75
i LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020 Inovasi Teknologi untuk Mengolah Air Tua (Bittern) menjadi Produk Bahan Kimia Bernilai Tambah dalam Mendukung Konsep Garam Industri Terintegrasi Tim Peneliti : Arseto Yekti Bagastyo, ST., MT., MPhil., PhD (Teknik Lingkungan/FTSPK) Ervin Nurhayati, ST., MT., PhD (Teknik Lingkungan/FTSPK) Diah Susanti, ST., MT., PhD (Teknik Material dan Metalurgi/FTI) IDAA Warmadewanthi, ST., MT., PhD (Teknik Lingkungan/FTSPK) DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 801/PKS/ITS/2020

LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

i

LAPORAN AKHIR

PENELITIAN UNGGULAN DASAR

DANA ITS 2020

Inovasi Teknologi untuk Mengolah Air Tua (Bittern) menjadi

Produk Bahan Kimia Bernilai Tambah dalam Mendukung

Konsep Garam Industri Terintegrasi

Tim Peneliti :

Arseto Yekti Bagastyo, ST., MT., MPhil., PhD (Teknik Lingkungan/FTSPK)

Ervin Nurhayati, ST., MT., PhD (Teknik Lingkungan/FTSPK)

Diah Susanti, ST., MT., PhD (Teknik Material dan Metalurgi/FTI)

IDAA Warmadewanthi, ST., MT., PhD (Teknik Lingkungan/FTSPK)

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 801/PKS/ITS/2020

Page 2: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

LEMBAR PENGESAHAN LAPORAN AKHIR

1. Judul Penelitian : Inovasi Teknologi untuk Mengolah Air Tua (Bittern)

menjadi Produk Bahan Kimia Bernilai Tambah dalam

Mendukung Konsep Garam Industri Terintegrasi

2. Ketua Tim

a. Nama : Arseto Yekti Bagastyo S.T., M.T., M.Phil,

b. Jenis Kelamin : Laki-laki

c. NIP : 198208042005011001

d. Jabatan Fungsional : Lektor

e. Pangkat/Golongan : Penata Muda

f. Fakultas/Jurusan : Fakultas Teknik Sipil, Perencanaan, dan

Kebumian/Departemen Teknik Lingkungan

g. Laboratorium : Pengelolaan Limbah Padat dan Limbah B3

h. Tim :

No Nama Lengkap Peran

Dalam Tim Fakultas/Jurusan/Unit Instansi/Perguruan Tinggi

1

Diah Susanti

ST.,MT.,Ph.D

Anggota

Fakultas Teknologi Industri dan Rekayasa

Sistem/Departemen Teknik Material dan

metalurgi

Institut Teknologi

Sepuluh Nopember

2 Ervin Nurhayati

S.T.,M.T.,Ph.D Anggota

Fakultas Teknik Sipil, Perencanaan, dan

Kebumian/Departemen Teknik Lingkungan

Institut Teknologi

Sepuluh Nopember

3

I D A A

Warmadewanthi ST,

MT, Ph.D

Anggota

Fakultas Teknik Sipil, Perencanaan, dan

Kebumian/Departemen Teknik Lingkungan

Institut Teknologi

Sepuluh Nopember

3. Dana dan Waktu :

a. Jangka waktu program yang diusulkan : 3 tahun

b. Biaya yang diusulkan : Rp 321.780.000,-

c. Biaya yang disetujui tahun 2020 : Rp 100.000.000,-

Mengetahui, Surabaya, 22 November 2020

Kepala Pusat Penelitian

Infrastruktur dan Lingkungan

Berkelanjutan

Ketua tim peneliti

IDAA Warmadewanthi, S.T., M.T., PhD Arseto Y Bagastyo S.T., M.T., M.Phil, PhD

NIP. 197502121999032001 NIP. 198208042005011001

Mengesahkan, Menyetujui,

Kepala LPPM ITS

Agus Muhamad Hatta , ST, MSi,Ph.D

NIP. 197809022003121002 NIP.

Page 3: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

i

Daftar Isi

Daftar Isi ............................................................................................................................................ i

Daftar Tabel ...................................................................................................................................... ii

Daftar Gambar ................................................................................................................................. iii

Daftar Lampiran ............................................................................................................................... iv

BAB I RINGKASAN ....................................................................................................................... 1

BAB II HASIL PENELITIAN.......................................................................................................... 2

2.1. Kajian Literatur .................................................................................................................. 2

2.1.1. Karakteristik Limbah Bittern ...................................................................................... 2

2.1.2. Contoh Pemanfaatan Bittern ....................................................................................... 3

2.1.3. Elektrodialisis dan Aplikasinya .................................................................................. 3

2.1.4. Penelitian Terdahulu ................................................................................................... 6

2.2. Hasil Penelitian Awal (Uji Pendahuluan) .......................................................................... 7

2.2.1. Karakteristik Limbah Bittern ...................................................................................... 7

2.2.2. Perubahan Parameter Uji Limbah Cair Bittern ........................................................... 9

2.2.3. Pembentukan Presipitat ............................................................................................. 13

2.3. Hasil Kajian Pustaka (Literature Review) ........................................................................ 16

BAB III STATUS LUARAN.......................................................................................................... 20

BAB IV PERAN MITRA ............................................................................................................... 21

BAB V KENDALA PELAKSANAAN PENELITIAN ................................................................. 22

BAB VI RENCANA TAHAPAN SELANJUTNYA ..................................................................... 24

BAB VII DAFTAR PUSTAKA ..................................................................................................... 26

BAB VIII LAMPIRAN................................................................................................................... 27

LAMPIRAN 1 Tabel Daftar Luaran ............................................................................................... 28

Page 4: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

ii

Daftar Tabel

Tabel 2.1. Karakteristik Limbah Bittern .......................................................................................... 2

Tabel 2.2. Aplikasi Industri dengan Teknologi Elektrodialisis ........................................................ 6

Tabel 2.3. Penelitian Terdahulu ........................................................................................................ 6

Tabel 2.4. Karakteristik Limbah Bittern Industri Permunian Garam ............................................... 8

Tabel 2.5. Kandungan Ion pada Limbah Bittern Industri Permunian Garam ................................... 9

Tabel 2.6. Prediksi Senyawa Presipitat pada Anoda ....................................................................... 16

Tabel 2.7. Prediksi Senyawa Presipitat pada Katoda ...................................................................... 16

Tabel 6.1. Jadwal Penyelesaian Tahapan Penelitian Tahap I dan Persiapan Tahap II.................... 24

Page 5: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

iii

Daftar Gambar

Gambar 2.1. Skema Proses Elektrodialisis ....................................................................................... 4

Gambar 2.2. Susunan Reaktor Elektrodialisis .................................................................................. 5

Gambar 2.3. Skema Mode Operasi Elektrodialisis ........................................................................... 5

Gambar 2.4. Perubahan DHL Air Limbah dan Produk Selama Proses Electrodialysis .................. 10

Gambar 2.5. Perubahan TDS dalam Air Limbah dan Produk Selama Proses Electrodialysis ....... 10

Gambar 2.6. Perubahan Konsentrasi Klorida (Cl) dalam Air Limbah dan Produk Selama Proses

Electrodialysis ................................................................................................................................. 11

Gambar 2.7. Perubahan Konsentrasi Kalsium (Ca) dalam Air Limbah Selama Proses

Electrodialysis ................................................................................................................................. 12

Gambar 2.8. Perubahan Konsentrasi Magnesium (Mg) dan Sulfat (SO4) dalam Air Limbah Selama

Proses Electrodialysis ..................................................................................................................... 12

Gambar 2.9. Perubahan COD Air Limbah Selama Proses Electrodialysis ..................................... 13

Gambar 2.10. SEM Presipitat dalam Kompartemen Anoda dengan Pembesaran .......................... 14

Gambar 2.11. SEM Presipitat dalam Kompartemen Katoda dengan Pembesaran ......................... 14

Gambar 2.12. Hasil Uji EDX Presipitat dalam Kompartemen Anoda ............................................ 15

Gambar 2.13. Hasil Uji EDX Presipitat dalam Kompartemen Katoda ........................................... 15

Gambar 2.14. Hasil Uji XRD Presipitat dalam Kompartemen Anoda ........................................... 15

Gambar 2.15. Hasil Uji XRD Presipitat dalam Kompartemen Katoda .......................................... 16

Gambar 2.16. Roadmap Hasil Penelusuran Perkembangan Penelitian dalam Penerapan Teknologi

Recovery dan Pemanfaatan Limbah Air Tua (Bittern) ................................................................... 17

Gambar 2.17. Metode Penelusuran Pencarian Artikel dan Proses Kajian Literatur Topik

Pemanfaatan dan Recovery Limbah Air Tua (Bittern) ................................................................... 18

Page 6: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

iv

Daftar Lampiran

Lampiran 1 Tabel Daftar Luaran……………………………………………………………….25

Page 7: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

1

BAB I RINGKASAN

Tingginya konsumsi garam di Indonesia khususnya untuk sektor industri masih belum sejalan

dengan tingkat kemampuan produksi garam yang memadahi baik dari sisi kualitas maupun

kuantitas. Masih dominannya pemakaian teknologi konvensional dalam produksi garam

menjadikan garam nasional sebagian besar berkualitas rendah dan laju produksi tidak bisa

memenuhi kebutuhan pasar. Pemerintah menggulirkan program Garam Industri Terintegrasi yang

diklaim mampu meningkatkan kualitas produk garam lokal dari NaCl 88 persen menjadi garam

industri. Di sisi lain, program tersebut harus juga mampu meminimalisir buangan sebagai

konsekuensi proses produksi tersebut. Limbah air tua yang merupakan air buangan sisa produksi

garam mengandung bahan-bahan yang bisa menjadi polutan jika dibuang langsung ke laut.

Walaupun sebenarnya kandungan dalam air tua (bittern) masih bisa bernilai guna dan mempunyai

ekonomi tinggi bila bisa direcovery. Oleh karena itu, penelitian ini bertujuan untk mengembangkan

inovasi teknologi untuk mengolah/merecovery limbah air tua yang berpotensi menjadi produk

bernilai tambah dalam mendukung program pemerintah tersebut.

Penelitian ini dilakukan dalam 3 tahapan penelitian, yaitu Tahap I (tahun 1- 2020) difokuskan pada

karakterisasi awal limbah bittern yang dihasilkan dari beberapa sumber maupun proses produksi

garam dan potensi valuable products hasil recovery berdasarkan karakteristik limbah tersebut dan

teknologi yang tersedia, salah satunya yang akan dikaji adalah elektrodialisis. Kemudian pada

Tahap II (tahun 2 – 2021), penelitian akan difokuskan pada inovasi teknologi/metode untuk

meningkatkan efisiensi proses recovery limbah bittern sehingga didapatkan tingkat kemurnian

tinggi produk yang bernilai tambah hasil recovery serta efluen limbah bittern yang memenuhi

persyaratan baku mutu. Pada akhirnya di Tahap III (tahun terakhir – 2022), penelitian difokuskan

pada pemantapan/pembuktian konsep (proof-of-concept) pengolahan dan recovery limbah bittern

secara terintegrasi sehingga memiliki kelayakan teknis untuk dapat diterapkan serta dikaji lebih

lanjut terkait kesiapan teknologi termasuk kajian pengelolaan residunya. Luaran yang ditargetkan

adalah publikasi 1 (satu) makalah/paper pada jurnal internasional terindeks Scopus berkategori Q2.

Kata kunci: Bittern, Elektrodialisis, Garam Industri Terintegrasi, Limbah Air Tua, Recovery

Materi

Page 8: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

2

BAB II HASIL PENELITIAN

Pada Tahap I (2020), penelitian lebih menitik beratkan pada proses karakterisasi awal dan

memetakan kandungan limbah bittern yang berpotensi untuk dilakukan proses recovery. Selain itu,

dilakukan kajian terhadap beberapa opsi teknologi/metode yang dapat diterapkan dalam proses

recovery limbah bittern. Oleh karena itu, dalam mendukung pelaksanaan tahap 1, maka kajian

literatur dan beberapa skema kerja analisis dasar penelitian dilakukan di tahun pertama (2020).

Berikut ini kemajuan dari pelaksanaan kajian literatur dan hasil penelitian awal.

2.1. Kajian Literatur

Kajian literatur mengacu pada referensi pada jurnal nasional dan jurnal internasional diutamakan

dalam kurun waktu 10 tahun terakhir. Namun tidak menutup kemungkinan untuk membahas

referensi yang terpublikasi > 10 tahun pada topik tertentu yang sangat terbatas akses perolehannya.

Berikut ini adalah ringkasan hasil kajian literatur yang telah dilakukan, meliputi karakteristik

limbah bittern, contoh pemanfaatan linbah bittern, teknologi elektrodialisis dan beberapa penelitian

terdahulu.

2.1.1. Karakteristik Limbah Bittern

Bittern adalah sisa kristalisasi pada proses industri garam yang berbentuk larutan berwarna kuning

agak kecoklatan dengan kepekatan >30 ˚Be. Bittern memiliki berbagai kandungan mineral (seperti

magnesium, natrium, kalium, kalsium, klorida, sulfur dan mineral mikro lainnya), yang tidak dapat

mengkristal saat proses pembuatan garam. Pada umumnya, bittern akan dibuang atau diresirkulasi

kembali ke area penguapan untuk mendapatkan kristal garam dengan kandungan NaCl lebih rendah.

Karakteristik bittern berbeda-beda tergantung dari komposisi yang terkandung di dalamnya, seperti

terlihat pada Tabel 2.1.

Tabel 2.1. Karakteristik Limbah Bittern

Parameter Satuan Air bittern PT Garam

Sumenep (Madura)

Air bittern perusahaan

garam rakyat (NTB)

pH - 7,08 8,69

Magnesium (Mg) mg/L 51,54 30,54

Natrium (Na) mg/L 46,17 69,53

Kalium (K) mg/L 14,49 7,78

Kalsium (Ca) mg/L 103,15 180,01

Khlor (Cl) mg/L 69,40 70,01

Sulfat (SO4) mg/L < 0,59 < 0,59

Posfat (PO4) mg/L 0,04 0,04

Besi (Fe) mg/L < 0,027 < 0,027

Mangan (Mn) mg/L 0,29 0,47

Tembaga (Cu) mg/L 0,063 0,012

Page 9: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

3

Parameter Satuan Air bittern PT Garam

Sumenep (Madura)

Air bittern perusahaan

garam rakyat (NTB)

Boron (B) mg/L 87,28 51,50

Kobalt (Co) mg/L 0,008 0,008

Krom (Cr) mg/L 0.018 0,026

Nikel (Ni) mg/L 0,006 0,007

Kadmium (Cd) mg/L 0,083 0,002

Timah (Sn) mg/L < 0,0003 0,007

Timbal (Pb) mg/L 0,297 0,022

Air raksa (Hg) mg/L < 0,0004 < 0,0004

Arsen (As) mg/L 0,014 0,017

(Sudibyo dan Irma, 2011)

2.1.2. Contoh Pemanfaatan Bittern

Kandungan mineral yang cukup banyak dalam bittern menjadikannya layak untuk direcovery.

Penelitian terdahulu menunjukkan bahwa dengan penambahan NaAlO2 500 mg/L Al3+ dalam pH

13 dan waktu reaksi selama 3 jam, sebesar 96,88% kandungan lithium dalam bittern dapat

direcovery dalam bentuk senyawa LiH(AlO2)2.5H2O (Manao et al., 2012). Selain itu, beberapa

mineral lain yang dapat direcovery dari bittern antara lain boron, magnesium, natrium dengan

menggunakan beberapa proses fisik-kimia seperti koagulasi-flokulasi, elektrokimia, evaporasi, dan

kristalisasi fraksional.

Bittern dapat dimanfaatkan sebagai supplemen mineral ionik pada air minum, elektrolit alternatif

untuk sel aki bekas, serta koagulan pada industri kertas ataupun pengolahan limbah tepung ikan.

Dengan penambahan bittern sebanyak 40-50 ml dan pengadukan selama 50 detik, nilai TSS yang

dapat diturunkan berkisar antara 72,09 – 72,38% (Nugraha et al., 2018).

2.1.3. Elektrodialisis dan Aplikasinya

Elektrodialisis adalah proses penyisihan yang digerakkan dengan listrik menggunakan membran

penukar ion selektif untuk menyisihkan ion dalam larutan air (Gurreri et al., 2020). Pada prinsipnya,

elektroda dan membran penukar ion (anion exchange membran dan cation exchange membrane)

disusun secara bergantian, dengan elektroda diletakkan paling ujung. Elektroda ini berfungsi

sebagai konduktor untuk mengalirkan arus listrik. Skema proses dan susunan reaktor elektrodialisis

dapat dilihat pada Gambar 2.1 dan Error! Reference source not found..

Page 10: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

4

Gambar 2.1. Skema Proses Elektrodialisis

(Gurreri et al., 2020)

Sistem operasi dalam proses elektrodialisis dapat digunakan dengan mode batch, feed and bleed,

serta kontinyu (Wenten et al., 2014). Mode batch umumnya digunakan untuk proses elektrodialisis

dengan kapasitas kecil. Pada mode ini, proses demineralisasi cukup tinggi dan tidak bergantung

pada fluktuasi komposisi umpan. Mode feed and bleed umumnya digunakan untuk kapasitas

menengah sampai besar. Sistem feed and bleed ini mudah beradaptasi dengan fluktuasi laju alir dan

komposisi umpan dan demineralisasi yang tinggi. Namun kelemahannya, konsumsi energinya

menjadi lebih tinggi, demikian pula dengan laju resirkulasinya, akibat sistem perpipaan yang lebih

kompleks. Mode kontinyu dapat digunakan untuk proses elektrodialisis dengan kapasitas besar.

Dalam mode ini, konsumsi energi menjadi lebih murah. Selain itu, biaya perpipaan, tangki

penyimpanan, serta kontrol juga dapat ditekan menjadi lebih murah. Akan tetapi, efektifitas proses

menjadi lebih rentan, akibat adanya keterkaitan sistem antara konsentrasi umpan, laju

demineralisasi, serta fluktuasi pada laju aliran. Skema mode operasi elektrodialisis dapat dilihat

pada Gambar 2.3. .

Page 11: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

5

Gambar 2.2. Susunan Reaktor Elektrodialisis

(Gurreri et al., 2020)

Gambar 2.3. Skema Mode Operasi Elektrodialisis

(Wenten et al, 2014)

Page 12: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

6

Menurut Huang (2007), terdapat 4 (empat) elemen yang berpengaruh dalam proses elektrodialisis,

yaitu: DC Supply, jenis elektroda, membran penukar ion, serta pelarut dan elektrolit. Kelebihan

proses elektrodialisis antara lain recovery pengolahannya tinggi, masa pakai membran yang

digunakan lebih lama, serta operasional prosesnya dapat dilakukan hingga suhu 50 ˚C. Sedangkan

kekurangannya antara lain tidak dapat menyisihkan bakteri atau virus, serta sangat sensitif terhadap

membrane fouling.

Aplikasi industri dengan teknologi elektrodialisis dapat dilihat pada

Tabel 2.2.

Tabel 2.2. Aplikasi Industri dengan Teknologi Elektrodialisis

Aplikasi Industri Desain Stack dan

Proses

Status

Aplikasi

Hambatan Permasalahan

Desalinasi air payau Sheet dan tortuous,

reverse polarity

Komersial Biaya proses Biaya

Air umpan boiler

dan air umpan

proses

Sheet dan tortuous,

reverse polarity

Komersial Kualitas

produk dan

biaya

Biaya

Pengolahan limbah Sheet dan tortuous,

reverse polarity

Komersial Karakteristik

membran

Fouling

Demineraalisasi

produk makanan

Sheet dan tortuous,

reverse polarity

Komersial

pilot plant

Selektivitas

membran

Fouling

Produksi gram meja Sheet dan tortuous,

reverse polarity

Komersial Biaya proses Fouling

(Strathmann, 2010)

2.1.4. Penelitian Terdahulu

Sebagai referensi dalam pelaksanaan penelitian, beberapa penelitian terdahulu dirangkum dalam

Tabel 2.3.

Tabel 2.3. Penelitian Terdahulu

Penulis Hasil

Hapsari, 2008 Penelitian dilakukan untuk memisahkan ion Natrium (Na) dan

ion Magnesium (Mg), menggunakan variasi operasi waktu

operasi. Waktu operasi yang dilakukan adalah 30, 60, 90, 120

dan 150 menit. Hasil diperoleh untuk ion Na rejeksi 78,43%

dengan waktu 30 menit dan untuk ion Mg rejeksi sebesar

97,02% selama waktu 150 menit.

Page 13: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

7

Penulis Hasil

Astuti, 2014 Variasi tegangan yang digunakan dalam penelitian ini adalah 6

V, 9 V dan 12 V. Hasil dari penelitian yang paling efektif adalah

debit 0,13 L/jam (waktu detensi 38 jam) pada tegangan 6V dan

lama pemaparan ozon selama 5 menit. Removal TDS sebesar

35,68%, salinitas 36,65% dan klorida 34,75%.

Elazhar et al, 2014 Penelitian dilakukan secara batch. Hasil penelitian ini

digunakan untuk menyisihkan garam dalam air payau.

Yusuf, 2015 Penelitian dilakukan dengan 3 dan 5 kompartemen. Hasil

recovery garam pada parameter salinitas terbesar adalah pada

rapat arus 2,5 mA/cm2 dengan 5 kompartemen yaitu 29,28%

dan total chlorine sebesar 50,83 mg/L.

Hassan et al, 2019 Penelitian ini menggunakan sistem kontinyu dengan reaktor

biohidrogen. Hasil penelitian untuk memisahkan VFA dengan

elektrodialisis meningkatkan hasil hidrogen dengan faktor 3,5

dan produksi VFA meningkat dari 1894 mg/L menjadi 4678

mg/L. Selama fase fermentasi removal COD sebesar 49,07%

dan VS sebesar 60,52%.

Scarazzato et al, 2015 penelitian menggunakan limbah elektroplating yang

mengandung 1-hydroxyethane-1,1-diplhosphonic aacid

(HEDP), proses elektrodialisis (ED) yang digunakan untuk

menentukan batas arus listrik. Sistem menggunakan 5

kompartemen, menggunakan kationik (HDX 100, warna pink)

dan membran anion (HDX 200, warna hijau).Kurva tegangan

arus digunakan untuk menentukan arus menghasilkan nilai

antara 29,4 mA dan 33,6 mA (1,8 mA/cm2 dan 2,1 mA/cm2).

Guo et al, 2018 Recovery Lithium klorida menggunakan air laut dengan

menggunakan variasi tegangan 3 V-9 V. Hasil dalam penlitian

ini pada 7 V merupakan tegangan yang optimum 62,70%.

2.2. Hasil Penelitian Awal (Uji Pendahuluan)

2.2.1. Karakteristik Limbah Bittern

Sampel limbah bittern didapatkan dari salah satu perusahaan industri pemurnian garam yang

berlokasi di Surabaya. Pada Tabel 2.4 berikut ini dilaporkan data sekunder karakteristik limbah

bittern hasil analisis bulan Januari-Mei 2020.

Page 14: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

8

Tabel 2.4. Karakteristik Limbah Bittern Industri Permunian Garam

No Test Description Unit Hasil Analisis

Baku

Mutu

Jan Feb Maret April Mei

Physical Properties

1 Temperature ˚ C 25.3 24.8 26.2 25.9 27.9 40

2 Total dissolved Solid, TDS mg/L 14700 36150 30800 6280 23300 4000

3 Total Suspended Solid, TSS mg/L > 7.5 109 190 48 37 400

Chemical Properties

1 pH pH

units 7.54 7.75 8.13 7.05 7.68 6 – 9

2 Dissolved Iron, Fe mg/L < 0.02 0.21 0.1 0.04 0.03 10

3 Dissolved Manganese, Mn mg/L 0.08 0.43 0.12 0.22 0.2 5

4 Barrium, Ba mg/L 0.25 2.31 2.09 1.43 1.32 3

5 Cupper, Cu mg/L 0.03 0.08 0.07 0.008 0.006 3

6 Zinc, Zn mg/L 0.14 < 0.04 0.12 0.04 0.03 10

7 Haxavalent Chromium, Cr6+ mg/L < 0.005 < 0.005 0.007 < 0.005 < 0.005 0.5

8 Total Chromium, Cr mg/L < 0.108 < 0.108 < 0.108 < 0.108 < 0.108 1

9 Cadmium, Cd mg/L 0.009 0.005 < 0.003 0.006 0.005 0.1

10 Mercury, Hg mg/L < 0.00007 < 0.00007 0.00007 0.00012 0.00022 0.005

11 Lead, Pb mg/L < 0.006 < 0.006 0.046 0.071 0.056 1

12 Stanum, Sn mg/L < 0.00008 < 0.00008 < 0.00008 0.04 0.007 3

13 Arsenic, As mg/L < 0.00004 0.25 0.002 0.11 0.003 0.5

14 Selenium, Se mg/L < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 0.5

15 Nickel, Ni mg/L 0.093 0.45 < 0.08 < 0.08 < 0.08 0.5

16 Cobalt, Co mg/L < 0.13 0.34 < 0.13 < 0.13 < 0.13 0.6

17 Cyanide, CN mg/L 0.01 < 0.005 < 0.005 0.006 0.005 0.5

18 Sulfide, H2S mg/L < 0.015 < 0.015 < 0.015 0.017 0.012 0.1

19 Flouride, F mg/L 1.02 0.9 0.74 0.4 0.32 3

20 Free Chlorine, Cl2 mg/L < 0.04 0.15 0.05 0.04 0.04 2

21 Free Ammonia, NH3-N mg/L 0.014 0.063 0.067 < 0.01 < 0.01 5

22 Nitrate, NO3-N mg/L 1.19 2.22 2.19 0.86 0.73 30

23 Nitrite, NO2-N mg/L 0.008 0.017 0.013 0.05 0.04 3

24

Biochemical Oxygen Demand, BOD5 mg/L 105 566 86 39 17 150

25 Chemical Oxygen Demand, COD mg/L 316 1160 276 151 42 300

26 Surfactants, MBAS mg/L 0.29 0.8 0.033 0.17 0.15 10

27 Phenol mg/L < 0.005 < 0.005 0.01 < 0.005 < 0.005 1

28 Oil and Grease mg/L < 2.4 2.9 < 2.4 3.9 3.4 -

29 Vegetable Oil mg/L < 2.4 < 2.4 < 2.4 2.5 < 2.4 10

Page 15: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

9

No Test Description Unit Hasil Analisis

Baku

Mutu

Jan Feb Maret April Mei

30 Mineral Oil mg/L < 2.4 < 2.4 < 2.4 < 2.4 < 2.4 50

Parameter-parameter yang diuji pada Tabel 2.4 didasarkan pada Peraturan Gubernur Jawa Timur

Nomor 72 Tahun 2013 tentang Baku Mutu Air Limbah bagi Industri dan/atau kegiatan Usaha

Lainnya untuk kategori Baku Mutu bagi Kegiatan Industri Lain. Selain parameter-parameter

tersebut, kandungan-kadungan ion penting dan/atau dominan dalam bittern ditampilkan pada Tabel

2.5. Dapat dilihat bahwa kandungan TDS yang tinggi (Tabel 2.4), sebagian besar disebabkan karena

kandungan ion-ion khususnya Na dan Cl (Tabel 2.5). Kandungan TDS yang tinggi inilah yang

selama ini menjadi tantangan bagi industri garam dalam mengolah air limbahnya (bittern) sehingga

memenuhi baku mutu aman dibuang ke badan air.

Tabel 2.5. Kandungan Ion pada Limbah Bittern Industri Permunian Garam

No Parameter Konsentrasi

(mg/L)

Test Method

1 Magnesium (Mg) 2840 APHA 3120 B

2 Natrium (Na) 22825 APHA 3120 B

3 Calcium (Ca) 217 APHA 3120 B

4 Kalium (K) 840 APHA 3120 B

5 Chloride (Cl) 60804 4500-Cl-B

6 Sulfat (SO4) 4518 4500-SO42--E

2.2.2. Perubahan Parameter Uji Limbah Cair Bittern

Selain karakterisasi bittern, pada percobaan pendahuluan dilakukan juga beberapa eksperimen

untuk mendapat gambaran awal fenomena yang terjadi terhadap beberapa parameter uji, seperti

DHL (daya hantar listrik), TDS (total dissolved solid), konsentrasi klorida, calsium, magnesium,

sulfat dan COD (chemical oxygen demand) selama proses elektrodialisis dijalankan.

Page 16: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

10

Gambar 2.4. Perubahan DHL Air Limbah dan Produk Selama Proses Electrodialysis

Gambar 2.5. Perubahan TDS dalam Air Limbah dan Produk Selama Proses Electrodialysis

Page 17: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

11

Gambar 2.6. Perubahan Konsentrasi Klorida (Cl) dalam Air Limbah dan Produk Selama

Proses Electrodialysis

Parameter uji khususnya DHL, TDS dan konsentrasi klorida diukur pada air limbah dan produk

untuk melihat terjadinya perpindahan ion dari kompartemen anoda dan katoda (air limbah) ke dalam

kompartemen produk. Dapat dilihat pada Gambar 2.4 hingga Gambar 2.6, parameter DHL, TDS,

dan konsentrasi klorida dalam kompartemen produk mengalami peningkatan. Hal ini menunjukkan

bahwa transport ion dari kompartemen anoda dan katoda menuju kompartemen produk terjadi

sebagaimana diharapkan. Peningkatan konsentrasi di kompartemen produk ini seharusnya diiringi

dengan menurunnya kandungan yang sama di dalam air limbah. Namun sebagai mana terlihat pada

Gambar 2.5 dan Gambar 2.6, TDS dan konsentrasi klorida dalam air limbah cenderung tidak

terjadi perubahan. Hal ini kemungkinan disebabkan karena TDS dan konsentrasi klorida awal di

dalam air limbah yang sangat tinggi sehingga perubahan yang relatif kecil tidak terdeteksi dengan

metode analisis yang diterapkan dalam percobaan ini. Sementara itu, DHL air limbah terlihat sedikit

meningkat walaupun DHL dalam produk juga meningkat (Gambar 2.4). Hal ini dikarenakan

walaupun terjadi transport ion dari air limbah ke produk, kemungkinan juga terjadi penguraian

polutan (kandungan organik) dalam air limbah yang menghasilkan spesies terlarut yang bisa

meningkatkan DHL air limbah.

Page 18: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

12

Gambar 2.7. Perubahan Konsentrasi Kalsium (Ca) dalam Air Limbah Selama Proses

Electrodialysis

Gambar 2.8. Perubahan Konsentrasi Magnesium (Mg) dan Sulfat (SO4) dalam Air Limbah

Selama Proses Electrodialysis

Page 19: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

13

Kandungan magnesium dan sulfat di dalam air limbah diukur untuk mengetahui potensi removal

magnesium dalam air limbah (selain transport menuju ke kompartemen produk) sebagai presipitat

garam magnesium sulfat. Dalam Gambar 2.8 terlihat bahwa magnesium konsisten mengalami

penurunan selama proses namun kandungan sulfat terlihat fluktuatif. Pada analisis selanjutnya

(Tabel 2.6 dan Tabel 2.7) didapatkan bahwa probabilitas terbentuknya presipitat magnesium lebih

pada pembentukan magnesium hidroksida. Adapun untuk kandungan kalsium dalam air limbah

(Gambar 2.7) terlihat fluktuatif dan tidak menunjukkan trend.

Gambar 2.9. Perubahan COD Air Limbah Selama Proses Electrodialysis

Gambar 2.9 menunjukkan perubahan COD air limbah selama proses percobaan. Terlihat bahwa

kandungan organik terukur fluktuatif selama proses. Hal ini dikarenakan selain proses

electrodialysis terjadi juga proses oxidasi di dalam kompartemen anoda. Proses oksidasi ini dapat

mengkonversi kandungan awal senyawa organik menjadi senyawa organik lain dan/atau mineral.

Tingkat okisidasi senyawa produk antara ini bervariasi sehingga dalam pengukuran COD terbaca

fluktuatif. Selain itu, kandungan ion-ion seperti klorida dan besi juga merupakan penggangu dalam

pengukuran COD. Dalam pelaksanaan analysis COD pada percobaan selanjutnya hal ini perlu

diantisipasi.

2.2.3. Pembentukan Presipitat

Kandungan ion-ion dalam air limbah berpotensi membentuk presipitat. Gambar 2.10 dan Gambar

2.11 menunjukkan SEM image presipitat yang terakumulasi di kompartemen anoda dan katoda.

Dari gambar-gambar tersebut terlihat secara morfologi presipitat dalam kompartemen katoda

berukuran lebih besar dibandingkan presipitat dalam kompartemen katoda. Namun, analisis lebih

lanjut untuk mengetahui penyusun presipitat melalui analisis EDX (Gambar 2.13, Gambar 2.14)

terlihat bahwa kandungan kedua presipitat tersebut hampir sama. Secara umum elemen yang

Page 20: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

14

dominan ada adalah Cl, Mg, Na, K, Ca, O. Perbedaan paling mencolok yang terlihat adalah adanya

elemen Fe dalam kompartemen anoda. Hal ini diperkirakan karena terjadi disolusi ion Fe dari

konektor anoda ke dalam larutan yang kemudian mengalami proses presipitasi (Gambar 2.14).

Hal ini sejalan dengan hasil analisis XRD yang dilakukan (Gambar 2.14, Gambar 2.15; Tabel

2.6, 2.7) bahwa pada presipitat anoda diperkirakan terdapat senyawa FeCl2 yang tidak ditemui

dalam presipitat di kompartemen katoda. Berdasarkan hasil uji XRD tersebut didapatkan bahwa

probabilitas tertinggi presipitat yang terbentuk baik di kompartemen anoda maupun katoda adalah

NaCl, CaCO3, Mg(OH)2 dan HgCl. Sementara untuk presipitat Ca, terjadi perbedaan antara anoda

dan katoda; di mana di anoda terbentuk Ca3(PO4)2 sementara di katoda terbentuk Ca5O13P3. Sebagai

pengganti FeCl2, dikarenakan di katoda tidak terdapat ion Fe, maka terbentuk presipitat HgCl2.

(a) (b) (c) (d)

Gambar 2.10. SEM Presipitat dalam Kompartemen Anoda dengan Pembesaran

(a) 150x; (b) 250x; (c) 500x; (d) 2500x

(a) (b) (c) (d)

Gambar 2.11. SEM Presipitat dalam Kompartemen Katoda dengan Pembesaran

(a) 150x; (b) 250x; (c) 500x; (d) 2500x

Page 21: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

15

Gambar 2.12. Hasil Uji EDX Presipitat dalam Kompartemen Anoda

Gambar 2.13. Hasil Uji EDX Presipitat dalam Kompartemen Katoda

Gambar 2.14. Hasil Uji XRD Presipitat dalam Kompartemen Anoda

Page 22: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

16

Gambar 2.15. Hasil Uji XRD Presipitat dalam Kompartemen Katoda

Tabel 2.6. Prediksi Senyawa Presipitat pada Anoda

No Presipitat Formula Persentase (%)

1 Natrium klorida NaCl 35,3

2 Aragonite CaCO3 30,2

3 Magnesium hydroxide (Brucite) Mg(OH)2 17,2

4 Kalsium fosfat Ca3(PO4)2 10

5 Lawrencite FeCl2 6,1

6 Calomel HgCl 1,1

Tabel 2.7. Prediksi Senyawa Presipitat pada Katoda

No Presipitat Formula Persentase (%)

1 Natrium klorida NaCl 36,5

2 Aragonite CaCO3 27,6

3 Magnesium hydroxide (Brucite) Mg(OH)2 16,1

4 Hydroxylapatite Ca5O13P3 9,2

5 Raksa (II) klorida HgCl2 7,9

6 Sylvite HgCl 2,6

2.3. Hasil Kajian Pustaka (Literature Review)

Kajian pustaka dilakukan untuk mendapatkan informasi dan data-data efektifitas dan efisiensi

beberapa aplikasi teknologi recovery dan pemanfaatan limbah air tua yang didapatkan dari

penelitian-penelitian terdahulu. Penelusuran perkembangan teknologi dilakukan untuk memetakan

Page 23: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

17

“key results” yang sudah dapat dibuktikan secara ilmiah dan mengetahui “research gaps” yang

perlu diteliti lebih lanjut. Selain itu juga, didapatkan potensi penerapan teknologi yang sesuai

dengan karateristik limbah air tua yang dihasilkan dari suatu industry garam maupun dari petani

tambak garam tradisional. Pada Gambar 2.16 berikut ini dapat dilihat bahwa hasil penelitian

mengenai bittern resource recovery pertama kali dipublikasikan pada tahun 1918 melalui penerapan

teknologi evaporasi dan presipitasi. Beberapa produk recovery yang dominan adalah berbasis Mg.

Beberapa dekade setelahnya (diantara 1920-1960) sulit ditemukan artikel yang dipublikasikan,

walaupun kemungkinan penelitian serupa masih terus dilakukan. Pada tahun era 1960, beberapa

penerapan teknologi dan paten proses telah ada untuk recovery limbah air tua (bittern) untuk

mendapatkan garam berbasis K, Mg, dan beberapa produk lain seperti Li dan Br dengan teknologi

evaporasi, presipitasi dan solvent extraction.

Gambar 2.16. Roadmap Hasil Penelusuran Perkembangan Penelitian dalam Penerapan

Teknologi Recovery dan Pemanfaatan Limbah Air Tua (Bittern)

Perkembangan penelitian selanjutnya adalah kombinasi proses evaporasi dengan proses ion

exchange pada tahun 1970-an dan pemanfaatan limbah air tua secara langsung sebagai koagulan

untuk mengolah air limbah lain, misalnya limbah domestik, yang sudah mulai diperkenalkan pada

tahun 1980-an. Seiring berjalannya waktu dan perkembangan teknologi pengolahan air limbah

secara umum, maka aplikasi proses recovery limbah air tua dengan menggunakan teknologi

membrane dan elektrodialisis mulai dikembangkan pada tahun 2000-an sebagai alternatif teknologi

recovery. Di era yang sama, pemanfaatan limbah air tua dengan mengambil produk berbasis Mg

juga dilakukan dimana dikombinasikan dengan proses presipitasi untuk menghasilkan produk

struvite. Pada akhirnya, di dekade terakhir (2010-2020), penelitian serupa banyak dilakukan untuk

mengkaji dan mengoptimalkan proses recovery untuk meningkatkan efisiensi produksi dan

kemurnian produk hasil recovery. Selain itu juga, di era ini, perkembangan penelitian dengan

Page 24: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

18

mengkaji alternative proses lain juga dilakukan, yaitu proses recovery dengan menggunakan proses

elektrokimia dan kalsinasi, maupun pemanfaatan produk hasil recovery bittern sebagai absorben

polutan gas CO.

Gambar 2.17. Metode Penelusuran Pencarian Artikel dan Proses Kajian Literatur Topik

Pemanfaatan dan Recovery Limbah Air Tua (Bittern)

Selanjutnya, artikel-artikel terdahulu yang dipublikasikan di jurnal internasional dikaji berdasarkan

sub topik-sub topik pembahasan yang meliputi: karakteristik bittern, produk hasil recovery dan

kemurniannya, teknologi-teknologi alternatif untuk proses recovery dan perkembangannya

(Gambar 2.17). Pembahasan selanjutnya adalah konsep strategi yang dapat direkomendasikan

untuk potensi penerapan teknologi tersebut di skala petani tambak garam tradisional maupun skala

industri garam.

Kajian yang diawali dengan pembahasan mengenai prospek perkembangan industri garam dan

proyeksi peningkatan produktifitas garam dari tambak garam tradisional maupun industri garam

yang berimplikasi pada potensi peningkatan limbah air tua (bittern). Kajian selanjutnya adalah

mengenai pemetaan karakteristik limbah air tua (bittern), potensi produk yang dominan didapatkan

dari recovery limbah bittern serta distribusi sumber limbah tersebut. Kemudian dilanjutkan dengan

kajian utama mengenai teknologi recovery dan pemanfaatan limbah bittern yang sudah diteliti

hingga saat ini serta perkembangannya. Kajian literature diakhiri dengan analisis mengenai poteni

penerapan teknologi pada skala tambak garam tradisional maupun industry garam serta konsep

strategi penerapannya. Sehingga, secara keseluruahn susunan (outline) dari kajian literatur adalah

sebagai berikut:

1. Introduction

2. Bittern By-products Generated from Salt Production

2.1. Characteristic of Bittern

2.2. Potential Product of Bittern Recovery

2.3. Distribution of Mg-rich Bittern

3. Resource Recovery and Utilization of Bittern Wastewater

3.1. Resource Recovery Process

Page 25: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

19

3.1.1. Membrane Separation

3.1.2. Electrolysis

3.1.3. Electrodialysis

3.1.4. Precipitation and Crystallization

3.1.5. Others

3.1.6. Combined Processes

3.2. Potential Utilization of Bittern for Environmental Processes

3.2.1. Bittern as a Coagulant

3.2.2. Bittern as an absorbent

3.2.3. Bittern as an Mg-source in Struvite Precipitation

4. Conclusions and Future Outlook

4.1. Possible Recovery Technology

4.2. The Concept of Strategy in Technology Implementation

Page 26: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

20

BAB III STATUS LUARAN

Status luaran wajib berupa publikasi artikel dalam jurnal internasional (min Q2) hingga saat ini

adalah finalisasi draft artikel yang telah siap untuk dilakukan submission. Adapun draft artikel yang

disusun adalah literature review, bukan berupa research article. Hal ini dikarenakan pelaksanaan

penelitian sedang berlangsung. Pelaksanaan penelitian di laboratorium mengalami hambatan berupa

keterlambatan dalam pembuatan reaktor uji, sehingga data primer penelitian yang didapatkan

kurang mencukupi untuk dapat dilakukan analisis/pembahasan. Detail status luaran dapat dilihat

pada isian ketercapaian luaran di bagian Lampiran 1.

Page 27: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

21

BAB IV PERAN MITRA

Tidak ada realisasi kerjasama dan realisasi kontribusi mitra, baik in-kind dan in-cash dalam skema

penelitian unggulan dasar multidisiplin ini.

Page 28: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

22

BAB V KENDALA PELAKSANAAN PENELITIAN

Tidak dapat dipungkiri, kondisi pandemi (hingga saat ini) mempengaruhi pelaksanaan penelitian

secara umum. Tahun 2020 adalah tahun pertama penelitian dimana segala sesuatunya termasuk

tahap persiapan mengalami hambatan berupa keterlambatan dalam pelaksanaan yang sesuai dengan

jadwal rencana semula.

Adapun kendala-kendala/tantangan yang dihadapi selama pelaksanaan penelitian pada tahap 1 ini

meliputi tahapan kegiatan:

1. Pengambilan sampel limbah bittern

Salah satu tujuan pelaksanaan penelitian Tahap I adalah karakterisasi limbah bittern. Dalam hal ini

diperlukan sampel limbah bittern. Namun proses pengambilan sampel limbah bittern mengalami

keterlambatan 1-2 bulan dari rencana dikarenakan industri pemurnian garam tidak beroperasi karena

status PSBB Kota Surabaya. Sebagai antisipasi, maka dilakukan pengumpulan data sekunder secara

paralel untuk dapat menganalisis data dan menentukan parameter uji yang menjadi analisis

parameter utama. Saat ini, sampel limbah bittern telah dilakukan.

2. Pengadaan material untuk rancang bangun reaktor skala laboratosium dan reactor uji

skala pilot

Seperti halnya kegiatan pengambilan sampel, kegiatan pengadaan material untuk proses rancang

bangun reaktor uji juga mengalami keterlambatan 1-2 bulan dikarenakan tidak beroperasionalnya

vendor penyedia bahan/material karena status PSBB Kota Surabaya. Selain itu juga, beberapa

material harus dipesan dan didatangkan dari luar kota (Jakarta/Jawa Barat) dan mengalami

penundaan, misalnya akrilik, elektroda dan membran. Saat ini, material telah tersedia sesuai

kebutuhan.

3. Pelaksanaan penelitian di laboratorium dan analisis uji laboratorium untuk parameter

kimia

Pelaksanaan penelitian di laboratorium meliputi penelitian karakterisasi limbah bittern dan uji

pendahuluan dengan menggunakan reaktor uji (bench scale). Dengan adanya keterlambatan

pengambilan sampel limbah bittern dan kendala ketersediaan material untuk reaktor uji di

laboratorium, maka pelaksanaan penelitian untuk mendapatkan data primer baru dapat dilaksanakan

pada awal bulan Juni. Selain itu, adanya kebijakan tidak dioperasikannya laboratorium di

Departemen Teknik Lingkungan sebagai lokasi penelitian menyebabkan tertundanya pelaksanaan

penelitian. Uji pendahuluan hanya dapat dilaksanakan selama 7-10 hari, sebelum akhirnya

diberlakukan kebijakan serupa hingga pertengahan bulan Juli. Saat ini, uji pendahuluan sudah

dimulai kembali dan sedang berlanjut tahap pelaksanaan penelitian (pengoperasian reaktor uji skala

laboratorium). Kebijakan pembatasan waktu operasional kegiatan di laboratorium juga memberikan

dampak pada keterlambatan analisis sampel untuk menguji parameter kimia, misalnya uji SEM-

EDX dan XRD yang dilakukan di laboratorium eksternal. Namun saat ini, walaupun terdapat

keterlambatan, pelaksanaan penelitian sudah dapat menyesuaikan dengan kondisi dan situasi yang

ada.

Page 29: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

23

4. Proses desain dan perakitan reaktor uji skala pilot

Proses desain reaktor uji skala pilot seharusnya dilakukan setelah mendapatkan data karakteristik

awal limbah bittern dan uji pendahuluan dengan proses elektrodialisis skala laboratorium

menggunakan sistem batch (bench scale). Akan tetapi, dikarenakan adanya keterlambatan

pelaksanaan penelitian sebagaimana pada poin 1 hingga poin 3 di atas, maka desain reaktor uji skala

pilot dilakukan terlebih dahulu sebagai antisipasi pergeseran jadwal penelitian. Desain yang

dilakukan adalah berdasarkan data sekunder dan dengan perhitungan dimensi yang disesuaikan

dengan kondisi ketersediaan alat dan bahan. Sehingga nantinya diperlukan validasi perhitungan

efektifitas proses recovery setelah didapatkan data primer yang lengkap dari hasil uji di

laboratorium. Adapun proses perakitan reaktor uji skala pilot saat ini sudah selesai dan siap untuk

dilakukan pengujian di laboratorium untuk Tahap II di Tahun 2021.

5. Penyusunan draft artikel luaran wajib

Dengan adanya kendala di atas, maka penyusunan draft artikel yang direncanakan berupa research

article masih belum dapat dilaksanakan karena sangat terbatasnya data primer hasil penelitian di

laboratorium. Sehingga draft artikel yang dipersiapkan adalah berupa literature review mengenai

topik penelitian. Artikel ini membahas potensi pemanfaatan limbah bittern dan aplikasi teknologi

berdasarkan data sekunder hasil penelurusan studi terdahulu. Saat ini, draft artikel untuk luaran

wajib sudah dalam tahap finalisasi persiapan untuk dapat dilakukan submission.

Page 30: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

24

BAB VI RENCANA TAHAPAN SELANJUTNYA

Dalam mencapai luaran yang dijanjikan, rencana penyelesaian penelitian Tahap I, meliputi:

1. Penyelesaian penelitian di laboratorium dan analisis uji laboratorium untuk parameter

kimia

Saat ini, pelaksanaan penelitian sudah dapat menyesuaikan dengan kondisi dan situasi yang ada.

Dengan sisa waktu yang ada di tahun pertama hingga bulan November 2020, penelitian akan

difokuskan pada karakterisasi limbah bittern dan uji pendahuluan menggunakan reaktor bench scale

untuk mendapatkan data primer mengenai potensi produk yang dapat dihasilkan dari proses

recovery limbah bittern menggunakan teknologi elektrodialisis. Adapun tahapan penelitian

mengenai proses permurnian produk dengan reaktor bench scale akan dilaksanakan pada Tahap II

di tahun 2021. Keterlibatan beberapa asisten peneliti diharapkan mampu untuk mengejar

ketertinggalan mendapatkan data primer uji laboratorium.

2. Penyelesaian rancang bangun prototype reaktor uji sakala pilot laboratorium untuk

pelaksanaan penelitian Tahap II

Proses rancang bangun reaktor uji skala pilot laboratorium dengan kapasitas 10-15 L telah selesai

dipersiapkan. Reaktor ini digunakan pada pelaksanaan penelitian Tahap II. Sehingga, penelitian

berupa recovery limbah bittern dengan menggunakan reaktor uji ini dapat dilaksanakan dengan

kondisi operasional yang telah didaptkan pada eksperimen menggunakan reaktor bench scale.

3. Pengiriman draft artikel luaran wajib

Draft artikel berupa kajian literature (literature review) dengan judul “Resource Recovery and

Utilization of Bittern Wastewater Generated from Salt Production: A Review on Technologies and

Potential Application” sudah dalam tahap finalisasi dan siap dikirim ke jurnal “Sustainable

Environment Research” (Q1). Draft artikel ini memuat pembahasan mengenai teknologi-teknologi

dan research gaps terkait potensi pemanfaatan limbah bittern dan aplikasi teknologi. Kajian yang

dilakukan meliputi, efektifitas dan efisiensi proses recovery, mekanisme recovery, kemurnian

produk hasil recovery, roadmap pengembangan teknologi recovery untuk bittern wastewater serta

strategi dan potensi aplikasinya untuk di salt farm and salt industries. Pada Tabel 6.1. berikut ini

disajikan jadwal penyelesaian Tahapan Penelitian pada Tahap I (Tahun pertama di Tahun 2020).

.

Tabel 6.1. Jadwal Penyelesaian Tahapan Penelitian Tahap I dan Persiapan Tahap II

No Nama Kegiatan

Bulan/Minggu

November Desember

Januari 2021

(Tahap II) dst.

1 2 3 4 1 2 3 4 1 2 3 4

1 Penyelesaian penelitian dengan menggunakan reaktor bench scale. X X X X X X X

2 Finalisasi laporan:

-Log book X X X

-Laporan akhir X X X

-Laporan keuangan/SPJ X X X

Page 31: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

25

No Nama Kegiatan

Bulan/Minggu

November Desember

Januari 2021

(Tahap II) dst.

1 2 3 4 1 2 3 4 1 2 3 4

3 Publikasi Ilmiah: (luaran wajib)

-Penulisan draft artikel (Literatur review) X X X

-Target article submission X X

-Proses review artikel oleh jurnal X X X X X X X X

4 Persiapan penelitian Tahap II X X X

5 Pelaksanaan penelitian Tahap II X X X

Page 32: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

26

BAB VII DAFTAR PUSTAKA

Astuti, U.P., 2014. Pengolahan air payau menggunakan elektrodialisis dan ozon. Tesis. Teknik

Lingkungan. Institut Teknologi Sepuluh Nopember.

Elazhar, F., Elazhar, M., Hafsi, M., Taky, M., El Midaoni, A., 2014. Performances of electrodialysis

process in desalination of brackish waters at various salinities and voltage. International

Journal of Advanced Chemistry 2(2), 49-52.

Guo Z.H., Ji, Z.Y, Chen, Q.B., Liu, J., Zhao, Y.Y., Li, F., Liu, Z.Y., Yuan. J.S., 2018.

Prefractionation of LiCl from concentrated seawater/ salt lake brines by electrodialysis with

monovalent selective ion exchange membranes. Journal of Cleaner Production 193, 338-350.

Gurreri, L., Cipollina, A., Tamburini, A., Micale, G., 2020. Chapter 6- Electrodialysis for

wastewater treatment-Part I: Fundamentals and municipal effluents. Current Trends and

Future Development on (Bio-) Membranes, 141-192.

Hapsari, N., 2008. Proses pemisahan ion Natrium (Na) dan Magnesium (Mg) dalam bittern

(buangan) industri garam dengan membran elektrodialisis. Jurnal Teknik Kimia 3(1), 192-

198.

Hassan, G.K., Nicolau, J.M., Dinsdale, R., Jones, R.J., Abo-Aly, M.M., El-Gohary, F.A., Guwy,

A., 2019. A novel method for increasing biohydrogen production from food waste using

electrodialysis. International Journal of Hydrogen Energy 44(29), 14715-14720.

Manao, R.D., Alfianto, R., Sumarno. 2012. Recovery garam lithium pada air tua (bittern) dengan

metode presipitasi. Jurnal Teknologi Kimia dan Industri 1(1), 292-297.

Nugraha, K.A., Wesen, P., Mirwan, M., 2018. Pemanfaatan bittern sebagai koagulan alternatif

pengolahan limbah tepung ikan. Jurnal Ilmiah Teknik Lingkungan 8(1), 1-9.

Scarazzato, T., Buzzi, D.C., Bernades, A.M., Tenorio, J.A.S., Espinosa, D.C.R., 2015. Current-

voltage curves for treating effluent containing HEDP: determination of the limiting current.

Brazillian Journal of Chemical Engineering 32(4), 831-836.

Strathmann, H., 2010. Electrodialysis, a mature technology with a multitude of new applications.

Desalination 264(3), 268-288.

Sudibyo, A, Susanti, I., 2011. Studi Pemanfaatan Air Bittern Sebagai Suplemen Dan Pengawetan

Produk Pangan. Jurnal Hasil Penelitian Industri 24(2), 67-83.

Wenten, I.G., Hakim, A.N., Khoiruddin., 2014. Elektrodialisis. Diktat. Teknik Kimia, Institut

Teknologi Bandung.

Page 33: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

27

BAB VIII LAMPIRAN

Lampiran berisi table daftar luaran (Format sesuai lampiran 1) dan bukti pendukung luaran wajib

dan luaran tambahan (jika ada) sesuai dengan target capaian yang dijanjikan.

Page 34: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

28

LAMPIRAN 1 Tabel Daftar Luaran

Program : Penelitian Unggulan Dasar Dana Lokal ITS

Nama Ketua Tim : Arseto Yekti Bagastyo, PhD

Judul : Inovasi Teknologi untuk Mengolah Air Tua (Bittern)

menjadi Produk Bahan Kimia Bernilai Tambah dalam

Mendukung Konsep Garam Industri Terintegrasi

1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*)

1 Resource Recovery and Utilization

of Bittern Wastewater Generated

from Salt Production: A Review on

Technologies and Potential

Application

Sustainable Environment

Research

Draft artikel siap

disubmit

*) Status kemajuan: Persiapan, submitted, under review, accepted, published

2. Artikel Konferensi

No Judul Artikel Nama Konferensi (Nama

Penyelenggara, Tempat, Tanggal)

Status Kemajuan*)

N/A

*) Status kemajuan: Persiapan, submitted, under review, accepted, presented

3. Paten

No Judul Usulan Paten Status Kemajuan

N/A

*) Status kemajuan: Persiapan, submitted, under review

4. Buku

No Judul Buku (Rencana) Penerbit Status Kemajuan*)

1 Judul Book Chapter:

Kajian potensi pemanfaatan limbah

air tua menjadi bahan baku kimia

dengan menggunakan teknologi

presipitasi dan elektrodialisis

Persiapan

*) Status kemajuan: Persiapan, under review, published

5. Hasil Lain

No Nama Output Detail Output Status Kemajuan*)

1 Prototipe Reaktor Elektrodialisis

untuk Recovery Limbah Bittern

Rancang Bangun Peralatan

untuk Proses Recovery

Reaktor siap dilakukan

pengujian

*) Status kemajuan: cantumkan status kemajuan sesuai kondisi saat ini

Page 35: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

29

6. Disertasi/Tesis/TugasAkhir/PKM yang dihasilkan

No Nama Mahasiswa NRP Judul Status*)

1 Afrah Zhafirah

Sinatria

03211950010006 Recovery Garam dari Limbah

Bittern Menggunakan Metode

Elektrodialisis

In progress

*) Status kemajuan: cantumkan lulus dan tahun kelulusan atau in progress

Page 36: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Resource Recovery and Utilization of Bittern Wastewater 1

Generated from Salt Production: A Review on Technology and Its 2

Potential Application 3

4

Arseto Yekti Bagastyoab*, Komala Affiyanti Affandia, Sucahyaning Wahyu Trihasti Kartikaa, Syaima 5

Gatneha, Ervin Nurhayatiab 6

7

aDepartment of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut 8

Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia 9

10

bResearch Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh 11

Nopember, Surabaya 60111, Indonesia 12

13

14

*Corresponding author: 15

Arseto Yekti Bagastyo 16

Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut 17

Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia 18

Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh 19

Nopember, Surabaya 60111, Indonesia 20

21

(E-mail: [email protected]) 22

23

24

25

26

Page 37: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Abstract 27

The process of salt production either from traditional salt farm/ industry or desalination plant produces 28

substantial amount of brine and bittern which considered as a waste. Brine and bittern have negative 29

impact to the environment as it contains high salt concentration and other metal pollutants such as 30

calcium, magnesium, potassium, lithium, boron, bromine, etc. Due to increasing research related on 31

resource recovery and potential use of bittern, extracting valuable mineral from bittern becoming an 32

attractive option. This paper provides a comprehensive review related on bittern characteristic, potential 33

recovery product, recovery technology, and direct utilization, in order to understand possible 34

technology applied in the developing countries, and future outlook. Several recovery technology, i.e., 35

membrane separation, electrolysis, electrodialysis, precipitation and crystallization, and combined 36

treatment, were discussed in this paper, includes the potential use of bittern as coagulant, absorbent, 37

and Mg-source for struvite production. 38

39

Keywords: bittern, extraction, resource recovery, salt production, direct utilization. 40

41

42

43

Page 38: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

1. Introduction 44

Annual global salt production have exceeded 290 million tonnes in 2019 (U.S Geological Survey, 45

2020). A 60% of the total salt production is consumed by chemical industry, followed by food-46

processing industry at 30% and other uses,i.e., ice control and road stabilization, water treatment, etc., 47

at 10% (Sedivy, 2009). The common methods used in the global salt production may involve: (i) 48

evaporation system, i.e. artificial (open-pans and vacuum evaporation) or natural (solar evaporation); 49

(ii) brine purification, i.e.,by addinglime, gypsum or other alkaline sources, applying decantation 50

process, mother liquor concentration, or nanofiltration; (iii) solid salt purification, i.e. flotation, 51

electrostatic separation, thermo adhesive process; and (iv) rock salt mining (Spanish Association of Sea 52

Salt Producers (SALIMAR), 2019). 53

Nevertheless, solar evaporation method is widely implemented by most salt producers to date, 54

traditionally in acommunity-based salt farm) or in an industrial scale in arid regions due to its high 55

evaporative rates and where the land is available and affordable (Loganathan et al., 2017). This method 56

is conducted by exposing natural salty water such asseawater, salt lake water, or salt water spring to the 57

open solar light and wind until the crystallized salt is obtained. However, this salt production yields 58

high amounts of concentrated brine wastewater called bittern as by-product. 59

Bittern refers to the concentrated brine which has density between 28-30ºBé, that remaining in the pond 60

as residue after evaporation and crystallization processes of sodium chloride (Nayak, 2018). This stream 61

contains major elements,,i.e. chloride, magnesium, sulphate, sodium, potassium, and calcium ions and 62

other minor elements, such as bromide, boron, cobalt, chromium, ferric, manganese, nickel, and 63

antimon (Davies & Knowles, 2006; Estefan, 1983; Nayak, 2018). Despite some environmental 64

regulations, direct disposal of bittern back into the sea has been recognized as the common management 65

applied worldwide due to the low in capital, operational, and maintenance costs (Ahmad & Baddour, 66

2014; Ariono et al., 2016). However, previous studies reported that the direct disposal of bittern into 67

water body appears to be acutely toxic and potentially lethal to the marine life and ecosystem (i.e., 68

seagrass, mangrove, coral, clam, oyster, fish, green turtle, etc.) particularly in the long term of exposure 69

(Einav et al., 2002; Gacia et al., 2007; Roberts et al., 2010; Tewari et al., 2003; Tovar et al., 2002). 70

Page 39: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Alternative methods of bittern management other than conventional disposal are available, starting 71

small evaporation shed, membrane re-concentration, direct waste utilization and high recovery 72

treatments (i.e., zero liquid discharge or selective salt recovery). These methods aims to reduce the 73

volume of the wastewater so that minimizing the environmental impact. Among these alternative 74

methods, the selective salt recovery has been introduced as the promising sustainable solution for long 75

term application due to the potential added-value products resulted from the residual stream (Mickley, 76

2009). Moreover, the salt recovery approach has potential advantages, i.e., lower disposal cost, provide 77

income from each recovered salt products through one or multiple processing steps, and possible 78

recovery additional water stream. 79

Therefore, this review focuses on discussing applicable technologies for resource recovery of bittern to 80

produce added valuable products. Direct utilization of bittern was also analysed to gen an insight of its 81

beneficial and potential use compared to the processed bittern recovery. Furthermore, the typical 82

characteristics of bittern generated from traditional salt farms and industrial salt production as well as 83

the technology development and challenges of bittern recovery were discussed to point out and 84

formulate the concept of strategies offered for possible technology application. 85

The literature research strategy was to search high quality scientific papers from the science direct, 86

research-gate, and google scholar databases. 87

88

89

Figure 1. Literature search process in this review article 90

Page 40: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

The paper published in 1918 to date (2020) was included and reviewed in this study to track the research 91

roadmap of bittern recovery and utilization. Figure 1 highlights keywords and topics that were discussed 92

in this review article. 93

2. Bittern By-products Generated from Salt Production 94

2.1. Characteristics of Bittern 95

Characteristic of bittern depends on the chemical composition of salinewater sources , e.g., seawater, 96

salt lake and salt water spring, the evaporation and precipitation of salt production methods, climate 97

condition, e.g.,temperature, evaporation rate, seasonal variation, and other local variation such as 98

biological activity that can mobilize trace element or adsorb organic and mineral particle during the 99

evaporation process (Amdouni, 2009; Javor, 2002). Nevertheless, the major elements found in bittern 100

is typically the same, either taken from traditional salt farm or from industrial salt manufacture, in 101

several countries (Table 1). 102

It can be seen from Table 1 that bittern has significant amounts of Cl- ion (> 100 g/L) in almost all 103

reported locations, except in some locations in Indonesia, which has lower than 50 g/L (Albuquerque 104

et al., 2013; Apriani et al., 2018a; Ayoub et al., 2011; Baati et al., 2011; BinAhmed et al., 2015; Kilic 105

& Kilic, 2005; Rafie & Mohamed, 2014). This could be due to the high rate of salt production. 106

Interestingly, bittern generated from the evaporation of Eastern Mediterranean seawater was reported 107

to be rich in calcium, sodium, and magnesium ions, i.e., 53.47 g/L to 58.00 g/L (Ayoub et al., 2000). 108

In addition, the same water source that was processed by Camalty Saltwork industrial in Turkey 109

contained 47.4 g/L Mg2+ and 0.0159 g/L B3+ ions (Gurbuz et al., 1996). In the East Asia, a traditional 110

salt farm in Hongkong produced bittern containing high concentrations of Na+ ion, starting from 62.1 111

g/L to 78.1 g/L (X. Z. Li & Zhao, 2002). Another traditional salt farm in Pamekasan and Sampang, 112

Madura, Indonesia, reported Mg-rich bittern i.e., 53.37 – 56.4 g/L, compared to the large-scale industrial 113

salt production, i.e., 15.79 – 31.50 g/L. Bittern wastewater generated from industrial salt production has 114

lower Mg2+ because of the production of magnesium sulphate salts, whereas Cl- is still quite high in the 115

dissolved rejected bittern (Hapsari, 2008b). Apart from the major elements, trace metals such as boron, 116

lithium, bromine, iodine were also identified in bittern with less than 1 g/L (Ismail et al., 2014; Rafie 117

et al., 2013). 118

Page 41: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Tab

le 1

. B

itte

rn c

hara

cter

isti

cs a

t se

vera

l are

as a

roun

d th

e w

orld

1

19

Sa

mp

lin

g l

oca

tio

n

Bit

tern

Ch

ara

cter

isti

c

Sa

lt F

arm

R

aw

M

ate

ria

l R

efer

ence

s P

hy

sica

l p

ara

met

ers

Ma

jor

Ele

men

t (g

/L)

Co

un

try

C

ity

/Co

mp

an

y

pH

S

ali

nit

y

(g/L

)

Sp

ecif

ic

gra

vit

y

Den

sity

(⁰ ⁰⁰⁰B

é)

TD

S

(g/L

) N

a+

K+

Ca

2+

Mg

2+

Cl-

SO

42-

Bra

zil

Gal

inho

s 7.

37

n/a

1.30

n/

a n/

a n/

a 4.

5 0.

04

13.0

0 23

5.91

n/

a In

dust

rial

S

eaw

ater

(A

lbuq

uerq

ue

et

al.,

2013

)

Leb

anon

B

eiru

t 6.

47

n/a

1.29

n/

a 38

2.00

n/

a n/

a 0.

00

68.7

7 25

8.31

54

.50

n/a

Sea

wat

er

(Bin

Ahm

ed

et

al.,

2015

)

Leb

anon

B

eiru

t n/

a n/

a 1.

29

n/a

311.

30

64.9

0 n/

a 0.

00

58.0

0 38

5.00

35

.66

n/a

Sea

wat

er

(Ayo

ub e

t al

., 20

11)

Tur

key

Ana

toli

a

7.2

n/a

1.24

n/

a n/

a 57

.33

19.6

5 1.

27

54.2

6 20

1.68

9.

34

Tra

diti

onal

S

alt L

ake

(Kil

ic &

Kil

ic, 2

005)

Uga

nda

Rub

iriz

i a

9.94

19

6 1.

29

n/a

n/a

144.

00

34.4

0 0.

00

0.00

14

3.00

58

.10

n/a

Sal

t Lak

e (K

ased

de e

t al.

, 201

4)

Uga

nda

Rub

iriz

i b

10.5

17

4 1.

30

n/a

n/a

152.

00

51.1

0 0.

00

0.01

13

1.00

27

.90

n/a

Sal

t Lak

e (K

ased

de e

t al.

, 201

4)

Tun

isia

S

fax

5.40

38

0 1.

30

n/a

n/a

2.70

1.

60

0.00

96

.70

256.

90

33.6

0 In

dust

rial

S

eaw

ater

(B

aati

et

al.,

2011

)

Egy

pt

Ale

xand

ria

n/a

n/a

n/a

n/a

n/a

21.7

0 9.

80

1.60

73

.80

218.

00

3.20

In

dust

rial

S

eaw

ater

(R

afie

&

M

oham

ed,

2014

)

Egy

pt

Fay

oum

/Em

isal

7.

5 n/

a 1.

24

n/a

340.

00

83.5

0 4.

50

0.15

26

.00

185.

00

31.5

0 In

dust

rial

S

alt L

ake

(Ism

ail

et a

l., 2

014)

Indi

a G

anja

m

6.71

n/

a n/

a 29

n/

a 53

.75

10.8

7 0.

10

49.6

1 19

1.98

64

.70

Tra

diti

onal

S

eaw

ater

(N

ayak

, 201

8)

Indi

a G

hogh

a 6.

95

n/a

1.24

28

.5

n/a

77.8

9 7.

63

0.15

31

.74

191.

16

43.2

3 In

dust

rial

S

eaw

ater

(T

ewar

i et

al.

, 200

3)

Sou

th

Kor

ea

Yeo

nggw

ang-

gun

n/a

n/a

n/a

n/a

n/a

55.8

4 14

.32

0.04

41

.77

125.

69

63.9

7 In

dust

rial

S

eaw

ater

(N

a et

al.

, 201

7)

Chi

na

Wei

fang

/Sha

ndon

g H

aihu

a C

o. L

td

n/a

n/a

n/a

n/a

n/a

48.8

0 8.

93

0.06

51

.62

183.

57

71.1

1 In

dust

rial

S

eaw

ater

(X

iao-

Fu

et a

l., 2

020)

Indo

nesi

a S

umen

ep

6.5

92.6

n/

a 29

n/

a 16

6.06

32

.60

0.00

14

.91

256.

00

46.9

2 T

radi

tion

al

Sea

wat

er

(Apr

iani

et a

l., 2

018a

)

Indo

nesi

a G

resi

k 6.

7 10

0 n/

a 28

.5

n/a

181.

64

23.2

3 0.

00

28.7

1 28

0.00

17

.72

Tra

diti

onal

S

eaw

ater

(A

pria

ni e

t al.

, 201

8a)

Indo

nesi

a M

adur

a/P

T G

aram

c n/

a n/

a n/

a n/

a n/

a n/

a 28

.42

4.93

n/

a n/

a n/

a In

dust

rial

S

eaw

ater

(H

apsa

ri, 2

007)

Indo

nesi

a M

adur

a/P

T G

aram

d n/

a n/

a n/

a n/

a n/

a n/

a 57

.35

10.1

0 n/

a n/

a n/

a In

dust

rial

S

eaw

ater

(H

apsa

ri, 2

007)

Page 42: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Sa

mp

lin

g l

oca

tio

n

Bit

tern

Ch

ara

cter

isti

c

Sa

lt F

arm

R

aw

Ma

teri

al

Ref

eren

ces

Ph

ysi

cal

pa

ram

eter

s M

ajo

r E

lem

ent

(g/L

)

Co

un

try

C

ity

/Co

mp

an

y

pH

S

ali

nit

y

(g/L

)

Sp

ecif

ic

gra

vit

y

Den

sity

( ⁰ ⁰⁰⁰B

é)

TD

S

(g/L

) N

a+

K+

Ca

2+

Mg

2+

Cl-

SO

42-

Indo

nesi

a M

adur

a/P

T G

aram

e n/

a n/

a n/

a n/

a n/

a n/

a 86

.82

15.2

7 n/

a n/

a n/

a In

dust

rial

S

eaw

ater

(H

apsa

ri, 2

007)

Indo

nesi

a M

adur

a/P

T G

aram

f n/

a n/

a n/

a n/

a n/

a 21

.426

28

.42

4.93

15

.79

16.4

9 8.

47

Indu

stri

al

Sea

wat

er

(Hap

sari

, 200

8a)

Indo

nesi

a M

adur

a/P

T G

aram

g n/

a n/

a n/

a n/

a n/

a 43

.355

57

.35

10.1

0 31

.50

31.9

2 17

.91

Indu

stri

al

Sea

wat

er

(Hap

sari

, 200

8a)

Tur

key

Cam

alti

Sal

twor

k n/

a n/

a n/

a n/

a n/

a 56

.00

12.0

0 n/

a 47

.40

183.

20

59.2

0 In

dust

rial

S

eaw

ater

(G

urbu

z et

al.

, 199

6)

Chi

na

Xia

men

/Fuj

ian

Sal

t C

ompa

ny

n/a

n/a

n/a

n/a

n/a

n/a

n/a

0.81

31

.60

n/a

n/a

Indu

stri

al

Sea

wat

er

(Z. L

. Ye

et a

l., 2

011)

Egy

pt

Ale

xand

ria

n/a

n/a

n/a

n/a

0.02

0.

29

0.01

1.

6 0.

07

0.21

0.

003

Indu

stri

al

Sea

wat

er

(Raf

ie e

t al

., 20

13)

Indo

nesi

a P

amek

asan

n/

a n/

a n/

a 30

n/

a 0.

04

0.02

0.

002

0.19

0.

22

0.07

T

radi

tion

al

Sea

wat

er

(Sid

ik, 2

013)

Indo

nesi

a S

urab

aya

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

4.04

0.

002

12.5

0 T

radi

tion

al

Sea

wat

er

(Sut

iyon

o, 2

006)

Indo

nesi

a S

ampa

ng

n/a

n/a

n/a

n/a

n/a

n/a

0.32

n/

a 56

.49

n/a

n/a

Tra

diti

onal

S

eaw

ater

(N

adia

et

al.,

2015

)

Indo

nesi

a P

amek

asan

n/

a n/

a n/

a 32

n/

a 17

.31

57.5

7 30

.15

53.3

7 n/

a n/

a T

radi

tion

al

Sea

wat

er

(Am

rull

oh

et

al.,

2019

)

Leb

anon

B

eiru

t 6.

67

n/a

1.27

n/

a 34

2 n/

a n/

a 0.

00

53.6

0 22

2.50

46

.30

Tra

diti

onal

S

eaw

ater

(A

youb

et

al.,

2011

)

Leb

anon

B

eiru

t n/

a n/

a n/

a n/

a 31

1.30

64

.90

n/a

0.00

58

.00

385.

00

35.6

6 T

radi

tion

al

Sea

wat

er

(Ayo

ub

&

Mer

hebi

, 20

02)

Sou

th

Kor

ea

Chu

ngju

n/

a n/

a n/

a n/

a n/

a n/

a n/

a 8.

00

32.0

0 n/

a n/

a n/

a S

eaw

ater

(L

ee e

t al

., 20

03)

Hon

gkon

g S

eash

ore

Vic

tori

a H

arbo

urh

7.67

n/

a n/

a n/

a 15

2.00

78

.10

2.98

0.

65

9.22

n/

a n/

a T

radi

tion

al

Sea

wat

er

(X.

Z.

Li

&

Zha

o,

2002

)

Hon

gkon

g S

eash

ore

Vic

tori

a H

arbo

ur i

8.19

n/

a n/

a n/

a 20

5.00

62

.10

8.47

0.

01

24.9

0 n/

a n/

a T

radi

tion

al

Sea

wat

er

(X.

Z.

Li

&

Zha

o,

2002

)

Leb

anon

B

eiru

t 6.

78

n/a

n/a

n/a

396.

00

70.8

8 14

.00

0.00

53

.47

297.

91

46.2

7 T

radi

tion

al

Sea

wat

er

(Ayo

ub e

t al

., 20

01)

1

20

Page 43: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Note: a rainy season; b dry season; c bittern 1; d bittern 2; ebittern 3; f bittern 1; g bittern 2; h bittern from 121

evaporated 12% initial volume; i bittern from evaporated 4% initial volume; n/a not applicable. 122

123

2.2. Potential product of bittern recovery 124

Several valuable minerals which can be recovered from bittern is described in Table 2. 125

Table 2. Potential product of bittern recovery 126

Recovered mineral Potential Uses References

Na (NaCl, Na2CO3, Na2SO4) Food, glass, soap, detergent, textiles, pulp and paper industries, road de-icing

(Petersen, 1994)

Mg (Mg, MgCl2, MgSO4, MgCO3)

Al, steel, chemical and construction industries, fertiliser, rubber, textile

(Petersen, 1994; Schwochau, 1984)

Ca (CaCO3, CaSO4) Soil amendment, construction industries, fertiliser, calsium and magnesium removal in water treatment

(Petersen, 1994; Schwochau, 1984)

K (KCl, K2SO4) Fertiliser (Petersen, 1994)

Br Fire retardant, agriculture, well-drilling fluids, petroleum additives

(Petersen, 1994)

B Glass products, soap and detergents, fire retardants, fertiliser

(Petersen, 1994)

Li Batteries, glass manufacturing, lubricants and greases, pharmaceutical products, ceramic, metallurgy, air conditioning

(Petersková et al., 2012)

127

The main content of bittern is magnesium which can be reused into other products based magnesium as 128

the source. The product that can be produced from the bittern recovery process with magnesium ion as 129

the main source is solid magnesium hydroxide (Mg(OH)2. Magnesium hydroxide can be produced 130

either from precipitation or electrochemical processes. magnesium hydroxide which is produced from 131

the precipitation process can be done by adding NaOH as alkaline agent. The formation of magnesium 132

hydroxide from the precipitation process was when the magnesium ion inside the bittern reacts with 133

NaOH to form a magnesium hydroxide precipitate. The drawback of the precipitation method is the 134

large amount of sludge, so another method in the process of recovering magnesium ions in bittern to 135

produce magnesium hydroxide products is the electroysis method (Na et al., 2017). Electrolysis method 136

is another method in the process of forming magnesium hydroxide from magnesium contained in 137

bittern. in the process (Hidayah, 2014). A bittern dilution is needed which functions to increase the 138

purity of the product produced. Dilution of 4 times is the best result in the formation of magnesium 139

Page 44: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

hydroxide through the electrolysis process resulting in a product purity of 63.84% (Amrulloh et al., 140

2019) compared without going through the dilution process, namely 34.77% (Amrulloh et al., 2016). 141

A combined process is needed to produce magnesium oxide and magnesium chloride which is a 142

magnesium recovery product derived from bittern. Magnesium oxide can be obtained from a 143

combination of processes between electrolysis and calcination(Amrulloh et al., 2020), while magnesium 144

chloride can be obtained from a combination of precipitation and calcination processes (Zuchrillah & 145

Julaika, 2017). The resulting magnesium oxide can then be used as an insulator, fertilizer, material for 146

rayon textile processing, water treatment, paper making, alkalis and pharmaceuticals (Marihati, 2007), 147

thus magnesium chloride products can be used in the pharmaceutical industry, raw materials 148

magnesium, erosion and dust control, ice control, storage materials for hydrogen, and the culinary 149

industry. For the pharmaceutical industry, magnesium chloride is used as medicine (Zuchrillah & 150

Julaika, 2017). 151

Another product that is obtained from the recovery process of magnesium contained in bittern is 152

magnesium carbonate. Magnesium carbonate is produced from the bittern precipitation process with 153

the addition of sodium pentaborate (Apriani et al., 2018b).The process of recovery of potassium, 154

magnesium and sulfate together through the precipitation method is carried out to produce potassium 155

magnesium sulfate double salt (PMS) as a product of the bittern recovery process. The addition of 70% 156

methanol at 30° C is the best result of the PMS product which produces 155.65 g / L (Fernández-Lozano, 157

1996).The magnesium ion in bittern can be recovered by electrodialysis method. The magnesium ions 158

generated can be reused as a supplement ion in drinking water (Hapsari, 2007, 2008b). 159

The products MgKPO4 and Mg2(NH4)2(PO4)2 are products produced from the bittern precipitation 160

process with sources containing ammonium and phosphate. Bittern acts as a source of magnesium in 161

the precipitation process (Nadia et al., 2015; Sidik, 2013). Product MgKPO4then used as fertilizer in 162

milkfish cultivation.The results showed that the ponds that were given with fertilizer from recovery 163

bittern have positif result (changes in weight and length of fish) than without applying fertilizer (Nadia 164

et al., 2015). 165

Another fertilizer product that is the result of bittern recovery with ammonium and phosphate-in 166

wastewater is struvite. In the process of forming struvite the molar ratio between Mg: NH4: PO4 and the 167

Page 45: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

pH of the solution must be considered in order to produce struvite with high purity. From several studies 168

it was found that the best molar ratio in the struvite formation process is 1: 1: 1 with a pH range of 8 to 169

9.6 (El Diwani et al., 2007; Lee et al., 2003; Z. L. Ye et al., 2011). In addition, struvite is then can be 170

reused as a slow release fertilizer which is beneficial for plant growth (Alessio Siciliano et al., 2020). 171

Lithium ion is a small part contained in bittern. The lithium content contained in bittern can be recovered 172

by the precipitation method with the help of sodium aluminate (Manao et al., 2012). Beside from 173

precipitation method, the lithium content in bittern can be separated through a membrane separation 174

process, including nanofiltration and reverse osmosis (Sun et al., 2015; Wen et al., 2006). The smaller 175

the rejection percentage of lithium indicates that the lithium ion has separated from bittern.The lithium 176

products obtained can then be reused as raw material for rechargeable batteries (Satriady et al., 2016). 177

Potassium is one of the ions contained in bittern which can be recovered, either through electrodialysis 178

or crystallization (Hapsari, 2008a). The crystallization process of potassium can use the method of 179

adding sodium pentaborate to produce lithium pentaborate precipitates. the result is that 65% of the 180

lithium contained in bittern can be recovered as potassium pentaborate (Gurbuz et al., 1996). 181

182

2.3. Distribution of Mg-rich Bittern 183

A number of studies have shown that the major constituent of bittern is magnesium. High concentration 184

of Mg2+ found in most of research from different countries. Figure 1 shows the distribution map of Mg 185

content in the bittern from respective areas. Camalti Saltwork in Turkey and Shandong Haihua Group 186

Co, in China (Figure 2) exhibited high magnesium content bittern. Meanwhile, in Pamekasan, Madura 187

Island, of Indonesia, magnesium content in bittern was low particularly in traditional salt farm 188

production. 189

190

Page 46: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

191

Figure 2. Map showing major countries (Turkey, China, and Indonesia) with magnesium-rich bittern 192

reported research (modified from Google Earth, 2020) 193

194

195

Figure 3. Map showing major countries (Korea, Hongkong, Indonesia, East Mediterranean Sea) with 196

magnesium-rich bittern reported research (modified from Google Earth, 2020) 197

Page 47: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

198

Figure 4. Map showing major countries (Tunisia, South Korea, Brazil, and Turkey) with magnesium-199

rich bittern reported research (modified from Google Earth, 2020) 200

201

Figure 5. Map showing major countries (Egypt and India) with magnesium-rich bittern reported 202

research (modified from Google Earth, 2020) 203

204

Page 48: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

3. Resource Recovery and Utilization of Bittern Wastewater 205

The first recovery experiment on bittern successfully recovered Epsom salt (MgSO4.7H2O), solid KCl 206

and solid MgCl2.H2O (Hildebrand, 1918). The work on recovering minerals from concentrated brines 207

and bittern started to flourish in 1960s and some of them had been granted patent and applied for field 208

applications, i.e. recovery lithium (Averill & Olson, 1978), potassium (Epstein & Feist, 1975), 209

magnesium, bromine, and other salts (Hanson & Hughes, 1975; Mero, 1965). In this period, the 210

recovery processes were mostly combination process of evaporation, precipitation, and solvent 211

extraction. The timeline of bittern recovery process and the utilization of bittern can be seen in Figure 212

6. 213

The application of evaporation, precipitation, and crystallization methods to recover minerals is still 214

popular in the 1970s. In 1973 for example, potassium recovery was conducted by mixing bittern 215

solutions with gypsum and sodium chloride, followed by magnetic stirring at 80°C temperature for 2 216

hours and dried overnight at 84°C. The potassium recovered from this method ranging from 26.67-217

42.67% (Al-Awadi & Al-Mahdi, 1973). Next, other precipitation process which utilized ethanol 218

generate better potassium magnesium sulfate double salt (PMS) production, i.e. 160.18 g/L rather than 219

the utilization of methanol (Fernandez Lozano, 1976). Over years, the development of other recovery 220

methods are increasing with the use of combined treatment (evaporation-ion exchange) to recover 221

potassium, lithium, and magnesium (Schwochau, 1984). 222

223

Figure 6. Roadmap of product recovery and direct utilization of bittern 224

Page 49: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

The experiment on bittern as an alternative coagulant started on 1980s. Previous study presented that 225

the utilization of bittern as a coagulant for industrial wastewater have reduced color contaminant by 80-226

85% (S.-B. Wang & Chen, 1984). The work on bittern recovery process continues in 1990s using 227

different combination of method on possible recovered mineral. In 1993, recovery lithium ions were 228

conducted by precipitation and solvent extraction methods. The precipitation process is carried out with 229

the addition of various types of extractants and sodium aluminate to produce lithium and lithium 230

aluminate precipitates (Bukowsky & Uhlemann, 1993; Manao et al., 2012). In 2010s, the recovery 231

technology developed further using membrane separation methods (i.e., nanofiltration or forward 232

osmosis) and electrodialysis (Hapsari et al., 2008; Somrani et al., 2013; Sun et al., 2015; Wen et al., 233

2006). Some minerals that succesfully recovered by electrodialysis were calcium, potassium sodium, 234

and magnesium ions (Hapsari, 2007; Hapsari et al., 2008). Moreover, the researches on bittern as an 235

alternative absorbent were noticeable in 2010s. In this experiment, bittern is effectively be used as Mg 236

source and CO2 absorbent (Na et al., 2017). The precipitation of Mg(OH)2 increases simultaneously by 237

the addition of NaOH into bittern solution. On the other hand, the absorption of CO2 is more effective 238

with higher concentration of Na+ in the solution. Recently, combined treatment using electrochemical 239

and calcination process were conducted to produce nano-magnesium oxide (Amrulloh et al., 2020). 240

241

3.1. Resource recovery process 242

3.1.1. Membrane separation 243

Membrane separation is one of the ion recovery methods contained in bittern. Membrane separation 244

method is a conventional method which in the separation process can be distinguished based on physico-245

chemical characteristics.Based on the size of the particles or dissolved molecules the separation process 246

can be done through filtration, microfiltration, ultrafiltration and nanofiltration. Meanwhile, reverse 247

osmosis is a method of separating dissolved molecules based on their affinity (Chisti, 2007; Katalin, 248

2000). The separation method using membrane has several advantages including: easy to combine with 249

other methods, does not require additional materials, easy up-scaling, and mild conditions(Katalin, 250

2000).One of the methods utilizing membrane as media separation is the lithium ion recovery process 251

which is found in bittern using the nanofiltration method. 252

Page 50: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

The recovery of lithium chloride contained in bittern with a TDS concentration of 500,000 mg/L has 253

been carried out using the nanofiltration method (Wen et al., 2006). Pre-tretment is needed before the 254

recovery process takes place namely by passing the bittern on the multimedia filter and manganese 255

dioxide sand filter to produce turbidity of less than 1 NTU and ferrous and manganese less than 0.1 256

mg/L respectively.After that, bittern dilution is carried out due to the high TDS concentration in bittern 257

so it is not suitable for direct recovery.The material used in the recovery process is a spiral wound Desal-258

5 DL 2540C model which is a type of polyamide composite with an area of 1.77 m2 with an operating 259

condition of 1.10 MPa of feed pressure, a flow rate of 120 L/hour, and temperature is kept below 40° C 260

.From this research, it is known that the Nanofiltration method with the Desal 5-DL membrane type is 261

not effective in the recovery process of lithium chloride with high magnesium and boron content in 262

bittern. The recovery percentage of lithium chloride was 55%, which is lower than the recovery process 263

of lithium chloride using the electrodialysis method that has a recovery percentage of 80%.The low 264

selectivity of the membrane to boron is one of the disadvantages of the recovery method using 265

membrane separation (Katalin, 2000). 266

High magnesium concentration in bittern will result smaller recovery of lithium, this is supported by 267

the research of Sun et al. (2015) that has conducted research with variating the ratio of Mg2+/Li+ to the 268

resulting magnesium and lithium rejection and resulted separation factor (SF) close to 1 when 269

concetration magnesium is high.The type of membrane for separating magnesium and lithium is DL-270

2540 with a membrane area of 2.51 m2 and the percentage of rejection to MgSO4 is 96%.The research 271

conditions were carried out with a flow rate of 600 L/hour and varying temperature (i.e, 25, 30, 35), 272

pressure (i.e, 1.0 MPa-2.0 MPa), pH (i.e, 3-6) and Mg2+/Li+ ratio (i.e, 50-80). The best results were 273

obtained when the research conditions with a Mg/Li 60 ratio were pH 3.1 and a pressure of 2.0 MPa 274

which resulted in a lithium rejection of -160% and a magnesium rejection of 80% with a separation 275

factor (SF) of 0.08.The effect of the Mg/Li ratio was obtained the best percentage of magnesium ion 276

rtejction when the Mg/Li ratio was 50 and decreases when Mg2+/Li+was 80, namely 65% and 50% 277

respectively with percentage rejection of lithium -70% and -55%, respectively, at the same pressure 1.8 278

Mpa(Sun et al., 2015). From all of the variations carried out in the study, the percentage of lithium ion 279

rejection was always negative while the percentage rejction of magnesium ion was positive, this 280

Page 51: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

indicates that lithium ions have succeeded in penetrating the membrane but not magnesium, so that the 281

magnesium and lithium ions can separate. 282

The process of separating the lithium contained in bittern can also be carried out using the reverse 283

osmosis method with low pressure and compared to the nanofiltration method. However, the best result 284

obtained is the separation process of lithium contained in bittern using the nanofiltration method rather 285

than reverse osmosis. The percentage of magnesium rejection obtained when the pressure condition was 286

<15 bar and with a dilution of ten times was 100%, while the percentage of lithium rejection obtained 287

was 15%.Nanofiltration is considered to be an effective method of separating monovalent ions from 288

systems containing multivalent ions(Wen et al., 2006). 289

290

3.1.2. Electrolysis 291

Magnesium hydroxide (Mg(OH)2) and magnesium oxide (MgO) are products from recovery process of 292

magnesium ions in bittern using electrochemical methods. The product of magnesium hydroxide from 293

the bittern recovery process is based on the electrolysis reaction that occurs at the cathode where the 294

OH- ion reacts with Mg2+ so that it will form solid magnesium hydroxide based on the reaction 295

(Amrulloh et al., 2016): 296

2H2O(l) + 2e- H2(g) + 2OH-(aq) (1) 297

Mg2+(aq) + 2OH-

(aq) Mg(OH)2 (s) (2) 298

Researchs for the recovery process of magnesium hydroxide using electrolysis method have been 299

carried out(Amrulloh et al., 2016)(Amrulloh et al., 2019)and Hidayah (Hidayah, 2014). Magnesium 300

hydroxide was obtained as a product with an anion compartment configuration filled with KOH that 301

have variations of 0.1 M, 0.2 M, 0.4 M, 0.6 M, 0.8 M and 1 M while cation compartment was filled 302

with bittern with each volume 15 ml. The mass of magnesium hydroxide obtained 0.1 g with a purity 303

of 51.26% when the concentration of concentration was 0.25 M under the electrolysis time of 2 hours 304

and the voltage of 9 volts (Hidayah, 2014). 305

In addition, study on the effect of voltage on Mg(OH)2 produced with an electrolysis time of 10 hours 306

was conducted. The best results indicated by the percentage of Mg(OH)2 contained in the solid was 307

Page 52: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

34.77% with a weight of 15.98 g of 100 mL of bittern solution treated when the voltage used was 18 308

volts(Amrulloh et al., 2016). However, from these results it is known that the purity of the resulting 309

magnesium hydroxide is low, so that Amrulloh et al.(2019) conducted another study on bittern recovery 310

using electrochemical methods by diluting bittern with a variation of 0 to 8 times and operating time 311

variations of 1 to 13 hours. The voltage used in this study is the optimal voltage from previous studies, 312

which is 18 volts. XRD results showed that the content of Mg(OH)2 contained in the solid was 63.84% 313

and had impurities in the form of 25.47% CaCO3 and 10.69% NaCl with a weight of 3.04 g when the 314

dilution was 4 times and the operating time was 4 hours. 315

316

3.1.3. Electrodialysis 317

Membrane electrodialysis is a method of bittern recovery by utilizing a semipermeable membrane to 318

certain ions in the presence of an electric current as a driving force. Concentration, operating time and 319

voltage affect the percentage of rejection of an ion. Recovery of potassium, sodium, magnesium, and 320

calcium ions in bittern which can be used as ion supplements in drinking water was done (Hapsari, 321

2008a). The variation of the operating time is 30- 150 minutes with a variation of the voltage given 2.3 322

volts, 2.5 volts, 2.7 volts and 2.9 volts. The optimal voltage was 2.3 volts for potassium ions with a 323

rejection percentage of 92.88%, sodium and magnesium ion have rejection percentage 74.66% and 324

91.9% respectively with the voltage of 2.5 volts, while calcium ion rejection is 96.19% with 2.7 volts. 325

The highest rejection percentage for all ions was obtained when the operating time was 150 minutes. 326

Another result to obtain 78.43% and 98.93% percentage of rejection sodium and calcium ions need the 327

voltage 2.8 volts and 2.9 volts respectively with operation time 30 minute (Hapsari, 2007)(Hapsari, 328

2008b). From these results, it can be seen that the greater the voltage, the shorter the operating time 329

required and produce a higher percentage of rejection at the same initial concentration. 330

331

3.1.4. Precipitation and Crystallization 332

One of the recovery methods of magnesium contained in bittern is precipitation (Alessio Siciliano et 333

al., 2020).Magnesium is recovered by adding sodium carbonate (Na2CO3) to yield a product in the form 334

Page 53: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

of magnesium carbonate (Apriani et al., 2018b). Concentration of Mg and the pH of bittern play 335

important role in producing high purity solid magnesium carbonate. A study variying concentration of 336

Mg in bittern (10,000; 20,000; and 40,000 ppm) and pH (8, 9 and 10) found that 100 % magnesium 337

carbonate crystals can be form when Mg concentration was 10,000 and pH was 8 and 9). The pH affects 338

the form of the crystal, which in this case was plates-shape (Apriani et al., 2018b). 339

Magnesium hydroxide solids can be produced from the precipitation process by mixing bittern with 340

NaOH. The precipitation process is carried out by adjusting the pH of 9.5-10 and varying the molar 341

ratio of NaOH/Mg (0.7 to 2.8). The mixture then stirred for 2 hours followed by the precipitation process 342

for 12 hours. The optimal results obtained when the molar ratio of NaOH/Mg was 2.53 (Na et al., 2017). 343

Magnesium potassium phosphate (MgKPO4) is a form of fertilizer product produced from bittern 344

precipitation with NaOH and Na2HPO4 which is utililized as added value in milkfish cultivation. A 345

82.9973 g of MgKPO4 was produced by mixing 400 mL of Na2HPO4, 350 mL of NaOH and 250 mL 346

of bittern(Nadia et al., 2015). 347

348

Different precipitate products were obtained from different precipitation method, i.e.,when different 349

alkaline was added into the bittern. The addition of Ca(OH)2 base will produce more precipitates than 350

KOH and NaOH and produce Mg2(NH4)2(PO4) 2.4H2O precipitates; KMg(NH4)(PO4)2.4H2O; NaMg 351

(NH4)(PO4) 2.4H2O sequentially under conditions of Mg2+: NH4+ molar ratio: PO4

3-1: 1: 1 and pH 9.5 352

(Sidik, 2013). 353

Another product produced from the precipitation process is the recovery process of lithium contained 354

in bittern to become lithium aluminate by adding sodium aluminate (NaAlO2). The process of forming 355

lithium aluminate was influenced by pH, stirring time and concentration of sodium aluminate added. 356

The pH factor affects the recovery results because if the pH of the solution is too alkaline, the lithium 357

that has been deposited will dissolve back into NaAlO2 and H2O as LiOH. The longer and greater the 358

concentration of sodium aluminate added, the greater the recovery of lithium. The optimum conditions 359

for lithium recovery process was solution of pH 13, stirring time of 3 hours and the concentration of 360

sodium aluminate added was 500 mg/L to produce 2.17 g of lithium (Manao et al., 2012). Lithium 361

Page 54: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

products can be used as raw material for rechargeable batteries (Satriady et al., 2016) metal alloys for 362

aircraft, and for fusion nuclear fuel (Manao et al., 2012) 363

3.1.5. Others 364

The recovery process of minerals contained in bittern used different of temperature as a method of 365

recovery.The method used is heating and cooling. Recovery was carried out sequentially to obtain 366

magnesium sulphate, sodium sulphate, potassium salt, and potassium chloride in bittern. In the process 367

of recovering magnesium sulphate recrystallization is carried out by a separation process using a 368

centrifuge which is then separated and dried at 70°C. After the magnesium sulphate recovery process, 369

it is followed by the sodium sulphate recovery process separate by a centrifuge and washing it using 370

cold water and then drying it at 110° C. the resulting purity reaches 98.2%.Potassium salt is done by 371

neutralizing the bitterninto pH of 7 which is then heated at a temperature of 125° C. After the heating 372

process, the product of potassium salt is separated by cooling naturally to a temperature of 100° C.The 373

last recovery process is the process of recovering potassium chloride, namely by washing hot water and 374

cooling it to 20°C, the resulting mixture is separated using a centrifuge and the resulting solid is dried 375

at a temperature of 110° C. The resulting potassium chloride has a purity of up to 99 %(Estefan, 1983). 376

377

3.1.6. Combined processes 378

The development of technology makes bittern recovery process not only done by one method, but also 379

it can be combined with other methods to get the product, such as electrolysis - calcination and 380

precipitation - calcination. The purpose from combined methode between electrolysis-calcination in the 381

recovery process of bittern with high magnesium is to obtain magnesium oxide as products. The 382

calcination process has a function to obtain magnesium oxide products after the electrolysis process. In 383

the process, the dilution carried out in the study resulted in the purity of magnesium hydroxide. 384

Magnesium oxide which is formed after electrochemical processes using the best variables in studies 385

(Amrulloh et al., 2019) and (Amrulloh et al., 2016) and calcined at a temperature of 500° C for 4 hours 386

yields 91.21% purity of magnesium hydroxide (Amrulloh et al., 2020). 387

In addition, magnesium chloride (MgCl) is a product that results from the combined precipitation-388

calcination method.The precipitation process was carried out by mixing 8.5% bittern with 7.51% NaOH 389

Page 55: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

with 300 rpm stirring for 1 hour. Product from this method is precipitate of 11.48% magnesium 390

hydroxide. Magnesium chloride (MgCl) is produced by adding 3.5% sodium chloride (NaCl) to the 391

precipitate by stirring at 110°C for 3 hours then rinsing and drying. The next process is to calcinate 392

solids with temperature variations of 150° C, 200° C and 250° C for 60, 90 and 120 minutes. The best 393

product with content of 100% MgCl2.6H2O was obtained when the calcination temperature was 150 ° 394

C for 60 minutes. The longer the time and the higher the calcination temperature, the less recovery of 395

magnesium chloride produced(Zuchrillah & Julaika, 2017). 396

397

3.2. Potential Utilization of Bittern for Environmental Processes 398

3.2.1. Bittern as a coagulant in wastewater treatment 399

High magnesium content in bittern makes this waste potential to be used as a coagulant in wastewater 400

treatment. The use of bittern as a coagulant can reduce COD, BOD, TSS, colour, TSS, total phosphate, 401

total nitrogen to heavy metals.The concentrations of COD, BOD, and TSS in fish processing wastewater 402

were successfully reduced by the coagulation-flocculation method with bittern as a magnesium source. 403

The condition of the research carried out by adjusting the pH in the wastewater until the pH reache 9 404

with the addition of NaOH that continue to add of bittern as a source of magnesium with a variation of 405

the bittern volume of 10% - 50%. The mixture of bittern and waste water is left to stand for 1 hour, then 406

followed by a fast stirring process of 100 rpm for 3 minutes and slow stirring of 50 rpm according to 407

the variations carried out, namely the range of 15-75 minutes. The best results from the variation in the 408

research were successful in reducing COD by 74.70%, BOD 76.25%, and TSS by 84% when the added 409

bittern volume was 40% with a slow mixing time of 30 minute (Yanuarita et al., 2017). 410

TSS removal obtained reached 92% with the initial pollutant conditions smaller than 500 mg /L, namely 411

99 mg / L at the same of pH that was 11. This removal efficiency was obtained when the research 412

conditions were carried out in fast stirring of 100 rpm in 1 minute, slow stirring of 30 rpm in 75 minutes 413

and the settling time of 60 minutes. The addition of bittern as a source of magnesium was varied in 414

order to get the best results that variations of bittern added volume was 1-4 mL and the best result was 415

4 mL (Sutiyono, 2006). 416

Page 56: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Beside TSS, COD, and BOD removal in the coagulation-flocculation process with bittern as a source 417

of magnesium, it was able to reduce the concentration of total phosphate, total nitrogen, and color in 418

tannery wastewater. The addition of 5 mL / L bittern into 1 L of tannery waste was able to reduce total 419

phosphate by 87% and total nitrogen by 75% with the initial pollutant conditions of 302 mg / L and 420

34.2 mg / L, respectively. The removal of color in the waste reaches 99.5% when the initial conditions 421

of the pollutant are 5800 NTU and at the pH of the solution is 11.3 (Ayoub et al., 2011). 422

Bitterns have been proven to effectively reduce colour from colour effluents in pulp and textile 423

industries. A colour removal approximately 80% is achieved at a lime dosage of 400 mg/L and of 20 424

mL of bittern to 1000 mL of the acid dye effluent(S.-B. Wang & Chen, 1984). 425

Comparison between bittern as a coagulant with commercial coagulants, namely MgCl2 and Al2(SO4)3 426

has been carried out to compare the ability of bittern with commercial coagulants in the process of 427

removing turbidity and color in dyestuff wastewater.The research conditions were carried out with a 428

solution of pH 11 and varying concentrations of cations in the added coagulants that were from 0 mg/L 429

to 200 mg/L.The best results in the turbidity removal process were obtained under the conditions of 430

adding the concentration of Mg2 + 100 mg / L in the use of bittern and MgCl2 with a removal efficiency 431

of 92%, while koagulant Al2(SO4)3 needed the greater added concentration of Al , namely 200 mg/L for 432

the same efficiency of removal.In addition, the color removal process in wastewater using bittern and 433

MgCl2at a concentration of 100 mg/L had a removal efficiency of 80% and 70%, respectively, while 434

Al2(SO4)3at a concentration of 200 mg/L had a removal efficiency of 82%.From the results obtained, 435

the use of bittern as a coagulant has a positive result when compared to other commercial coagulants, 436

namely by producing greater removal efficiency(Albuquerque et al., 2013). 437

From several Researche, it has been shown that the pH adjustment in the solution was an alkaline pH, 438

which was in the pH range 11. Therefore, the pH adjustment requires more bases than acids as pH 439

control which can be done by adding alkaline agents into solutions such as NaOH or Ca(OH)2. the 440

addition of an alkaline agent into the solution will result in different removal efficiencies in heavy metal 441

removal or the resulting sludge production.In the heavy metal removal process by utilizing an alkaline 442

agent NaOH or Ca(OH)2as a pH controller, the optimal removal efficiency is achieved when using 443

Ca(OH)2 as a pH controller. Research conditions by adding 6.6 Ca(OH)2 to 1 L of wastewater and 444

Page 57: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

variations in the addition of added magnesium concentrations to solution were 0 mg/L, 53.5 mg/L, 107 445

mg/L, 160.5 mg/L, 214 mg/L and 267.5 mg/L. The best results were shown by the addition of Mg2+ 446

concentration was 107 mg/L which resulted in removal efficiency of arsenic, cadmium, chromium, 447

copper, lead, mercury, nickel, and zinc of 71.3%, 99.1%, 98.7%, 82.8%, 95.9%, 99.5% , 75.5%, and 448

91.5% respectively (Ayoub et al., 2001). 449

Total coliform and fecal coliform counts before and after the application of coagulation of the optimum 450

dose to Ca(OH)2 or NaOH alkalinized wastewater is effectively reduced. In the optimum dose of liquid 451

bittern, total and fecal coliform counts dropped from 9 x 1012 and 3.4 x 1011 cfu/ml, respectively, to 6.0 452

x 103 and 2.0 x 103 after ½ hour on alkalinization with Ca(OH)2. This indicates that complete destruction 453

of bacteria is achieved by raising the pH of wastewater to 11.2 or 11.5(Diwani & Rafie, 2002). 454

The addition of bittern into wastewater alkalinized with Ca(OH)2 tends to have a lower rise in Total 455

Dissolved Solid (TDS) by 42.25% in liquid bittern and 79.7% in dry bittern compared to the values 456

when NaOH is added to the wastewater sample (Diwani & Rafie, 2002). 457

The main disadvantage of coagulation process using bittern as a source of magnesium and Ca(OH)2 or 458

NaOH is the large amounts of sludge that is generated compared to conventional secondary chemical 459

process using alum or ferric chloride as coagulants. However, sludge generated from lime treatment 460

process have superior dewatering characteristics and can be processed with filter pressing at lower cost 461

than sludge generated from chloride or alum (Diwani & Rafie, 2002). 462

The estimation of sludge resulting from the coagulation process using bittern as a source of magnesium 463

and Ca(OH)2 or NaOH as alkaline agent resulted sludge thickness (i.e , settle sludge volume , sludge 464

volume index, and water content greater using NaOH as a pH controller than Ca (OH) 2 (Ayoub 465

&Merhebi, 2002). This result proved that utilization Ca(OH)2 as an alkaline agent produces less sludge 466

than NaOH. 467

To maintain the effluent discharge pH standards, carbonation by the addition of O2 is needed in 468

concentration ranging from 3.26 to 80 ml/L depending on the initial levels of pH, alkalinity, and the 469

nature of the alkalinizing agent used (Diwani & Rafie, 2002). 470

471

3.2.2. Bittern as an adsorbent 472

Page 58: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

The utilization of bittern as an absorbent is rarely applied. However, the research of bittern as an 473

alternative technology in carbon dioxide (CO2) capture and storage (CCS) has gaining attention in the 474

last decade followed the rapid progression of global warming and the need to search for the next 475

generation absorbent. Na et al.(2017) studied the potential use of bittern as CO2 absorbent by 476

precipitating Mg2+ ions as Mg (OH)2 using chemical that can supply the production of hydroxide ions 477

(OH−), such as NaOH, CaO, and Ca(OH)2. The experiment show an increasing Mg2+ removal up to > 478

99% at [NaOH]/[Mg] molar ratios of 2.7–2.75 (pH 9.5–10.0). Higher Na+ concentration has verified to 479

have better performance on CO2 absorption process by capturing them into NaHCO3. Moreover, the 480

addition of NH4OH during process can be acted as catalyst to increase the formation of NaHCO3 and 481

hinder the faster dissolution of CO2. 482

483

3.2.3. Bittern as an Mg-source in struvite crystallization 484

Struvite is a slow release fertilizer which contains magnesium, ammonium, and phosphate 485

(MgNH4PO4.6H2O) in equal molar concentration (Lee et al., 2003). Many wastewaters are high in 486

ammonium and phosphate, but tend to be low in magnesium concentration (El Diwani et al., 2007). 487

Furthermore, some wastewater may have precursor ions such as, Ca2+, Na+, K+, Al3+, Fe3+, CO3-etc, 488

which could react with Mg2+ and PO43- and interfere the precipitation of struvite (Alessio Siciliano et 489

al., 2020; Tao et al., 2016). For this reason, the addition of Mg reagents has to be overdose to increase 490

the chance of struvite formation. The determination of Mg source and type has to be carefully 491

considered as it accounts for major costs, which eventually affects the overall cost of struvite recovery 492

and product quality (El Diwani et al., 2007; Y. Ye et al., 2020). At this point, the use of pure Mg reagents 493

would not be a wise option, as it will results in a very expensive treatment. 494

Bittern, on the other hand, is a by-product which could be achieved for free. It is also very rich in 495

magnesium chloride with small trace of other inorganic compounds. Indeed, it could be use as an 496

alternative for low-cost Mg source. The feasibility of bittern in struvite crystallization have been 497

investigated by some authors to recover ammonia and phosphate from landfill leachate, anaerobic 498

digestate, human urine, pigment industry and swine wastewater (Etter et al., 2011; Sanghavi et al., 2020; 499

A. Siciliano & De Rosa, 2014; Alessio Siciliano, 2016; J. Wang et al., 2018). The best performance on 500

Page 59: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

the recovery of nitrogen (>90%) and phosphate (up to 99%) was noted in the range pH of 8.5-9.0 and 501

stoichiometric molar ratio of 1-1.3 (Sanghavi et al., 2020; A. Siciliano & De Rosa, 2014). However, 502

since every wastewater has a unique characteristic related to type of ionic species, direct investigation 503

should be conducted to optimize the removal and recovery process. Compared to other different 504

magnesium sources (i.e., MgO, Mg(OH)2, MgCl2, and MgSO4), the use of bittern did not significantly 505

affect the removal efficiency and product quality (J. Wang et al., 2018). Comparation on different Mg 506

source and size particle showed that each struvite product seems identical and almost spherical. Despite 507

the fact that bittern is possible for struvite formation, its transportation cost has to be accounted for in 508

the total cost estimation; otherwise it could be inefficient and limited for field application. 509

510

3.2.4. Other direct utilization of Bittern 511

Besides for environmental process, bittern have also been used as coagulant for tofu production, 512

alternative cooling agent for agricultural purposes, flame retardants material, etc. (Davies & Knowles, 513

2006; J. Li et al., 2014; L. Li et al., 2019; Lychnos et al., 2010; Xu & Deng, 2006). As in tofu production, 514

bittern is the oldest traditional coagulant for tofu processing (J. Li et al., 2014). It is also the most popular 515

coagulants to use as it create natural flavour and retains original taste of soybeans. However, the use is 516

now limited due to bittern rapid coagulation process, which could make tofu hard and nonuniform. 517

Meanwhile, other researchers have investigated the possibility of bittern as a liquid dessicant in 518

refrigeration system. Although MgCl2 contained in bittern is classified as weaker dessicant (compared 519

to CaCl2, LiBr, LiCl, and triethylene glycol), it is low cost, significantly less toxic both to humans and 520

the environment, and available in abundant quantity in seawater (Davies & Knowles, 2006; Lychnos et 521

al., 2010). Moreover, the result showed that the equilibrium relative humidity (ERH) could decrease to 522

less than 40% at a concentration of up to 37% by mass (corresponding to bittern relatively concentrated 523

80 times than raw seawater). It is also clarify that the utilization of bittern could improve cooling effect 524

on greenhouses, particularly in hot and humid climate. 525

Next, Mg(OH)2 precipitated from seawater bittern could also be use as inorganic flame retardants 526

additives, since it have some advantages such as excellent smoke-repressive, non toxic, and low cost 527

compared to organic bromic flame retardants (Xu & Deng, 2006). From previous study, it is noticeable 528

Page 60: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

that utilization of Mg(OH)2 as an additive agents of polyethylene material has significantly improved 529

limiting oxygen index (LOI) to 32.5%, while the combination of Ethylene Vinyl Acetate-MgAl layered 530

double hydroxides (EVA/MgAl-LDHs) composites has increased limiting oxygen index (LOI) to 29.8% 531

(L. Li et al., 2019) 532

533

4. Conclusions and Future Outlook 534

4.1. Possible Recovery Technology (Strategy, economic value, Case study/pilot project example that 535

has been conducted) 536

The need to recover valuable mineral from bittern rise gradually with the increasing salt production, 537

depleting easy available high-grade mineral ores, and environmental issue related to bittern disposal. 538

Some possible bittern recovery technology that have been evaluated for more than nine decades are 539

evaporation, precipitation, crystallization, solvent extraction, ion exchange, membrane separation, 540

electrodialysis, electrochemical method, and calcination. The application of single treatment or 541

combined treatment have verified to successfully some minerals (Na, Ca, Mg, Cl, K, Li, B, Br) for 542

further use as raw materials in chemical industry, food-processing, agriculture, energy-based industry, 543

and many more. Combined treatment of evaporation-precipitation-crystallization have been mostly 544

used to recover mineral as it is relatively easy and low cost compared to other technologies. Moreover, 545

the direct utilizations of bittern have also show potential result. It is noticeable that bittern could be use 546

as a coagulant, either in water treatment or food-processing industry. In addition, bittern could also be 547

used as a source alternative for CO2 absorbent. It can be concluded that direct utilization of bittern could 548

be used for conserving resource as well as protecting the environment quality. 549

In future look, some strategies that can be proposed in bittern management are: a) to recover all possible 550

valuable mineral from bittern; b) the quality of recovered products have to meet standard requirement 551

from targeted market; c) the technology used for recovery mineral has to be effective, efficient, and 552

correspond with targeted recovery product on each area. 553

554

4.2. Challenges (in developed country and particularly in developing country) 555

Page 61: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

The advancements in recovery technology show potential application on mineral extraction from 556

bittern. However, it is still a challenge to apply this technology at field application, particularly related 557

to recovery cost, operation and maintenance cost, quality of the recovered product, and the need to 558

search business partner/company who willing to buy recovered product from waste bittern. Those 559

challenge possibly minimal in the developed country rather than in developing country. Nonetheless, 560

more research needs to be conducted to enhance the performance of bittern recovery as well as improve 561

its feasibility on direct utilization. 562

563

References 564

Ahmad, N., & Baddour, R. E. (2014). A review of sources, effects, disposal methods, and regulations 565

of brine into marine environments. In Ocean and Coastal Management (Vol. 87, pp. 1–7). 566

https://doi.org/10.1016/j.ocecoaman.2013.10.020 567

Al-Awadi, F., & Al-Mahdi, A. K. (1973). Pottasium recovery from bittern solution. Industrial & 568

Engineering Chemistry Product Research and Development, 12(1), 70–74. 569

https://doi.org/10.1021/i360045a011 570

Albuquerque, L. F., Salgueiro, A. A., Melo, J. L. D. S., & Chiavone-Filho, O. (2013). Coagulation of 571

indigo blue present in dyeing wastewater using a residual bittern. Separation and Purification 572

Technology, 104, 246–249. https://doi.org/10.1016/j.seppur.2012.12.005 573

Amdouni, R. (2009). Behaviour of trace elements during the natural evaporation of sea water: Case of 574

solar salt works of Sfax saline (S.E of Tunisia). Global Nest Journal, 11(1), 96–105. 575

https://doi.org/10.30955/gnj.000613 576

Amrulloh, H., Simanjuntak, W., & Situmeang, R. T. M. (2016). Konversi Mg 2+ dalam bittern menjadi 577

Mg(OH)2 menggunakan metode elektrokimia. Prosiding Seminar Nasional Sains Matematika 578

Informatika Dan Aplikasinya IV, 4(1), 2086–2342. 579

Amrulloh, H., Simanjuntak, W., Situmeang, R. T. M., Sagala, S. L., Bramawanto, R., Fatiqin, A., 580

Nahrowi, R., & Zuniati, M. (2020). Preparation of nano-magnesium oxide from Indonesia local 581

seawater bittern using the electrochemical method. Inorganic and Nano-Metal Chemistry, 50(8), 582

693–698. https://doi.org/10.1080/24701556.2020.1724146 583

Page 62: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Amrulloh, H., Simanjuntak, W., Situmeang, R. T. M., Sagala, S. L., Bramawanto, R., & Nahrowi, R. 584

(2019). Effect of Dilution and Electrolysis Time on Recovery of Mg2+ As Mg(OH)2 from Bittern 585

by Electrochemical Method. The Journal of Pure and Applied Chemistry Research, 8(1), 87–95. 586

https://doi.org/10.21776/ub.jpacr.2019.008.001.455 587

Apriani, M., Hadi, W., & Masduqi, A. (2018a). Physicochemical properties of sea water and bittern in 588

Indonesia: Quality improvement and potential resources utilization for marine environmental 589

sustainability. Journal of Ecological Engineering, 19(3), 1–10. 590

https://doi.org/10.12911/22998993/86150 591

Apriani, M., Hadi, W., & Masduqi, A. (2018b). Synthesis of magnesium carbonate polymorphs from 592

Indonesia traditional salt production wastewater. EnvironmentAsia, 11(2), 140–148. 593

https://doi.org/10.14456/ea.2018.29 594

Ariono, D., Purwasasmita, M., & Wenten, I. G. (2016). Brine effluents: Characteristics, environmental 595

impacts, and their handling. Journal of Engineering and Technological Sciences, 48(4), 367–387. 596

https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.1 597

Averill, W. A., & Olson, D. L. (1978). A review of extractive processes for lithium from ores and brines. 598

Energy, 3(3), 305–313. https://doi.org/10.1016/0360-5442(78)90027-0 599

Ayoub, G. M., Hamzeh, A., & Semerjian, L. (2011). Post treatment of tannery wastewater using 600

lime/bittern coagulation and activated carbon adsorption. Desalination, 273(2–3), 359–365. 601

https://doi.org/10.1016/j.desal.2011.01.045 602

Ayoub, G. M., & Merhebi, F. (2002). Characteristics and quantities of sludge produced by coagulating 603

wastewater with seawater bittern, lime and caustic. Advances in Environmental Research, 6(3), 604

277–284. https://doi.org/10.1016/S1093-0191(01)00058-2 605

Ayoub, G. M., Merhebi, F., Acra, A., El-Fadel, M., & Koopman, B. (2000). Seawater bittern for the 606

treatment of alkalized industrial effluents. Water Resource, 34(2), 640–656. 607

https://doi.org/10.1016/S0043-1354(99)00162-1 608

Ayoub, G. M., Semerjian, L., Acra, A., Fadel, M. El, & Koopman, B. (2001). Heavy Metal Removal 609

by Coagulation with Seawater Liquid Bittern. Journal of Environmental Engineering, 127(3), 610

196–207. https://doi.org/10.1061/(asce)0733-9372(2001)127:3(196) 611

Page 63: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Baati, H., Jarboui, R., Gharsallah, N., Sghir, A., & Ammar, E. (2011). Molecular community analysis 612

of magnesium-rich bittern brine recovered from a Tunisian solar saltern. Canadian Journal of 613

Microbiology, 57(12), 975–981. https://doi.org/10.1139/W11-088 614

BinAhmed, S., Ayoub, G., Al-Hindi, M., & Azizi, F. (2015). The effect of fast mixing conditions on 615

the coagulation–flocculation process of highly turbid suspensions using liquid bittern coagulant. 616

Desalination and Water Treatment, 53(12), 3388–3396. 617

https://doi.org/10.1080/19443994.2014.933043 618

Bukowsky, H., & Uhlemann, E. (1993). Selective Extraction of Lithium Chloride from Brines. 619

Separation Science and Technology, 28(6), 1357–1360. 620

https://doi.org/10.1080/01496399308018042 621

Chisti, Y. (2007). Principles of membrane separation processes. In G. Subramanian (Ed.), 622

Bioseparation and Bioprocessing: A Handbook vol.1 (Issue M). Wiley-VCH. 623

Davies, P. A., & Knowles, P. R. (2006). Seawater bitterns as a source of liquid desiccant for use in 624

solar-cooled greenhouses. Desalination, 196, 266–279. 625

https://doi.org/10.1016/j.desal.2006.03.010 626

Diwani, G. El, & Rafie, S. El. (2002). Bittern as Coagulant for Treatment of Municipal Wastewater. 627

Einav, R., Harussi, K., & Perry, D. (2002). The footprint of the desalination processes on the 628

environment. Desalination, 152, 141–154. https://doi.org/10.1016/S0011-9164(02)01057-3 629

El Diwani, G., El Rafie, S., El Ibiari, N. N., & El-Aila, H. I. (2007). Recovery of ammonia nitrogen 630

from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination, 214(1–3), 631

200–214. https://doi.org/10.1016/j.desal.2006.08.019 632

Epstein, J. A., & Feist, E. M. (1975). THE RECOVERY OF POTASSIUM CHLORIDE FROM DEAD 633

SEA BRINES ( a ) Precipitation of KCl04 The feed brine could be Dead Sea water having the 634

following composition. Hydrometallurgy, 1, 39–50. 635

Estefan, S. F. (1983). Controlled phase equilibria for the chemical utilization of sea-bitterns. 636

Hydrometallurgy, 10, 39–45. https://doi.org/10.1016/0304-386X(83)90075-0 637

Etter, B., Tilley, E., Khadka, R., & Udert, K. M. (2011). Low-cost struvite production using source-638

separated urine in Nepal. Water Research, 45(2), 852–862. 639

Page 64: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

https://doi.org/10.1016/j.watres.2010.10.007 640

Fernández-Lozano, J. A. (1996). Sodium sulphate from bittern by methanol. Chemical Engineering 641

Communications, 154, 87–99. https://doi.org/10.1080/00986449608936646 642

Fernandez Lozano, J. A. (1976). Recovery of potassium magnesium sulfate double salt from seawater 643

bittern. Industrial & Engineering Chemistry Process Design and Development, 15(3), 445–449. 644

https://doi.org/10.1021/i260059a018 645

Gacia, E., Invers, O., Manzanera, M., Ballesteros, E., & Romero, J. (2007). Impact of the brine from a 646

desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine, Coastal and 647

Shelf Science, 72(4), 579–590. https://doi.org/10.1016/j.ecss.2006.11.021 648

Gurbuz, H., Yavasoglu, N., & Bulutcu, A. N. (1996). Recovery of Potassium Salts from Bittern by 649

Potassium Pentaborate Crystallization. Separation Science and Technology, 31(6), 857–870. 650

https://doi.org/10.1080/01496399608001329 651

Hanson, C., & Hughes, M. A. (1975). Extraction of magnesium chloride from brines using mixed ionic 652

extractants. J. Inorg. Nucl. Chem., 37, 191–198. 653

Hapsari, N. (2007). Proses Pemisahan Ion K (Kalium) Dan Ca(Calsium) Dalam Bittern Dengan 654

Membran Elektrodialisis. Jurnal Rekayasa Perencanaan, 4(1). 655

Hapsari, N. (2008a). Pengambilan Mineral Elektrolit dari Limbah Garam (Bittern) untuk Suplemen 656

Mineral Ionic pada Air Minum. Jurnal Teknik Kimia, 2(2), 141–146. 657

Hapsari, N. (2008b). PROSES PEMISAHAN ION NATRIUM (Na) DAN MAGNESIUM DALAM 658

BITTERN (BUANGAN) INDUSTRI GARAM. Jurnal Teknik Kimia UPN Veteran Jatim, 3(1), 659

192–198. 660

Hapsari, N., Teknik, J., Fakultas, K., Industri, T., Veteran, U. ", & Timur, J. (2008). PROSES 661

PEMISAHAN ION NATRIUM (Na) DAN MAGNESIUM (Mg) DALAM BITTERN 662

(BUANGAN) INDUSTRI GARAM DENGAN MEMBRAN ELEKTRODIALISIS. In Jurnal 663

Teknik Kimia (Vol. 3, Issue 1). 664

Hidayah, F. F. (2014). Pengaruh voltase terhadap rendemen magnesium hidroksida dari bitterns melalui 665

sistem elektrolisis. Jurnal Sains Dasar, 3(2), 156–161. 666

Hildebrand, J. . H. (1918). The extraction of potash and other constituents from sea water bittern. The 667

Page 65: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Journal of Industrial and Engineering Chemistry, 10(2), 96–105. 668

https://doi.org/10.1021/ie50098a007 669

Ismail, I., Abdel-Salam, O., Barakat, F., Fateen, S., Soliman, A., & Nogami, M. (2014). Removal of 670

boron from the bittern solution of lake qarun water by electrically assisted ion exchange. 671

Portugaliae Electrochimica Acta, 32(2), 125–136. https://doi.org/10.4152/pea.201402125 672

Javor, B. (2002). Industrial microbiology of solar salt production. Journal of Industrial Microbiology 673

and Biotechnology, 28(1), 42–47. https://doi.org/10.1038/sj/jim/7000173 674

Kasedde, H., Kirabira, J. B., Bäbler, M. U., Tilliander, A., & Jonsson, S. (2014). Characterization of 675

brines and evaporites of Lake Katwe, Uganda. Journal of African Earth Sciences, 91, 55–65. 676

https://doi.org/10.1016/j.jafrearsci.2013.12.004 677

Katalin, B. lafi-B. . (2000). Membrane separation processes. In Integration of Membrane Process into 678

Bioconversion. Kluwer Academic /Plenum Publishers. https://doi.org/10.1021/ie50663a004 679

Kilic, Ö., & Kilic, A. M. (2005). Recovery of salt co-products during the salt production from brine. 680

Desalination, 186(1–3), 11–19. https://doi.org/10.1016/j.desal.2005.05.014 681

Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from 682

wastewater by addition of bittern. Chemosphere, 51(4), 265–271. https://doi.org/10.1016/S0045-683

6535(02)00807-X 684

Li, J., Cheng, Y., Tatsumi, E., Saito, M., & Yin, L. (2014). Food Hydrocolloids The use of W / O / W 685

controlled-release coagulants to improve the quality of bittern-solidi fi ed tofu. Food 686

Hydrocolloids, 35, 627–635. https://doi.org/10.1016/j.foodhyd.2013.08.002 687

Li, L., Qian, Y., Qiao, P., Han, H., & Zhang, H. (2019). Preparation of LDHS based on bittern and its 688

flame retardant properties in EVA/LDHS composites. Advances in Polymer Technology, 2019. 689

https://doi.org/10.1155/2019/4682164 690

Li, X. Z., & Zhao, Q. L. (2002). MAP precipitation from landfill leachate and seawater bittern waste. 691

Environmental Technology, 23(9), 989–1000. https://doi.org/10.1080/09593332308618348 692

Loganathan, P., Naidu, G., & Vigneswaran, S. (2017). Mining valuable minerals from seawater: A 693

critical review. Environmental Science: Water Research and Technology, 3(1), 37–53. 694

https://doi.org/10.1039/c6ew00268d 695

Page 66: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Lychnos, G., Fletcher, J. P., & Davies, P. A. (2010). Properties of seawater bitterns with regard to 696

liquid-desiccant cooling. Desalination, 250(1), 172–178. 697

https://doi.org/10.1016/j.desal.2008.11.019 698

Manao, R. D., Alfianto, R., & Sumarno. (2012). Recovery Garam Lithium Pada Air Tua ( Bittern ) 699

Dengan Metode Presipitasi. Jurnal Teknologi Kimia Dan Industri, 1(1), 292–297. 700

Marihati. (2007). Pemisahan Magnesium dari Larutan Bittern dengan Cara Elektrolisa untuk 701

menghasilkan Senyawa Magnesium Hidroksida. Jurnal Riset Industri, 1(1), 1–6. 702

Mero, J. L. (Ed.). (1965). Chapter III-Minerals from sea water. In The Mineral Resources of the Sea 703

(1st ed., pp. 24–52). Elsevier B.V. https://doi.org/10.1016/S0422-9894(08)70762-1 704

Mickley, M. C. (2009). Treatment of Concentrate. In U. S. Department of the Interior, Bureau of 705

Reclamation: Vol. Report No. www.usbr.gov/pmts/water/publications/reports.html 706

Na, C. K., Park, H., & Jho, E. H. (2017). Utilization of waste bittern from saltern as a source for 707

magnesium and an absorbent for carbon dioxide capture. Environmental Science and Pollution 708

Research, 24(29), 22980–22989. https://doi.org/10.1007/s11356-017-9913-5 709

Nadia, M., Zainuri, M., & Effendy, M. (2015). Prototype Pupuk Multinutrient Berbasis Phosphate 710

Berbahan Dasar Limbah Garam (Bittern) Sebagai Alternatif Solusi Penumbuh Pakan Alami. 711

Jurnal Kelautan, 8(2), 72–82. https://doi.org/10.1007/978-1-4614-7495-1_23 712

Nayak, N. (2018). Major and trace element determination in brine and bittern. Indian Journal of 713

Research, 7(7), 36–38. 714

Petersen, U. (1994). Mining the hydrosphere. Geochimica et Cosmochimica Acta, 58(10), 2387–2403. 715

https://doi.org/10.1016/0016-7037(94)90017-5 716

Petersková, M., Valderrama, C., Gibert, O., & Cortina, J. L. (2012). Extraction of valuable metal ions 717

(Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents. Desalination, 286, 316–718

323. https://doi.org/10.1016/j.desal.2011.11.042 719

Rafie, S. El, Hawash, S., & Shalaby, M. S. (2013). Evaluation of struvite precipitated from chemical 720

fertilizer industrial effluents. Pelagia Research Library Advances in Applied Science Research, 721

4(1), 113–123. www.pelagiaresearchlibrary.com 722

Rafie, S. El, & Mohamed, M. S. (2014). Preparation of nano-ammoniated ammonium carnallite from 723

Page 67: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

using industrial effluents and saline. Advances in Applied Sciience Research, 5(2), 334–346. 724

www.pelagiaresearchlibrary.com 725

Roberts, D. A., Johnston, E. L., & Knott, N. A. (2010). Impacts of desalination plant discharges on the 726

marine environment: A critical review of published studies. Water Research, 44(18), 5117–5128. 727

https://doi.org/10.1016/j.watres.2010.04.036 728

Sanghavi, R. J., Dobariya, R., Bhatti, S., & Kumar, A. (2020). Preparation of high-purity magnesium-729

ammonium-phosphate fertilizer using sea bittern and industrial waste streams. Environmental 730

Science and Pollution Research, 27(7), 7720–7728. https://doi.org/10.1007/s11356-019-07445-4 731

Satriady, A., Alamsyah, W., Saad, A. H. I., & Hidayat, S. (2016). PENGARUH LUAS ELEKTRODA 732

TERHADAP KARAKTERISTIK BATERAI LiFePO4. Jurnal Material Dan Energi Indonesia, 733

06(02), 43–48. 734

Schwochau, K. (1984). Extraction of metals from sea water. In Inorganic Chemistry (pp. 91–133). 735

https://doi.org/10.1007/3-540-13534-0_3 736

Sedivy, V. M. (2009). Environmental balance of salt production speaks in favour of solar saltworks. 737

Global Nest Journal, 11(1), 41–48. https://doi.org/10.30955/gnj.000567 738

Siciliano, A., & De Rosa, S. (2014). Recovery of ammonia in digestates of calf manure through a 739

struvite precipitation process using unconventional reagents. Environmental Technology (United 740

Kingdom), 35(7), 841–850. https://doi.org/10.1080/09593330.2013.853088 741

Siciliano, Alessio. (2016). Assessment of fertilizer potential of the struvite produced from the treatment 742

of methanogenic landfill leachate using low-cost reagents. Environmental Science and Pollution 743

Research, 23(6), 5949–5959. https://doi.org/10.1007/s11356-015-5846-z 744

Siciliano, Alessio, Limonti, C., Curcio, G. M., & Molinari, R. (2020). Advances in struvite precipitation 745

technologies for nutrients removal and recovery from aqueous waste and wastewater. In 746

Sustainability (Switzerland) (Vol. 12, Issue 18). MDPI AG. https://doi.org/10.3390/su12187538 747

Sidik, R. F. (2013). Variasi Produk Pupuk Majemuk dari Limbah Garam (Bittern) dengan Pengatur 748

Basa Berbeda. Jurnal Kelautan, 6(2), 99–104. https://doi.org/10.11603/2312-0967.2013.2.2373 749

Somrani, A., Hamzaoui, A. H., & Pontie, M. (2013). Study on lithium separation from salt lake brines 750

by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination, 317, 184–192. 751

Page 68: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

https://doi.org/10.1016/j.desal.2013.03.009 752

Spanish Association of Sea Salt Producers (SALIMAR). (2019). Description Techniques Salt 753

Production. 754

https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetingDoc&doci755

d=34116 756

Sun, S. Y., Cai, L. J., Nie, X. Y., Song, X., & Yu, J. G. (2015). Separation of magnesium and lithium 757

from brine using a Desal nanofiltration membrane. Journal of Water Process Engineering, 7, 210–758

217. https://doi.org/10.1016/j.jwpe.2015.06.012 759

Sutiyono. (2006). PEMANFAATAN BITTERN SEBAGAI KOAGULAN PADA LIMBAH CAIR 760

INDUSTRI KERTAS. Jurnal Teknik Kimia, 1(1), 36–42. 761

Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested 762

dairy manure: A review of application potential and hindrances. Journal of Environmental 763

Management, 169, 46–57. https://doi.org/10.1016/j.jenvman.2015.12.006 764

Tewari, A., Joshi, H. V, Ragunathan, C., Trivedi, R. H., & Ghosh, P. K. (2003). The effect of sea brine 765

and bittern on survival and growth of mangrove Avicennia marina (Dicotyledones : 766

Avicenniaceae) Organocatalysis View project Ecology of the inter-tidal zone of the Saurashtra 767

Coast View project. Indian Journal of Marine Sciences, 32(1), 52–56. 768

https://www.researchgate.net/publication/242206751 769

Tovar, L. R., Gutierrez, M. E., & Cruz, G. (2002). Fluoride content by ion chromatography using a 770

suppressed conductivity detector and osmolality of bitterns discharged into the pacific ocean from 771

a saltworks: Feasible causal agents in the mortality of green turtles (Chelonia mydas) in the Ojo 772

de Liebre l. Analytical Sciences, 18(9), 1003–1007. https://doi.org/10.2116/analsci.18.1003 773

U.S Geological Survey. (2020). Mineral Commodity Summaries 2020. In U.S Departtment OF The 774

Interior, U.S Geological Survey (Issue 703). 775

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf 776

Wang, J., Ye, X., Zhang, Z., Ye, Z.-L., & Chen, S. (2018). Selection of cost-effective magnesium 777

sources for fluidized struvite crystallization. Journal of Environmental Sciences, 70, 144–153. 778

https://doi.org/10.1016/j.jes.2017.11.029 779

Page 69: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

Wang, S.-B., & Chen, K. Y. (1984). Bitterns as coagulants for treatment of color effluents. Journal of 780

the Chinese Institute of Engineers, 7(2), 109–118. 781

https://doi.org/10.1080/02533839.1984.9676769 782

Wen, X., Ma, P., Zhu, C., He, Q., & Deng, X. (2006). Preliminary study on recovering lithium chloride 783

from lithium-containing waters by nanofiltration. Separation and Purification Technology, 49, 784

230–236. https://doi.org/10.1016/j.seppur.2005.10.004 785

Xiao-Fu, G., Dan, L., Jian-Lu, L., Zong-Rui, W., Jun, W., Ying-Ying, Z., & Jun-Sheng, Y. (2020). 786

Separation of sodium and potassium using adsorption – elution/crystallization scheme from 787

bittern. Chemical Engineering Research and Design, 161, 72–81. 788

https://doi.org/10.1016/j.cherd.2020.06.028 789

Xu, H., & Deng, X. R. (2006). Preparation and properties of superfine Mg(OH)2 flame retardant. 790

Transactions of Nonferrous Metals Society of China (English Edition), 16(2), 488–492. 791

https://doi.org/10.1016/S1003-6326(06)60084-8 792

Yanuarita, D., Julaika, S., Malik, A., & Goa, J. L. (2017). PENGARUH PENAMBAHAN BITTERN 793

PADA LIMBAH CAIR DARI PROSES PENCUCIAN INDUSTRI PENGOLAHAN IKAN. 794

Jurnal IPTEK, 21(1), 43–50. 795

Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, X., Zhang, J., & Liang, S. (2020). 796

Nutrient recovery from wastewater: From technology to economy. In Bioresource Technology 797

Reports (Vol. 11, p. 100425). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2020.100425 798

Ye, Z. L., Chen, S. H., Lu, M., Shi, J. W., Lin, L. F., & Wang, S. M. (2011). Recovering phosphorus as 799

struvite from the digested swine wastewater with bittern as a magnesium source. Water Science 800

and Technology, 64(2), 334–340. https://doi.org/10.2166/wst.2011.720 801

Zuchrillah, D. R., & Julaika, S. (2017). PENGARUH SUHU DAN WAKTU FURNACE DALAM 802

PEMBUATAN MgCl 2 .6H 2 O DARI BITTERN. Seminar Nasional Sains Dan Teknologi 803

Terapan V, 189–194. 804

805

806

Page 70: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

12

B

un

ga

Ra

mp

ai

……

……

.

Pen

uli

s

Ars

eto

Yekti

B

ag

ast

yo

ad

ala

h

seo

ran

g d

ose

n d

an

pen

elit

i b

era

filiasi

di

Dep

art

em

en

Tekn

ik

Lin

gku

ng

an

,

Faku

ltas

Tekn

ik S

ipil,

Pere

nca

naan

dan

Keb

um

ian

(C

ivp

lan

),

Inst

itu

t Tekn

olo

gi

Sep

ulu

h

No

pem

ber

(ITS),

Su

rab

aya

.

Pen

ulis

m

en

yele

saik

an

st

ud

i p

rog

ram

sarj

an

a t

ah

un

2004 d

an

mag

iste

r ta

hu

n

2006 b

idan

g T

ekn

ik L

ing

ku

ng

an

di

ITS,

sert

a p

rog

ram

MP

hil

tah

un

2009 d

an

Ph

D t

ah

un

2013 b

idan

g T

ekn

ik K

imia

di

the U

niv

ers

ity

of

Qu

een

slan

d, A

ust

ralia.

Saat

ini

(2020), m

en

gem

ban

am

an

ah

seb

ag

ai

kep

ala

Lab

ora

tori

um

Pen

gelo

laan

Lim

bah

Pad

at

dan

Lim

bah

B3 d

i D

ep

art

em

en

Tekn

ik L

ing

ku

ng

an

ITS.

Pen

ulis

b

erp

era

n

akti

f d

ala

m

berb

ag

ai

pen

eliti

an

d

an

p

roje

ct

kerj

asa

ma

dala

m

neg

eri

m

au

pu

n

luar

neg

eri

b

aik

se

bag

ai

ketu

a

mau

pu

n

an

gg

ota

. B

eb

era

pa

hasi

l p

en

elit

ian

ya

ng

d

ihasi

lkan

te

lah

dip

ub

likasi

kan

dala

m ju

rnal n

asi

on

al m

au

pu

n in

tern

asi

on

al b

ere

pu

tasi

,

sert

a

dala

m

sem

inar/

ko

nfe

ren

si

ilmia

h

nasi

on

al

dan

in

tern

asi

on

al.

Bid

an

g p

en

gaja

ran

, p

en

eliti

an

dan

pen

gab

dia

n p

ad

a m

asy

ara

kat

yan

g

dit

eku

ni

an

tara

la

in:

pen

go

lah

an

fisi

k

dan

kim

iaw

i lim

bah

in

du

stri

,

tekn

olo

gi

ele

ktr

okim

ia

dala

m

pen

era

pan

nya

d

i b

idan

g

tekn

ik

ling

ku

ng

an

, re

sou

rce

reco

very

, w

ast

e(w

ate

r)

reu

se

an

d

recy

clin

g,

pen

gelo

laan

lim

bah

pad

at

dan

pen

gelo

laan

lim

bah

B3.

Pen

ulis

dap

at

dih

ub

un

gi m

ela

lui ala

mat

e-m

ail b

ag

ast

yo@

en

viro

.its.

ac.

id.

KA

JIA

N P

OT

EN

SI

PEM

AN

FA

AT

AN

LIM

BA

H A

IR T

UA

MEN

JA

DI

BA

HA

N

BA

KU

KIM

IA D

EN

GA

N M

EN

GG

UN

AK

AN

TEK

NO

LO

GI

ELEK

TR

OD

IALIS

IS D

AN

PR

ES

IPIT

AS

I

Ars

eto

Yekt

i B

agast

yo, P

hD

; D

iah S

usa

nti

, P

hD

; E

rvin

Nurh

ayati

, P

hD

; ID

AA

Warm

adew

anth

i, P

hD

;

1. P

en

da

hu

lua

n

Seca

ra

um

um

, p

rose

s p

rod

uksi

d

i in

du

stri

g

ara

m

men

gh

asi

lkan

lim

bah

beru

pa l

aru

tan

peka

t, y

an

g d

iseb

ut

den

gan

air

tu

a,

seb

ag

ai

pro

du

k s

am

pin

g s

ete

lah

pro

ses

pen

gu

ap

an

d

an

kri

stalis

asi

g

ara

m.

Pem

bu

an

gan

se

cara

lan

gsu

ng

ke

ling

ku

ng

an

p

era

iran

akan

m

em

beri

kan

dam

pak n

eg

ati

f te

rhad

ap

kese

imb

an

gan

osm

oti

k b

iota

air

,

teru

tam

a

pad

a

eko

sist

em

d

i se

kit

ar

titi

k

pem

bu

an

gan

akib

at

pen

ing

kata

n k

on

sen

trasi

gara

m m

inera

l (T

ew

ari

et

al.,

2003).

Pili

han

te

kn

olo

gi

pen

go

lah

an

p

un

sa

ng

at

terb

ata

s d

ikare

naka

n ad

an

ya ko

nse

ntr

asi

to

tal

pad

ata

n

terl

aru

t ya

ng

cu

kup

ti

ng

gi

dala

m

limb

ah

air

tu

a

mem

bu

tuh

kan

en

erg

i m

au

pu

n t

eka

nan

yan

g c

uku

p b

esa

r

un

tuk m

en

gh

ilan

gka

n p

olu

tan

ters

eb

ut.

Di

sisi

la

in,

limb

ah

air

tu

a

ini

seb

en

arn

ya

mem

iliki

kan

du

ng

an

m

ag

nesi

um

, n

atr

ium

, kaliu

m

dan

kals

ium

Page 71: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

2

Bu

ng

a R

am

pa

i …

……

….

dala

m k

on

sen

trasi

tin

gg

i (H

ap

sari

, 2008a;

Xia

o-F

u e

t al.,

2020).

Seb

ag

ai

con

toh

, ko

nse

ntr

asi

kaliu

m

dan

mag

nesi

um

masi

ng

-masi

ng

bis

a m

en

cap

ai 86 g

/L d

an

32

g/L

pad

a li

mb

ah

air

tu

a d

ari

ind

ust

ri g

ara

m (H

ap

sari

, 2007;

2008a;

2008b

). K

an

du

ng

an

min

era

l in

i b

erp

ote

nsi

un

tuk

dap

at

dim

an

faatk

an

kem

bali

men

jad

i p

rod

uk l

ain

yan

g

mem

iliki

added

va

lue,

se

hin

gg

a

ko

nse

p

pen

go

lah

an

limb

ah

air

tu

a

dap

at

berf

oku

s p

ad

a

pro

ses

reco

very

min

era

l g

ara

m y

an

g m

asi

h t

ers

isa d

ala

m lim

bah

ters

eb

ut.

Seh

ing

ga,

dih

ara

pkan

lim

bah

air

tu

a

sud

ah

akan

men

gala

mi

pen

uru

nan

ko

nse

ntr

asi

min

era

l d

an

vo

lum

e

un

tuk

dap

at

mem

en

uh

i b

aku

m

utu

lin

gku

ng

an

ya

ng

dip

ers

yara

tkan

.

Beb

era

pa t

ekn

olo

gi r

ecove

ry li

mb

ah

meru

pakan

pro

ses

fisi

k-k

imia

wi

beru

pa

pro

ses

pem

isah

an

se

nya

wa

ion

ik,

pro

ses

kri

stalis

asi

, dan

pro

ses

pem

isah

an

pad

ata

n. B

eri

ku

t

ini

ula

san

m

en

gen

ai

tekn

olo

gi

ele

ktr

od

ialis

is

dan

pre

sip

itasi

yan

g d

ap

at

dig

un

akan

seb

ag

ai a

ltern

ati

f p

rose

s

reco

very

lim

bah

air

tu

a.

2.

Alt

ern

ati

f T

ek

no

log

i Recovery

Lim

ba

h A

ir

Tu

a

2.1

. M

em

bra

n E

lek

tro

dia

lisi

s

Mem

bra

ne

ele

ktr

od

ialis

is

meru

pakan

sa

lah

sa

tu

meto

de re

cove

ry lim

bah

air

tu

a d

en

gan

m

en

gg

un

akan

mem

bra

n s

em

iperm

eab

el

terh

ad

ap

io

n t

ert

en

tu d

en

gan

Bu

ng

a R

am

pa

i …

……

…. 1

1

TE

KN

IK –

Ju

rna

l Il

mia

h B

ida

ng

Ilm

u K

ere

ka

ya

saa

n,

33

(2).

66

–7

0.

Te

wa

ri,

A.,

H.V

. Jo

shi,

C.

Ra

gu

na

tha

n,

R.H

. T

riv

ed

i, d

an

P.K

.

Gh

osh

(2

00

3).

Th

e e

ffe

ct o

f se

a b

rin

e a

nd

bit

tern

on

surv

iva

l a

nd

g

row

th

of

ma

ng

rov

e

Av

ice

nn

ia

ma

rin

a

(Dic

oty

led

on

es 

: A

vic

en

nia

cea

e).

In

dia

n J

ou

rna

l o

f G

eo

-

Ma

rin

e S

cie

nce

s, 3

2(1

). 5

2–

56

.

Xia

o-F

u,

G.,

L. D

an

, L.

Jia

n-L

u,

W.

Zo

ng

-Ru

i, W

. Ju

n,

Z.

Yin

g-Y

ing

,

da

n

Y.

Jun

-Sh

en

g

(20

20

).

Se

pa

rati

on

o

f so

diu

m

an

d

po

tass

ium

u

sin

g

ad

sorp

tio

n

elu

tio

n/c

ryst

all

iza

tio

n

sch

em

e

fro

m

bit

tern

. C

he

mic

al

En

gin

ee

rin

g

Re

sea

rch

an

d D

esi

gn

, 1

61

. 7

2–

81

.

Ye

, Z

.L.,

S.H

. C

he

n,

M.

Lu,

J.W

. S

hi,

L.F

. Li

n,

da

n S

.M.

Wa

ng

(20

11

).

Re

cov

eri

ng

p

ho

sph

oru

s a

s st

ruv

ite

fr

om

th

e

dig

est

ed

sw

ine

wa

ste

wa

ter

wit

h b

itte

rn a

s a

ma

gn

esi

um

sou

rce

. W

ate

r S

cie

nce

an

d T

ech

no

log

y,

64

(2).

33

4–

34

0.

Zu

chri

lla

h,

D.R

.,

da

n

S.

Jula

ika

(2

01

7).

P

en

ga

ruh

su

hu

d

an

wa

ktu

fu

rna

ce

da

lam

p

em

bu

ata

n

Mg

Cl 2

.6H

2O

d

ari

bit

tern

. Se

min

ar

Na

sio

na

l S

ain

s d

an

Te

kn

olo

gi

Te

rap

an

V.

18

9–

19

4.

Page 72: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

10

B

un

ga

Ra

mp

ai

……

……

.

Ha

psa

ri,

N.

(20

07

). P

rose

s p

em

isa

ha

n i

on

K (

ka

liu

m)

da

n C

a

(ca

lsiu

m)

da

lam

bit

tern

de

ng

an

me

mb

ran

ele

ktr

od

iali

sis.

Jurn

al

Re

ka

ya

sa P

ere

nca

na

an

, 4

(1).

1–

11

.

Ha

psa

ri, N

. (2

00

8a

). P

en

ga

mb

ila

n m

ine

ral e

lekt

roli

t d

ari

lim

ba

h

ga

ram

(b

itte

rn)

un

tuk

sup

lem

en

min

era

l io

nik

pa

da

air

min

um

. Ju

rna

l T

ek

nik

Kim

ia,

2(2

). 1

41

–1

46

.

Ha

psa

ri,

N.

(20

08

b).

Pro

ses

pe

mis

ah

an

io

n n

atr

ium

(N

a)

da

n

ma

gn

esi

um

d

ala

m

bit

tern

(b

ua

ng

an

) in

du

stri

g

ara

m.

Jurn

al

Te

kn

ik K

imia

, 3

(1).

19

2–

19

8.

Lee

, S.I

., S

.Y. W

eo

n, C

.W. L

ee

, da

n B

. Ko

op

ma

n (

20

03

). R

em

ov

al

of

nit

rog

en

an

d p

ho

sph

ate

fro

m w

ast

ew

ate

r b

y a

dd

itio

n

of

bit

tern

. C

he

mo

sph

ere

, 5

1(4

). 2

65

–2

71

.

Ma

rih

ati

(2

00

7).

Pe

mis

ah

an

ma

gn

esi

um

da

ri l

aru

tan

bit

tern

de

ng

an

ca

ra

ele

ktro

lisa

u

ntu

k

me

ng

ha

silk

an

se

ny

aw

a

ma

gn

esi

um

hid

rok

sid

a.

Jou

rna

l o

f In

du

stri

al

Re

sea

rch

,

1(1

), 1

–6

.

Na

, C

.K.,

H.

Pa

rk,

da

n E

.H.

Jho

(2

01

7).

Uti

liza

tio

n o

f w

ast

e

bit

tern

fro

m s

alt

ern

as

a s

ou

rce

fo

r m

ag

ne

siu

m a

nd

an

ab

sorb

en

t fo

r ca

rbo

n

dio

xid

e

cap

ture

. E

nvir

on

me

nta

l

Sci

en

ce a

nd

Po

llu

tio

n R

ese

arc

h,

24

(2),

22

98

0–

22

98

9.

Na

dia

, M

., M

. Z

ain

uri

, d

an

M.

Efe

nd

y (

20

15

). P

roto

typ

e p

up

uk

mu

ltin

utr

ien

t b

erb

asi

s p

ho

spa

te b

erb

ah

an

da

sar

limb

ah

ga

ram

(b

itte

rn)

seb

ag

ai

alt

ern

ati

f so

lusi

p

en

um

bu

h

pa

ka

n a

lam

i. J

urn

al

Ke

lau

tan

, 8

(2).

77

–8

2.

Sa

ng

ha

vi,

R.J

., R

. D

ob

ari

ya,

S.

Bh

att

i, d

an

A.

Ku

ma

r (2

02

0).

Pre

pa

rati

on

o

f h

igh

-pu

rity

m

ag

ne

siu

m-a

mm

on

ium

-

ph

osp

ha

te

fert

iliz

er

usi

ng

se

a

bit

tern

a

nd

in

du

stri

al

wa

ste

st

rea

ms.

E

nvir

on

me

nta

l S

cie

nce

a

nd

P

oll

uti

on

Re

sea

rch

, 2

7.

77

20

–7

72

8.

Su

ma

rno

, R

atn

aw

ati

, d

an

A.

Nu

gro

ho

(2

01

2).

Re

cov

ery

ga

ram

lith

ium

da

ri a

ir a

sin

(b

rin

e)

de

ng

an

me

tod

a p

resi

pit

asi

.

Bu

ng

a R

am

pa

i …

……

…. 3

ban

tuan

aru

s lis

trik

se

bag

ai

dri

vin

g

forc

e.

Besa

ran

ko

nse

ntr

asi

, w

aktu

o

pera

si,

luas

pen

am

pan

g m

em

bra

n,

sert

a

aru

s lis

trik

m

au

pu

n

teg

an

gan

m

em

pen

garu

hi

besa

rnya

p

ers

en

tase

re

cove

ry su

atu

io

n.

Hap

sari

(2

007;

2008b

) m

en

gu

ji efe

kti

fita

s p

rose

s ele

ktr

od

ialis

is

un

tuk

reco

very

io

n k

aliu

m,

natr

ium

, m

ag

nesi

um

, se

rta k

als

ium

dari

lim

bah

air

tu

a

ind

ust

ri

gara

m,

yan

g

dap

at

dim

an

faatk

an

se

bag

ai

sum

ber

alt

ern

ati

f su

ple

men

io

n

min

era

l p

ad

a

air

m

inu

m.

Den

gan

en

erg

i lis

trik

bert

eg

an

gan

op

tim

um

seb

esa

r 2.3

vo

lt s

ela

ma 3

0 m

en

it,

did

ap

atk

an

rec

ove

ry i

on

kaliu

m d

an

io

n n

atr

ium

seb

esa

r

masi

ng

-masi

ng

92.9

%

dan

74.7

%.

Sed

an

gka

n

un

tuk

reco

very

io

n m

ag

nesi

um

d

an

io

n kals

ium

, en

erg

i lis

trik

op

tim

um

ad

ala

h s

eb

esa

r 2.5

vo

lt d

an

2.7

vo

lt s

ela

ma 6

0-

90 m

en

it d

en

gan

m

asi

ng

-masi

ng

m

en

cap

ai

91.9

% d

an

96.2

%

reco

very

. A

dap

un

d

en

gan

w

aktu

o

pera

si

pro

ses

dip

erp

an

jan

g

hin

gg

a

150

men

it

men

un

jukkan

pen

ing

kata

n e

fekti

fita

s re

cove

ry, n

am

un

tid

ak m

em

beri

kan

hasi

l ya

ng

si

gn

ifik

an

. H

al

yan

g

sam

a

berl

aku

b

ah

wa

sem

akin

b

esa

r te

gan

gan

, m

aka

waktu

o

pera

si

yan

g

dib

utu

hkan

akan

se

makin

si

ng

kat,

d

an

m

en

ing

katk

an

efe

kti

fita

s re

cove

ry w

ala

up

un

tid

ak t

erl

alu

sig

nif

ikan

.

Sela

in

pro

du

k

reco

very

m

inera

l d

ari

lim

bah

air

tu

a

dala

m b

en

tuk io

n t

erl

aru

t, p

rose

s m

em

bra

n e

lektr

od

ialis

is

jug

a

berp

ote

nsi

m

en

gh

asi

lkan

p

rod

uk

reco

very

d

ala

m

ben

tuk

pad

ata

n

min

era

l o

ksi

da,

seb

ag

ai

con

toh

mag

nesi

um

hid

oksi

da, M

g(O

H) 2

d

an

mag

nesi

um

oksi

da,

Mg

O.

Sela

nju

tnya

, b

aik

Mg

(OH

) 2

mau

pu

n M

gO

dap

at

dig

un

akan

se

bag

ai

iso

lato

r,

pu

pu

k,

bah

an

b

aku

kim

ia

Page 73: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

4

Bu

ng

a R

am

pa

i …

……

….

un

tuk

pro

ses

ind

ust

ri

tekst

il ra

yon

, p

en

go

lah

air

,

pem

bu

ata

n kert

as,

b

ah

an

alk

alis

d

an

fa

rmasi

(M

ari

hati

,

2007).

P

rod

uk r

ecove

ry t

ers

eb

ut

dap

at

dih

asi

lkan

dari

reaksi

an

tara

io

n m

ag

nesi

um

dari

lim

bah

den

gan

io

n h

idro

ksi

da

yan

g d

ihasi

lkan

dari

pro

ses

red

uksi

ele

ktr

olis

is a

ir, s

eb

ag

ai

pen

yeim

ban

g d

ihasi

lkan

nya

gas

hid

rog

en

, p

ad

a b

ag

ian

kato

da

(berm

uata

n

neg

ati

f).

Am

rullo

h

et

al.

(2019)

men

dap

atk

an

h

asi

l re

cove

ry

beru

pa

pad

ata

n

Mg

(OH

) 2

seb

esa

r 34.8

% (

seta

ra d

en

gan

15.9

g d

ari

100 m

L lim

bah

air

tu

a p

ekat)

yan

g d

iola

h d

en

gan

teg

an

gan

18 v

olt

sela

ma

10

jam

. Sela

nju

tnya

, kem

urn

ian

p

rod

uk

reco

very

ya

ng

leb

ih

tin

gg

i, ya

itu

63.8

%,

did

ap

atk

an

keti

ka

dila

ku

kan

pro

ses

pad

a li

mb

ah

air

tu

a e

nce

r d

en

gan

teg

an

gan

18 v

olt

sela

ma 1

3 j

am

. A

dap

un

pro

du

k s

am

pin

gan

(by-

pro

du

cts)

lain

ad

ala

h

beru

pa

pad

ata

n

CaC

O3

dan

N

aC

l m

asi

ng

-

masi

ng

seb

esa

r 25.4

7%

dan

10.6

9%

.

Sete

lah

did

ap

atk

an

pro

du

k r

ecove

ry y

an

g t

erp

isah

dari

limb

ah

air

tu

a,

maka u

ntu

k le

bih

m

em

urn

ikan

p

rod

uk

dap

at

dila

ku

kan

p

rose

s akh

ir b

eru

pa kals

inasi

. Seb

ag

ai

con

toh

, p

rose

s ele

ktr

oki

mia

ya

ng

d

ilan

jutk

an

d

en

gan

pro

ses

kals

inasi

p

ad

a

suh

u

500°C

se

lam

a

4

jam

men

gh

asi

lkan

kem

urn

ian

mag

nesi

um

hid

roksi

da s

eb

esa

r

91.2

% (A

mru

lloh

et al.,

2020). N

am

un

dem

ikia

n, e

nerg

i dan

bia

ya p

rose

s p

erl

u m

en

jad

i p

erh

ati

an

dan

pert

imb

an

gan

dari

seg

i eko

no

mi.

Bu

ng

a R

am

pa

i …

……

…. 9

P

rose

s p

resi

pit

asi

ju

ga

dap

at

dila

kukan

m

ela

lui

pen

cam

pu

ran

lim

bah

air

tu

a t

ers

eb

ut

den

gan

air

lim

bah

lain

yan

g m

en

gan

du

ng

am

on

ium

dan

fo

sfat

den

gan

do

sis

tert

en

tu u

ntu

k m

em

ben

tuk p

rod

uk s

tru

vite

. Pem

ben

tukan

stru

vite

dap

at

dija

dik

an

sala

h s

atu

alt

ern

ati

f p

en

go

lah

an

limb

ah

ya

ng

ti

dak

han

ya

men

gu

ran

gi

volu

me

dan

ko

nse

ntr

asi

po

luta

n l

imb

ah

hasi

l p

rod

uksi

gara

m,

teta

pi

men

gu

ran

gi p

en

cem

ar

lain

nya

yan

g b

eru

pa a

mo

niu

m d

an

fosf

at

ag

ar

tid

ak m

en

yeb

ab

kan

perm

asa

lah

an

lin

gku

ng

an

yan

g b

aru

.

N

am

un

dem

ikia

n,

ko

nse

p t

ekn

olo

gi

reco

very

in

i p

erl

u

dik

aji

leb

ih

lan

jut

ag

ar

dap

at

dik

em

ban

gkan

d

ala

m

pen

era

pan

bers

kala

besa

r. S

eh

ing

ga, p

ad

a a

kh

irn

ya d

ap

at

men

du

ku

ng

p

em

ban

gu

nan

in

frast

ruktu

r in

du

stri

ya

ng

berw

aw

asa

n lin

gku

ng

an

dan

berk

ela

nju

tan

.

Da

fta

r P

ust

ak

a

Am

rull

oh

H.,

W.

Sim

an

jun

tak

, R

.T.M

. S

itu

me

an

g,

S.L

. S

ag

ala

, R

.

Bra

ma

wa

nto

, d

an

R.

Na

hro

wi

(20

19

). E

ffe

ct o

f d

ilu

tio

n

an

d e

lect

roly

sis

tim

e o

n r

eco

ve

ry o

f M

g2

+ a

s M

g(O

H) 2

fro

m b

itte

rn b

y e

lect

roch

em

ica

l m

eth

od

. T

he

Jo

urn

al

of

Pu

re a

nd

Ap

pli

ed

Ch

em

istr

y R

ese

arc

h,

8(1

). 8

7–

95

.

Am

rull

oh

H.,

W.

Sim

an

jun

tak

, R

.T.M

. S

itu

me

an

g,

S.L

. S

ag

ala

, R

.

Bra

ma

wa

nto

, A

. F

ati

qin

, R

. N

ah

row

i,

da

n

M.

Zu

nia

ti

(20

20

).

Pre

pa

rati

on

o

f n

an

o-m

ag

ne

siu

m

oxi

de

fr

om

Ind

on

esi

a

loca

l se

aw

ate

r b

itte

rn

usi

ng

th

e

ele

ctro

che

mic

al

me

tho

d.

Ino

rga

nic

a

nd

N

an

o-M

eta

l

Ch

em

istr

y,

50

(8).

69

3–

69

8.

Page 74: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

8

Bu

ng

a R

am

pa

i …

……

….

dan

p

resi

pit

asi

se

bag

ai

alt

ern

ati

f te

kn

olo

gi

reco

very

limb

ah

air

tu

a

dan

b

eb

era

pa

po

ten

si

pro

du

k

pem

an

fata

an

nya

.

Gam

bar

1. K

on

sep

rec

ove

ry lim

bah

air

tu

a d

an

po

ten

si p

rod

uk

pem

an

faata

nn

ya

P

rose

s m

em

bra

n e

lektr

od

ialis

is m

em

an

faatk

an

en

erg

i

listr

ik

un

tuk

men

ing

katk

an

se

lekti

fita

s io

n-i

on

m

inera

l

terl

aru

t ya

ng

mam

pu

mem

isah

kan

an

tara

targ

et

pro

du

k

reco

very

d

en

gan

io

n-i

on

“p

en

go

tor”

la

inn

ya,

seh

ing

ga

dap

at

men

ing

katk

an

ke

mu

rnia

n

pro

du

k.

Bila

p

rod

uk

reco

very

dik

eh

en

daki d

ala

m b

en

tuk p

ad

ata

n, m

aka

pro

ses

ini

dap

at

dik

om

bin

asi

kan

d

en

gan

p

rose

s p

resi

pit

asi

kim

iaw

i d

en

gan

men

gatu

r ko

nd

isi

pH

, p

en

gad

ukan

dan

rasi

o m

ola

r p

rod

uk.

Seb

ag

ai

alt

ern

ati

f, p

rose

s kals

inasi

den

gan

m

en

gatu

r p

em

an

faata

n

en

erg

i p

an

as

dap

at

dig

un

akan

.

Bu

ng

a R

am

pa

i …

……

…. 5

2.2

. P

resi

pit

asi

P

ad

ata

n m

ag

nesi

um

ju

ga d

ap

at

dih

asi

lkan

dari

pro

ses

pre

sip

itasi

an

tara

lim

bah

air

tu

a

den

gan

p

en

am

bah

an

NaO

H

(Na

et

al.,

2017).

Pro

ses

pre

sip

itasi

d

ilaku

kan

den

gan

p

en

gatu

ran

p

H

9.5

-10

den

gan

p

en

am

bah

an

NaO

H u

ntu

k m

en

dap

atk

an

rasi

o m

ola

r N

aO

H:M

g p

ad

a

ren

tan

g 0

.7-2

.8.

Sete

lah

pen

gad

uka

n s

ela

ma 2

jam

dan

dila

nju

tkan

p

rose

s p

en

gen

dap

an

se

lam

a

12

jam

,

did

ap

atk

an

mag

nesi

um

hid

roksi

da s

eb

esa

r 100.3

g p

er

liter

limb

ah

den

gan

rasi

o o

pti

mu

m N

aO

H:M

g a

dala

h 2

.53.

Ko

mb

inasi

p

rose

s p

resi

pit

asi

d

en

gan

kals

inasi

ju

ga

dap

at

dila

kukan

u

ntu

k

men

dap

atk

an

p

rod

uk

reco

very

.

Seb

ag

ai

con

toh

, p

resi

pit

asi

8.5

%

limb

ah

air

tu

a

dan

pen

am

bah

an

NaO

H 7

.51%

den

gan

pen

gad

ukan

sela

ma 1

jam

pad

a k

ece

pata

n 3

00 r

pm

, dap

at

men

gh

asi

lkan

ad

ala

h

11.4

8%

en

dap

an

M

g(O

H) 2

. Sela

nju

tnya

, p

en

am

bah

an

NaC

l 3.5

%

ke

dala

m

en

dap

an

te

rseb

ut

den

gan

ca

ra

pen

gad

uka

n p

ad

a s

uh

u 1

10°C

sela

ma 3

jam

kem

ud

ian

dib

ilas

dan

dik

eri

ng

kan

, akan

men

gh

asi

lkan

Mg

Cl 2

. Pro

ses

kals

inasi

d

en

gan

su

hu

o

pti

mu

m

terj

ag

a

pad

a

150°C

sela

ma 6

0 m

en

it m

en

gh

asi

lkan

100%

Mg

Cl 2

.6H

2O

. Pro

du

k

ini

dap

at

dig

un

akan

seb

ag

ai

bah

an

baku

pad

a i

nd

ust

ri

farm

asi

, p

en

go

ntr

ol

ero

si

dan

d

eb

u,

pen

gen

dalia

n

es,

mate

rial

pen

yim

pan

an

u

ntu

k

hid

rog

en

, d

an

in

du

stri

makan

an

min

um

an

(Z

uch

rilla

h d

an

Ju

laik

a, 2

017).

Mag

nesi

um

kaliu

m f

osf

at

(Mg

KP

O4)

meru

paka

n s

ala

h

satu

ben

tuk p

rod

uk p

up

uk y

an

g d

ihasi

lkan

dari

pre

sip

itasi

limb

ah

air

tu

a m

ela

lui

pen

am

bah

an

NaO

H d

an

Na

2H

PO

4.

Page 75: LAPORAN AKHIR PENELITIAN UNGGULAN DASAR DANA ITS 2020

6

Bu

ng

a R

am

pa

i …

……

….

Pro

ses

pen

cam

pu

ran

Na

2H

PO

4 4

00 m

L, N

aO

H 3

50 m

L d

an

limb

ah

air

tu

a 2

50 m

L d

ap

at

men

gh

asi

lkan

mass

a M

gK

PO

4

seb

esa

r 82.9

973 g

(N

ad

ia e

t al.,

2015)

yan

g d

iman

faatk

an

seb

ag

ai n

ilai ta

mb

ah

dala

m b

ud

idaya

ikan

ban

den

g. H

asi

l

pen

elit

ian

m

en

un

jukka

n b

ah

wa ta

mb

ak ya

ng

d

iberi

kan

pro

du

k

reco

very

p

up

uk

Mg

KP

O4

mem

beri

kan

pert

um

bu

han

ya

ng

b

aik

, ya

itu

p

en

ing

kata

n b

era

t d

an

pan

jan

g ikan

ban

den

g.

Seb

ag

ai

tam

bah

an

, kan

du

ng

an

m

ag

nesi

um

ya

ng

tin

gg

i d

i d

ala

m lim

bah

air

tu

a b

erp

ote

nsi

seb

ag

ai s

um

ber

mag

nesi

um

dala

m p

rose

s p

resi

pit

asi

un

tuk m

en

gh

asi

lkan

pro

du

k

min

era

l st

ruvi

te,

Mg

NH

4.P

O4.6

H2O

, su

mb

er

alt

ern

ati

f p

up

uk f

osf

at

bers

ifat

slow

rel

ease

fer

tilize

r, y

an

g

berm

an

faat

bag

i p

ert

um

bu

han

ta

nam

an

. P

em

ben

tukan

stru

vite

berg

an

tun

g d

en

gan

fakto

r p

H d

an

rasi

o m

ola

r.

Str

uvi

te d

ap

at

terb

en

tuk

an

tara

ren

tan

g p

H 8

hin

gg

a 9

.6

(Lee e

t al.,

2003; Y

e e

t al.,

2011)

. Sem

akin

tin

gg

i p

H a

kan

men

gu

ran

gi

kem

urn

ian

d

ari

st

ruvi

te

yan

g

terb

en

tuk

kare

na

mem

iliki

kem

un

gkin

an

d

en

gan

te

rben

tukn

ya

pre

sip

itat

lain

se

pert

i kals

ium

fo

sfat

(Ye

et

al.,

2011).

Str

uvi

te

dap

at

terb

en

tuk

den

gan

p

en

am

bah

an

b

itte

rn

den

gan

ju

mla

h

tert

en

tu

ked

ala

m

air

lim

bah

ya

ng

men

gan

du

ng

am

on

ium

d

an

fo

sfat

sep

ert

i bio

logic

ally

trea

ted s

win

e w

ast

ewate

r, l

imb

ah

in

du

stri

pu

pu

k m

au

pu

n

limb

ah

in

du

stri

zat

warn

a (

Lee e

t al.,

2003; Y

e e

t al.,

2011;

San

gh

avi

et

al.,

2020). S

tru

vite

yan

g d

ihasi

lkan

den

gan

rasi

o m

ola

r M

g2+:N

H4+:P

O43- 1

:1:1

ad

ala

h 7

6 g

, sed

an

gkan

den

gan

rasi

o 1

:0.5

:1 m

en

gh

asi

lkan

str

uvi

te 7

0 g

.

Bu

ng

a R

am

pa

i …

……

…. 7

Pro

du

k la

in ya

ng

d

ihasi

lkan

d

ari

p

rose

s p

resi

pit

asi

limb

ah

air

tu

a

ad

ala

h

reco

very

lit

ium

se

bag

ai

litiu

m

alu

min

at

den

gan

m

en

am

bah

kan

n

atr

ium

alu

min

at

NaA

lO2.

Fakto

r p

H b

erp

era

n p

en

tin

g d

i m

an

a p

H l

aru

tan

terl

alu

b

asa

m

aka lit

ium

ya

ng

te

lah

te

ren

dap

kan

akan

terl

aru

t kem

bali

men

jad

i N

aA

lO2 d

an

H2O

seb

ag

ai

LiO

H.

Sem

akin

la

ma d

an

b

esa

r ko

nse

ntr

asi

n

atr

ium

alu

min

at

yan

g

dit

am

bah

kan

m

aka

aka

n

men

gh

asi

lkan

re

cove

ry

litiu

m y

an

g s

em

akin

besa

r. P

rose

s o

pti

mu

m r

ecove

ry li

tiu

m

seb

esa

r 2.1

7 g

lit

ium

ad

ala

h p

ad

a p

H 1

3,

den

gan

waktu

pen

gad

uka

n 3 ja

m se

rta ko

nse

ntr

asi

n

atr

ium

alu

min

at

seb

esa

r 500

mg

/L.

Pro

du

k

litiu

m

sela

nju

tnya

d

ap

at

dim

an

faatk

an

se

bag

ai

bah

an

b

aku

in

du

stri

b

ate

rai

rech

arg

eable

, lo

gam

allo

y u

ntu

k p

esa

wat,

dan

bah

an

baka

r

nu

klir

fu

si (

Su

marn

o e

t al.,

2012).

3.

Rin

gk

asa

n

K

on

sep

pen

go

lah

an

lim

bah

sela

yakn

ya b

erf

oku

s p

ad

a

pro

ses

reco

very

ke

tika lim

bah

te

rseb

ut

masi

h m

em

iliki

kan

du

ng

an

m

inera

l ya

ng

cu

ku

p

tin

gg

i, d

ala

m

hal

ini

limb

ah

air

tu

a y

an

g d

ihasi

lkan

dari

pro

ses

ind

ust

ri g

ara

m.

Den

gan

men

era

pkan

tekn

olo

gi re

cove

ry y

an

g t

ep

at,

maka

dih

ara

pka

n l

imb

ah

air

tu

a d

ap

at

dim

an

faatk

an

men

jad

i

added

-valu

e pro

du

cts

beru

pa

bah

an

b

aku

kim

ia

yan

g

men

du

ku

ng

p

rose

s in

du

stri

la

in

dan

lim

bah

ya

ng

mem

en

uh

i b

aku

m

utu

lin

gku

ng

an

. G

am

bar

1

men

un

jukka

n k

on

sep

pen

era

pan

mem

bra

n e

lektr

od

ialis

is