40
KULIAH BIOTEKNOLOGI PROTEOMIK Dr. Oeke Yunita, S.Si., M.Si., Apt.

Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

Embed Size (px)

Citation preview

Page 1: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 1/40

KULIAH BIOTEKNOLOGI

PROTEOMIK

Dr. Oeke Yunita, S.Si., M.Si., Apt.

Page 2: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 2/40

The birth of proteomics

Page 3: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 3/40

Page 4: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 4/40

Importance of Proteins:

• CATALYSTS • STRUCTURAL ELEMENTS 

• SIGNALS 

RECEPTORS • KEY COMPONENTS OF THE MACHINERY 

• INVOLVED IN MANIPULATION OF DNA AND RNA 

Page 5: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 5/40

Proteins are the molecule tools for most cellular functions

TYPE FUNCTION EXAMPLE

Structural proteins Support Collagen, Elastin,

Keratin

Storage proteins Storage of amino acid Ovalbumin,

Casein

Transport proteins Transport of othersubstrate Hemoglobin

Hormonal proteins Coordination of and

organism’s activities

Insulin

Receptors proteins Response of cell to

chemical stimuli

Receptor in nerve

transmit route

Contractile proteins Movement Actin, MyosinDefensive proteins Protecton against

disease

Antibodys

Enzymatic proteins Selective acceleraton

of chemical reactions

Trypsin, ATPase,

GAPDH

Page 6: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 6/40

Diverse properties of proteins in a cell

Page 7: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 7/40

What is PROTEOMICS ?• The systematic analysis of the protein population in a

tissue, cell, or subcellular compartment.

• "The analysis of the entire protein complement

expressed by a genome, or by a cell or tissue type.“ 

• Systematic determination of diverse properties ofproteins, including sequence, quantity, state of

modification, interactions with other proteins,

activity, subcellular distribution and structure.

Page 8: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 8/40

DNA

RNA

Protein

Transcription

Translation

Comparative genomics

Functional genomics

Comparative andfunctional proteomics

Genome sequencing projects

New avenue to study biology

Metabolites Metabonomics

Page 9: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 9/40

Page 10: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 10/40

In vitro/ In vivocell-based assays

Bioinformatics

Proteomics

TranscriptomicsCGTCCAACTGACGTCTACAAGTTCCTAAGCT

Genomics

Integrated view of the

complex biological systems

Integration of Omics

validation

Page 11: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 11/40

PROTEOMICS

is inherently more challenging than

genomics/transcriptomics

Nucleic acids / genomics 

 – NA’s can be amplified 

 – NA’s show uniform behaviorin purifying and handling

 – NA’s are self -complimentary

 – NA’s have limited (butincreasingly appreciated)modifications

 – NA’s are stable to drying,spotting, etc.

Proteins/proteomics 

 – No

 – No

 – No

 – No

 – conditional

Page 12: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 12/40

PROTEOMICS can answer

• Protein identification

• Protein Expression Studies

• Protein Function

• Protein Post-Translational Modification

• Protein Localization and Compartmentalization• Protein-Protein Interactions

Page 13: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 13/40

General classification for

PROTEOMICS

• Protein Expression comparison (beginning)

 – Quantitative study of protein expression between samplesthat differ by some variable

• Structural Proteomics (simulation) – Goal is to map out the 3-D structure of proteins and

protein complexes

• Functional Proteomics (everything)

 – To study protein-protein interaction, 3-D structures,cellular localization and posttranslational modifications (PTMS) in order to understand the physiological functionof the whole set of proteome.

Page 14: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 14/40

Page 15: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 15/40

PROTEIN EXTRACTION

Page 16: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 16/40

Current status of proteomic technologies

Two most applied technologies:

1. 2-D electrophoresis:

separation of complex protein mixtures

2. Mass spectrometry:

Identification and structure analysis

Page 17: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 17/40

GEL ELECTROPHORESIS

• Denaturing – SDS-PAGE

 – SDS gives uniform neg. charge

 – Separates proteins by size/mass

• Non-denaturing

 – Separates based on charge and size/conformation

• Often combined with Western blotting (using

antibodies specific for proteins of interest)

Page 18: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 18/40

SDS-PAGE

Page 19: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 19/40

WESTERN BLOT

HIV lysate

proteins are

separated by

size using gel

electrophoresis

Proteins are

transferred

(blotted) onto the

surface of a

membrane

Strips are

incubated with

patient serumand antihuman

IgG conjugated

with an enzyme

(and

chromagen)

The membrane is

cut into strips

Page 20: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 20/40

Western Blot Banding

*

*

*

Page 21: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 21/40

2D Gels

• Proteins are first separated according to isoelectricpoint

 – pH gradient is applied (usually horizontally)

 – Each protein is charged except at it’s isoelectric point 

• Proteins are then denatured in sodium dodecylsulfate (SDS)

 – Unfolds them into straight molecules

 – Binds SDS molecules roughly proportional to the length ofthe denatured protein

 – Electric current then separates the proteins according tomass, similar to a regular agarose gel

Page 22: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 22/40

Page 23: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 23/40

Page 24: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 24/40

2D-GE

Page 25: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 25/40

Page 26: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 26/40

Page 27: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 27/40

Protein Data Bank (PDB)

Global data collection (>30000 records)

 – www.pdb.org

 – 3D structures

 – experimental data

 – biological and chemical information

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

1        9       7       

 6       

1        9       7       7       

1        9       7       

 8       

1        9       7       

 9       

1        9        8        0       

1        9        8       1       

1        9        8       2       

1        9        8        3       

1        9        8       4       

1        9        8        5       

1        9        8        6       

1        9        8       7       

1        9        8        8       

1        9        8        9       

1        9        9        0       

1        9        9       1       

1        9        9       2       

1        9        9        3       

1        9        9       4       

1        9        9        5       

1        9        9        6       

1        9        9       7       

1        9        9        8       

1        9        9        9       

2        0        0        0       

2        0        0       1       

2        0        0       2       

2        0        0        3       

2        0        0       4       

2        0        0        5       

2        0        0        6       

   P   D   B   e

  n  r   t   i  e  s

total

per year 

Proteins NA Complexes Other Total

X-ray   27335 807 1270 85   29497

NMR   4421 674 118 17   5230

El. Microsc.  77 9 27 0

  113Other    70 4 3 0   77

Total   31903 1494 1418 102 34917

Molecule TypeMethod

Page 28: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 28/40

• Analyze the

proteome of both

diseased and healthy

cells

• Find changes in:

 – Cell or tissues

 –

Subcellularstructures

 – Protein complexes

 – Biological fluids

Clinical

Proteomics

Page 29: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 29/40

• Develop new biomarkers for disease diagnosis

and early detection

• Identify new targets for drugs

• Better evaluate the therapeutic effect ofpossible drugs

Clinical Proteomics

Page 30: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 30/40

Page 31: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 31/40

Page 32: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 32/40

Differential Protein Expression Profiling

Identification of proteins in a sample as a function of a particularstate: differentiation, stage of development, disease state, response

to drug or stimulus 

Normal DiseasedWhich proteins are upor down regulated ?

Biomarkers or drug targets

Page 33: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 33/40

Page 34: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 34/40

LUNG Ca

BIOMARKER

DISCOVERY

ClinicalProteomics

Page 35: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 35/40

Overview of Proteomic Approach

Page 36: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 36/40

Page 37: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 37/40

Page 38: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 38/40

Page 39: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 39/40

Page 40: Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

8/16/2019 Proteomik, Dr. Oeke Yunita, gasal 2014.pdf

http://slidepdf.com/reader/full/proteomik-dr-oeke-yunita-gasal-2014pdf 40/40