17
Pipelined Processor II (cont’d) CPSC 321 Andreas Klappenecker

Pipelined Processor II (cont’d) CPSC 321 Andreas Klappenecker

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

Pipelined Processor II (cont’d)CPSC 321

Andreas Klappenecker

Pipelined Datapath

Pipeline separation registers, width varies

Control Lines

• Instruction fetch: • control signal to read instruction memory and to write

PC are always asserted - nothing special here

• Instruction decode/register file read:• same thing happens every clock cycle, so no optional

control lines to set

• Execution/address calculation• RegDst selects the result register, • ALUOp selects the ALU operation • ALUSrc selects Read data 2 or sign-extd. immediate

Pipelined Datapath with Control Signals

Control Lines

• Memory access• Branch set by branch equal• MemRead set by load instructions• MemWrite set by store instructions

• Write back• MemtoReg send ALU result or memory

value• RegWrite selects register

Pipelined Datapath with Control Signals

• Pass control signals along just like the data

Pipeline Control

Execution/Address Calculation stage control lines

Memory access stage control lines

Write-back stage control

lines

InstructionReg Dst

ALU Op1

ALU Op0

ALU Src Branch

Mem Read

Mem Write

Reg write

Mem to Reg

R-format 1 1 0 0 0 0 0 1 0lw 0 0 0 1 0 1 0 1 1sw X 0 0 1 0 0 1 0 Xbeq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Datapath with Control

PC

Instructionmemory

Inst

ruct

ion

Add

Instruction[20– 16]

Me

mto

Re

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction[15– 0]

0

0

Mux

0

1

Add Addresult

RegistersWriteregister

Writedata

Readdata 1

Readdata 2

Readregister 1

Readregister 2

Signextend

Mux

1

ALUresult

Zero

Writedata

Readdata

Mux

1

ALUcontrol

Shiftleft 2

Re

gWrit

e

MemRead

Control

ALU

Instruction[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

Mux

0

1

Me

mW

rite

AddressData

memory

Address

• Assume that the compiler has to guarantee that no hazards occur

• Where do we insert the “nops” ?

sub $2, $1, $3and $12, $2, $5or $13, $6, $2add $14, $2, $2sw $15, 100($2)

Data Hazards

Data hazard: a dependency that “goes backward in time”

Dependencies

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Programexecutionorder(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2:

DM Reg

Reg

Reg

Reg

DM

Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Programexecution order(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :X X X X – 20 X X X XValue of MEM/WB :

DM

Forwarding

PCInstruction

memory

Registers

Mux

Mux

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Datamemory

Mux

Forwardingunit

IF/ID

Inst

ruct

ion

Mux

RdEX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

• Load word can still cause a hazard: an instruction trying to read a register following a load instruction writing to the same register.

• Need a hazard detection unit to “stall” pipeline

Obstructions to Forwarding

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Programexecutionorder(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward

PCInstruction

memory

Registers

Mux

Mux

Mux

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Datamemory

Mux

Hazarddetection

unit

Forwardingunit

0

Mux

IF/ID

Inst

ruct

ion

ID/EX.MemRead

IF/I

DW

rite

PC

Wri

te

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

RtRs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

• When we decide to branch, other instructions are in

the pipeline!

• We are predicting “branch not taken”• need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Programexecutionorder(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

Flushing Instructions

PCInstruction

memory

4

Registers

Mux

Mux

Mux

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Datamemory

Mux

Hazarddetection

unit

Forwardingunit

IF.Flush

IF/ID

Signextend

Control

Mux

=

Shiftleft 2

Mux

Dynamic Scheduling

• The hardware performs the “scheduling” • hardware tries to find instructions to execute

• out of order execution is possible

• speculative execution and dynamic branch prediction

• All modern processors are very complicated• DEC Alpha 21264: 9 stage pipeline, 6 instruction issue

• PowerPC and Pentium: branch history table

• Compiler technology important

• This class has given you the background you need to learn more - read Chapter 6!

• More material will be posted!