29
Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri Uzdensky (CIPS), Mitch Begelman (JILA) Variable Galactic Gamma-ray Sources, April 16-18, 2013, Barcelona.

Relativistic reconnection at the origin of the Crab gamma-ray flaresicc.ub.edu/congress/GRBINBCN/documents/cerutti.pdf · RECONNECTION (?) Particle kinetic- energy-dominated plasma

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Relativistic reconnection at the origin of the Crab gamma-ray flares

    Benoît Cerutti

    Center for Integrated Plasma StudiesUniversity of Colorado, Boulder, USA

    Collaborators: Gregory Werner (CIPS), Dmitri Uzdensky (CIPS), Mitch Begelman (JILA)

    Variable Galactic Gamma-ray Sources, April 16-18, 2013, Barcelona.

  • [http://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/]

    B. Cerutti

    April 2011

    Sep. 2010

    March 2013

    Feb. 2009 July 2012

    Agile and Fermi discovered gamma-ray flares in the Crab Nebula

    Oct. 2007

    [Tavani et al., Science, 2011] ; [Fermi-LAT, Science, 2011]

  • The ultra-short time variability put strong constraints on the acceleration region

    B. Cerutti

    [Buehler et al., 2012]

    April 11, 9 days Flux ×30

    Flare few days =► emitting region size ctflare

    ~1016 cm > 200 μG, and PeV pairs !

  • Spectral variability at high energies

    Synchrotron photons > 100 MeV No obvious counter-parts (radio, IR, opt., X, TeV) April 2011 spectrum very hard, inconsistent with shock-acceleration

    B. Cerutti

    [Weisskopf et al. 2013]

    Synchrotron

    Inverse Compton

    375 MeV!April 2011

    Flare

  • The production of synchrotron emission >160 MeV challenges classical models of acceleration

    Under ideal MHD conditions: E B!

    B. Cerutti

    e+

  • Particle acceleration above the radiation reaction limit could occur at reconnection sites

    The reconnecting magnetic field vanishes inside the current layer:

    +B0

    -B0

    x

    y

    2δE0>B0

    Non ideal MHD!

    B. Cerutti

    +B0

    -B0

    E0Synchrotron

    Photons

    ObserverCurrent layer

    Current layer

    Ultra-relativistic, collisionless pair plasma reconnection

  • Zeltron: A new radiative PIC codeGeneral properties:

    • 3D, parallel (OpenMPI), relativistic, electromagnetic PIC code.• Developed from scratch by B. Cerutti• Includes the radiation reaction force

    Zeltron solves the Abraham-Lorentz-Dirac equation: [e.g. Jackson, 1975]

    Lorentz 4-force

    Radiation reaction 4-force

    : 4-velocity: External electromagnetic field-strength tensor: Relativistic interval

    B. Cerutti

  • Numerical setup: Harris equilibrium

    Layer thickness: 2δ

    -B0

    +B0

    +B0=5mG

    Ultrarelativistic reconnection, with radiation reaction force!

    System size: L = 7×1015 cm or 2.7 light-days

    Numerical parameters:

    - 100 particles per cell- 1440² grid cells- 9000 time steps- 8 cells per δ- Periodic boundary cond.

    Physical parameters:

    - B0 = 5mG =► γ

    rad ≈ 109

    - Thermal drifting particles, kT=4×107 mc²

    - Non-thermal background particles:

    dN/dγ = Kγ-2,4×107 < γ < 4×108

    B. Cerutti

  • Overall time evolution of reconnection

    B. Cerutti

    Particles are accelerated at X-points along the ±z-direction, and deflected along the ±x-directions by the magnetic tension.

  • Time evolution of the particle energy distribution

    tω1 = 0 γrad

    B. Cerutti[Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 440

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Time evolution of the particle energy distribution

    tω1 = 440

    tω1 = 660

    tω1 = 0 tω

    1 = 220

    B. Cerutti

    γrad

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Energetic particles are bunched into the layers and magnetic islands

    B. Cerutti

    γ > 5x108

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Evidence for relativistic Speiser orbitsSample of 150 particle orbits

    Particles well magnetized

    ≈ ideal MHD

    Particles’ beamE>B, non-ideal

    MHD!

    Speiser orbits!y/

    ρ 1

    z/ρ1B. Cerutti

  • A typical high-energy particle orbit with γ > γrad

    START

    END

    “Speiser orbit”Orbit shrinks

    E>B

    Phase 1. Drifting towards the layerPhase 2. Linear acceleration, weak rad.losses, where E>B (non-ideal MHD)Phase 3. Ejection, fast cooling and emission of >160 MeV synchrotron

    B. Cerutti

  • B. Cerutti

  • Evidence for >160 MeV synchrotron photons!

    >160 MeV!

    Isotropic

    B. Cerutti

    Total synchrotron flux (optically thin)

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • B. Cerutti

    Energy-resolved radiation’ angular distribution

    +z +x-x-z -z

    +y

    -y

  • B. Cerutti

    Energy-resolved radiation’ angular distribution

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

  • Energy-resolved radiation’ angular distribution

    B. Cerutti

    Strong energy-dependent anisotropy of the energetic particle.

    =► beaming of the high-energy radiation !

  • Evidence for >160 MeV synchrotron photons!

    >160 MeV!

    Isotropic

    B. Cerutti

    Total synchrotron flux (optically thin)

    Anisotro

    pic !

    Apparent high-energy flux INCREASED! =► « KINETIC BEAMING »[Cerutti et al., 2012b]

    Observer

    [Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • B. Cerutti

    Time variation of the >100 MeV flux

    The beam of high-energy radiation sweeps across the line of sight intermittently =► bright symmetric flares.

  • Expected lightcurves, including the light propag. time

    Ultra-short time variability < 6 hours due to particle bunching and

    anisotropy

    Apr. 11 flare

    [Buehler et al., 2012]

    Observed ultra-short time variability < 8 hours

    Observer

    MODEL

    OBSERVATIONS

    B. Cerutti

    Symmetric shape Δt

  • Expected correlation Flux/Energy

    Flux = K εcut

    +3.8±0.6

    εcut

    [MeV]

    Flux

    Flux = K εcut

    +3.42±0.86

    [Buehler et al., 2012]

    OBSERVATIONS MODEL

    B. Cerutti[Cerutti et al., submitted, 2013, arXiv:1302.6247]

  • Where could magnetic reconnection operate in the Crab?

    © NASA-CXC-SAO F.Seward et al.

    Pulsar windCurrent sheet (striped wind)

    [Coroniti 1990]

    © Kirk et al. 2009

    Termination shockDissipation of the striped wind

    [Lyubarsky 2003]

    © Sironi & Spitkovsky 2011b

    Polar region- High magnetic field (Z-pinch)- Kink unstable [Begelman 1998]

    (See also Lyubarsky 2012)Flares: Analog of Sawtooth crashes

    in tokamaks? [Uzdensky + 2011]

    © Porth et al. 2012B. Cerutti

  • The discovery of these flares has a considerable impact in high-energy astrophysics!

    Poynting Flux-dominated plasma

    RECONNECTION (?)

    Particle kinetic- energy-dominated

    plasma

    DISSIPATION

    B. Cerutti

    • Smoking gun of rapid magnetic dissipation in the NebulaSolution to the long-standing « σ-problem »?

    • The model of the Crab Nebula is a prototype for ALL the other high-energy astrophysical sources: AGN jets, lobes, gamma-ray bursts, magnetars, …

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29