of 58/58
SUSTAV PROMETNA MREŽA

SUSTAV PROMETNA MREŽA - FPZe-student.fpz.hr/Predmeti/O/Osnove_prometnog...• Klju čno obilježje čvorišta (raskrižje, tel. centrala..) je naizmjeni čno korištenje kapaciteta,

  • View
    4

  • Download
    0

Embed Size (px)

Text of SUSTAV PROMETNA MREŽA - FPZe-student.fpz.hr/Predmeti/O/Osnove_prometnog...• Klju čno obilježje...

  • SUSTAV PROMETNA MREŽA

  • Pojam prometne mreže

    � Prometna mreža je prostorno distribuiran sustav na kojemu se odvijaju prometno-transportni procesi

    � Temeljna funkcija mreže je omogućiti sigurno, učinkovito, ekološki i troškovno prihvatljivo premještanje ljudi, roba i informacija od izvorišta j do odredišta k.

    � Transportni entiteti ulaze na pristupnom dijelu mreže i izlaze na odredišnom dijelu

    ∑∑=i k

    jki γϕ

    j,k: C Π∈

    ∑∑=i k

    jki γϕ

    Input-output funkcionalni prikaz prometne mreže

    j,k: Ci Πjkgdje je:

    φ - prometni tok na mrežnom elementu jkץ - izvorišno-odredišni

    prometCi- kapacitet i-tog toka mrežnog elementaΠjk - put od izvorišta do odredišta kroz prometnu mrežu

  • Formalni opis prometne mreže

    Riječ mreža (network) u općem kontekstu ima više značenja:

    a) sustav cesta, linija, kabela, cijevi itd. koji su međusobno spojeni

    b) skup računala i pripadne opreme koja omogućuje razmjenu informacija

    c) skup radijskih ili televizijskih postaja koje emitiraju isti programski sadržaj

    d) matematički koncept povezanosti u topološkim strukturama i grafovi.

    U formalnom opisu prometna mreža je predstavljena strukturom čvorova i linkova kojima su pridružene težine-ponderi

  • Formalni opis prometne mreže

    Prošireni koncept mreže razlikuje terminale i čvorišta (pristupne, tranzitne i dr.) te linkove (pristupne, spojne i dr.)

    Grafički prikaz mreže

  • • Terminali su usko vezani uz pristupni dio mreže s koje prometni entiteti ulaze/izlaze s jezgrenog dijela mreže

    • U transportnom sustavu terminali su na pristupnim dijelovima gdje ulaze-izlaze putnici odnosno gdje se utovara-istovara roba u vozila ili kontejnere

    • U cjevovodnom transportu terminal je mjesto gdje se supstrat (npr.

    Formalni opis prometne mreže

    • U cjevovodnom transportu terminal je mjesto gdje se supstrat (npr. nafta) ulijeva ili izlijeva

    • U tk prometu terminal je telefon, faks, računalo..• Obavljaju “dodatne funkcionalnosti” (izdavanje i naplata voznih

    karata, informiranje, čekaonice, skladištenje robe, špedicija..)

  • Formalni opis prometne mreže

    U čvorovima se obavljaju različite funkcije od propuštanja entiteta do složenih procesa: usmjeravanje, naplata karata, skladištenje, informiranjeČvorovi: gradovi, raskrižja, aerodromi, željeznički kolodvori, autobusni kolodvori, pošte, robni terminali

    Linkovi međusobno povezuju čvorove u prometnoj mreži i služe za fizički transport bez dodatnih uslugaLinkovi/grane: ulice, ceste, plovni putovi, zračni putovi, željezničke prugeU stvarnom svijetu svakoj će grani grafa biti pridružen neki realan broj-ponder (udaljenost, kapaciteti, troškovi, vrijeme putovanja, otpori itd..)

  • • Čvorišta su mrežni elementi u kojima se koncentriraju, križaju, slijevaju ili odljevaju prometni tokovi vozila, vlakova, zrakoplova, brodova, tk kanala, podatkovnih paketa ili dr. entiteta

    • Ključno obilježje čvorišta (raskrižje, tel. centrala..) je naizmjenično korištenje kapaciteta, a razdjeljivanje tokova izvodi se u prostornim, vremenskim ili drugim dimenzijama (frekvencija, kod)

    • Tokovi se ne smiju ometati

    Formalni opis prometne mreže

    Još neki pojmovi koji se pojavljuju kod opisivanja mreža:

    • Izvor (source) – uređaj koji generira podatke za slanje. Izvorišnom čvoru se može pridružiti numerička karakteristika b(vi) > 0 “izvor”

    • Odredište (destination) – uređaj koji prima podatke od prijemnika. Odredišnom čvoru se može pridružiti numerička karakteristika b(vi) < 0 “cilj”

    • Tranzitnom čvoru se može pridružiti numerička karakteristika b(vi) = 0 “tranzitni čvor”

  • Telekomunikacijska prometna mreža RH

  • Topologija mreža

    • Fizička mrežna topologija prikazuje tlocrt fizičkog/geometrijskog rasporeda veza i čvorova u mreži. Najčešće topologije

    • Logička mrežna topologija prikazuje tlocrt putanje podataka koji putuju između čvorova na mreži.

  • ANALIZA MREŽEOsnovne definicije

    Za analizu mreže vrlo je važan grafički prikaz pomoću crteža ili grafa(odatle i ime “graf”),

    Grafička prezentacija omogućava otkrivanje i razumijevanje svojstava mreže

    Svaku mrežu možemo matematički opisati preko teorije grafovaSvaku mrežu možemo matematički opisati preko teorije grafova

    Teorija grafova jedna je od grana matematike koja nalazi veliku primjenu uprometnim znanostima, elektrotehnici, ekonomiji..

    Glavni razlog za široku primjenu teorije grafova je u jasnom geometrijskompredstavljanju mreže

  • Osnovne definicije

    Umjesto G = (V, R) često se piše G=(V, L)

    Matematička definicija grafa:

    Ilustracija pojma grafa

    Pr.1. Ako se promatraju ceste u nekom kraju, tada to može biti graf s vrhovima koje predstavljaju mjesta ili raskrižja, a lukovi su ceste koje ih spajaju

  • Osnovne definicije

    Mreža je prošireni ili težinski graf na kojemu se svakoj grani dodajetežina ili ponder.M = (V, L, P, f) gdje je: (V, L) graf, P - skup pondera, a f funkcija kojalukovima pridružuje pondere f : L pijPonderi realni brojevi pridruženi svakoj grani (cij – troškovi grane,uij – kapacitet grane, vrijeme, udaljenost..)uij – kapacitet grane, vrijeme, udaljenost..)

    Ilustracija pojma mreže

    Pr.2. Ako se promatranim cestama pridruže udaljenosti međuvrhovima, dobit će se mreža s ponderima; realnim brojevima ifunkcijom koja cesti pridružuje udaljenost među mjestima koja spaja.

  • Osnovne definicije

    Ako postoji veza između vrhova vi i vj onda postoji veza i između vrhova vj i vi . Kod tih grafova bridovi se obično crtaju kao linije bez strelica pri čemu se podrazumijeva da postoji veza u oba smjera

    Graf G = (V, R) je neorijentirani ili neusmjeren graf ako je relacija R simetrična tj. ako vrijedi:

    strelica pri čemu se podrazumijeva da postoji veza u oba smjera

    Primjer: ako su sve ceste u nekom mjestu dvosmjerne radi se o

    neorijentiranom grafu

  • Osnovne definicije

    • Graf G = (V, R) je orijentirani ili usmjeren graf ako je relacija R asimetrična tj. ako vrijedi:

    • Kod orjentiranih grafova iz činjenice da postoji veza između vrhova vi i vjslijedi da ne postoji veza i između vrhova v i v . Kod tih grafova bridovi se slijedi da ne postoji veza i između vrhova vj i vi . Kod tih grafova bridovi se obično crtaju kao linije sa strelicom koja je usmjerena u smjeru u kojem je uspostavljena veza između dva vrha

    Primjer: Skup svih jednosmjernih ulica u Zagrebu primjer je orijentiranog grafa

  • Osnovne definicije

    • Za grafove koji nisu ni orjentirani ni neorjentirani kažemo da su mješoviti

    • Kod mješovitog grafa između dva vrha mogu postojati kako jednosmjerne tako i dvosmjerne veze

    • Jednosmjerne veze se uvijek crtaju sa strelicom, dok se • Jednosmjerne veze se uvijek crtaju sa strelicom, dok se dvosmjerne veze mogu crtati na različite načine:

    • linijom bez strelica• linijom sa strelicama na obje strane• dvjema linijama sa suprotno orijentiranim strelicama

    • Primjer: skup svih cesta u Zagrebu nije ni orjentiran ni neorijentiran graf

  • Osnovne definicije

    • Podgraf nekog grafa dobiva se ako se izdvoje neki vrhovi i oni lukovi grafa koji ih povezuju G1 = (W, R)

    • Pr. Neka graf predstavlja kartu cesta Hrvatske. Karta svih cesta u Dalmaciji je podgraf toga grafa

    G1= (W,R) ima W = {1,2,3,4}

    R = {(1,2), (1,3), (2,4), (4,4)}

  • Osnovne definicije

    • Parcijalni graf ima iste vrhove kao i graf, a lukovi su samo neki od lukova zadanog grafa G2 = (V, Q) Primjer: na karti svih cesta Hrvatske izdvoje se autoceste Hrvatske

    • Parcijalni podgraf dobijemo ako se izdvoje neki vrhovi i neki lukoviG3 = (W, Q)Primjer: na karti cesta Dalmacije izdvoje se autocestePrimjer: na karti cesta Dalmacije izdvoje se autoceste

  • Osnovne definicije

    • Elementarni put put koji najviše jednom prolazi kroz svaki vrh, svi vrhovi u nizu koji opisuju put su različiti

    • Graf G = (V,R) je povezan ako za svaka dva vrha vi i vj postoji ili put od vrha vi do vj ili od vj do vi

    • Strogo (jako) povezan graf ako za svaka dva vrha vi, vj postoji put od vi do vj (može se naći put između bilo koja dva vrha grafa) ili ako između svaka dva vrha ima više disjunktnih putova (A i B nemaju zajedničkih elemenata)disjunktnih putova (A i B nemaju zajedničkih elemenata)

    Primjeri povezanoga i nepovezanoga grafa

  • Osnovne definicije

    • Petlja je kružni put koji ima samo jedan luk• Drvo (stablo) je posebna vrsta grafa koji nema ciklus (ne završava u istom

    vrhu u kojem počinje). Stablo je graf u kome su svaka dva čvora povezana točno jednom stazom

    Stablo sa sedam čvorova i šest grana

  • Osnovne definicije

    • Put je niz bridova/lukova (v1, v2), (v2, v3).....(vn-1, vn) od vrha v1 do vn. Označava se i s v1 v2 .... vn

    • Duljina puta je broj vrhova u nizu umanjen za 1, odnosno broj lukova u nizu koji određuju put

    • Kružni put u grafu je put koji počinje i završava u istom vrhu• Lanac, u grafu bez petlje je niz lukova koji se nadovezuju jedan na

    drugi bez obzira na njihovu orijentaciju drugi bez obzira na njihovu orijentaciju • Ciklus se završava u istom vrhu u kojem počinje

  • Osnovne definicije

    • Kompleksnost mreže ne može se dekomponirati na dijelove a da se ne izgubi dio njenih sustavskih (relacijskih) svojstava

    • Robusnost mreže otpornost na ispade ili prekide. Pokazatelji:– linijske povezanosti (edge-connectivity)– čvorišne povezanosti (vertex-connectivity)

    ) nerobusna b) robusnaa) nerobusna

    x

    w

    u

    yx

    vub) robusna

    Primjeri nerobusne i robusne mreže s pokazateljima (linijska povezanost)

  • Primjer robusne mreže s dvočvornom povezanošću

    mrežu je moguće raskinuti na odvojene mreže samo ako se uklone najmanje dva čvora

  • Osnovne definicije

    • Pouzdanost sustava (reliability) je vjerojatnost da sustav radi ispravno u periodu vremena t pod definiranim uvjetima okoline

    • Raspoloživost sustava (availability) je vjerojatnost da sustav radi ispravno u trenutku vremena t. Obično se računa s-t raspoloživost (source-termination availability) ili prosječna raspoloživost (av availability)availability)

    • Velika raspoloživost sustava mali gubici u prometu ali veliki troškovi• Mala raspoloživost veliki gubici u prometu• Optimalna raspoloživost kompromis kvalitete i cijene

    • Zaštita sustava (security) je vjerojatnost da sustav radi ispravno ili uopće ne radi u periodu vremena t pod definiranim uvjetima okoline

    • Srednje vrijeme popravka - mean time to repair

  • Klasifikacija funkcija mreže

    > u generaliziranoj klasifikaciji razlikuju se sljedeće funkcije prometne mreže:

    - pristupno opsluživanje

    - slijevanje ili sabiranje prometa

    - daljinsko povezivanje

    - pružanje dodatnih usluga

    - upravljanje mrežom

    POF

    SLF

    DPF

    DUF

    UPF

    > ukupnu funkciju prometne mreže F možemo predstaviti kao kompoziciju funkcija:> ukupnu funkciju prometne mreže FM možemo predstaviti kao kompoziciju funkcija:

    tspUPDUDPSLPOM FFFFFF ,,)( oooo=

    gdje označuju populaciju, prostor i vrijeme (kao "backdrop varijable“)tsp ,,

  • Funkcionalna klasifikacija cestovnih prometnica

    malavelika

    mobilnostmobilnost

    mobilnostpristupačnost

    Malo lokalnog prometa

    Potpuna kontrola pristupa

    pristupačnost

    velikamala

    pristupačnost

    Nema tranzitaSlobodan pristup

  • Funkcionalna kategorizacija gradskih prometnica

    TIP CESTE MINIMALNI RAZMAK

    BRZA GRADSKA CESTA 1600 m

    TIP CESTE

    PROJEKTNA

    BRZINA (km/h)

    PROMETNO

    OPTEREĆENJE (voz/trak

    po satu)

    BRZA GRADSKA CESTA 100 1300

    GLAVNA GRADSKA CESTA 800 m

    GRADSKA ULICA u centru grada 150 m

    GRADSKA ULICA 120 m

    SABIRNA ULICA 100 m

    GLAVNA GRADSKA ULICA 80 600*

    GRADSKA ULICA 60 300**

    SABIRNA ULICA 40 200**

    * Uz pretpostavku 45% zelenog vremena i bez manevara parkiranja** Pretpostavljajući manevre parkiranja i 30 % zelenog vremena

  • Arhitektura mreže - slojevitost mreže

    • Većina računalnih i tk mreža organizirane su kao niz slojeva ili nivoa (layers, levels),

    • Broj slojeva/nivoa, sadržaji, funkcije sojeva razlikuju se od mreže do mreže

    • Zadatak je svakog sloja da ponudi neke usluge (servise) za više slojeve

    • Sloj n na jednom računalu komunicira sa slojem n na drugom pomoću skupa pravila koja se nazivaju protokol (TCP/IP, IPX, CLNP, AppleTalk, ... Transmission pravila koja se nazivaju protokol (TCP/IP, IPX, CLNP, AppleTalk, ... Transmission Control Protocol, Internet Protokol)

    • Skup slojeva i protokola čini mrežnu arhitekturu (network architecture)

    • Četiri niža sloja obavljaju funkcije vezane za "transport" (komutaciju i transmisiju) korisničkih informacija, dok se izvršavanjem funkcija viših slojeva obavlja procesiranje/interpretacija, odnosno obrada informacija

    • Najniži sloj je fizički medij kojim ide komunikacija

    • Slojeviti modeli primjenjivi su i u svim drugim mrežama

  • REFERENTNI MODEL ARHITEKTURE OTVORENIH SUSTAVA “OSI – RM (Open System Interconnection)”

    7 korištenje 7

    pristupna

    linija

    pristupna

    linija

    "trunks"spojni vodovi

    pristupničvor A

    pristupničvor B

    tranzitničvor

    KTA KTB

    3. mreža

    7. korištenje

    6. prezentacija

    5. sesija

    4. transport

    1. fizički sloj

    2. link

    1

    7

    6

    5

    4

    3

    2

    "procesiranje"

    komutacija itransmisija

    "RR"

    žični ili bežični transmisijski medij

    OSI - komunikacijski standard

  • OSI - REFERENTNI MODEL1. Fizički sloj (Phisycal)• predstavlja skup pravila koja se odnose na korištenje hardvera npr. dimenzija priključka, raspored

    pinova, dozvoljeni naponi• osnovna funkcija: prenošenje bitova komunikacijskim kanalom2. Sloj podatkovne veze (prijenosa podataka - Data Link)• osigurava prijenos paketa između 2 direktno spojena računala, HUB3. Mrežni sloj (Network)• osigurava komunikaciju između 2 računala kroz mrežu, Router • osnovna funkcija: usmjeravanje (routing) paketa optimalnim putem 4. Prijenosni sloj (Transport)• uspostavlja “end-to-end” vezu između programa (procesa) na udaljenim računalima • neke od funkcija: prepoznavanje i ispravljanje greški, multipleksiranje, kontrola toka

    Donji slojevi imaju zadaću pouzdano prenijeti bitove s jedne na drugu stranuDonji slojevi imaju zadaću pouzdano prenijeti bitove s jedne na drugu stranuGornji slojevi imaju zadaću procesiranja, interpretacije

    5. Sloj sastanka (Session)• sastanak (sesija) - razdoblje rada, zasjedanja • neke od funkcija: upravljanje dijalogom (da li promet može ići istovremeno u jednom ili oba smjera),

    sprečavanje da obje strane pokušaju izvesti istu operaciju istovremeno, postavljenje točaka provjere (sinhronizacije) potrebnih u slučaju prekida veze

    6. Sloj predstavljanja (Presentation)• ovaj sloj se bavi sintaksom i semantikom prenošenih informacija (slaganje riječi, vezanje rečenica,

    značenje riječi)• na primjer, na različitim računalima se koriste različiti kodovi za predstavljanje znakova i ovaj sloj mora

    osigurati ispravnu razmjenu podataka među njima bez obzira na te razlike7. Aplikacijski sloj (Application)• definiraju se usluge i protokoli po kojima komuniciraju mrežni aplikacijski programi kao što je na pr. • e-mail, prijenos datoteka i sl.

  • Podjela prometnih mreža

    prometne mreže

    cestovneprometnemreže

    željezničkeprometnemreže

    vodneprometnemreže

    Podjela prometnih mreža prema "mediju" prometovanja

    prometne mrežeprema "mediju"prometovanja zračne

    prometnemreže

    telekomunikacijskeprometnemreže

    "posebne"prometnemreže

  • - Prema otvorenosti za korisnike, razlikujemo:

    > javne mreže> zatvorene (privatne) mreže> virtualne privatne mreže

    - Prema prostornom obuhvatu, razlikujemo:

    > lokalne/mjesne mreže> regionalne mreže> nacionalne mreže

    Podjela prometnih mreža

    > nacionalne mreže> međunarodne mreže> globalne mreže

    - Prema načinu vođenja prometa i upravljanja prometnim entitetima, razlikujemo:

    > prometne mreže bez centraliziranog nadzora i vođenja> prometne mreže s djelomičnim nadzorom i samostalnim upravljanjem prometnih entiteta> prometne mreže s centraliziranim automatiziranim vođenjem

  • Poopćeni strukturni model prometne mreže

    U sustavskom opisu, mreža se predstavlja općim izrazom:

    ( )tsME

    RMEPM,

    ,=

    gdje je: - prometna mreža - mrežni element- relacije

    - prostorno-vremenski okvir promatranja

    PM

    ME

    MER

    ts,

    dodatne funkcionalnosti

  • Poopćeni strukturni model prometne mreže

    • Pristupni dio mreže čine mjesta s kojih prometni entiteti ulaze (garaže, parkirališta, stajanke zrakoplova,poštanski ormarić, pretplatničke parice, radiokanali..)

    • Terminali vezani uz pristupni dio mreže (mjesta ulaska izlaska putnika, utovara-istovara robe, telefon, fax, računalo, mjesta ulijevanja-izlijevanja nafte..)

    • Čvorišta elementi gdje se koncentriraju, slijevaju, odlijevaju tokovi • Čvorišta elementi gdje se koncentriraju, slijevaju, odlijevaju tokovi vozila, zrakoplova, vlakova.. Načelo razdijeljivanja prometnih tokova da se ne smiju ometati

    • Link mrežni element koji spaja dva čvora• Dodatne funkcionalnosti naplata karata, informacije, privremeno

    skladištenje roba, špediterske usluge..• Upravljanje otklanjanje incidentnih situacija,reguliranje prometa,

    održavanje mreže, izgradnja kapaciteta

  • Grafički i matrični prikaz prometne mreže(primjena teorije grafova)

    • Vizualno predočavanje i opisivanje strukture, elemenata i svojstava prometne mreže

    • Matrica povezanosti (susjedstva) čvorova pokazuje postoje li između čvorova izravni linkovi, ako postoje tada element matrice ima

    (Broj linka)

    postoje tada element matrice ima 1, ako ne 0.

    • Matrica incidencije opisuje incidentnost čvorova i linkova, ako link izlazi iz čvora vrijednost matrice je 1, ako ulazi u čvor -1, ako ne izlazi/ulazi u čvor 0.

    • Matrica topologije pokazuje povezanost čvorova, elementi matrice pokazuju broj linka između čvorova

  • Transportni problemi na mreži

    • Transportni problemi na mreži odnose se uglavnom na određivanje maksimalnog protoka kroz transportnu mrežu ili pronalaženje najkraćeg odnosno najduljeg puta na mreži

    • Svakom luku pridružen je nenegativan broj koji označava propusnu sposobnost ili kapacitet luka

    • Funkcija φ(lij) definirana na lukovima grafa naziva se protok (fluks) ako vrijedi 0≤ φ(lij) ≤ cij

    • Ukupan protok kroz transportnu mrežu jednak je zbroju protoka • Ukupan protok kroz transportnu mrežu jednak je zbroju protoka lukova koji izlaze iz ulaznog vrha, odnosno zbroju protoka lukova koji ulaze u izlazni vrh

  • GIS alati• Geografski informacijski sustav (GIS) dizajniran za rad i

    upravljanje prostornim/geografskim podacima i njihovim osobinama. • Objedinjuje baze podataka sa specifičnošću vizualizacije i prostorne

    analize koju nude geografske karte • U općenitijem smislu GIS je oruđe "pametne karte" koje dopušta

    korisnicima stvaranje interaktivnih upitnika, analiziranje prostornih informacija i uređivanje podataka

    Inteligentno geografsko rutiranje

    • U početku je postojalo „primitivno“ rutiranje kojim se ravnalom mjerile udaljenosti na kartama

    • Danas postoji inteligentni plan rutiranja, satelitsko upravaljanje flotom, planiranje područja distribucije i upravljanje infrastrukturnim resursima samo su neki od primjera u širokoj lepezi GIS podržanih rješenja za transport i logistiku.

    • Kako optimalno opslužiti nekoliko tisuća lokacija ovisnih o određenom distributivnom centru pitanje je gdje GIS alati i rješenja mogu puno pomoći

  • Primjena GIS-a

    Primjena GIS-a na željeznici upravljanje infrastrukturom (kolosjeci, kontaktna mreža, pruge i signalizacija), Praćenje vlakova,analiza robnih tokova,upravljanje intermodalnim transportom,planiranje kapaciteta,upravljanje lancima snabdjevanja i marketing

    Primena GIS-a u javnom prometuplaniranje i analiziranje ruta automatska lokacija i praćenje vozila,automatska lokacija i praćenje vozila,vremensko planiranje tranzitastajališta za autobuse, izvještavanje i analiziranje prometnih nezgoda,

    Primena GIS-a u zrakoplovstvuupravljaju postrojenjima kako na zemlji tako i u zraku, poboljšavaju operacije parkiranja ianalizu ruta otpreme na zemljiplaniraju saobraćaj i kapacitetepraćenje letova i

    Primena GIS-a u vodnom transportudigitalne nautičke mapePriobalne kartografije.

  • Prikazivanje transportne potražnje na mreži

    • U pojedinim čvorovima ili na granama pojavljuju se zahtjevi za prijevozom robe i putnika ili za prijenosom određenih informacija

    • O projektiranju mreže i organizaciji prijevoza bitno ovise troškovi odvijanja prometa i kvaliteta prometnih usluga

    • Kako treba izgledati cestovna, željeznička ili zračna mreža u jednoj državi, županiji, regiji, gradu?državi, županiji, regiji, gradu?

    • Treba li sve gradove povezati izravnim letovima ili se prijevoz može obaviti presjedanjem?

    • Kojim rutama se trebaju kretati vozila prilikom opskrbe trgovina?

    • Kako organizirati prikupljanje smeća u gradu?

    • Gdje locirati terminal, vatrogasnu službu, hitnu pomoć, policijsku stanicu, poštu, školu.?

  • Mrežni modeli

    Podjela dinamičkih modela

  • �Statički mrežni modeli promatraju karakteristična stanja bez analizedinamike sustava odnosno promjene stanja u vremenu

    �Potražnja je fiksna a varijable izbora se ne mijenjaju tijekomodređenog vremena promatranja (ukupna ponuda jednaka ukupnojpotražnji)

    �Vozni redovi optimiziraju se prema očekivanoj potražnji i tokovima nerazmatra se stvarnovremensko ponašanje

    Mrežni modeli

    �Dinamički mrežni modeli (Dynamic Network Models) promatrajustanja i promjene stanja u “realnom” vremenu

    �Uvode u razmatranje vremenski ovisne (time – dependent) funkcije urazličitim vremenskim horizontima i okvirima promatranja (nekolikočvorova ili linkova, zona, gradska mreža, regionalna, nacionalna, itd.)

    �Dinamičke mrežne modele neophodno je koristiti zbog toga što jepromet u osnovi kompleksan dinamički fenomen (predviđanjeprometa, incidentnih situacija, optimalni izbor rute, moda, vremenaputovanja, automatskog vođenja prometa..)

  • Dinamički mrežni modelPredložak ili model pokretnog horizonta ("rolling horizon framework")omogućuje da se procjena i predviđanja stanja na prometnici dinamički podešavaju prateći odziv generirane kratkoročne upravljačke strategije

    Početna prognoza za vremenski horizont npr. 1 sat unaprijedPrikupljanje stvarno vremenskih podataka u kraćim razmacima (npr. 10 min.)Uspoređivanje s početnom satnom predikcijomRadi se dinamička prilagodba stanja na prometnici prateći odziv generirane kratkoročne upravljačke strategijePokretanje novog ciklusa s novim procjenama i izvršnim strategijama vođenja prometaVrijeme putovanja se uzima kao osnovna varijabla

  • - relevantne varijable za opis stanja prometnog toka na linku i ruti su:

    - broj prometnih entiteta na linku l u vremenu t - broj prometnih entiteta na linku l i ruti r s izvorištem j i odredištem k u vremenu t - intenzitet ulaznog toka entiteta na link l u vremenu t (npr. vozila/minuti, vozila/sat, itd.)

    - intenzitet izlaznog toka entiteta iz linka l u vremenu t - aktualno (projicirano) vrijeme putovanja linkom l koje ovisi o trenutačnom stanju broja vozila, ulaznom i izlaznom toku

    Definiranje relevantnih veličina dinamičkoga mrežnog modela

    )(txl

    )(tx jklr)(tal

    )(tdl)(tlτ

    broja vozila, ulaznom i izlaznom toku- aktualno (projicirano) vrijeme putovanja rutom r između izvorišta j i čvora n(koje se nalazi na putu do odredišta) za prometni entitet koji je krenuo s izvorišta u trenutku t

    )(tjnrτ

    > za prometni link l na ruti r između izvorišta j i odredišta k ukupan broj prometnih entiteta

    koji ulaze u link l u vremenu t izlaze iz tog linka u vremenu pri čemu vrijedi:[ ])(tt lτ+

    [ ])()( ttDtA ljk

    lr

    jk

    lr τ+=

  • > jednadžbe stanja za link l dane su izrazom:

    gdje je:- kumulativni broj prometnih entiteta koji ulaze na link l na ruti r u vremenu t- kumulativni broj prometnih entiteta koji izlaze iz linka l na ruti r u vremenu t

    )(tAjk

    lr

    )(tD jklr

    )()(

    tadt

    tdA jklr

    jk

    lr = kjrl ,,, ∀

    )()(

    tdtdD jk

    jk

    lr = kjrl ,,, ∀

    [5.11]

    [5.12] )()(

    tddt

    tdD jklr

    lr = kjrl ,,, ∀ [5.12]

    > ako broj prometnih entiteta na linku l u početnom trenutku iznosi 0, tada je broj prometnih entiteta na linku l u bilo kojem trenutku promatranja određen izrazom:

    0=t

    )()()( tDtAtx jklrjk

    lr

    jk

    lr −= kjrl ,,, ∀[5.13]

  • )(tA jkl

    )(taτ [ ])(ttDa

    jk

    lτ+

    Duljina repa u vremenu t Q(t)

    [ ])(ttDal

    τ+

    )0(aτt )(tt aτ+

    Krivulje dolazaka i odlazaka i propagacija toka

    različiti oblici krivulja dolazaka i odlazaka pokazuju dinamičke varijacije vremena putovanja tijekom vremena promatranja

  • Projektiranje prometne mreže i njenih dijelova

    Polazni projektni parametri

    - neovisno o kojoj se prometnoj mreži ili podmreži radi, postoji nekoliko osnovnih projektnih parametara koji određuju svojstva mreže. To su:

    > topološka struktura> veličina prometnih tokova> kapaciteti ili propusna moć čvorova i linkova> način upravljanja mrežom> troškovna ograničenja> troškovna ograničenja

    Polazi od zemljopisnog položaja pojedinih prometnih točaka za koje znamo transportnu potražnju, Radi se minimalno stablo koje predstavlja najpovoljniju topologijuZa pronalaženje minimalnog stabla u mreži koriste se:

    > Prim-Dijkstrin algoritam> Kruskalov algoritam

    Minimalno stablo

  • > veličina kapaciteta linka i/ili čvora ograničava veličinu mogućeg toka tako da općenito vrijedi:

    iC jC

    C

  • Propusna moć jednaka je iznosu maksimalnog toka koji može protjecati kroz promatrani sustav ili podsustav ("mrežni element").

    Propusnost serijske strukture mrežnih elemenata različitih kapaciteta određena jenajmanjim kapacitetom u nizu, tj. vrijedi:

    Propusnost različitih mrežnih struktura

    { }

    Mi

    CPR ii

    N

    ,...,1

    min1

    =

    =

    Propusnost serijske strukture mrežnih elemenata

    Propusna moć serijske strukture mrežnih elemenata

  • - za paralelnu strukturu mrežnih elemenata cestovnih trakova, poslužitelja, kanala itd. ukupan kapacitet jednak je korigiranom zbroju svih paralelnih kapaciteta tako da vrijedi:

    ∑=M

    i

    ip CkkPR

    gdje je:- propusnost paralelne strukture mrežnih elemenata (promatrana u jedinici vremena)

    - kapacitet pojedinoga mrežnog elementa- korekcijski (redukcijski) koeficijent

    pPR

    iCkk

    Propusnost paralelne strukture mrežnih elemenata

    kk

    Propusna moć paralelne strukture mrežnih elemenata

  • Propusna moć mrežne strukture koju čini više serijskih i paralelno povezanih mrežnih elemenata može se odrediti prema pravilu "minimalnog reza – maksimalnog toka"

    Pravilo minimalnog reza – maksimalnog toka kaže da je propusnost između izvorišne (j) i odredišne ( k ) točke neke mreže jednak kapacitetu minimalnog reza:→ minimalni rez znači kombinaciju mrežnih elemenata čijim bi se uklanjanjem uzrokovao prekid veze između j i k, a da zbroj

    Propusnost mrežne strukture koju čini više serijskih i paralelno povezanih mrežnih elemenata

    čijim bi se uklanjanjem uzrokovao prekid veze između j i k, a da zbroj kapaciteta bude minimalan.

  • a za prikazani primjer je:

    { }5443253121

    CC ,CCC ,CCC ,CC ++++++= minjk

    PR

    em.][PE/jed.vr 3000 1000 2000 C C

    vrem.][PE/jed. 4500 2000 500 2000 C C C

    vrem.][PE/jed. 2500 1000 500 1000 C C C

    vrem.][PE/jed. 3000 2000 1000 C C

    54

    432

    531

    21

    =+=+

    =++=++

    ←=++=++

    =+=+

    - između navedenih četiriju kombinacija (načina) prekida mreže, minimalni rez nastaje pri uklanjanju kapaciteta C1, C3 i C5.

    - tražena propusnost mreže (maksimalni tok) jednaka je zbroju kapaciteta koji čine minimalni rez, tj. iznosi 2500 [PE/jed.vrem.]

  • Razdioba mrežnih tokova pri maksimalnoj propusnosti

    Za veličinu prometnog toka 0 ≤ φul ≤ 1000 cijeli tok se može usmjeriti na kraći put preko C2 i C5 ili preko C1 i C4Za tokove 1000 ≤ φul ≤ 2000 treba koristiti oba puta, dok za veličinu toka 2000 ≤ φul ≤ 2500 treba koristiti i kapacitet C3 za preraspodjelu tokova

  • 5.5.4 Poboljšanje propusnosti mreže sinkronizacijom prometnih svjetala

    - Prometna svjetla (traffic lights) obuhvaćaju svu elektronički napajanu i programski nadziranu opremu za reguliranje, vođenje i upozoravanje korisnika prometnice (vozača, pješaka i dr.)

    - prometna svjetla zajedno s prometnim znakovima i označavanjem čine važan dio sustava vođenja prometa (traffic control systems)

    - svrha prometnih svjetala je:

    > povećati propusnost i smanjiti prosječno vrijeme čekanja na čvorištu> smanjiti broj zaustavljanja> povećati sigurnost prometa> povećati sigurnost prometa> izjednačiti kvalitetu usluga za sve ili većinu prometnih pravaca> smanjiti ekološka onečišćenja> omogućiti prioritetno vođenje vozila žurnih službi, itd.

    - program izmjene signala određen je:

    > duljinom ciklusa ( ) > omjerom zelenog svjetla ( ) prema cijelom ciklusu> trajanjem žutog svjetla ( )> zahtjevom vremenske sinkronizacije u dijelu mreže ili cijeloj mreži

    ctzt

    γt

  • > odnos veličine prometnog toka i kapaciteta (propusne moći) promatran za jedan pravac na signaliziranom raskrižju određen je izrazom:

    ZZ

    CA

    jt

    t

    j

    j

    ⋅=

    ϕ

    ϕρ

    10 ≤≤ jρ

    [5.21]

    gdje je:- relativno opterećenje za pravac (skupinu linija) j- aktualna ili planirana veličina toka na pravcu j

    - veličina toka zasićenja za pravac j

    - trajanje ciklusa (s)

    - trajanje zelene faze za pravac j (s)

    jA,ϕ

    jZ ,ϕ

    ct

    γt

    Trajanje zelene faze na jednom čvorištu potrebno je sinkronizirati s drugim čvorištima da se minimiziraju ukupni vremenski gubici, broj zaustavljanja i spriječe zagušenja u mreži

  • brzinanagib ≈

    Slika: Prostorno-vremenski dijagram sinkronizacije prometnih svjetala

    Učinkovitost sinkronizacije prometnih svjetala možemo ocjenjivati putem omjera razine usluga sinkronizirane mreže i razine usluga (gubitaka, vremena čekanja, itd.) kada svako raskrižje neovisno funkcionira

    Offset vremenski razmak između uključivanja zelenog svjetla na semaforima A, B, C

  • GRAFIČKA ILUSTRACIJA KOORDINACIJE SIGNALNIH PLANOVA

    Sinkronizacijom signalnih planova optimizira se kretanje vozila u grupi

  • Optimizacijski problemi prometne mreže

    Problem AProblem izbora topologije, kapaciteta mrežnih elemenata i rutiranja tokova

    > varijabilno:

    > topologija mreže ( )

    > kapaciteti čvorova ( ) i linkova ( )

    Načelno se mogu definirati osnovni tipovi optimizacijskih problema:

    TM

    C C> kapaciteti čvorova ( ) i linkova ( )

    > rutiranje prometnih tokova ( )jC iC

    ijkr

    > minimizirati: > vrijeme putovanja/prijenosa ( )

    > troškove prijevoza/prijenosa ( )

    > ekološke negativnosti ( )

    > ograničenja: investicijski troškovi

    pT

    pK

    min→EN

    ( ) ( ) plM

    i

    N

    j

    jjii DICdCd ≤+∑ ∑= =1 1

  • Problem BProblem dizajniranja kapaciteta i raspodjele tokova

    > zadano: topologija mreže ( )

    > varijabilno:

    > kapaciteti grana ( ) i čvorova ( )

    > prometni tokovi na granama ( ) i čvorovima ( )

    > minimizirati:

    > vrijeme prijevoza ili prijenosa ( )

    TM

    iC jC

    iϕ jϕ

    min→pT

    > troškove prijevoza ili prijenosa ( )

    > ekološke negativnosti ( )

    > ograničenja:

    > investicijska sredstva ( )

    > upravljački kapaciteti ( )

    p

    min→pK

    min→EN

    plDI

    MC

  • Problem C

    Problem dizajniranja kapaciteta linkova

    > zadano: topologija mreže (TM)

    > varijabilno:

    > kapaciteti linkova ( ) i čvorova ( )

    > prometni tokovi na linkovima ( ) i čvorovima ( )

    > minimizirati:

    > vrijeme prijevoza ili prijenosa ( )

    iC jC

    iϕ jϕ

    min→pT> vrijeme prijevoza ili prijenosa ( )

    > troškove prijevoza ili prijenosa ( )

    > ekološke negativnosti ( )

    > ograničenja:

    > investicijska sredstva ( )

    > upravljački kapaciteti ( )

    min→pT

    min→pK

    min→EN

    plDI

    MC