Upload
odeda
View
24
Download
0
Tags:
Embed Size (px)
DESCRIPTION
Pipelining and number theory for multiuser detection. Sridhar Rajagopal and Joseph R. Cavallaro Rice University. This work is supported by Nokia, TI, TATP and NSF. Motivation. Several multiuser detection schemes Hardware implementation infeasible Optimize algorithm + hardware - PowerPoint PPT Presentation
Pipelining and number theory for multiuser detection
Sridhar Rajagopal and Joseph R. Cavallaro
Rice University
This work is supported by Nokia, TI, TATP and NSF
Motivation
• Several multiuser detection schemes• Hardware implementation infeasible• Optimize algorithm + hardware
• Design a reduced complexity multiuser detection algorithm and its implementation for 3GPP W-CDMA
Approaches
• Algorithm– parallel interference cancellation– reduced complexity, parallel structure
• Pipelining – bit-streaming, avoid block detection
• Number theory– Most Significant Digit First (MSDF) computation– sign detection
Contributions
• decrease detection latency and storage requirements by window length (12X)
• On-line arithmetic based on MSDF computation– further latency reduction by 1.9X– increase in throughput by 3X– possible savings in area
Outline
• Parallel interference cancellation
• Pipelining
• On-line arithmetic
• Conclusions
• Current research directions
Multiuser detection
ri-2 ri-1 ri ri+1
Interference from previous bits of other
users
Interference fromfuture bits ofother users
Desired user
User 1
User j
ri
bibi+1
time
Multiuser detection
• Optimal - MLSE • Decorrelating• MMSE• Serial/Parallel interference
cancellation
• Top 3 require inversion of matrices• Block based detection
Parallel interference cancellation
)y(signd
d]SAARe[yy1l
lH
AAAAAA
AAAAAAAAAAAA
H1
H00
1H
H0 1
HH00H
H0
H
01
1101
100
00
0
00
d
d
d
d
D,K
D,1
1,K
1,1
Block based detection
Block detection
0 B its 1 -1 0 1 1 0 B its 1 -1 0 1 1 0 B its 1 -1 0 1 1
B its 1 -1 0 de te c te din a blo c k
M a tc he d F ilte r P IC (S ta g e 1 ) P IC (S ta g e 3 )
O ve rhe a d B its D e te c tio n W indo w (D = 1 2 )
Outline
• Parallel interference cancellation
• Pipelining
• On-line arithmetic
• Conclusions
• Current research directions
Parallel interference cancellation
)y(signd
d]SAARe[yy1l
lH
AAAAAA
AAAAAAAAAAAA
H1
H00
1H
H0 1
HH00H
H0
H
01
1101
100
00
0
00
d
d
d
d
D,K
D,1
1,K
1,1
1ii1i RdCdLdyy
Block Toeplitz structure - suitable for pipelining
Pipelined detection
5 6 7 8 9 1 0 1 1 1 21 2 3 4
5 6 7 8 9 1 0 1 1 1 21 2 3 4
5 6 7 8 9 1 0 1 1 1 21 2 3 4
5 6 7 8 9 1 0 1 1 1 21 2 3 4
M atch edF ilter
P IC (S tag e 1 )
P IC (S tag e 2 )
P IC (S tag e 3 )
T im e ( i )
^
^
^
^
d i
d i+ 2
d i-2
d i-4
M atc he d F i l te r
Adde r
L d i -1L T d i + 1 C d i
Si g nD e te c t i o n
Stag e 1
r i + 3 A0 , A1
C LR = L Td i + 2y i + 2
+
- --
^
^ ^ ^
Stag e 2
Ld iy i R = L T^
^ ^
D e l ay
D e l ay y i
R e c e i ve dSi g nal
C hanne lE s t i m ate s
Stag e 3
Cd i -2y i -2 R = L T^
y i -4^d i -4
D e te c te d bi ts
C
L
Being designed as a class project in Elec 422/423VLSI class
Outline
• Parallel interference cancellation
• Pipelining
• On-line arithmetic
• Conclusions
• Current research directions
Redundant number systems
• Conventional systems ( 0.34578, r=10)– radix r has r possible digits
• Redundant (0.34578,0.35578,…. r=10)– >r possible digits.
• Limit carry propagation• Totally parallel addition/subtraction ONLY.
On-line arithmetic
• Uses a redundant number system• Pipelined bit-serial arithmetic• Most Significant Digit First computation• Successive computations as soon as
inputs available ( = 1-4, typically)• Can do operations such as addition,
multiplication, division, square-root etc.
On-line detection and decoding
C h an n e lE s tim a tio n
D e tec tio n D eco d in g
A n ten n a
D eco d edIn fo rm a tio n b its
H ard d ec is io n do r so ft d ec is io n y
R F U nit A /D D em ux
Entire chain can be done on-line
Work with hard decisions (sign of MSD) simple way to use softer decisions (2 or more digits)
On-line arithmetic for detection
d p = s ig n (A H r)
O n-l i ne Si ng l e U s e r D e te c to rC o nve nt i o nal S i ng l e U s e r D e te c to r
A Hp ,1 A H
p ,2 A Hp ,N -1
+
+
+
+
+
A H r
A Hp ,N
* * * *
r0 r1 rN - 1 rN
A Hp ,1 A H
p ,2 A Hp , N -1
+
+
+
+
+
A Hp ,N
* * * *
r0 r1 rN - 1 rN
d p = s ig n (A H r)
L ate nc y = lo g2(d)* t co n v* ( lo g2(N ) + 1 ) L ate nc y = tO L* ( lo g2(N )+ 1 ) + t s t o p
Single user detector using Conventional arithmetic
L ate nc y = Thr o ug hput = lo g2(d)* t co n v* ( lo g2(N ) + 1 )
d i - 1 d i d i +1
N * N /2 + 1 log 2 (d)* tc o n v
Conventional arithmetic - matched filter
Single user detector using On-line arithmetic
N m u ltip lic a tio n s in p ar a lle l ( N * )
N /2 ad d it io n s in p ar a lle l ( N /2 + )
N /4 ad d it io n s in p ar a lle l
N /8 ad d it io n s in p ar a lle l
F in a l ad d it io n b ef o r e s ig n ( 1 )
L ate nc y = tO L* ( lo g2(N )+ 1 ) + t s t o p
Thr o ug hput = m * tO L
T r ee ad d it io n
S to p ! S ig n d ig it d e tec ted
0 < = t s t o p < m * tO L is the t im e fo r the f i r s t no n-ze ro digi tm = d/ lo g2( r ) is the no . o f digi ts
d i - 1 d id i +1
m * tO L
tO L * ( lo g 2 ( N ) + 1 )
t s t o p
tO L
On-line matched filter
M atc he d F il te rtC M F = ( lo g2(N )+ 2 )* lo g2(d) * t co n v
P IC - S tage 1tC P IC = ( lo g2(K )+ 3 )* lo g2(d) * t co n v
P IC - S tage 2tC P IC t im e
P IC - S tage S = 3tC P IC t im e
Bit Parallel Conventional arithmetic
L ate nc y = (2 * S-1 )* tC P IC + 2 * tC M F
Thr o ug hput = tC P IC
d i
d i
d i +1
d i +1
d i
d i
d i +1
d i +1
y i , y i +1 ,
tCMF
tCPIC
Conventional multiuser detection
Digit Serial On-line arithmetic
0 < = t s t o p < m * tO L
L ate nc y = tM F + m * S* tO L+ S* tP IC
Thr o ug hput = m * tO L
d i d i +1y i y i +1
d i
d i
d i
d i +1
d i +1
d i +1
M atc he d F i l te rtM F = ( lo g2(N )+ 2 )* tO L + t s t o p
P IC - S tage 1tP IC = ( lo g2(K )+ 3 )* tO L + t s t o p
P IC - S tage 2tP IC t im e
P IC - S tage S = 3tP IC t im e
m*tOL
tMF
tPIC
ts top
On-line multiuser detection
Comparisons
N = K =32, d = 8, S = 3, r = 4, tol = 2, tconv = 1, tstop = 2
Outline
• Parallel interference cancellation
• Pipelining
• On-line arithmetic
• Conclusions
• Current research directions
Conclusions
• Techniques such as pipelining and on-line arithmetic can be used to implement multi-user detection for W-CDMA.
• Lower latency• Higher throughput• Smaller area• Simple hardware - adders and multipliers
Current research directions
• Reconfigurable computing -RENE
• Chameleon - hardware
• mNIC card