47
- 1 - INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS MAESTRÍA EN CIENCIAS QUIMICOBIOLÓGICAS DEPARTAMENTO DE FISIOLOGÍA EFECTO DE LA ADMINISTRACIÓN SUBCRÓNICA DE LA APAMINA EN RATAS VIEJAS SOBRE LA MORFOLOGÍA NEURONAL DE LA CORTEZA PREFRONTAL, NÚCLEO ACCUMBENS E HIPOCAMPO VENTRAL Tesis PRESENTA ALEJANDRA ROMERO CURIEL DIRECTORES DE TESIS DR. SERGIO ROBERTO ZAMUDIO HERNÁNDEZ DR. GONZALO FLORES ÁLVAREZ

INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 1 -

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS

MAESTRÍA EN CIENCIAS QUIMICOBIOLÓGICAS

DEPARTAMENTO DE FISIOLOGÍA

EFECTO DE LA ADMINISTRACIÓN SUBCRÓNICA DE LA APAMINA EN RATAS VIEJAS SOBRE LA MORFOLOGÍA NEURONAL DE LA CORTEZA PREFRONTAL, NÚCLEO

ACCUMBENS E HIPOCAMPO VENTRAL

Tesis

PRESENTA ALEJANDRA ROMERO CURIEL

DIRECTORES DE TESIS DR. SERGIO ROBERTO ZAMUDIO HERNÁNDEZ

DR. GONZALO FLORES ÁLVAREZ

Page 2: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 2 -

Page 3: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 3 -

ÍNDICE

1.

Abreviaturas 4

2. Abstract 5

3. Resumen 6

4. Introducción 7

4.1 Apamina 7

4.2 Efectos sobre canales de K+ dependientes de Ca2+ 8

4.3 Corteza prefrontal 9

4.4 Núcleo Accumbens 10

4.5 Hipocampo 11

5. Justificación 13

6. Hipótesis 14

7. Objetivos 15

7.1 Objetivo general 15

7.2 Objetivos particulares 15

8. Diagrama de trabajo 16

9. Metodología 17

9.1 Modelo animal 17

9.2 Material químico 17

9.3 Actividad locomotora 17

9.4 Estudios morfológicos 18

9.4.1 Protocolo de la tinción de Golgi-Cox 19

9.4.2 Protocolo de revelado de la tinción de Golgi-Cox 19

9.4.3 Observación y trazado de neuronas contrastadas con la

tinción de Golgi-Cox 20

9.4.4 Análisis de las neuronas 21

9.5 Análisis estadístico 22

10. Resultados 23

Page 4: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 4 -

10.1 Actividad motora 23

10.2 Resultados morfológicos de las neuronas espinosas medianas del

NAcc 24

10.2.1 Resultados morfológicos de la longitud total de las neuronas

espinosas medianas del NAcc 24

10.2.2 Resultados morfológicos de la arborización de las neuronas

espinosas medianas del NAcc 26

10.2.3 Resultados de la densidad de espinas dendríticas de las

neuronas espinosas medianas del NAcc 27

10.3 Resultados morfológicos de las neuronas piramidales de la región

CA1 del HV 28

10.3.1 Resultados morfológicos de la longitud de las neuronas

piramidales de la región CA1 del HV 28

10.3.2 Resultados morfológicos de la arborización de las neuronas

piramidales de la región CA1 del HV 29

10.3.3 Resultados de la densidad de espinas dendríticas de las

neuronas piramidales de la región CA1 del HV 31

10.4 Resultados morfológicos de las neuronas piramidales de la CPF 32

10.4.1 Resultados morfológicos de la longitud de las neuronas

piramidales de la CPF 32

10.4.2 Resultados morfológicos de la arborización de las neuronas

piramidales de la CPF 33

10.4.3 Resultados de la densidad de espinas dendríticas de las

neuronas piramidales de la CPF 35

11. Discusión 36

12. Perspectivas 40

13. Conclusiones 41

14. Bibliografía 42

Page 5: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 5 -

1. ABREVIATURAS

AVT Área ventral tegmental

AHP Posthiperpolarización (afterpolarization)

BDNF Factor neurotrófico derivado del cerebro

CA1 Cuerno de Amón 1

CA3 Cuerno de Amón 3

CPF Corteza prefrontal

CREB Proteína de unión al elemento de respuesta del AMP cíclico

EEM Error estándar de la media

HV Hipocampo ventral

LTP Potenciación a largo plazo

MSSM Neuronas espinosas medianas

NAcc Núcleo accumbens

SK Canales de K+ dependientes de Ca2+

SNc Sustancia nigra compacta

Page 6: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 6 -

2. ABSTRACT

Apamin is a neurotoxin extracted from honey bee venom and is a selective

blocker of small conductance Ca2+ -activated K+ channels (SK). Several

electrophysiological and behavioral studies indicate that apamin may enhance

neuron excitability, synaptic plasticity, and long-term potentiation (LTP) in CA1

hippocampal region. However, the dendritic morphological alterations implied in SK

apamin-blockade are unknown. In the present work, Golgi-Cox stain protocol and

Sholl analysis were used to study the apamin effect on the dendritic morphology of

pyramidal neurons from ventral hippocampus and the prefrontal cortex, as well as

on the medium spiny neurons from nucleus accumbens. Sprague Dawley of 12 or

18 months of age were divided in three groups each: a control group and two

others with different doses of apamin (2 g/kg and 4 /kg) for 2 months, the control

groups received saline (NaCl 0.9%) in a similar volume to apamin groups. Motor

activity was determined in closed field, and the neuronal morphological analysis

was made by Golgi-Cox staining.

We found that only pyramidal neurons from ventral hippocampus were

altered in rats injected with apamin. Additionally, no changes in locomotor activity

were found in these animals. Our research suggest that apamin may increase the

dendritic morphology in hippocampus, which could be involved in the neuronal

excitability and synaptic plasticity enhancement induced by apamin.

Page 7: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 7 -

3. RESUMEN

La apamina es un péptido antagonista selectivo de los canales de K+

dependientes de Ca2+ (SK) que atraviesa la barrera hematoencefálica. Son

canales activados por Ca2+ intracelular que participan en la generación de la

posthiperpolarización (AHP) y se encuentran principalmente en estructuras

límbicas. En estudios electrofisiológicos el bloqueo farmacológico de estos canales

reduce la AHP e incrementa la re-excitabilidad neuronal. En cortes hipocampales

de rata, el bloqueo de estos canales facilitan la inducción de la potenciación de

largo plazo, por otro lado después de inducir la LTP en la región CA1 del

hipocampo hay un incremento en el número de espinas dendríticas lo cual

constituye la base estructural de la memoria. En ratón la administración aguda de

apamina de 0.2 mg/kg provoca cambios cognitivos, mientras que en rata

incrementa la actividad locomotora y mejora el aprendizaje. Sin embargo, no hay

reportes que muestren las alteraciones que produciría una administración

subcrónica de un bloqueador de canales SK como es la apamina sobre la

morfología neuronal, siendo esta una técnica usada para evaluarla.

Por lo anterior el objetivo del presente trabajo fue determinar los cambios

morfológicos en neuronas piramidales de la corteza prefrontal y de la región CA1

del hipocampo ventral, así como en neuronas espinosas medianas del núcleo

accumbens producidos por la administración de apamina por dos meses en ratas

con 12 y 18 meses de edad. Se utilizaron ratas de la cepa Sprague Dawley de 12

y 18 meses de edad. Se dividieron en tres grupos, un grupo control y otros dos

con diferentes dosis de apamina, (4 g/kg y 2 g/kg) durante 2 meses, al grupo

control se les aplicó un volumen similar de solución salina de NaCl al 0.9%. Se

determinó la actividad motora ante campo cerrado así como el análisis morfológico

neuronal usando la tinción Golgi-Cox.

Se determinó que la apamina (4 g/kg) provoca cambios morfológicos en la

región del hipocampo incrementando la longitud de las neuronas piramidales así

como la expresión de espinas dendríticas, en núcleo accumbens sólo aumento la

densidad de espinas mientras que en la CPF no se encontró ninguna alteración

morfológica. De acuerdo con los resultados obtenidos, se sugiere que el uso de

esta toxina favorece la plasticidad sináptica esto al aumenta las conexiones

neuronales principalmente en hipocampo, el cual a su vez se sabe que tiene un

importante papel en la formación de la memoria.

Page 8: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 8 -

4. INTRODUCCIÓN

4.1 APAMINA

La apamina es un péptido compuesto por 18 aminoácidos que se encuentra

en el veneno de la abeja (Apis mellifera), Figura 1, es un potente antagonista

altamente selectivo de los canales de K+ dependientes de Ca2+ (SK) (Hugues y

cols., 1982) que atraviesa la barrera hematoencefálica (Habermann, 1984).

Cuando se aplica apamina en ratón y rata a altas dosis (1.0 mg/kg), por vía

intraperitoneal, puede producir signos de envenenamiento como ataxia, tremores e

insuficiencia respiratoria. FJ Van der Staay en 1999, describe que las ratas viejas

podrían ser más sensibles a dichos efectos adversos.

Figura 1. Se muestra la estructura química de la apamina, péptido el cual está compuesto por 18

aminoácidos.

En ratón la administración de apamina en 0.2 mg/kg provoca cambios

cognitivos además de inducir la sobreexpresión de genes que se han relacionado

con procesos de memoria en condiciones normales principalmente en las regiones

CA1 y CA3 del hipocampo (Heurteaux y cols., 1993). En rata, una dosis mayor

(0.4 mg/kg) provoca una facilitación en la habituación, lo cual es reconocido como

una forma de aprendizaje. Por otro lado, esta neurotoxina provoca un incremento

Page 9: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 9 -

en la actividad locomotora en rata y mejora el aprendizaje en la prueba de

reconocimiento de objetos después de ser inyectada (Deschaux y Bizot, 1997).

4.2 EFECTO SOBRE LOS CANALES DE K+ DEPENDIENTES DE CA2+

Los canales SK son independientes de voltaje y se abren ante la

concentración intracelular de calcio, están acoplados a la calmodulina (CAM) la

cual le permite sensar el calcio intracelular, así uno de los posibles mecanismos

que se proponen es que la entrada de calcio a través de los receptores NMDA

activa a los canales SK (Luján y cols., 2009). Participan en la generación de la

posthiperpolarización (AHP), es decir intervienen en la fase tardía de los

potenciales de acción. (Hugues y cols., 1982, Romey, 1984). Existen tres tipos de

canales SK, los SK1, SK2 y SK3, que se expresan en el cerebro de los mamíferos

(Kohler y cols., 1996), como son la rata, el ratón, el cobayo, el conejo, el perro y el

humano (Habermannn y Fischer, 1979). Estos canales se encuentran

principalmente en la corteza y en estructuras límbicas, las cuales son áreas

involucradas en procesos cognitivos y de humor (Janicki, 1989).

En estudios electrofisiológicos, el bloqueo farmacológico de estos canales

reduce la AHP e incrementa la re-excitabilidad neuronal (Stackman, 2002). En

cortes hipocampales de rata, el bloqueo de estos canales aparentemente facilitan

la inducción de la potenciación a largo plazo (LTP) (Behnisch y Reymann, 1998).

Se ha propuesto que la inducción de LTP podría ser importante en el tratamiento

de los desordenes psiquiátricos y la demencia ya que en estos padecimientos es

evidente la disminución de la actividad neuronal (Van der Staay y cols., 1999).

Por otro lado, se sabe que en ratas de 26 meses de edad (ratas viejas) los

sitios de unión a la apamina (canales de tipo SK) disminuyen en un 55% con

respecto a ratas jóvenes de 3 meses de edad, sin mostrar afinidad alterada. Por

otro lado, se ha encontrado que existe un decremento en canales tipo SK de

Page 10: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 10 -

alrededor del 30 al 40% en pacientes con Alzheimer (Ikeda y cols. 1991). Las

pruebas de memoria y aprendizaje han sido propuestas como modelos animales

para el envejecimiento cognitivo (Campbell y cols., 1980, Ingram, 1985).

4.3 CORTEZA PREFRONTAL

Es una región asociativa y crucial para las funciones cerebrales complejas

(Figura 2) como la memoria, el procesamiento de información externa sensorial y

emocional, así como la organización del habla y el planeamiento de acciones

(Fuster, 2001). Esta región está ampliamente interconectada con las regiones

corticales, además de relacionarse con el tálamo mediante proyecciones aferentes

y recibe información procedente de la vía mesocortical dopaminérgica del VTA. La

CPF controla la salida de información hacia regiones límbicas como son la

amígdala y el hipocampo.

Figura 2. Corte coronal del cerebro donde se muestran la corteza prefrontal (en gris oscuro) que

corresponde al área Cg1 y Cg3, lamina 7-9 del Paxinos y Watson (1986) y el núcleo accumbens

(en gris claro).

Las neuronas características de la corteza son de tipo piramidal cuyo soma

tiene la forma de una pirámide o de un triángulo isósceles cuyo vértice superior se

prolonga hacia la superficie del cerebro como dendrita apical o prolongación; del

cuerpo de la célula surgen un número de dendritas basales que se arborizan en la

vecindad de la célula las cuales reciben estímulos equitadores tanto de la misma

área como de áreas adyacentes. Tanto las dendritas apicales como las basales

Page 11: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 11 -

tienen espinas dendríticas y constituyen el sitio de sinapsis glutamatérgica, siendo

el número de espinas el número mínimo de contactos sinápticos de la neurona

(Spruston 2008) (Figura 3).

Figura 3. Fotografía que muestra una neurona piramidal de la capa III de la CPF impregnada con

la tinción de Golgi-Cox

Las neuronas piramidales de la tercera capa, las cuales se estudiaron en el

presente trabajo, reciben proyecciones corticales e información de los axones de

las neuronas del tálamo mediodorsal (Giguere y cols., 1988) de modo que pueden

modificar el flujo de la transmisión excitadora provenientes de los circuitos

talamocortical y corticortical (Lewis y cols., 2003).

4.4 NÚCLEO ACCUMBENS

El núcleo accumbens (NAcc) pertenece al estriado ventral (Voorn y cols., 2005),

donde participa en la integración de la motivación y la acción motora conocida

como interfase límbico-motora (Fernández Espejo, 2000). Lo anterior sugiere que

el papel neurobiológico principal del NAcc es transferir información motivacional

relevante para que se realicen actos motores. Está formado por dos áreas

diferentes tanto en sus conexiones como neuroquímicamente: el core (centro) y la

shell (corteza) (Meredith y cols., 1995) (Figura 2). La corteza recibe aferencias

glutamatérgicas provenientes del hipocampo y la amígdala, así como aferencias

dopaminérgicas del área ventral tegmental (AVT) (Voorn y cols., 2005), mientras

Page 12: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 12 -

que el centro recibe aferencias glutamatérgicas de la CMPF (Heidbreder, 2003) y

dopaminérgicas de la SNc. Alrededor del 95 % de la población neuronal del NAcc

son neuronas espinosas medianas (O´Donnell and Grace, 1993) las cuales son

neuronas de proyección que, como su nombre lo indica son de tamaño mediano

(MSSN: medium size spiny neurons) (Figura 4).

Figura 4. Microfotografía que muestra una neurona espinosa mediana del NAcc teñida con la

tinción de Golgi-Cox.

4.5 HIPOCAMPO

La formación hipocampal se encuentra en el lóbulo temporal, incluye el

complejo cunicular, el hipocampo propiamente dicho y la circunvolución dentada

(Figura 5).

Figura 5. Corte coronal del cerebro, se muestran el hipocampo ventral (en oscuro), tomadas del

atlas de Paxinos y Watson (1986).

Page 13: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 13 -

Se puede dividir en 3 regiones separadas (CA1, CA2, CA3) basándose en

el tamaño y las conexiones de las células piramidales que residen en ellas

(Kandel, 2000) (Figura 6).

Las principales aferencias y eferencias neocorticales se conducen a través

de la corteza entorrinal las cuales transmiten información hacia las células

granulosas de la circunvolución dentada mediante la vía perforante (formada por

un haz de axones), los axones de estas neuronas hacen contacto con las espinas

de las neuronas piramidales de la región CA3 conocida como la vía de las fibras

musgosas, y por medio de la vía colateral de Schaffer, las células de CA3

contactan con las neuronas de la región CA1. Estas neuronas proyectan fuera de

la formación hipocampal a través del subículo.

Figura 6. Fotografía de neurona piramidal del hipocampo con tinción Golgi-Cox.

El hipocampo está relacionado con la adquisición, retención y recuperación

del conocimiento. La estimulación de alta frecuencia en la vía perforante produce

incrementos estables y duraderos en la magnitud de la respuesta postsináptica, lo

cual se conoce como potenciación a largo plazo (LTP). La potenciación a largo

plazo es un mecanismo de plasticidad sináptica, lo cual permite que las sinapsis

se modifiquen de tal forma que la memoria a corto plazo se vuelva memoria de

largo plazo. Con todo esto se puede considerar a la LTP como un mecanismo

celular del aprendizaje y la memoria.

Page 14: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 14 -

5. JUSTIFICACIÓN

Durante los potenciales postsinápticos excitadores, el incremento en la

concentración de Ca2+ activa los canales SK en la espina dendrítica, y la remoción

del Mg2+ en los receptores de tipo NMDA, lo cual incrementa el flujo de Ca2+,

favoreciendo la LTP. Así, se considera que los SK participan en la regulación de

la plasticidad sináptica y el bloqueo de los canales en este caso por la apamina

produce un decremento en el tiempo de posthiperpolarización favoreciendo la

plasticidad sináptica en cortes de hipocampo (Stackman, 2002). El hipocampo es

asociado con la memoria a largo plazo y la CPF se asocia con la memoria

cognitiva, ambos procesos son afectados durante el curso del envejecimiento

(Peterson y cols., 2001).

La LTP incrementa la eficacia sináptica en el hipocampo, lo cual es un

modelo importante para el estudio de los mecanismos de la plasticidad neuronal,

la reorganización de los circuitos neuronales, el aprendizaje y la memoria.

Congruente con esto, se ha encontrado que después de inducir la LTP en la

región CA1 del hipocampo hay un incremento en el número de espinas dendríticas

(Engert and Bonhoeffer, 1999), lo cual constituye la base estructural de la

memoria. Por otro lado, se sabe que la mayoría de las sinapsis excitadoras en el

cerebro se localizan en las espinas dendríticas llevándose a cabo reacciones

bioquímicas que favorecen la activación de la sinapsis.

Por lo anterior, si los canales SK son bloqueados favoreciendo la LTP, se

podría esperar un cambio en la población de espinas dendríticas sobretodo en

estructuras relacionadas con el aprendizaje como es el hipocampo. Sin embargo,

no hay reportes que muestren los posibles cambios morfológicos que produciría la

administración subcrónica de apamina sobre esta región así como otras regiones

cerebrales relacionadas.

Page 15: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 15 -

6. HIPÓTESIS

La administración subcrónica de apamina en ratas de 12 y 18 meses de edad

produce cambios morfológicos en las neuronas de algunas regiones cerebrales

relacionadas con los procesos de memoria.

Page 16: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 16 -

7. OBJETIVOS

7.1 OBJETIVO GENERAL

Determinar los cambios morfológicos producidos por la administración subcrónica

de apamina en neuronas piramidales de la corteza prefrontal y de la región CA1

del hipocampo ventral, así como en neuronas espinosas medianas del núcleo

accumbens de ratas.

7.2 OBJETIVOS PARTICULARES

Se administró apamina durante dos meses a ratas de 12 y 18 meses de edad para

determinar:

Cambios en la actividad motora.

Alteraciones en la arborización de las neuronas piramidales de la tercera

capa de la corteza prefrontal y de la región CA1 del hipocampo ventral, y en

neuronas espinosas medianas del núcleo accumbens.

Cambios en la densidad de espinas dendríticas de las neuronas

piramidales de la tercera capa de la corteza prefrontal, de la región CA1 del

hipocampo ventral y de las espinosas medianas del núcleo accumbens.

Page 17: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 17 -

8. DIAGRAMA DE TRABAJO

Ratas macho Sprague-Dawley 12 meses de edad

Grupo Control Administración subcutánea

de solución salina (NaCl) 0.9 % durante 2 meses

Tinción de Golgi-Cox

Cortes de 200 m

Análisis morfológico

Análisis estadístico

Sacrificio de animales

Obtención cerebros control Obtención cerebros experimentales

Actividad locomotora a los 14 y 20 meses respectivamente

Administración subcutánea

de apamina 2 g/kg/día durante 2 meses

Administración subcutánea

de apamina 4 g/kg/día durante 2 meses

Grupos Experimentales

Ratas macho Sprague-Dawley 18 meses de edad

Page 18: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 18 -

9. METODOLOGÍA

9.1 MODELO ANIMAL

Se utilizaron ratas de la cepa Sprague-Dawley de 12 y 18 meses de edad y con un

peso de entre 450-500 gramos, del bioterio central de la BUAP “Claude Bernard”,

bajo condiciones ambientales de temperatura y humedad controladas (18-23 ºC y

50-60 % respectivamente), con ciclo de luz oscuridad de 12 horas, encendiendo

las luces a las 8:00 horas. Mantenidas en cajas de acrílico transparente de

50x35x18 cm. Con libre acceso a alimento y agua.

Se utilizaron ratas de 12 y 18 meses de edad. El grupo de ratas de 12 meses de

edad se dividió en tres: uno con administración diaria de apamina (2 g/kg de

peso), otro con una dosis superior de la neurotóxina (4 g/kg de peso) y el grupo

control (con un volumen similar de vehículo (solución salina de NaCl al 0.9 %)); se

hizo lo mismo con los animales de 18 meses, quedando seis grupos con una n=5

cada uno de ellos.

9.2 MATERIAL QUÍMICO

Apamina de veneno de abeja, marca Sigma-Aldrich, pureza 99.7 %, disuelto en

solución de NaCl al 0.9 %.

9.3 ACTIVIDAD LOCOMOTORA

Al finalizar el tratamiento con apamina (2 g/kg ó 4 g/kg) a los 14 ó 20 meses de

edad junto con sus controles se les evaluó su actividad motora por un lapso de

dos horas, se utilizaron cajas de acrílico de 44 cm de largo por 22 cm ancho y 22

cm de altura, estas cajas tienen acoplados ocho fotodiodos a lo largo de su eje

Page 19: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 19 -

longitudinal de modo que cuando la rata tiene movimiento, el haz de luz infrarroja

se corta, activando un contador, de esta forma se obtuvieron el número de

movimientos por unidad de tiempo. La actividad motora de los animales se

determinó bajo control de luz y temperatura (21 a 24 º C) a las 10:00 am.

9.4 ESTUDIOS MORFOLÓGICOS

Al término de las pruebas de actividad locomotora, las ratas se sacrificaron y el

cerebro se utilizó para el análisis morfológico de las neuronas. Para lo cual los

cerebros fueron sometidos a la tinción de Golgi-Cox.

9.4.1 Protocolo de la tinción de Golgi-Cox.

o Se anestesió al animal con Pentobarbital sódico a una dosis de 65 mg/kg,

realizando después una incisión toráxica para exponer el corazón (Figura

7A).

o Se perfundió el corazón por el ventrículo izquierdo con solución salina de

NaCl al 0.9%, previo corte de la aurícula derecha, con la finalidad de

eliminar los eritrocitos del tejido cerebral (Figura 7B).

Figura 7. A) Se anestesió la rata con pentobarbital sódico. B) Perfusión intraventricular de la rata

con solución salina.

A B

Page 20: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 20 -

o Se removieron los cerebros y se colocaron en 20 ml de la solución de

Golgi-Cox almacenándolos durante 20 días en obscuridad. Después de

este tiempo se reemplazó la solución de Golgi-Cox por una solución de

sacarosa al 30%, siendo almacenados en oscuridad por 2 días antes de

cortar.

o Se montó el cerebro en la platina del vibrotomo y fue sumergido en

solución de sacarosa al 6%, una vez colocado en la cámara del vibrotomo,

con suficiente solución de sacarosa para cubrir el tejido y la navaja.

o Se cortó el tejido haciendo rebanadas de 200 µm de grosor.

o Éstas fueron montadas en laminillas gelatinizadas al 2 %, presionándolas

uniformemente con papel filtro (Figura 8).

o Se conservaron las laminillas en una cámara húmeda por toda la noche.

o Se procedió al día siguiente a revelar la tinción.

Figura 8. Montaje de los cortes en las laminillas gelatinizadas.

9.4.2 Protocolo de revelado de la tinción de Golgi-Cox.

Todo el procedimiento se realizó en total oscuridad.

o Inicialmente se realizó un lavado en agua destilada durante un minuto.

o Se mantuvo durante 30 minutos sumergidas las laminillas en hidróxido de

amonio

o Se realizó un lavado con agua destilada durante un minuto.

o Después se sumergieron durante 30 minutos en fijador rápido de Kodak

para película fotográfica. Se utilizó una dilución 1:2 con agua destilada.

o Se volvieron a lavar con agua destilada durante un minuto.

Page 21: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 21 -

o Se deshidrató con concentraciones crecientes de etanol:

1 minuto con alcohol al 75 %

1 minuto con alcohol al 95 %

10 minutos con alcohol al 100 %

15 minutos con xileno.

o Se montaron los cubreobjetos con resina sintética en los cortes ya

revelados.

o Los cortes fueron conservados en oscuridad para su secado y posterior

observación.

9.4.3 Observación y trazado de neuronas teñidas contrastadas mediante la

tinción de Golgi-Cox.

Una vez localizadas las áreas de interés, en este caso la CPF, NAcc y HV, se

procedió a identificar las neuronas piramidales de la capa III para la CPF, las

neuronas espinosas medianas para el NAcc y las neuronas piramidales de la

región CA1 del HV, se dibujaron mediante su observación a 40X utilizando un

microscopio óptico marca Leica modelo DMSL acoplado a una cámara lúcida

marca Leica. Las espinas dendríticas de estas neuronas se dibujaron en el mismo

equipo con un objetivo de 100X y aceite de inmersión (Figura 9).

Figura 9. Cámara lucida acoplada a un microscopio de luz blanca, mediante el cual se dibujan las

neuronas de la región de interés (40X) y las espinas dendríticas en la porción distal, usando una

amplificación de 100X (modificado de Kolb, 1998).

Page 22: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 22 -

9.4.4 Análisis de las neuronas

De cada rata se dibujaron con ayuda de una cámara lúcida (1x) y un objetivo de

40X, 5 neuronas de cada hemisferio y región, obteniendo 10 neuronas de cada

una de las zonas de interés por cerebro, para el análisis de las espinas se eligió

una dendrita distal de la neurona que previamente había sido dibujada, utilizando

el objetivo de 100X.

Una vez realizado el dibujo se analizaron por medio de la técnica de análisis de

Sholl, que consiste en lo siguiente: (Sholl, 1953) se pintaron de diferentes colores

las dendritas de acuerdo con su grado de ramificación, iniciando a partir del soma

siendo estas de primer orden hasta que se ramifica, estas serán de segundo orden

y así sucesivamente hasta n orden. Después de esto se colocó una plantilla

transparente que cuenta con una serie de círculos concéntricos en los cuales el

círculo del centro debe coincidir con el soma y de esta manera determinar el

número de dendritas que interceptan cada uno de los círculos, esto nos permite

evaluar el número total de ramificaciones dendríticas el cual será contado a partir

de órdenes de bifurcación comenzado del cuerpo celular hacia la punta de las

dendritas (Coleman and Riesen, 1968), y la longitud dendrítica la cual fue

estimada contando el número de intersecciones de las dendritas en anillos

concéntricos que representan 10 m (Figura 10).

Figura 10. Muestra el dibujo de una neurona piramidal acoplado a la laminilla de círculos

concéntricos para realizar el análisis de Sholl.

Page 23: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 23 -

Para obtener la densidad de las espinas dendríticas, se buscó la dendrita más

distal de la neurona antes dibujada. Con el calcado de la dendrita con sus

respectivas espinas, se marca la prolongación de la dendrita cada 1.6 cm que

equivalen a 10 m, para la cámara lucida utilizada (Leica). Se contaron las espinas

que hay en cada 1.6 cm.

9.5 ANÁLISIS ESTADÍSTICO

Todas las pruebas estadísticas se realizaron usando el programa GraphPad Prism

4.0. Los datos de longitud total dendrítica, orden mayor de ramificación,

arborización y densidad de espinas dendríticas se analizaron por medio de una

análisis de varianza (ANOVA) de dos vías, cuando fue pertinente, se aplicó una

prueba Post-hoc de Bonferroni para las comparaciones múltiples. Se consideró

significativa la diferencia cuando p<0.05.

Page 24: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 24 -

10. RESULTADOS

10.1 ACTIVIDAD LOCOMOTORA

La actividad motora se realizó después de dos meses de administración de la

apamina a los 14 y 20 meses de edad de cada grupo de acuerdo con el protocolo

antes mencionado, obteniéndose la suma acumulada de la actividad de cada

grupo; donde los animales de 14 meses tratados con apamina no mostraron

cambios motores con respecto a su grupo control (Figura 11).

Figura 11. Gráfica de actividad motora acumulada en campo cerrado de ratas con 14 meses de

edad. Se muestra la suma acumulada de los movimientos que realizaron el grupo control y los

grupos tratados con apamina (2 y 4 µg/kg) durante 120 minutos en registros de 10 min.

De igual manera la actividad motora en animales de 20 meses no muestra

cambios entre los tres grupos estudiados (Figura 12), sugiriéndose que la apamina

no altera la actividad motriz independientemente de la dosis y la edad a la que sea

administrada, al menos bajo las condiciones establecidas en este trabajo.

Page 25: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 25 -

Figura 12. Gráfica de actividad motora acumulada en campo cerrado de ratas de 20 meses. Se

muestra la suma acumulada de los movimientos que realizaron el grupo control y los grupos

tratados con apamina (2 y 4 µg/kg) durante 120 minutos. Sin mostrar cambios motores.

10.2 RESULTADOS MORFOLÓGICOS DE LAS NEURONAS ESPINOSAS

MEDIANAS DEL NAcc

10.2.1 Resultados morfológicos de la longitud total de las neuronas espinosas

medianas del NAcc

Los datos obtenidos (n=5) muestran que la longitud dendrítica total de las

neuronas espinosas medianas del NAcc tanto en los animales de 14 como de 20

meses de edad (Figura 13), no fue alterada por la administración de apamina

(Figura 14).

Page 26: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 26 -

A) B) C)

Figura 13. Fotografías de neuronas del NAcc. A) Fotografía de neurona espinosa mediana de NAcc

con tinción Golgi tomada con microscopio óptico acoplada a cámara lúcida con objetivo de 20X del

grupo de animales tratados con dosis baja de apamina. B) Imagen de las espinas dendríticas de

cerebro control con objetivo de 100X. C) Fotografía de espina dendrítica de cerebro tratado con

dosis alta de apamina (4 µg/kg).

Figura 14. Gráfico que muestra la longitud dendrítica total (media ± EEM) de las neuronas

espinosas medianas del NAcc de los animales de 14 y 20 meses de edad con sus respectivos

grupos controles, donde el uso de apamina no modificó la longitud dendrítica total de dichas

neuronas.

Page 27: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 27 -

10.2.2 Resultados morfológicos de la arborización de las neuronas espinosas

medianas del NAcc

De la misma manera usando el análisis de Sholl se mostró que el tratamiento con

apamina no alteró la arborización de las neuronas espinosas medianas así como

la longitud dendrítica con respecto al orden de ramificación tanto a los 14 como a

los 20 meses (Figura 15).

B

C D

Figura 15. A) Gráfica que muestra la arborización de las neuronas espinosas medianas del NAcc a

los 14 meses. B) Gráfica de análisis de Sholl en animales con 20 meses de edad, cada punto

representa la media ± EEM. C) Gráfica que muestra la longitud de las dendritas del NAcc con

respecto al número de orden (n=5 por grupo) de animales de 14 meses. D) Gráfica que muestra la

longitud de las neuronas espinosas medianas con respecto al orden de ramificación de animales

con 20 meses de edad.

A

Page 28: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 28 -

10.2.3 Resultados morfológicos de la densidad de espinas dendríticas de las

neuronas espinosas medianas del NAcc

El análisis de la densidad de espinas dendríticas de NAcc mostró que la

administración subcrónica de la dosis alta de la toxina (4 µg/kg) aumentó la

expresión de espinas en animales de 14 meses de edad (*p<0.05 ANOVA) con

respecto a su grupo control, no así en animales de 20 meses de edad (Figura 16).

Figura 16. Gráfica que muestra la densidad de espinas dendríticas distales de las neuronas

espinosas medianas del NAcc de animales de 14 meses de edad (n=5 por grupo). Donde la

administración de 4 µg/kg de peso de apamina incrementa el número de espinas con respecto a su

grupo control (*p<0.05, ANOVA de dos vías). Mientras que en animales más viejos este efecto no

se observa.

Page 29: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 29 -

10.3 RESULTADOS MORFOLÓGICOS DE LAS NEURONAS PIRAMIDALES

DEL HV

10.3.1 Resultados morfológicos de la longitud dendrítica de las neuronas

piramidales de la región CA1 del HV

Los resultados obtenidos a través del análisis de Sholl, nos muestran que la

longitud total de las dendritas de las neuronas piramidales de la región CA1

(Figura 17) del hipocampo ventral de los grupos tratados con apamina a los 14

meses es mayor con respecto a su grupo control *p<0.05 (ANOVA de dos vías

prueba Post-hoc de Bonferroni) (Figura 18). Sin embargo, esto no se observa

cuando se evaluaron los animales de 20 meses de edad.

A

B C

Figura 17. Fotografías de HV. A) Fotografía de neurona piramidal de la región CA1 del hipocampo

ventral con tinción Golgi con objetivo de 20X del grupo de animales tratados con dosis alta (4

µg/kg) de apamina de rata de 14 meses. B) Imagen de las espinas dendríticas de cerebro control

con objetivo de 100X. C) Fotografía de las espinas dendríticas de cerebro tratado con dosis alta de

apamina

Page 30: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 30 -

Figura 18. Gráfica que muestra la longitud dendrítica total de las neuronas piramidales de la región

CA1 del hipocampo ventral en animales de 14 y 20 meses por separado (n=5 por grupo), donde la

administración de apamina (2 y 4 µg/kg) en animales de 14 meses “middle aged” incrementa la

longitud dendrítica total con respecto al control *p<0.05 (ANOVA de dos vías, prueba Post-hoc de

Bonferroni) mientras que ésta no es alterada en animales más viejos.

10.3.2 Resultados morfológicos de la arborización de las neuronas piramidales de

la región CA1 del hipocampo ventral

Usando el análisis de Sholl se mostró que el tratamiento con apamina no alteró la

arborización de las neuronas piramidales de la región CA1 del hipocampo ventral

(Figura 19). Por otro lado al determinar la longitud dendrítica con respecto al orden

de ramificación se encontró que hay una tendencia de incremento en los animales

de 14 meses, sin embargo estos cambios no son significativos (Figura 20).

Page 31: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 31 -

A B

Figura 19. Grafico del análisis de Sholl. A) Arborización de neuronas piramidales de la región CA1

del hipocampo ventral (n=5 por grupo) sin algún cambio provocado por el uso de apamina. B)

Arborización neuronal del HV en animales de 20 meses de edad.

A B

Figura 20 A) Muestra la longitud de las neuronas piramidales de la región CA1 del hipocampo

ventral con respecto al número de orden, cada punto representa la media ± EEM de animales con

14 meses. B) Gráfica de longitud de neuronas piramidales del HV con respecto al número de orden

en ratas de 20 meses (n = 5 por grupo).

Page 32: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 32 -

10.3.3 Resultados morfológicos de la densidad de espinas dendríticas de las

neuronas piramidales de la región CA1 del hipocampo ventral

La densidad de espinas dendríticas distales se obtuvo de acuerdo al protocolo

antes mencionado mostrando un claro efecto de la apamina sobre la expresión de

espinas, la administración subcrónica de la toxina (4 µg/kg) aumentó la expresión

de espinas en ratas de 14 meses (**p<0.01 ANOVA de dos vías Post-hoc de

Bonferroni) con respecto al grupo control pero este efecto no se observó en

animales de 20 meses de edad (Figura 21).

Figura 21. Gráfica que muestra la densidad de espinas dendríticas distales de las neuronas

piramidales del HV de animales de 14 meses de edad (n=5 por grupo), donde la administración de

apamina altera la expresión de espinas de manera dosis dependiente, siendo el grupo tratado con

4 µg/kg de apamina el que presenta mayor densidad con un valor de **p<0.01 con respecto al

control.

Page 33: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 33 -

10.4 RESULTADOS MORFOLÓGICOS DE LAS NEURONAS PIRAMIDALES

DE LA CPF

10.4.1 Resultados morfológicos de la longitud dendrítica de las neuronas

piramidales de la CPF

Usando el análisis de Sholl se determinó que la longitud dendrítica total de las

neuronas piramidales de la tercera capa de la CPF no fue alterada por la

administración de apamina tanto para los animales de 14 como para los de 20

meses de edad (Figura 22).

Figura 22. Gráfica que muestra la longitud dendrítica (n=5 por grupo) de neuronas piramidales de

CPF de ratas de 14 y 20 meses de edad, donde la administración de la toxina no modificó la

longitud dendrítica total.

Page 34: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 34 -

10.4.2 Resultados morfológicos de la arborización de las neuronas piramidales

de la CPF

Los datos obtenidos muestran que la arborización dendrítica de las neuronas

piramidales de la CPF no fue alterada por la administración de apamina

independiente de la edad de los sujetos de estudio (Figura 23), de igual manera la

longitud dendrítica con respecto al orden de ramificación no presentan cambios

con respecto a sus respectivos grupos controles (Figura 24).

A

B C

Figura 23. A) Fotografía de neurona piramidal de la CPF de rata de 14 meses de edad con tinción

de Golgi. B) Fotografía de espinas dendrítica de CPF con tinción de Golgi del grupo control. C.

Fotografía de espinas dendríticas de CPF del grupo administrado con 4 µg/kg de apamina.

Page 35: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 35 -

A B

C D

Figura 24. A) Gráfica que muestra la arborización de neuronas piramidales de la CPF de ratas de 14 meses sin presentar alteraciones por la administración durante dos meses con apamina. B) Arborización de neuronas de la tercera capa de la CPF de ratas de 20 meses de edad (n=5 por grupo). C) Imagen de la longitud dendrítica con respecto al orden de ramificación sin cambios entre los tres grupos analizados. Cada punto representa la media ± EEM. D) Gráfica de la longitud dendrítica con respecto al orden mayor de ramificación sin mostrar alteraciones entre los grupos analizados por el efecto de la toxina.

Page 36: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 36 -

10.4.3 Resultados morfológicos de la densidad de espinas dendríticas de las

neuronas piramidales de la CPF

La densidad de espinas dendríticas de las neuronas piramidales de la CPF usando

en análisis de Sholl mostró que la administración subcrónica de la toxina no alteró

la expresión de espinas tanto en animales de 14 meses como en animales de 20

meses de edad (Figura 25).

Figura 25. Gráfica de densidad de espinas dendríticas de la CPF de ratas de 14 y 20 meses sin

presentar cambios por la administración subcrónica de la toxina (n=5 por grupo).

Page 37: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 37 -

11. DISCUSIÓN

El objetivo principal del presente trabajo fue determinar si el uso de una

toxina que altera la excitabilidad neuronal a través de acortar la

posthiperpolarización como es la apamina, podría alterar la morfología de algunas

regiones cerebrales en animales viejos, donde se sugiere que dicho proceso

podría ser importante en el deterioro de las funciones cognitivas propias del

proceso de envejecimiento.

De acuerdo con los datos obtenidos, la administración de la apamina

produjo cambios morfológicos sólo en las neuronas del hipocampo ventral, donde

el incremento en la longitud dendrítica total fue estadísticamente significativo con

las dosis de 2 y 4 µg/kg de peso, evaluándose en animales de 14 meses de edad;

sin embargo, este comportamiento no se mantuvo cuando se evaluó en animales

de 20 meses de edad, sugiriéndose que a esa edad la acción de la apamina sobre

el bloqueo de los canales SK puede no afectar la morfología neuronal del

hipocampo ventral. Este efecto no se observa en la arborización dendrítica la cual

no sufrió alteraciones por la acción de la apamina independientemente de la dosis

usada y de la edad de los animales. No obstante la expresión de espinas

dendríticas si fue estimulada por la acción de la toxina siendo la dosis de 4 µg/kg

la que provocó cambios evidentes con respecto al grupo control. El incremento de

longitud total dendrítica en neuronas piramidales del hipocampo ventral

acompañado de una mayor expresión de espinas dendríticas nos sugiere que el

bloqueo subcrónico de canales SK favorece la plasticidad sináptica, es decir, es

probable que estos animales tengan una mejor comunicación neuronal en el

hipocampo. Nuestros datos apoyan reportes previos donde la administración

aguda de apamina revierte el déficit de navegación en ratas con lesión en el

hipocampo en la prueba de Morris (Van der Stay, 1999; Stackman, 2002), así

como mejorar el aprendizaje en la prueba de caja de Skinner (Messier, 1991).

Page 38: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 38 -

Por otro lado sólo la dosis alta de apamina provocó un cambio en la

densidad de espinas dendríticas de NAcc con respecto al grupo control en

animales de 14 meses, pero estos cambios no se observaron en los animales de

20 meses. La longitud dendrítica no presenta alteración entre los grupos

estudiados, así como la arborización neuronal independientemente de la edad y la

dosis empleada. Es probable que el poco efecto observado en las neuronas del

núcleo accumbens sea porque estos presentan una mayor expresión de canales

SK3 los cuales son menos sensibles a la apamina que los canales SK2 (IC50: 2

nmol/L para SK3 (Ishii y cols., 1997) y 63 pmol/L para SK2 (Köhler y cols., 1996)),

siendo estos últimos los predominantes en el hipocampo.

La CPF no presentó ningún cambio morfológico, en este momento es difícil

saber por qué esta región parece ser insensible al bloqueo de canales SK, pero no

se descarta que la acción de la apamina se vea reflejada en cambios morfológicos

en otras regiones del cerebro.

El deterioro de la transmisión y la plasticidad sináptica han sido reportadas

en varias regiones cerebrales, siendo el hipocampo una de las regiones más

estudiadas por ser altamente susceptible al envejecimiento y por estar relacionada

con la memoria. Así, Foster en 1997 describe que la pérdida de la memoria se ve

afectada por el decline de las sinapsis hipocampales básicamente por alteraciones

en la procesos de plasticidad sináptica dependientes de calcio, de ahí la

importancia del estudio de procesos que son afectados por la presencia de Ca2+

intracelular como es la posthiperpolarización.

Por otro lado, en estudios previos se ha determinado que los factores

neurotróficos podrían controlar la plasticidad cortical en procesos de aprendizaje y

memoria así como en la regulación de circuitos neuronales durante el desarrollo;

sin embargo, la participación de estos factores podrían continuar a lo largo de la

vida, así se ha reportado que el BDNF disminuye considerablemente durante el

proceso de envejecimiento (Shetty y cols.,2004), esto altera la actividad de otros

Page 39: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 39 -

elementos como es la PKA, la expresión del neuropéptido Y y la p-CREB

(Hattiangady y cols., 2005). Cuando se administra BDNF en cortes de hipocampo

se inhibe la AHP mediada por canales SK (Kramar y cols., 2004), sugiriéndose

que sea a través de la protein kinasa A (Gallo y cols., 2002), además ante la

inducción de LTP los canales SK2 son interiorizados siendo un proceso

dependiente de PKA esto en espinas de neuronas de hipocampo de la región CA1

(Lin y cols., 2008). Con lo anterior se sugiere que el BDNF podría facilitar la

inducción de LTP inhibiendo indirectamente a los SK. Así, podría esperarse que

en el proceso de envejecimiento donde la cantidad de BDNF disminuye al igual

que los efectos que ejerce sobre las neuronas se podría esperar una mayor

actividad de los canales SK principalmente alterando la posthiperpolarización la

cual esta aumentada en mamíferos viejos (Moyer 1992) ver en articulo de Foster

1998, siendo estos un buen modelo para estudiar el efecto del bloqueo de estos

canales.

Se ha descrito que la neurogénesis en el giro dentado de rata disminuye al

iniciar la segunda etapa de la vida de este organismo “middle-aged” (Kuhn y cols.

1996), lo cual podría al menos en parte ser por el temprano declive en la

concentración de BDNF en hipocampo, además, se ha demostrado que este

estimula la neurogénesis en el dentado (Lee y cols., 2002), el aprendizaje y la

memoria (Falkenberg y cols., 1992). Un dato interesante dado por Kuhn y cols.

(1996) es que existe una marcada disminución de la neurogénesis en el giro

dentado en animales de “middle age” con respecto a animales jóvenes, sin

embargo este comportamiento no es continuo ya que no hay cambios entre

animales viejos con respecto a los “middle-aged” sugiriendo que las alteraciones

en el cerebro podrían darse desde una “edad temprana” y que las alteraciones que

se llegan a observar en cerebros viejos podrían estar dadas por alteraciones

previas. De ahí la importancia de evaluar la morfología en animales de 12 meses,

en donde después de 2 meses de administración de apamina el uso de la toxina

en estos animales de “middle aged” provocó una mayor expresión de espinas en

neuronas espinosas medianas del NAcc y en las neuronas piramidales de la

Page 40: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 40 -

región CA1 del hipocampo ventral, así como incrementó la longitud dendrítica de

estas últimas, sugiriendo que se favoreció la comunicación neuronal, no así en

animales de 20 meses de edad, donde a pesar de la administración de la toxina no

se alteró algún parámetro morfológico proponiéndose que el efecto de la apamina

no se observa si el cerebro sobre el que actúa es de mayor edad.

Page 41: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 41 -

12. PERSPECTIVAS

A pesar de que el uso de la apamina no alteró morfológicamente todas las

regiones estudiadas en el presente trabajo, no se descarta que pueda modificar

otras regiones cerebrales, debido a que la mayoría de los antecedentes plantean

un efecto sobre memoria, uno de los pasos a seguir podría ser un mayor estudio

sobre otras regiones del hipocampo como es el giro dentado.

Además debido a que en este proyecto es novedoso en el uso subrcrónico

de la apamina, no se descarta que si se administra en animales menos viejos o

por un periodo más largo pueda modificar la morfología neuronal de otras áreas

como es la CPF y el NAcc.

El objetivo fue determinar las alteraciones morfológicas, pero usando este

protocolo se pueden realizar estudios electrofisiológicos para determinar la

funcionalidad de las neuronas hipocampales como evaluar si el uso subcrónico de

la apamina acorta el periodo de posthiperpolarización, así como si aumenta la

excitabilidad neuronal ya que como se determinó, fueron las células más sensibles

a la apamina. Por otro lado se pueden realizar pruebas de aprendizaje y memoria

como las prueba de la caja de Skinner o la prueba de aprendizaje espacial en el

laberinto acuático de Morris para verificar si los cambios aquí observados son

acompañados de una optimización de funciones cognitivas.

Page 42: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 42 -

13. CONCLUSIONES

El uso de la apamina (2 ó 4 µg/kg de peso) durante dos meses de edad en

animales de 14 y 20 meses de edad no altera la actividad motora.

La administración subcrónica de apamina modifica la morfología neuronal de las

neuronas piramidales de la región CA1 del hipocampo ventral aumentando la

longitud dendrítica neuronal y la densidad de espinas dendríticas.

El uso de la apamina durante dos meses en ratas de 14 y 20 meses no modifica ni

la morfología neuronal ni la expresión de espinas dendríticas de las neuronas

piramidales de la tercera capa de la CPF.

La administración de apamina incrementa la expresión de espinas dendríticas de

las neuronas espinosas medianas del NAcc.

Page 43: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 43 -

14. BIBLIOGRAFÍA

Behnisch T and Reymann KG. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of the rat hippocampus in vitro. Neurosci Lett 1998, 253:91-94 Coleman and Riesen, 1968 Deschaux O, Bizot JC. Effect of apamin, a selective blocker of Ca2+-activated K+-channel, on habituation and passive avoidance responses in rats Neurosci Lett 1997, 227:57-60 Engert F and Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399:66-70. Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N. Increased expression of brain-derived neurotrophic factor mRNA in the rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 1992, 138: 153-156. Fernandez E. ¿Cómo funciona el núcleo accumbens? Rev. Neurol. 2000, 30: 845-849. Foster TC and Norris CM. Age-associated changes in Ca(2+)-dependent processos: relation to hippocampal synaptic plasticity. Hippocampus 1997; 7:602-612. Fuster. The prefrontal Cortex-An update: Time is of the essence. Neuron 2001, 30: 319-333 Gallo G, Ernst AF, McLoon SC and Letourneau PC. Transient PKA activity is required for initiation but not maintenance of BDNF-mediated protection from nitric oxide-induced growth-cone collapse. J Neurosci 2002, 22: 5016-5023. Giguere M, Goldman-Rakic. Mediodorsal nucleus: area, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 1988, 277:195-213 Habermann E. Apamin. Pharmacol Ther 1984, 25:255-270. Habermann E, Fischer K. Bee venom neurotoxin (apamin): iodine labeling and characterization of binding sites. Eur J Biochem. 1979, 94:355-364 Hattiangady B, Rao M, Shetty GA and Shetty AK. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and

Page 44: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 44 -

neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 2005, 195:353-371 Heidbreder and Groenewegen The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. 2003, 27: 555-579. Heurteaux C, Messier C, Destrade C and Lazdunski M. Memory processing and apamin induce immediate early gene expression in mouse brain. Mol Brain Res. 1993, 3: 17-22 Hugues M, Romey G, Duval D, Vincent P and Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltaje-clamp and biochemical characterization of the toxin receptor Proc Natl Acad Sci NY1982; 79: 1308-1312

Ikeda M, Dewar D and McCulloch J. Selective reduction of 125 I apamin binding sites in Alzheimer hippocampus: a quantitative autoradiographic study. Brain Res. 1991, 567: 51-56. Ishii TM, Maylie J, Adelman JP. Determinants of apamin and dtubocurarine block in SK potassium channels. J Biol Chem 1997, 272: 195–200. Janicki PK, Specific binding properties id 125I-apamin in various structures of the rat central nervous system. Act Physiol Pol 1989, 40: 235-239 Kandel E, Shwartz J and Jessell T. Principios de Neurociencias 2000, 4a ed. Mc GrawHill, España. Kramar EA, Lin B, Lin CY, Arai AC, Gall CM, and Lynch. A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurothophic factor. J Neurosci 2004, 24: 5151-5161. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996, 273: 1709-1714. Kolb B, Firgie M, Gibb R, Gorny G. Age, experience and the changing brain. Neurosc Biobeha Rev 1998; 22: 143-159

Kolb, B. y Gibb, M. (1997), A method for vibratome sectioning of Golgi Cox stained whole rat brain, J. of Neurosc. Methods. 20, 120-129

Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996, 16: 2027-2033.

Page 45: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 45 -

Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus in adult mice. J Neurochem 2002, 82: 1367-1375. Lewis A, Glantz L, Sweet R. Altered cortical glutamate neurotransmission in schizophrenia evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci 2003, 1003: 102-112 Lin MT, Lujan R, Watanabe M, Adelman JP and Maylie J. SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nat Neurosci 2008, 11: 170-177. Luján R, Maylie J, Adelman JP. 2009. New sites of action for GIRK and SK channels. Nat Rev Neurosci. 10:475-80. Messier C, Mourre C, Bontempi B, Sif J, Lazdunski M and Destrade C. Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Res 1991, 551: 322-326. Meredith GE, Yoma, P, and Zahm D. Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. J Neurosc 1995; 15: 3808-3820. O´Donnell and Grace. Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens. J Neurosci 1993, 13: 3456-3471.

Paxinos G y Watson C. The rat brain in stereotaxic coordinates. Second edition. Peterson RC, Doody R and Kurz A. Current concepts in mild cognitive impairments Arch Neurol 2001, 58: 1985-1992 Romey G and Landuski M. The coexistence en rat muscle cells of two distinct classes of calcium-dependent potassium channels with different pharmacological properties. Biochem Biophys Res Commun 1984, 118: 669-674 Shetty AK, Rao MS, Hattiangady B, Zaman V, Shetty GA. Hippocampal neurotrophin levels after injury: relationship to the age of the hippocampus at the time of injury. J Neurosci Res 2004, 78: 520-532. Sholl. Dendritic organization in the neurons of the visual and motor cortices on the cat. J Anat 1953, 87: 387-406.

Page 46: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 46 -

Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nature 2008, 9:206-221. Stackman R, Hammond R, Linardatos E, Gerlach A, Maylie J, Adelman J, Tzounopoulos T. Small conductance Ca 2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 2002, 23:10163-10171. Van der Staay FJ, Fanelli RJ, Blokland A, Schmidt BH. Behavoiral effects of apamin, a selective inhibitor of the SK Ca-channel, in mice and rats. Neurosc and Biobehav Rev 1999, 23: 1087-1110

Voorn P, Vanderschuren J, Groenewegen H, Robbins T y Pennartz C. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 2005, 27: 468-474.

Page 47: INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE …tesis.ipn.mx/jspui/bitstream/123456789/8673/1/177.pdf · 2019. 10. 3. · blocker of small conductance Ca2+-activated K+ channels

- 47 -