# Outline Moebius Transformations - VISGRAF ... Moebius Transformations for Manipulation and Visualization of Spherical Panoramas • Current Research at VISGRAF Lab! • Collaboration

• View
4

0

Embed Size (px)

### Text of Outline Moebius Transformations - VISGRAF ... Moebius Transformations for Manipulation and...

• Moebius Transformations

and

Omnidirectional Images

Luiz Velho

IMPA

Outline

• Moebius Tranformations

- Mathematical Fundamentals

• Omnidirectional Images

- Basic Concepts

- 360 Panoramas

• Applications

- Wide Field of View

Moebius Transformations

Möbius Transformations • Complex Map

!

!

• Definition:

M : C 7! C

M(z) = az + b

cz + d

with

Anatomy of M • Decomposition into Sequence

translation

inversion

scaling and rotation

translation

m1(z) = z + d c

m2(z) = 1 z

c2 z

m4(z) = z + a c

m4 �m3 �m2 �m1(z)

Fixing the Inversion • Point at Infinity

!

!

!

• Extended Complex Plane

1 1 1 = 0

1 0 = 1

bC = C [ {1}

• Riemann Sphere • Stereographic Projection

N 0

point at infinity

ẑ = (✓,�) 7! z = cot(�/2)ei✓

Complex Projective Space • Isomorphism

!

!

!

!

• Geometry and Algebra

z 7! w = M(z) in Ĉ

ẑ 7! ŵ in ⌃ induces

Riemann

Sphere

Complex  Plane

Properties of M

• Projective Linear Group (Lie Group)

!

• Preservation of:

- Circles (lines to circles)

- Angles (conformal)

- Symmetry (w.r.t. circles)

PGL(2,C)

Defining M • Images of 3 points (e.g)

!

• Ratios and Uniqueness

!

!

• Normalization

(a/b), (b/c), (c/d)

az+b cz+d = M(z) =

kaz+kb kcz+kd

• Ratio of 2 complex numbers

!

!

• Two Cases

Homogeneous Coordinates

z = �1 �2

= [�1, �2] 6= [0, 0]

�2 6= 0

�2 = 0

z = 1

z = �1/�2

Cross Ratio • The unique

sending

!

!

!

• Theorem:  If M maps 4 points  then, the cross-ratio is invariant.

z 7! w = M(z)

q, r, s 7! q̃, r̃, s̃ (w � q̃)(r̃ � s̃) (w � s̃)(r̃ � q̃) = [w, q̃, r̃, s̃] = [z, q, r, s] =

(z � q)(r � s) (z � s)(r � q)

p, q, r, s 7! p̃, q̃, r̃, s̃

• Orientation Properties • Maps Oriented Circles to Oriented Circles

- s.t. Regions are mapped accordingly

Fixed Points • Solution of

!

• M has at most two fixed points

- except for Id.

• For M Normalized

z = M(z)

⇠± = (a�d)±

p (a+d)2�4

2c

M - Classification • Fixed Point at Infinity :

!

!

• Basic Types

- Elliptic

- Hyperbolic

- Parabolic

- Loxodromic

c = 0

M(z) = Az +B • Rotation

!

!

!

!

• two fixed points

Elliptic Transform

z 7! ei↵z

(0,1)

Hyperbolic Transform • Scaling

!

!

!

!

• two fixed points

z 7! ⇢z

(0,1)

• Rotation and Scaling

!

!

!

!

• two fixed points

Loxodromic Transform

z 7! ⇢ei↵z

(combination of elliptic and hyperbolic)

• • Translation

!

!

!

!

• one fixed point at

Parabolic Transform

z 7! z + b

1

Omnidirectional   Images

Basic Concepts

• Plenoptic Function

• Capturing Light Fields

• 360 Panoramas

• Parametrization and Projections •

Plenoptic Function

Complete description of Visual Information in a 3D environment

I� = P (x, y, z, ✓,�, t)

P : R3 ⇥ S2 ⇥ R 7! E

Holographic Image

6D Phase Space x,y,z

t

✓,�

Light Field

• Structured Sampling of P A Slice of the Plenoptic Function

- example: Camera

x,y,z

Ray Space

Image

x,y,z fixed

Omnindirectional Image

• Spherical Light Field = 360 degrees

The Set of All Rays incident at a point (x,y,z)

Representation of Choice

• Capturing Point Light Fields

• Omnidirectional Cameras

- Dioptric

- Multi-Camera

Catadioptric Cameras • Mirror-Based (parabolic or hyperbolic)

camera mirror image

Dioptric Cameras • Fish Eye Lenses

camera lens image

Multi-Camera Systems • Point Grey's Ladybug (6 Perspective Cameras)

Cam 0 Cam 1

Cam 2

Cam 4

Cam 3

Cam 5

Cam 0 Cam 1 Cam 2 Cam 3 Cam 4 Cam 5

Practical Option

Panoramic Surfaces

• Data Representation Generalized Support for Visual Information

- example: Cilindrical Panorama

Parametrizations

• Coordinate Systems

Maps 2D Surface to Planar Domain

- example: Cilindrical Mapping

h7!

• 360˚ Image Formats

!

• Parametrizations of the Sphere

- Lat-Long

- Cube Map

- Azimuthal

- Stereographic (*)

Omnidirectional Panoramas

Equirectangular Projection

• Latitude-Longitude Mapping (e.g., Flickr)

natural coordinate system distortion toward poles

Most Convenient Format

Cube Mapping

• 6 Perspective Projections

suitable for CG rendering

Azimuthal Projection • Hemispherical Mapping

Dome Master standard

Applications

to

360 Cinema

Exhibition • Viewing Scenarios

conventional theater full dome

• Field of View • Reference to Observer

- 30 to 90 degrees

Film Language

• Conventional Cinema

- HD Television

- Theater Panavision

• 360 Degrees Dome

- Omnimax

- Dome Master

Conventional Cinema • Camera Moves

Track Pan / Tilt ZoomTrack Zoom

360 Camera • Camera Moves

Track Pan / Tilt Zoom

?yes maybe

Authoring Issues

• Passive

- Movies

• Interactive

• Immersive

- AR Cinema

Emerging Technologies

OBS: Post-Production

Moebius Transformations for Manipulation and Visualization of Spherical Panoramas

• Current Research at VISGRAF Lab

• Collaboration with

- Leonardo Koller Sacht

- Luis Penaranda

360˚ Image Transforms

• Math of Camera Moves • Omnidirectional Images and

Moebius Transformations

- Pan / Tilt ⇔ Elliptic Transform

- Zoom ⇔ Hyperbolic Transform

!

- Perspective ⇔ Parabolic Transform ?

Transformation Pipeline • Möbius Mapping

input

equirectangular

image

complex

plane

representation

scaled

complex

image

final

equirectangular

image

S(i) S�1(i)M

Example • Extreme Zoom

Comparison • Alternative Projections

input panorama

equirectangular

equi-rectangular

projective mercator möbius

Control of

Perspective

Current Work

• Preserving Lines

!

• Perspective Control

• Questions?

Documents
Documents
Education
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Education
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Art & Photos
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents