Mathcad - Foster 24-Hour Hyetog

Embed Size (px)

Citation preview

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    1/12

    Weber Road Job No. 18739

     

    Figure 1

    Figure 1 shows the site plan of the proposes construction. The sub-station will be completely enclosed with a berm, for

    both landscaping reasons and to prevent the inflow of outside rainfall. The site will maintain a 1% slope for all drainage.

    The southwest corner will be used as a detention basin. There will be a 12" pipe leaving to enter an existing catchment.

    Stormwater design will be based on the "Will County Stormwater Management Ordinance" Effective January 01, 2004.

    203.2 Design Methods

    Event hydrograph routing methods or the modified rational mehtod may be used to calculate design runoff

    volumes for site runoff facilities. The Methods must be HEC-1, (SCS methodology), HEC-HMS, TR-20, or

    TR-55 tabular method. Event methods shall incorporate the following assumptions:

    a. Antecedent moisture condition = 2 

    b. Appropriate Huff rainfall distribution

    c. 24-hour duration storm with a 1% probability (100-year frequency) of occurence in any one year as

    specified by Illinois State Water Survey Bulletin 70 Northeast Sectional rainfall statistics.

    SCS methodology will be used for this design

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    2/12

    Develop SCS Dimensionless Unit Hydrograph

    The unit hydrograph is based on the following graph (Figure 2).

    1 2 3 4 5 60

    .1

    .2

    .3

    .4

    .5

    .6

    .7

    .8

    .9

    1.0

    SCS Dimensionless Unit Hydrograph

    t/tp

    q/qp

    Mass Curve

    dimensionless unit

    hydrograph

    Figure 2 

    From the graph the following time and flow ratios are given

    Dimensionless SCS hydrograph values obtained from

    Table 9-17 McCuenDATA

    0

    .4

    .7

    1

    1.5

    2

    3

    4

    5

    0

    .310

    .820

    1

    .680

    .28

    .055

    .011

    0

      

               

    :=

    l 0 8..:=

    Time_Ratiol

      DATAl 0,:=   Dimensionless time from SCS dimensionless UH 

    Flow_Ratiol

      DATAl 1,:=   Dimensionless flow from SCS dimensionless UH 

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    3/12

    t p   0.2hr =t p2

    3tc⋅:=

    q p   12.4 ft

    3

    sec=q p

    726  A

    mi2

    ⋅  Vol

    in⋅

    tc

    hr 

    ft3

    sec⋅:=

    Vol 1in:=

    The SCS dimensionless hydrograph depends on the the time to peak (t  p ) and the flow at the peak (q p ). These values are

    obtained from the triangular unit hydrograph. A depth of runoff of 1inch is used.

    D 2.39min=D .133 tc⋅:=

    Time Interval For Convolution

    This equation is intended for use on watersheds where overland flow predominates and was developed for nonurban

    watersheds. This equation was shown by McCuen to provide accurate estimates of t c  for catchments up to 4000 acres.

    tc   17.95min=Eqn. 3-56 McCuentc   .00526  L

    ft

      

      

    0.8

    ⋅  1000

    CN9− 

       

    0.7

    ⋅   S   .5−⋅   min⋅:=

     

    Time of Concentration

    Curve Number, Based on Table 3-18 McCuenCN 86:=

     Average watershed slope in ft/ft S 0.01:=

    Length of the watershed in feet L 630ft:=

     Area of catchment in acresA 3.26acre:=

    From soil borings, the soil is found to be in Group B, which is Shallow loess; sandy loam.

    Land Use Description Treatment Hydrologic Condition

    Cultivated agricultural land 

      Fallow Straight row or bare soil Poor  

    Land Characteristics

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    4/12

    The values for the unit hydrograph can now be found by multiplying the time to peak and flow at peak times the time ratios

    and the flow ratios respectively.

    UH_Timel

      Time_Ratiol t p⋅:=

    UH_Flow

    l

      Flow_Ratio

    l

     q p⋅:=

    UH_Flow

    0

    3.831

    10.133

    12.358

    8.403

    3.46

    0.68

    0.136

    0

      

               

    ft3

    sec=   UH_Time

    0

    0.08

    0.14

    0.199

    0.299

    0.399

    0.598

    0.798

    0.997

      

               

    hr =

     A mathcad function "lspline" is used to create a smooth function connecting all the points. This function will be used to

    determine the total flow in later calculations.

    t 0 hr  ⋅   .01 hr ⋅,   1 hr ⋅..:=

    UH t( ) interp lspline UH_Time UH_Flow,( ) UH_Time,   UH_Flow,   t,( ):=

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    5/12

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    1.5

    3

    4.56

    7.5

    9

    10.5

    12

    13.5

    15

    Unit Hydrograph Points

    SCS Unit Hydrograph

    Unit Hydrograph

    Time (hr)

       F   l  o  w

        (  c  u .

       f   t .

       /  s  e  c   )

    U.S. NRCS (SCS) Synthetic Temportal Distribution

    This method develops a synthetic distribution of rainfall to produce a 24-hour synthetic design storm. The

    dimensionless distribution data from the NRCS is given below in Table 1. This data was found in Table 4.4 of

    "Stormwater Conveyance Modeling and Design" By Haestad. The dimensionless distribution data from the NRCS

     provides fractions of the total accumulated rainfall depth over time for storms with 24-hour durations. The storms

    are classified into various types, depending on the geographic region. For Illinois Type II is appropriate.

    The storm specific rain accumulation is found by multiplying the total rainfall for the event times the fractional

    accumulations from the NRCS data. The rainfall for this event was found using "Bulletin 70 - Rainfall Distributions

    and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois - Illinois State Water Survey" By F. A. Huff. The

    100-year, 24-hour storm event in Figure 4.21 yielded a total rainfall of 8 inches for Will County. Table 2 gives the

    rain accumulation and Table 3 gives the incrimental change in depth. The incrimental change is used to develop

    the hyetograph.

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    6/12

    Depth 8in:=

     NRCS

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    0

    0.011

    0.022

    0.035

    0.048

    0.063

    0.080

    0.099

    0.120

    0.147

    0.181

    0.235

    0.663

    0.772

    0.820

    0.854

    0.880

    0.902

    0.921

    0.938

    0.952

    0.965

    0.977

    0.989

    1.000

     

     

            

                 

                

    :=   i 0 24..:=   Timei

      NRCSi 0,   hr ⋅:=   Acci   NRCSi 1,:=

    Eventi

      Acci Depth⋅:=

     j 1 24..:=

    Incrimental_Depth j

      Event j

      Event j 1−−:=

    Table 1

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    7/12

    Eventi

    0

    0.088

    0.176

    0.28

    0.384

    0.504

    0.64

    0.792

    0.96

    1.176

    1.448

    1.88

    5.304

    6.176

    6.56

    6.832

    7.04

    7.216

    7.368

    7.504

    7.616

    7.72

    7.816

    7.912

    8

    in

    =   Incrimental_Depthi

    0

    0.088

    0.088

    0.104

    0.104

    0.12

    0.136

    0.152

    0.168

    0.216

    0.272

    0.432

    3.424

    0.872

    0.384

    0.272

    0.208

    0.176

    0.152

    0.136

    0.112

    0.104

    0.096

    0.096

    0.088

    in

    =

    Table 2 Table 3

    Figure 1 shows the Hyetograph for the storm event. Figure 2 shows accumulation of precipitation during the storm

    event.

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    8/12

    100-Year, 24-Hour Storm Hyetograph

    Will County, Illinois

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

            1 3 5 7 9        1        1

            1        3

            1        5

            1        7

            1        9

            2        1

            2        3

            2        5

    Time (hr)

       I  n   t  e  n  s   i   t  y    (

       i  n   /   h  r   )

    Figure 1

    0 3 6 9 12 15 18 21 240

    1

    2

    3

    4

    5

    6

    7

    8

    Event Rainfall Runoff 

    100-Year, 24-Hour Storm Precipitation

    Time (hr)

       P  r  e  c   i  p   i   t  a   t   i  o  n   (   i  n   )

    Figure 2 

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    9/12

    Convolution Of The Unit Hydrograph And The Hyetograph

    Compute the maximum possible retention "S" in (in.)

    S  1000

    CN10− 

       

    in:= (Haestad, 5.15)   S 1.63in=

    The NRCS (SCS) Curve Number Method calculates runoff based seperating the total depth of rainfall into initial

    abstractions I a, retention, and effective rainfall (runoff) P e.

    Initial abstractions consist of all rainfall losses occurring before the beginning of surface runoff, including

    interception, infiltration, and depresstion storage.

    Retention refers to the continuing rainfall losses following the initiation of surface runoff, which are mainly continual 

    infiltration.

    The following equation assumes the inital abstractions are 20% of the maximum possible retention (S). Therefore if the

    event rainfall is less than 0.2S the runoff will equal zero.

    .2 S⋅   0.326in=

    Pei

    Eventi

      .2 S⋅−( )2

    Eventi

      0.8 S⋅+:=   Pe

    iif Event

    i  .2 S⋅<   0 in⋅,   Pe

    i,( ):=

    Compute the incremental runoff by subtracting sequential values of effective rainfall runoff 

    Qincremental j

    Pe j

    Pe j 1−

    −:=

    Actual_Acc

    0

    24

     j

    Qincremental j∑

    =

    :=   Actual_Acc 6.331 in=

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    10/12

    0 3 6 9 12 15 18 21 240

    1

    2

    3

    4

    5

    6

    7

    8

    Event Rainfall Runoff Effective Rainfall Runoff 

    Incremental Runoff 

    Effective Rainfall Runoff 

    Time (hr)

       R  u  n  o   f   f   (   i  n   )

    Figure 3

     A time interval of 6 minutes will be used for the convolution. Values from the unit hydrograph are taken obtained from the

    spline. The incremental runoff is brought in as a text file because of its large size.

    ∆t 6min:=

    Data

    C...\Foster Incremental excess runoff.txt

    :=

    SCS_UH

    UH 0min( )

    UH 6min( )

    UH 12min( )

    UH 18min( )

    UH 24min( )

    UH 30min( )

    UH 36min( )

    UH 42min( )

    UH 48min( )

    UH 54min( )

    UH 60min( )

     

     

     

      

               

    1

    in⋅:=   SCS_UH

    0

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0

    5.925

    12.356

    8.361

    3.423

    1.199

    0.676

    0.38

    0.132

    0.023

    -2.531·10 -4

    ft3

    s in⋅=

     p 0 249..:=

    Qinc p

    Data p 0,   in⋅:=

    rows SCS_UH( ) 11=   rows Data( ) 250=

    total rows SCS_UH( ) rows Qinc( )+   1−:=

    total 260=

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    11/12

    To multiply these two vectors, both vectors must have the same number of rows. Zeros are added to fill the rows that do not

    have any values.

    total 260=   i 0 total..:=

    SCS_UHi   if i 11<   SCS_UHi,   0  ft

    3

    sec in⋅⋅,

     

     

     

     :=

    Qinci

    if i 250<   Qinci

    ,   0 in⋅,( ):=

    ti

      i ∆t⋅:=   Vector of times to use when plotting splined DRH 

    n 1 total..:=

    DRHn

    0

    n

    i

    Qinci

    SCS_UHn i

    ⋅( )

    ∑=:=

    The direct runoff hydrograph is plotted along with a spline

    DR time( ) interp lspline t DRH,( ) t,   DRH,   time,( ):=

    time 0 hr ⋅   .1 hr ⋅,   26 hr ⋅..:=

    0 2.6 5.2 7.8 10.4 13 15.6 18.2 20.8 23.4 260

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Direct Runoff Splined Direct Runoff 

    Direct Runoff Hydrograph

    Time (hr)

       R  u  n  o   f   f   (  c  u .

       f   t   /  s  e  c   )

  • 8/19/2019 Mathcad - Foster 24-Hour Hyetog

    12/12

    Actual_Acc A⋅   7.492 104×   ft3=

    The area under the spline doesn't match what the volume should be

    0hr 

    26hr 

    timeDR time( )⌠ ⌡

      d 7.402 104×   ft3=

    Actual_Acc A⋅0hr 

    26hr 

    timeDR time( )⌠ ⌡

      d−

    Actual_Acc A⋅  0.012=