ’ 2𝐿π‘₯

𝑀2 = π‘₯3 βˆ’ 3𝐿2π‘₯

sub w1, w2 and R value in equation (5)

5 ⟹ π‘₯2 βˆ’ 2𝐿π‘₯

𝐿

0

𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯ 𝑑π‘₯ = 0 …… … … … (6)

π‘₯3 βˆ’ 3𝐿2π‘₯

𝐿

0

𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯ … … … … … (7)

6 ⟹ π‘₯2 βˆ’ 2𝐿π‘₯

𝐿

0

𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯ 𝑑π‘₯ = 0

π‘₯2 βˆ’ 2𝐿π‘₯

𝐿

0

2π‘Ž2𝐴𝐸 + 6π‘Ž3𝐴𝐸π‘₯ + π‘Žπ‘₯ 𝑑π‘₯ = 0

Page 7: 1.What is meant by finite element?

2π‘Ž2𝐴𝐸π‘₯2 + 6π‘Ž3𝐴𝐸π‘₯3 + π‘Žπ‘₯3 βˆ’ 4π‘Ž2𝐴𝐸𝐿π‘₯ βˆ’ 12π‘Ž3𝐴𝐸𝐿π‘₯2 βˆ’ 2π‘ŽπΏπ‘₯2

𝐿

0

= 0

⟹ [2π‘Ž2𝐴𝐸π‘₯3

3+ 6π‘Ž3𝐴𝐸

π‘₯4

4+ π‘Ž

π‘₯4

4βˆ’ 4π‘Ž2𝐴𝐸𝐿

π‘₯2

2βˆ’ 12π‘Ž3𝐴𝐸𝐿

π‘₯3

3βˆ’ 2π‘ŽπΏ

π‘₯3

3]0𝐿 = 0

⟹ 2π‘Ž2𝐴𝐸𝐿3

3+ 6π‘Ž3𝐴𝐸

𝐿4

4+ π‘Ž

𝐿4

4βˆ’ 4π‘Ž2𝐴𝐸

𝐿3

2βˆ’ 12π‘Ž3𝐴𝐸

𝐿4

3βˆ’ 2π‘Ž

𝐿4

3= 0

⟹2

3π‘Ž2𝐴𝐸𝐿3 +

3

2π‘Ž3𝐴𝐸 𝐿4 + π‘Ž

𝐿4

4βˆ’ 2π‘Ž2𝐴𝐸𝐿3 βˆ’ 4π‘Ž3𝐴𝐸𝐿4 βˆ’

2

3π‘ŽπΏ4 = 0

⟹ π΄πΈπ‘Ž2𝐿3 2

3βˆ’ 2 + π‘Ž3𝐴𝐸 𝐿4

3

2βˆ’ 4 + π‘Ž

𝐿4

4βˆ’

2

3π‘Ž2𝐿4 = 0

βŸΉβˆ’4

3𝐴𝐸𝐿3π‘Ž2 βˆ’

5

2𝐴𝐸𝐿4π‘Ž3 =

2

3βˆ’

1

4 π‘ŽπΏ4 βˆ’

4

3𝐴𝐸𝐿3π‘Ž2 βˆ’

5

2𝐴𝐸𝐿4π‘Ž3 =

5

12π‘ŽπΏ4

βˆ’4

3𝐴𝐸𝐿3π‘Ž2 βˆ’

5

2𝐴𝐸𝐿4π‘Ž3 = βˆ’

5

12π‘ŽπΏ4 … … … . 8

Equation (7)

⟹ (π‘₯3 βˆ’ 3𝐿2π‘₯)

𝐿

0

𝐴𝐸 2π‘Ž2 + 6π‘Ž3π‘₯ + π‘Žπ‘₯ 𝑑π‘₯ = 0

⟹ (π‘₯3 βˆ’ 3𝐿2π‘₯)

𝐿

0

2π‘Ž2𝐴𝐸 + 6π‘Ž3𝐴𝐸π‘₯ + π‘Žπ‘₯ 𝑑π‘₯ = 0

⟹ 2π΄πΈπ‘Ž2π‘₯3 + 6π΄πΈπ‘Ž3π‘₯4 + π‘Žπ‘₯4 βˆ’ 6π΄πΈπ‘Ž2𝐿2π‘₯ βˆ’ 18π΄πΈπ‘Ž3𝐿2π‘₯2 βˆ’ 3π‘ŽπΏ2π‘₯2 𝑑π‘₯ = 0

𝐿

0

⟹ 2π΄πΈπ‘Ž2

π‘₯4

4+ 6π΄πΈπ‘Ž3

π‘₯5

5+ π‘Ž

π‘₯5

5βˆ’ 6π΄πΈπ‘Ž2𝐿2

π‘₯2

2βˆ’ 18π΄πΈπ‘Ž3𝐿2

π‘₯3

3βˆ’ 3π‘ŽπΏ2

π‘₯3

3

0

𝐿

= 0

⟹ 1

2π΄πΈπ‘Ž2π‘₯4 +

6

5π΄πΈπ‘Ž3π‘₯5 +

1

5π‘Žπ‘₯5 βˆ’ 3π΄πΈπ‘Ž2𝐿2π‘₯2 βˆ’ 6π΄πΈπ‘Ž3𝐿2π‘₯3 βˆ’ π‘ŽπΏ2π‘₯3

0

𝐿

= 0

⟹1

2π΄πΈπ‘Ž2𝐿4 +

6

5π΄πΈπ‘Ž3𝐿5 +

1

5π‘ŽπΏ5 βˆ’ 3π΄πΈπ‘Ž2𝐿2(𝐿2) βˆ’ 6π΄πΈπ‘Ž3𝐿2(𝐿3) βˆ’ π‘ŽπΏ2(𝐿3) = 0

⟹1

2π΄πΈπ‘Ž2𝐿4 +

6

5π΄πΈπ‘Ž3𝐿5 +

1

5π‘ŽπΏ5 βˆ’ 3π΄πΈπ‘Ž2𝐿4 βˆ’ 6π΄πΈπ‘Ž3𝐿5 βˆ’ π‘ŽπΏ5 = 0

⟹ π΄πΈπ‘Ž2𝐿4 1

2βˆ’ 3 + π΄πΈπ‘Ž3𝐿5

6

5βˆ’ 6 + π‘ŽπΏ5 +

1

5βˆ’ 1 = 0

⟹ π΄πΈπ‘Ž2𝐿4 5

2 βˆ’

24

5π΄πΈπ‘Ž3𝐿5 =

4

5π‘ŽπΏ5

5

2 π΄πΈπ‘Ž2𝐿4 +

24

5π΄πΈπ‘Ž3𝐿5 = βˆ’

4

5π‘ŽπΏ5 … … …… . 9

Solving Equation (8) and (9)

Equation (8) ⟹4

3π΄πΈπ‘Ž2𝐿3 +

5

2π΄πΈπ‘Ž3𝐿4 = βˆ’

5

12π‘ŽπΏ4

Page 8: 1.What is meant by finite element?

Equation (9) ⟹5

2π΄πΈπ‘Ž2𝐿4 +

24

5π΄πΈπ‘Ž3𝐿5 = βˆ’

4

5π‘ŽπΏ5

Multiplying Equation (8) 5

2𝐿 and Equation (9) by

4

3

20

6π΄πΈπ‘Ž2𝐿4 +

25

4π΄πΈπ‘Ž3𝐿5 = βˆ’

25

24π‘ŽπΏ5

20

6π΄πΈπ‘Ž2𝐿4 +

25

4π΄πΈπ‘Ž3𝐿5 = βˆ’

16

15π‘ŽπΏ5

Subtracting

25

4βˆ’

96

15 π΄πΈπ‘Ž3𝐿5 =

16

15βˆ’

25

24 π‘ŽπΏ5

375 βˆ’ 384

60 π΄πΈπ‘Ž3𝐿5 =

384 βˆ’ 375

360 π‘ŽπΏ5

βŸΉβˆ’9

60π΄πΈπ‘Ž3𝐿5 =

9

360π‘ŽπΏ5

⟹ βˆ’0.15π΄πΈπ‘Ž3 = 0.025π‘Ž

π‘Ž3 = βˆ’0.1666π‘Ž

𝐴𝐸

π‘Ž3 = βˆ’π‘Ž

6𝐴𝐸 … … … . (10)

Substituting a3 value in Equation (8)

4

3π΄πΈπ‘Ž2𝐿3 +

5

2𝐴𝐸

βˆ’π‘Ž

6𝐴𝐸 𝐿4 =

βˆ’5

12π‘ŽπΏ4

4

3π΄πΈπ‘Ž2𝐿3 =

βˆ’5

12π‘ŽπΏ4 βˆ’

5

2𝐴𝐸𝐿4 =

βˆ’π‘Ž

6𝐴𝐸

4

3π΄πΈπ‘Ž2𝐿3 =

βˆ’5

12π‘ŽπΏ4 +

5

2𝐴𝐸𝐿4

4

3π΄πΈπ‘Ž2𝐿3 = 0

π‘Ž2 = 0

Sub a2 and a3 value in equation (2)

⟹ 𝑒 π‘₯ = 0π‘₯ π‘₯2 βˆ’ 2𝐿π‘₯ + βˆ’π‘Ž

6𝐴𝐸 π‘₯3 βˆ’ 3𝐿2π‘₯ = 0

⟹ 𝑒 π‘₯ = π‘Ž

6𝐴𝐸 3𝐿2π‘₯ βˆ’ π‘₯3

Result:

𝑒 π‘₯ = π‘Ž

6𝐴𝐸 3𝐿2π‘₯ βˆ’ π‘₯3

2. Find the deflection at the centre of a simply supported beam of span length β€œl” subjected

to uniformly distributed load throughout its length as shown in figure using (a) point

Page 9: 1.What is meant by finite element?

collocation method, (b) sub-domain method, (c) Least squares method, and (d) Galerkin’s

method. (Nov/Dec 2014)

Given data

Length (L) = 𝑙

UDL = πœ”/π‘š

To find

Deflection

Formula used

𝐸𝐼𝑑4𝑦

𝑑π‘₯4βˆ’ πœ” = 0, 0 ≀ π‘₯ ≀ 𝑙

Point Collocation Method R = 0

Sub-domain collocation method = 𝑅𝑑π‘₯ = 0𝑙

0

Least Square Method 𝐼 = 𝑅2𝑑π‘₯ 𝑖𝑠 π‘šπ‘–π‘›π‘–π‘šπ‘’π‘šπ‘™

0

Solution:

The differential equation governing the deflection of beam subjected to uniformly

distributed load is given by

𝐸𝐼𝑑4𝑦

𝑑π‘₯4βˆ’ πœ” = 0, 0 ≀ π‘₯ ≀ 𝑙 …… … . (1)

The boundary conditions are Y=0 at x=0 and x = l, where y is the deflection.

𝐸𝐼𝑑4𝑦

𝑑π‘₯4= 0, π‘Žπ‘‘ π‘₯ = 0 π‘Žπ‘›π‘‘ π‘₯ = 𝑙

Where

𝐸𝐼𝑑4𝑦

𝑑π‘₯4 = 𝑀, (Bending moment)

E β†’ Young’s Modules

I β†’ Moment of Inertia of the Beam.

Let us select the trial function for deflection as π‘Œ = π‘Žπ‘ π‘–π‘›πœ‹π‘₯

𝑙 ……. (2)

Hence it satisfies the boundary conditions

βŸΉπ‘‘π‘¦

𝑑π‘₯= π‘Ž

πœ‹

𝑙. cos

πœ‹π‘₯

𝑙

βŸΉπ‘‘2𝑦

𝑑π‘₯2= βˆ’π‘Ž

πœ‹2

𝑙2. sin

πœ‹π‘₯

𝑙

βŸΉπ‘‘3𝑦

𝑑π‘₯3= βˆ’π‘Ž

πœ‹3

𝑙3. cos

πœ‹π‘₯

𝑙

Page 10: 1.What is meant by finite element?

βŸΉπ‘‘4𝑦

𝑑π‘₯4= π‘Ž

πœ‹4

𝑙4. sin

πœ‹π‘₯

𝑙

Substituting the Equation (3) in the governing Equation (1)

𝐸𝐼 π‘Žπœ‹4

𝑙4. sin

πœ‹π‘₯

𝑙 βˆ’ πœ” = 0

Take, Residual 𝑅 = πΈπΌπ‘Žπœ‹4

𝑙4 . sinπœ‹π‘₯

π‘™βˆ’ πœ”

a) Point Collocation Method:

In this method, the residuals are set to zero.

⟹ 𝑅 = πΈπΌπ‘Žπœ‹4

𝑙4. sin

πœ‹π‘₯

π‘™βˆ’ πœ” = 0

πΈπΌπ‘Žπœ‹4

𝑙4. sin

πœ‹π‘₯

𝑙= πœ”

To get maximum deflection, take π‘˜ =𝑙

2(𝑖. 𝑒. π‘Žπ‘‘ π‘π‘Žπ‘› 𝑏𝑒 π‘œπ‘“ π‘π‘’π‘Žπ‘š)

πΈπΌπ‘Žπœ‹4

𝑙4 . sinπœ‹

𝑙 𝑙

2 = πœ”

πΈπΌπ‘Žπœ‹4

𝑙4= πœ”

π‘Ž =πœ”π‘™4

πœ‹4𝐸𝐼

Sub β€œa” value in trial function equation (2)

π‘Œ =πœ”π‘™4

πœ‹4𝐸𝐼. sin

πœ‹π‘₯

𝑙

𝐴𝑑 π‘₯ =𝑙

2⟹ π‘Œmax =

πœ”π‘™4

πœ‹4𝐸𝐼. sin

πœ‹

2 𝑙

2

π‘Œmax = πœ”π‘™4

πœ‹4𝐸𝐼

π‘Œmax =

πœ”π‘™4

97.4𝐸𝐼

b) Sub-domain collocation method:

In this method, the integral of the residual over the sub-domain is set to zero.

𝑅𝑑π‘₯ = 0𝑙

0

Sub R value

⟹ π‘ŽπΈπΌπœ‹4

𝑙4sin

πœ‹π‘₯

π‘™βˆ’ πœ” 𝑑π‘₯ = 0

⟹ π‘ŽπΈπΌπœ‹4

𝑙4 βˆ’cos

πœ‹π‘₯𝑙

πœ‹π‘™

βˆ’πœ” π‘₯

0

𝑙

= 0

[∡ sinπœ‹

𝑙= 1]

[∡ sinπœ‹

2= 1]

Page 11: 1.What is meant by finite element?

⟹ π‘ŽπΈπΌπœ‹4

𝑙4 βˆ’cos

πœ‹π‘₯

𝑙

𝑙

𝑒 βˆ’ πœ” π‘₯

0

𝑙

= 0

⟹ βˆ’π‘ŽπΈπΌπœ‹3

𝑙3 cosπœ‹ βˆ’ π‘π‘œπ‘ 0 πœ” 𝑙 = 0

βˆ’π‘ŽπΈπΌπœ‹3

𝑙3 βˆ’1 βˆ’ 1 = πœ” 𝑙

⟹ βˆ’π‘Ž =πœ”π‘™4

2πœ‹3𝐸𝐼=

πœ”π‘™4

62𝐸𝐼

Sub β€œa” value in the trial function equation (2)

π‘Œ =πœ”π‘™4

62𝐸𝐼. sin

πœ‹π‘₯

𝑙

𝐴𝑑 π‘₯ =𝑙

2, π‘Œπ‘šπ‘Žπ‘₯ =

πœ”π‘™4

62𝐸𝐼. sin

πœ‹

𝑙(𝑙

2)

π‘Œπ‘šπ‘Žπ‘₯ =πœ”π‘™4

62𝐸𝐼

c) Least Square Method:

In this method the functional

𝐼 = 𝑅2𝑑π‘₯ 𝑖𝑠 π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š

𝑙

0

𝐼 = (π‘ŽπΈπΌπœ‹4

𝑙4. 𝑠𝑖𝑛

πœ‹π‘₯

π‘™βˆ’ πœ”)2𝑑π‘₯

𝑙

0

= [π‘Ž2𝐸2𝐼2πœ‹8

𝑙8. 𝑠𝑖𝑛2

πœ‹π‘₯

π‘™βˆ’ πœ”2 βˆ’ 2π‘ŽπΈπΌπœ”

πœ‹4

𝑙4. 𝑠𝑖𝑛

πœ‹π‘₯

𝑙]𝑑π‘₯

𝑙

0

= [π‘Ž2𝐸2𝐼2πœ‹8

𝑙8 1

2π‘₯ 𝑠𝑖𝑛

2πœ‹π‘₯

𝑙

𝑙

2πœ‹ + πœ”2 βˆ’ 2π‘ŽπΈπΌπœ”

πœ‹4

𝑙4. [βˆ’π‘π‘œπ‘ 

πœ‹π‘₯

𝑙 𝑙

πœ‹ ]]0

𝑙

= π‘Ž2𝐸2𝐼2πœ‹8

𝑙8 1

2𝑙 βˆ’

𝑙

2πœ‹ 𝑠𝑖𝑛2πœ‹ βˆ’ 𝑠𝑖𝑛0 + πœ”2𝑙 + 2π‘ŽπΈπΌπœ”

πœ‹4

𝑙4.𝑙

πœ‹[βˆ’π‘π‘œπ‘ πœ‹ βˆ’ π‘π‘œπ‘ 0]

∡ 𝑠𝑖𝑛2πœ‹ = 0; 𝑠𝑖𝑛0 = 0; π‘π‘œπ‘ πœ‹ = 0; π‘π‘œπ‘ 0 = 1

𝐼 = π‘Ž2𝐸2𝐼2πœ‹8

𝑙2

𝑙

2+ πœ”2𝑙 + 2π‘ŽπΈπΌπœ”

πœ‹3

𝑙3. (βˆ’1 βˆ’ 1)

𝐼 =π‘Ž2𝐸2𝐼2πœ‹8

2𝑙7+ πœ”2𝑙 βˆ’ 4π‘ŽπΈπΌπœ”

πœ‹3

𝑙3

Now, πœ•πœ‹

πœ•π‘Ž= 0

βŸΉπ‘Ž2𝐸2𝐼2πœ‹8

2𝑙7= 4πΈπΌπœ”

πœ‹3

𝑙3

∡ cos πœ‹ = βˆ’1

π‘π‘œπ‘ 0 = 1 ,

Page 12: 1.What is meant by finite element?

π‘Ž2𝐸2𝐼2πœ‹8

𝑙7= 4πΈπΌπœ”

πœ‹3

𝑙3

π‘Ž =4πΈπΌπœ”π‘™5

πœ‹5𝐸𝐼

Hence the trial Function

π‘Œ =4πœ”π‘™4

πœ‹5𝐸𝐼. sin

πœ‹π‘₯

𝑙

𝐴𝑑 π‘₯ =𝑙

2, max π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› [∡ 𝑠𝑖𝑛

πœ‹

2= 1]

π‘Œπ‘šπ‘Žπ‘₯ =4πœ”π‘™4

πœ‹5𝐸𝐼 𝑠𝑖𝑛

πœ‹

2(𝑙

2)

π‘Œπ‘šπ‘Žπ‘₯ =πœ”π‘™4

76.5 𝐸𝐼

d) Galerkin’s Method:

In this method

π‘Œ. 𝑅 𝑑π‘₯ = 0

𝑙

0

⟹ π‘Žπ‘ π‘–π‘›πœ‹π‘₯

𝑙 π‘ŽπΈπΌ

πœ‹4

𝑙4𝑠𝑖𝑛

πœ‹π‘₯

π‘™βˆ’ πœ” 𝑑π‘₯ = 0

𝑙

0

⟹ π‘Ž2πΈπΌπœ‹4

𝑙4𝑠𝑖𝑛2

πœ‹π‘₯

π‘™βˆ’ π‘Žπœ”π‘ π‘–π‘›

πœ‹π‘₯

𝑙 𝑑π‘₯ = 0

𝑙

0

⟹ π‘Ž2πΈπΌπœ‹4

𝑙4[1

2(1 βˆ’ π‘π‘œπ‘ 

2πœ‹π‘₯

𝑙) βˆ’ π‘Žπœ”π‘ π‘–π‘›

πœ‹π‘₯

𝑙 𝑑π‘₯ = 0

𝑙

0

⟹ π‘Ž2πΈπΌπœ‹4

𝑙4[1

2 1 βˆ’ π‘₯ βˆ’

1

2πœ‹ 𝑠𝑖𝑛2

2πœ‹π‘₯

𝑙 + π‘Žπœ”

𝑙

πœ‹π‘π‘œπ‘ 

πœ‹π‘₯

𝑙

0

𝑙

= 0

π‘Ž2πΈπΌπœ‹4

𝑙4 𝑙

2 βˆ’ 2π‘Žπœ”

𝑙

πœ‹ = 0

∴ π‘Ž =2πœ”π‘™

πœ‹.

2𝑙3

πΈπΌπœ‹4

π‘Ž =4πœ”π‘™3

πœ‹5𝐸𝐼

Hence the trial Function

π‘Œ =4πœ”π‘™4

πœ‹5𝐸𝐼. sin

πœ‹π‘₯

𝑙

𝐴𝑑 π‘₯ =𝑙

2, max π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› [∡ 𝑠𝑖𝑛

πœ‹

2= 1]

Page 13: 1.What is meant by finite element?

π‘Œπ‘šπ‘Žπ‘₯ =4πœ”π‘™4

πœ‹5𝐸𝐼 𝑠𝑖𝑛

πœ‹

2(𝑙

2)

π‘Œπ‘šπ‘Žπ‘₯ =4πœ”π‘™4

πœ‹5 𝐸𝐼

π‘Œπ‘šπ‘Žπ‘₯ =πœ”π‘™4

76.5 𝐸𝐼

Verification,

We know that simply supported beam is subjected to uniformly distributed load, maximum

deflection is,

π‘Œπ‘šπ‘Žπ‘₯ =5

384

πœ”π‘™4

𝐸𝐼

= 0.01πœ”π‘™4

𝐸𝐼

3) i) What is constitutive relationship? Express the constitutive relations for a liner

elastic isotropic material including initial stress and strain.

[Nov/Dec 2009]

Solution:

It is the relationship between components of stresses in the members of a structure or in a

solid body and components of strains. The structure or solids bodies under consideration are made

of elastic material that obeys Hooke’s law.

𝜎 = 𝐷 {𝑒}

Where

[D] is a stress – strain relationship matrix or constitute matrix.

The constitutive relations for a linear elastic isotropic material is

𝜎π‘₯

πœŽπ‘¦

πœŽπ‘§

𝛿π‘₯𝑦

𝛿𝑦𝑧

𝛿𝑧π‘₯

=𝐸

1 + 𝑣 1 βˆ’ 2𝑣

(1 βˆ’ 𝑣) 0 0

𝑣 (1 βˆ’ 𝑣) 0𝑣000

𝑣000

(1 βˆ’ 𝑣)000

0 0 00 0 00

1 βˆ’ 2𝑣

200

00

1 βˆ’ 2𝑣

20

000

1 βˆ’ 2𝑣

2

𝑒π‘₯

𝑒𝑦

𝑒𝑧

𝑣π‘₯𝑦

𝑣𝑦𝑧

𝑣𝑧π‘₯

ii) Consider the differential equation π’…πŸπ’š

π’…π’™πŸ + πŸ’πŸŽπŸŽπ’™πŸ = 𝟎 for 𝟎 ≀ 𝒙 ≀ 𝟏 subject to boundary

conditions Y(0) = 0, Y(1) = 0. The functions corresponding to this problem, to be eternized

is given by 𝑰 = βˆ’πŸŽ. πŸ“ π’…π’š

𝒅𝒙 𝟐

+ πŸ’πŸŽπŸŽπ’™πŸπ’€ 𝒍

𝟎. Find the solution of the problem using Ray

Light Ritz method by considering a two term solution as 𝒀 𝒙 = π’„πŸπ’™ 𝟏 βˆ’ 𝒙 + π’„πŸπ’™πŸ(𝟏 βˆ’

𝒙)

Given data

Page 14: 1.What is meant by finite element?

Differential equation = 𝑑2𝑦

𝑑π‘₯2+ 400π‘₯2 = 0 for 0 ≀ π‘₯ ≀ 1

Boundary conditions Y(0) = 0, Y(1) = 0

𝐼 = βˆ’0.5 𝑑𝑦

𝑑π‘₯

2

+ 400π‘₯2π‘Œ 𝑙

0

π‘Œ π‘₯ = 𝑐1π‘₯ 1 βˆ’ π‘₯ + 𝑐2π‘₯2(1 βˆ’ π‘₯)

To find:

Ray Light Ritz method

Formula used

πœ•πΌ

πœ•π‘1= 0

πœ•πΌ

πœ•π‘2= 0

Solution:

π‘Œ π‘₯ = 𝑐1π‘₯ 1 βˆ’ π‘₯ + 𝑐2π‘₯2(1 βˆ’ π‘₯)

π‘Œ π‘₯ = 𝑐1π‘₯ π‘₯ βˆ’ π‘₯2 + 𝑐2(π‘₯2 βˆ’ π‘₯3)

𝑑𝑦

𝑑π‘₯ = 𝑐1 1 βˆ’ 2π‘₯ + 𝑐2(2π‘₯ βˆ’ 3π‘₯2)

= 𝑐1 1 βˆ’ 2π‘₯ + 𝑐2π‘₯(2 βˆ’ 3π‘₯)

𝑑𝑦

𝑑π‘₯

2

= 𝑐1 1 βˆ’ 2π‘₯ + 𝑐2π‘₯(2 βˆ’ 3π‘₯)2 2

= 𝑐12 1 βˆ’ 4π‘₯ + 4π‘₯2 + 𝑐2

2π‘₯2 4 βˆ’ 12π‘₯ + 9π‘₯2 + 2𝑐1𝑐2π‘₯ 1 βˆ’ 2π‘₯ (2 βˆ’ 3π‘₯)

= 𝑐12 1 βˆ’ 4π‘₯ + 4π‘₯2 + 𝑐2

2π‘₯2 4 βˆ’ 12π‘₯ + 9π‘₯2 + 2𝑐1𝑐2π‘₯(2 βˆ’ 3π‘₯ βˆ’ 4π‘₯ + 6π‘₯2)

𝑑𝑦

𝑑π‘₯

2

= 𝑐12 1 βˆ’ 4π‘₯ + 4π‘₯2 + 𝑐2

2π‘₯2 4 βˆ’ 12π‘₯ + 9π‘₯2 + 2𝑐1𝑐2π‘₯(2 βˆ’ 7π‘₯ + 6π‘₯2)

We know that

𝐼 = [βˆ’0.5 𝑑𝑦

𝑑π‘₯

2

+ 400π‘₯2𝑦

𝑙

0

] =βˆ’1

2

𝑑𝑦

𝑑π‘₯

2

+ 400 π‘₯2𝑦

𝑙

0

𝑙

0

= 𝑐12 1 βˆ’ 4π‘₯ + 4π‘₯2 + 𝑐2

2π‘₯2 4 βˆ’ 12π‘₯ + 9π‘₯2 + 2𝑐1𝑐2π‘₯ 2 βˆ’ 7π‘₯ + 6π‘₯2

𝑙

0

+ 400[ π‘₯2 𝑐1π‘₯ 1 βˆ’ π‘₯ + 𝑐2π‘₯2 1 βˆ’ π‘₯

𝑙

0

By Solving

Page 15: 1.What is meant by finite element?

𝐼 =βˆ’1

2 𝑐1

2

3+

2

15𝑐2

2 +1

3𝑐1𝑐2 + 400

𝑐1

20+

𝑐2

30

𝐼 =βˆ’1

6𝑐1

2 βˆ’1

15𝑐2

2 βˆ’1

6𝑐1𝑐2 + 20𝑐1 +

40

3𝑐2

πœ•πΌ

πœ•π‘1= 0

βŸΉβˆ’1

6Γ— 2𝑐1 βˆ’

1

6𝑐2 + 20 = 0

βŸΉβˆ’1

3Γ— 𝑐1 βˆ’

1

6𝑐2 + 20 = 0 …… … . . (1)

Similarly,

πœ•πΌ

πœ•π‘2= 0

βŸΉβˆ’2

15𝑐2 βˆ’

1

6𝑐1 +

40

3= 0 … … … . . (2)

By Solving (1) and (2)

𝑐1 =80

3; 𝑐1 =

200

3

We know that

π‘Œ = 𝑐1π‘₯ 1 βˆ’ π‘₯ + 𝑐2π‘₯2(1 βˆ’ π‘₯)

π‘Œ = 80

3π‘₯ 1 βˆ’ π‘₯ +

200

3π‘₯2 1 βˆ’ π‘₯

4) Consider a 1mm diameter, 50m long aluminum pin-fin as shown in figure used to

enhance the heat transfer from a surface wall maintained at 300C. Calculate the

temperature distribution in a pin-fin by using Rayleigh – Ritz method. Take, π’Œ =

πŸπŸŽπŸŽπ’˜π’Žπ‚ for aluminum h= πŸπŸŽπŸŽπ’˜

π’ŽπŸπ‚ , π‘»βˆž = πŸ‘πŸŽπ‚.

π’Œπ’…πŸπ‘»

π’…π’™πŸ =𝑷𝒉

𝑨(𝑻 βˆ’ π‘»βˆž) , 𝑻 𝟎 = π‘»π’˜ = πŸ‘πŸŽπŸŽπ‚, 𝒒𝑳 = 𝑲𝑨

𝒅𝑻

𝒅𝒙 𝑳 = 𝟎 (insulated tip)

Page 16: 1.What is meant by finite element?

Given Data:

The governing differential equation

π‘˜π‘‘2𝑇

𝑑π‘₯2=

𝑃𝑕

𝐴(𝑇 βˆ’ π‘‡βˆž)

Diameter d = 1mm = 1x10-3

m

Length L = 50mm = 50x10-3

m

Thermal K = 200π‘€π‘šC

Conductivity Heat transfer co-efficient h = 200π‘€π‘šC

Fluid Temp π‘‡βˆž = 30C.

Boundary Conditions 𝑇 0 = 𝑇𝑀 = 300C

π‘žπΏ = 𝐾𝐴𝑑𝑇

𝑑π‘₯ 𝐿 = 0

To Find:

Ritz Parameters

Formula used

πœ‹ = π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘› π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ βˆ’ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’

Solution:

The equivalent functional representation is given by,

πœ‹ = π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘› π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ βˆ’ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’

πœ‹ = 𝑒 βˆ’ 𝑣

πœ‹ = 1

2𝐾

𝑑𝑇

𝑑π‘₯

2

𝑑π‘₯ + 1

2

𝑃𝑕

𝐴 𝑇 βˆ’ π‘‡βˆž 2𝑑π‘₯ βˆ’ π‘žπΏπ‘‡πΏ … … … … . (1)

𝐿

0

𝐿

0

πœ‹ = 1

2𝐾

𝑑𝑇

𝑑π‘₯

2

𝑑π‘₯ + 1

2

𝑃𝑕

𝐴 𝑇 βˆ’ π‘‡βˆž 2𝑑π‘₯ … … … … . . 2

𝐿

0

𝐿

0

∡ π‘žπΏ = 0

Assume a trial function

Let

𝑇 π‘₯ = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 … … … … … . . (3)

Apply boundary condition

at x = 0, T(x) = 300

300 = π‘Ž0 + π‘Ž1(0) + π‘Ž2(0)2

π‘Ž0 = 300

Substituting π‘Ž0 value in equation (3)

𝑇 π‘₯ = 300 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 …… … … … . . 4

Page 17: 1.What is meant by finite element?

βŸΉπ‘‘π‘‡

𝑑π‘₯= π‘Ž1 + 2π‘Ž2π‘₯ … … …… … … (5)

Substitute the equation (4), (5) in (2)

πœ‹ = 1

2 π‘˜

𝑙

0

(π‘Ž1 + 2π‘Ž2π‘₯)2𝑑π‘₯ + 1

2

𝑃𝑕

𝐴 270 + π‘Ž1 + π‘Ž2π‘₯2 2𝑑π‘₯.

𝑙

0

[∡ π‘Ž + 𝑏 2 = π‘Ž2 + 𝑏2 + 2π‘Žπ‘; π‘Ž + 𝑏 + 𝑐 2 = π‘Ž2 + 𝑏2 + 𝑐2 + 2π‘Žπ‘ + 2𝑏𝑐 + 2π‘π‘Ž

πœ‹ =π‘˜

2 (π‘Ž1

2 + 4π‘Ž22π‘₯2 + 4π‘Ž1

𝑙

0

π‘Ž2π‘₯) +𝑃𝑕

2𝐴 2702 + π‘Ž1

2π‘₯2

𝑙

0

+ π‘Ž22π‘₯4 + 540π‘Ž1π‘₯ + 2π‘Ž1π‘₯3 + 540π‘Ž2π‘₯2 𝑑π‘₯

πœ‹ =π‘˜

2 (π‘Ž1

2π‘₯ +4π‘Ž2

2π‘₯3

3+

4π‘Ž1π‘Ž2π‘₯2

2

0

50π‘₯10βˆ’3

+𝑃𝑕

2𝐴 72900π‘˜ +

π‘Ž12π‘₯3

3+

π‘Ž22π‘₯5

5+

540π‘Ž1π‘₯2

2+

2π‘Ž1π‘Ž2π‘₯4

4+

540π‘Ž2π‘₯3

3

0

50π‘₯10βˆ’3

[∡ 𝑙 = 50π‘₯10βˆ’3]

πœ‹ =π‘˜

2(50 Γ— 10βˆ’3)π‘Ž1

2 +4π‘Ž2

2(50 Γ— 10βˆ’3)3

3+

4π‘Ž1π‘Ž2(50 Γ— 10βˆ’3)2

2

+𝑃𝑕

2𝐴 72900π‘˜ +

π‘Ž12(50 Γ— 10βˆ’3)3

3+

π‘Ž22(50 Γ— 10βˆ’3)5

5

πœ‹ =200

2 50 Γ— 10βˆ’3π‘Ž1

2 + 1.666 Γ— 10βˆ’4π‘Ž22 + 50 Γ— 10βˆ’3π‘Ž1π‘Ž2 +

πœ‹ Γ— 10βˆ’3 Γ— 20

2 Γ—πœ‹2 Γ— 10βˆ’3 2

= 364.5 + 4.166 Γ— 10βˆ’5π‘Ž12 + 6.25 Γ— 10βˆ’8π‘Ž2

2 + 0.675π‘Ž1 + 3.125 Γ— 10βˆ’6π‘Ž1π‘Ž2 + 0.0225π‘Ž2

πœ‹ = 5π‘Ž12 + 0.0166π‘Ž2

2 + 0.5π‘Ž1π‘Ž2 + 14.58 Γ— 10βˆ’7 + 1.66912 + 2.5 Γ— 10βˆ’3π‘Ž22 + 2700 π‘Ž1

+ 0.125 π‘Ž1π‘Ž2 + 900π‘Ž2]

πœ‹ = 6.66π‘Ž12 + 0.0191π‘Ž2

2 + 0.625π‘Ž1π‘Ž2 + 2700π‘Ž1 + 900π‘Ž2 + 14.58 Γ— 107

Apply πœ•πœ‹

πœ•π‘Ž2= 0

⟹ 13.32π‘Ž1 + 0.625π‘Ž2 + 27000 = 0

13.32π‘Ž1 + 0.625π‘Ž2 = βˆ’ + 27000 … … …… … (6)

⟹ 0.625π‘Ž1 + 0.382π‘Ž2 + 900 = 0

0.625π‘Ž1 + 0.382π‘Ž2 = βˆ’900 … … … … . . (7)

Solve the equation (6) and (7)

13.32π‘Ž1 + 0.625π‘Ž2 = βˆ’ + 27000 … … …… … (6)

0.625π‘Ž1 + 0.382π‘Ž2 = βˆ’900 … … … … . . 7

(6) x 0.625

Page 18: 1.What is meant by finite element?

8.325π‘Ž1 + 0.3906π‘Ž2 = βˆ’16875 … … … … . . 8

(7) x -13.32

βˆ’8.325π‘Ž1 βˆ’ 0.5088π‘Ž2 = 11988 … … … … . . 9

βˆ’0.1182π‘Ž2 = βˆ’4887

π‘Ž2 = 41345

Sub π‘Ž2value in equation (6)

13.32π‘Ž1 + 0.625(41345) = βˆ’ + 27000

π‘Ž1 = βˆ’3967.01

Sub π‘Ž0, π‘Ž1and π‘Ž2values in equation (3)

𝑇 = 300 βˆ’ 3697.01π‘₯ + 41345π‘₯2

6) Explain in detain about Boundary value, Initial Value problems.

(ME ENG.DESIGN Nov/DEC 2011)

The objective of most analysis is to determine unknown functions called dependent

variables, that are governed by a set of differential equations posed in a given domain. Ξ© and some

conditions on the boundary Ξ“ of the domain. Often, a domin not including its boundary is called an

open domain. A domain boundary is called an open domain. A domain Ξ© with its boundary Ξ“ is

called a closed domain.

Boundary value problems:- Steady state leat transfer : In a fin and axial deformation of a bar

shown in fig. Find 𝑒(π‘₯) that satisfies the second – order differential equation and boundary

conditions.

βˆ’π‘‘

𝑑π‘₯ π‘Ž

𝑑𝑒

𝑑π‘₯ + 𝑐𝑒 = 𝑓 for 0 < π‘₯ < 𝐿

𝑒 π‘œ = 𝑒0, π‘Ž 𝑑𝑒

𝑑π‘₯

π‘₯=𝐿= π‘ž0

i) Bending of elastic beams under Transverse load : find 𝑒 π‘₯ that satisfies the fourth order

differential equation and boundary conditions.

𝑑2

𝑑π‘₯ 2 𝑏 𝑑2𝑒

𝑑π‘₯2 + 𝑐𝑒 = 𝐹 for 0 < π‘₯ < βˆ’πΏ

𝑒 π‘œ = 𝑒0, 𝑑𝑒

𝑑π‘₯

π‘₯=0= 𝑑0

𝑑

𝑑π‘₯ 𝑏

𝑑2𝑒

𝑑π‘₯2 π‘₯=𝐿

= π‘š0 . 𝑏𝑑2𝑒

𝑑π‘₯2 0

= 𝓋0

x

x = 0 Ξ© = (o, L) x=L

Page 19: 1.What is meant by finite element?

Initial value problems:-

i) A general first order equation:-

Find 𝑒 𝑑 that satisfies the first-order differential equation and initial condition.

Equation and initial condition:-

π‘Ž 𝑑𝑒

𝑑𝑑+ 𝑐𝑒 = 𝐹 for 0 < 𝑑 ≀ 𝑇

𝑒 0 = 𝑒0.

ii) A general second order equation:-

Find 𝑒 𝑑 that satisfies the second – order differential equation and initial conditions:-

π‘Ž 𝑑𝑒

𝑑𝑑+ 𝑏

𝑑2𝑒

𝑑𝑑 2 + 𝑐𝑒 = 𝐹 for 0 < 𝑑 ≀ 𝑇

𝑒 π‘œ = 𝑒0, 𝑏𝑑𝑒

𝑑𝑑 𝑑=0

= 𝑣0

Eigen value problems:-

(i) Axial vibration of a bar:

Find 𝑒 π‘₯ and 𝑙 that satisfy the differential equation and boundary conditions.

βˆ’π‘‘

𝑑π‘₯ π‘Ž

𝑑𝑒

𝑑π‘₯ βˆ’ πœ†π‘’ = 0 for π‘œ < π‘₯ < 𝐿

𝑒 π‘œ = 0, π‘Žπ‘‘π‘’

𝑑π‘₯ π‘₯=𝐿

= 0

(ii) Transverse vibration of a membrane:-

Find 𝑒 (π‘₯, 𝑦) and πœ† that satisfy the partial differential equation and

boundary condition.

βˆ’ 𝑑

𝑑π‘₯ π‘Ž1

𝑑𝑒

𝑑π‘₯ +

𝑑

𝑑𝑦 π‘Ž2

𝑑𝑒

𝑑𝑦 βˆ’ πœ†π‘’ = 0 in Ξ©

𝑒 = 0 on Ξ“q

The values of πœ† are called cigen values and the associated functions 𝑒 are called cigen functions.

b) A simple pendulum consists of a bob of mass π’Ž(π’Œπ’ˆ)attached to one end of a rod of

length 𝒍(π’Ž) and the other end is pivoted to fixed point 𝟎.

Soln:-

𝐹 = 𝑑

𝑑𝑑 π‘šπ‘£ = π‘šπ‘Ž

𝐹π‘₯ = π‘š.𝑑𝑣π‘₯

𝑑𝑑

βˆ’π‘šπ‘” sin πœƒ = π‘šπ‘™ 𝑑2𝑄

𝑑𝑑2

Page 20: 1.What is meant by finite element?

or

𝑑2𝑄

𝑑𝑑2+

𝑔

𝑙sin 𝑄 = 0

𝑑2𝑄

𝑑𝑑2+

𝑠

𝑙𝑄 = 0

𝑑𝑄

𝑑𝑑+ (π‘œ) = π‘ˆ0.

𝑄 𝑑 = 𝐴𝑠 𝑖𝑛 πœ†π‘‘ + 𝐡 cos πœ† 𝑑.

Where,

πœ† = 𝑠

𝑙 and 𝐴 and 𝐡 are constant to be determined using the initial condition we

obtain.

𝐴 βˆ’ 𝜈0

πœ†, 𝐡 = πœƒ0

the solution to be linear problem is

πœƒ 𝑑 = 𝜈0

πœ† 𝑆𝑖𝑛 ∧ 𝑑 + 0. πΆπ‘œπ‘  πœ†π‘‘

for zero initial velocity and non zero initial position πœƒ0 , we have.

πœƒ 𝑑 = πœƒ0 cos πœ†π‘‘.

7) A simply supported beam subjected to uniformly distributed load over entire span and

it is subject to a point load at the centre of the span. Calculate the bending moment

and deflection at imdspan by using Rayleish – Ritz method. (Nov/Dec 2008).

Given data:-

To Find:

1. Deflection and Bending moment at mid span.

2. Compare with exact solutions.

Page 21: 1.What is meant by finite element?

Formula used

πœ‹ = π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘› π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ βˆ’ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’

Solution:

We know that,

Deflection, y = a1 sinΟ€x

l+ a2 sin

3Ο€x

l

Total potential energy of the beam is given by,

Ο€ = U βˆ’ H

Where, U – Strain Energy.

H – Work done by external force.

The strain energy, U of the beam due to bending is given by,

U = EI

2

d2y

dx 2 2

dx1

0

dy

dx= a1 cos

Ο€x

l Γ—

Ο€

l + a2 cos

3Ο€x

l Γ—

3Ο€

l

dy

dx=

a1Ο€x

lcos

Ο€x

l +

a23Ο€x

lcos

3Ο€x

l

d2y

dx 2 = βˆ’ a1Ο€

lsin

Ο€x

l Γ—

Ο€

l βˆ’

a23Ο€

lsin

3Ο€x

lΓ—

3Ο€

l

d2y

dx 2 = βˆ’ a1Ο€2

l2 sinΟ€x

l βˆ’ 9

a2Ο€2

l2 sin3Ο€x

l

Substituting d2y

dx 2 value in equation (3),

U = EI

2 βˆ’

a1Ο€2

l2sin

Ο€x

l βˆ’ 9

a2Ο€2

l2sin

3Ο€x

l

2

dxl

0

= EI

2

a1Ο€2

l2 sinΟ€x

l + 9

a2Ο€2

l2 sin3Ο€x

l

2

dxl

0

= EI

2

Ο€4

l4 a12 sin2 Ο€x

l + 81a2

2 sin2 3Ο€x

l+ 2 a1 sin

Ο€x

l .9 a2 sin

3Ο€x

l dx

l

0

[∴ a + b 2 = a2 + b2 + 2ab]

=EI

2

Ο€4

l4 a12 sin2 Ο€x

l + 81a2

2 sin2 3Ο€x

l+ 18 a1a2 sin

Ο€x

l . sin

3Ο€x

l dx

l

0

12

22

32

42

5

Page 22: 1.What is meant by finite element?

a12 sin2 Ο€x

ldx =

𝑙

0a1

2 1

2 1 βˆ’ cos

2Ο€x

l

l

0dx ∴ sin2 x =

1βˆ’cos 2x

2

= a12 1

2 1 βˆ’ cos

2Ο€x

l

l

0dx

= a1

2

2 dx

𝑙

0βˆ’ cos

2Ο€x

l

1

0 dx

= π‘Ž1

2

2 π‘₯ 0

𝑙 βˆ’ sin

2πœ‹π‘₯

𝑙2πœ‹

𝑙

0

𝑙

= π‘Ž1

2

2 𝑙 βˆ’ 0 βˆ’

1

2πœ‹ sin

2πœ‹π‘™

π‘™βˆ’ sin 0

= π‘Ž1

2

2 𝑙 βˆ’

1

2πœ‹ 0 βˆ’ 0 =

π‘Ž12 𝑙

2 ∴ sin 2πœ‹ = 0; sin 0 = 0

Similarly,

81 a22 sin2 3Ο€x

ldx =

𝑙

081a2

2 1

2 1 βˆ’ cos

6Ο€x

l

𝑙

0dx ∴ sin2 x =

1βˆ’cos 2x

2

= 81a22 1

2 1 βˆ’ cos

6Ο€x

l

𝑙

0dx

= 81a2

2

2 dx

𝑙

0βˆ’ cos

6Ο€x

l

𝑙

0 dx

= 81π‘Ž2

2

2 π‘₯ 0

𝑙 βˆ’ sin

6πœ‹π‘₯

𝑙6πœ‹

𝑙

0

𝑙

= 81π‘Ž2

2

2 𝑙 βˆ’ 0 βˆ’

1

6πœ‹ sin

6πœ‹π‘™

π‘™βˆ’ sin 0

= 81π‘Ž2

2

2 𝑙 βˆ’

1

6πœ‹ 0 βˆ’ 0 =

π‘Ž12 𝑙

2 ∴ sin 6πœ‹ = 0; sin 0 = 0

18 a1a2 sinΟ€x

l . sin

3Ο€x

ldx =

𝑙

018 a1a2 sin

Ο€x

l . sin

3Ο€x

l

𝑙

0dx

= 18 a1a2 sin3Ο€x

l . sin

Ο€x

l

𝑙

0dx

a12 sin2

Ο€x

l dx =

𝑙

0

π‘Ž12 𝑙

2

81a22 sin2

3Ο€x

l dx =

𝑙

0

81π‘Ž22 𝑙

2

62

72

Page 23: 1.What is meant by finite element?

= 18 a1a2 1

2 cos

2Ο€x

lβˆ’ cos

4Ο€x

l

𝑙

0dx

∴ sin 𝐴 sin 𝐡 =cos π΄βˆ’π΅ βˆ’cos 𝐴+𝐡

2

= 18 a1a2

2 cos

2Ο€x

ldx

𝑙

0βˆ’ cos

4Ο€x

l

𝑙

0 dx

= 18 a1a2

2

sin2πœ‹π‘₯

𝑙2πœ‹

𝑙

0

𝑙

βˆ’ sin

4πœ‹π‘₯

𝑙4πœ‹

𝑙

0

𝑙

= 9 a1a2 0 βˆ’ 0 = 0 ∴ sin 2πœ‹ = 0; sin 4πœ‹ = 0; sin 0 = 0

Substitute (6), (7) and (8) in equation (5),

U =EI

2

Ο€4

l4 π‘Ž1

2 𝑙

2+

81π‘Ž22 𝑙

2+ 0

U =EI

4

Ο€4 𝑙

l4 π‘Ž1

2 + 81π‘Ž22

Work done by external forces,

𝐻 = πœ” 𝑦 𝑑π‘₯ + π‘Š π‘¦π‘šπ‘Žπ‘₯𝑙

0

πœ” 𝑦 𝑑π‘₯𝑙

0

= 2πœ”π‘™

πœ‹ π‘Ž1 +

π‘Ž2

3

We know that, 𝑦 = π‘Ž1 sinπœ‹π‘₯

𝑙+ π‘Ž2 sin

3πœ‹π‘₯

𝑙

In the span, deflection is maximum at π‘₯ =1

2

π‘¦π‘šπ‘Žπ‘₯ = π‘Ž1 sinπœ‹ Γ—

1

2

𝑙+ π‘Ž2 sin

3πœ‹Γ—1

2

𝑙

= π‘Ž1 sinπœ‹

2+ π‘Ž2 sin

3πœ‹

2 ∴ sin

πœ‹

2= 1; sin

3πœ‹

2= βˆ’1

18 a1a2 sinΟ€x

l . sin

3Ο€x

ldx =

𝑙

0

0

Strain Energy, U =πΈπΌπœ‹4

4𝑙3 π‘Ž1

2 + 81π‘Ž22

82

92

10

11

12

Page 24: 1.What is meant by finite element?

π‘¦π‘šπ‘Žπ‘₯ = π‘Ž1 βˆ’ π‘Ž2

Substitute (11) and (12) values in equation (8),

H = 2πœ”π‘™

πœ‹ π‘Ž1 +

π‘Ž2

3 + π‘Š (π‘Ž1 βˆ’ π‘Ž2)

Substituting U and H values in equation (2), we get

πœ‹ = πΈπΌπœ‹4

4𝑙3 π‘Ž1

2 + 81π‘Ž22 βˆ’

2πœ”π‘™

πœ‹ π‘Ž1 +

π‘Ž2

3 + π‘Š (π‘Ž1 βˆ’ π‘Ž2)

πœ‹ = πΈπΌπœ‹4

4𝑙3 π‘Ž1

2 + 81π‘Ž22 βˆ’

2πœ”π‘™

πœ‹ π‘Ž1 +

π‘Ž2

3 βˆ’ π‘Š (π‘Ž1 βˆ’ π‘Ž2)

For stationary value of πœ‹, the following conditions must be satisfied.

πœ•πœ‹

πœ•π‘Ž1= 0and

πœ•πœ‹

πœ•π‘Ž2= 0

πœ•πœ‹

πœ•π‘Ž1=

πΈπΌπœ‹4

4𝑙3 2π‘Ž1 βˆ’

2πœ”π‘™

πœ‹βˆ’ π‘Š = 0

πΈπΌπœ‹4

2𝑙3 π‘Ž1 βˆ’2πœ”π‘™

πœ‹βˆ’ π‘Š = 0

πΈπΌπœ‹4

2𝑙3π‘Ž1 =

2πœ”π‘™

πœ‹+ π‘Š

πœ•πœ‹

πœ•π‘Ž2=

πΈπΌπœ‹4

4𝑙3 162π‘Ž2 βˆ’

2πœ”π‘™

πœ‹

1

3 + π‘Š = 0

Similarly,

πΈπΌπœ‹4

4𝑙3 162π‘Ž1 βˆ’

2πœ”π‘™

πœ‹+ π‘Š = 0

πΈπΌπœ‹4

2𝑙3 162π‘Ž1 =

2πœ”π‘™

πœ‹βˆ’ π‘Š

From equation (12), we know that,

π‘Ž1 =2𝑙3

πΈπΌπœ‹4

2πœ”π‘™

πœ‹+ π‘Š

π‘Ž2 =2𝑙3

81πΈπΌπœ‹4

2πœ”π‘™

3πœ‹βˆ’ π‘Š

13

14

15

16

Page 25: 1.What is meant by finite element?

Maximum deflection, π‘¦π‘šπ‘Žπ‘₯ = π‘Ž1 βˆ’ π‘Ž2

π‘¦π‘šπ‘Žπ‘₯ = 2𝑙3

πΈπΌπœ‹4 2πœ”π‘™

πœ‹+ π‘Š βˆ’

2𝑙3

81πΈπΌπœ‹4 2πœ”π‘™

3πœ‹βˆ’ π‘Š

π‘¦π‘šπ‘Žπ‘₯ = 4πœ”π‘™4

πΈπΌπœ‹5 + 2π‘Šπ‘™3

πΈπΌπœ‹4 βˆ’ 4πœ”π‘™4

243πΈπΌπœ‹5 + 2π‘Šπ‘™3

81πΈπΌπœ‹4

π‘¦π‘šπ‘Žπ‘₯ = 0.0130 πœ”π‘™4

𝐸𝐼+ 0.0207

π‘Šπ‘™3

𝐸𝐼

We know that, simply supported beam subjected to uniformly distributed load, maximum deflection

is, π‘¦π‘šπ‘Žπ‘₯ =5

384

πœ”π‘™4

𝐸𝐼

Simply supported beam subjected to point load at centre, maximum deflection is,

π‘¦π‘šπ‘Žπ‘₯ =πœ”π‘™3

48𝐸𝐼

So, total deflection, π‘¦π‘šπ‘Žπ‘₯ =5

384

πœ”π‘™4

𝐸𝐼+

πœ”π‘™3

48𝐸𝐼

From equations (17) and (18), we know that, exact solution and solution obtained by using

Rayleigh-Ritz method are same.

Bending Moment at Mid span

We know that,

Bending moment, M = EI d2y

dx 2

From equation (9), we know that,

d2y

dx 2 = βˆ’ π‘Ž1πœ‹2

𝑙2 sinπœ‹π‘₯

𝑙+

π‘Ž2 9πœ‹2

𝑙2 sin3πœ‹π‘₯

𝑙

Substitute π‘Ž1 and π‘Ž2 values from equation (15) and (16),

d2y

dx 2 = βˆ’ 2𝑙3

πΈπΌπœ‹4 2πœ”π‘™

πœ‹+ π‘Š Γ—

πœ‹2

𝑙2 sinπœ‹π‘₯

𝑙+

2𝑙3

81πΈπΌπœ‹4 2πœ”π‘™

3πœ‹βˆ’ π‘Š Γ—

9πœ‹2

𝑙2 sin3πœ‹π‘₯

𝑙

Maximum bending occurs at π‘₯ =𝑙

2

π‘¦π‘šπ‘Žπ‘₯ = 0.0130 πœ”π‘™4

𝐸𝐼+ 0.0208

π‘Šπ‘™3

𝐸𝐼

18

19

17

Page 26: 1.What is meant by finite element?

= βˆ’ 2𝑙3

πΈπΌπœ‹4

2πœ”π‘™

πœ‹+ π‘Š Γ—

πœ‹2

𝑙2sin

πœ‹ Γ—12

𝑙+

2𝑙3

81πΈπΌπœ‹4

2πœ”π‘™

3πœ‹βˆ’ π‘Š Γ—

9πœ‹2

𝑙2sin

3πœ‹ Γ—12

𝑙

= βˆ’ 2𝑙3

πΈπΌπœ‹4

2πœ”π‘™

πœ‹+ π‘Š Γ—

πœ‹2

𝑙2 (1) +

2𝑙3

81πΈπΌπœ‹4

2πœ”π‘™

3πœ‹βˆ’ π‘Š Γ—

9πœ‹2

𝑙2 (βˆ’1)

∴ sinπœ‹

2= 1; sin

3πœ‹

2= βˆ’1

= βˆ’ 2𝑙

πΈπΌπœ‹2

2πœ”π‘™

πœ‹+ π‘Š βˆ’

2𝑙

9πΈπΌπœ‹2

2πœ”π‘™

3πœ‹βˆ’ π‘Š

= βˆ’ 4πœ”π‘™2

πΈπΌπœ‹3 + 2π‘Šπ‘™

πΈπΌπœ‹2 βˆ’ 4πœ”π‘™2

27πΈπΌπœ‹3 + 2π‘Šπ‘™

9πΈπΌπœ‹2

= βˆ’ 3.8518πœ”π‘™2

πΈπΌπœ‹3 + 2.222π‘Šπ‘™

πΈπΌπœ‹2

Substitute d2y

dx 2 value in bending moment equation,

Mcentre = EId2y

dx 2 = βˆ’πΈπΌ 0.124πœ”π‘™2

𝐸𝐼+ 0.225

π‘Šπ‘™

𝐸𝐼

Mcentre = βˆ’ 0.124 πœ”π‘™2 + 0.225 π‘Šπ‘™

(∴Negative sign indicates downward deflection)

We know that, simply supported beam subjected to uniformly distributed load,

maximum bending moment is,

Mcentre = πœ”π‘™2

8

Simply supported beam subjected to point load at centre, maximum bending moment

is,

Mcentre = π‘Šπ‘™

4

Total bending moment, Mcentre = πœ”π‘™2

8+

π‘Šπ‘™

4

Mcentre = 0.125 πœ”π‘™2 + 0.25 π‘Šπ‘™

d2y

dx2= βˆ’ 0.124

πœ”π‘™2

𝐸𝐼+ 0.225

π‘Šπ‘™

𝐸𝐼

20

21

Page 27: 1.What is meant by finite element?

From equation (20) and (21), we know that, exact solution and solution obtained by

using Rayleigh-Ritz method are almost same. In order to get accurate results, more terms in Fourier

series should be taken.


Recommended