Click here to load reader
View
221
Download
0
Embed Size (px)
8/12/2019 Egali Satie 1
1/31
1
TELIN
1
Equalization in digital communication
Prof. Marc Moeneclaey
TELIN
2
Intersymbol interference (1)
Dispersive (frequency-selective) channel
Hch(f) : channel transfer function (often unknown)
w(t) : AWGN
8/12/2019 Egali Satie 1
2/31
2
TELIN
3
Intersymbol interference (2)
Linear modulation
r t E a p(t mT w ts mm
( ) ) ( )= +!
s t E a p t kTs k trk
( ) ( )= !
P(f) = Hch(f)Ptr(f)
TELIN
4
Intersymbol interference (3)
Receiver
z(kT E a g E a g mT n kTs k s k mm
) ( ) ( ) ( )= + +
!00useful term
intersymbol interferenceterm (ISI)
noise term! "# $#
! "### $###
!"$
G(f) = H(f)P(f) =H(f)Hch(f)Ptr(f)
8/12/2019 Egali Satie 1
3/31
3
TELIN
5
Intersymbol interference (4)
Receiver (cont.)
P
P
N
E gH f df noise
useful s
=
+
"0 22
0| ( ) || ( )|
is minimum for H(f) = Ptr*(f)Hch*(f) (matched filter)
is zero when G(f) fulfills the Nyquist criterion
P
P g g mTISI
useful m=
!
1
0 22
0| ( ) || ( )|
In general, the matched filter does not yield zero ISI
TELIN
6
Intersymbol interference (5)
Eye diagram
Eye diagram shows Re ( )a g t mTmm
#
$%%
&
'((
!
as a function of time for all possible data sequences
Eye diagram is periodic in t with period T
M-PAM : g(t) has duration LT
)eye diagram has ML lines per period
8/12/2019 Egali Satie 1
4/31
4
TELIN
7
Intersymbol interference (6)
Eye diagram 20 % cosine rolloff pulse
1 2
2
1
0
-1
-20
t/T
TELIN
8
Intersymbol interference (7)
Eye diagram 50 % cosine rolloff pulse
2
1
0
-1
-20 1 2
t/T
8/12/2019 Egali Satie 1
5/31
5
TELIN
9
Intersymbol interference (8)
Eye diagram 100 % cosine rolloff pulse
0 1 2
2
1
0
-1
-2
t/T
TELIN
10
Intersymbol interference (9)
Scatter diagram
For a given sampling instant kT, scatter diagram shows
in the complex plane for all possible data sequences
Constellation of M points : g(t) has duration LT
)scatter diagram has ML points
a g kT mT a g a g mTm km
k mm
( ) ( ) ( ) = +! !
0
0
8/12/2019 Egali Satie 1
6/31
6
TELIN
11
Intersymbol interference (10)
Scatter diagram (cont.)
50 % cosine rolloff pulse, T/10 sampling error, 8-PSK
-1 0 1
1
0
-1
Im[zk]
Re[zk]
TELIN
12
Intersymbol interference (11)
Intersymbol interference power
( )g mT j fmTT
G f k
TG e
m
fldj fT
k
( ) exp( ) = +*+, -
./ =
=
+
=
+
! !2 1 2
folding of G(f) yields Gfld(exp(j2fT)) which is
periodic in f with period 1/T
8/12/2019 Egali Satie 1
7/31
7
TELIN
13
Intersymbol interference (12)
Notation :
( ) ( )X e T X e df j fT j fT
T
T2 2
1
2
1
2
=
"
Intersymbol interference power (cont.)
(averaging over interval (-1/(2T), 1/(2T))
TELIN
14
Intersymbol interference (13)
Intersymbol interference power (cont.)
g mT G e j fmTfldj fT( ) ( ) exp( )= 2 2
( )g G efld j fT( )0 2=
( )| ( )|g mT G em
fldj fT2 2 2! =
8/12/2019 Egali Satie 1
8/31
8
TELIN
15
Intersymbol interference (14)
Intersymbol interference power (cont.)
( ) ( )
( )
( )( )
P
P
G e G e
G e
e
e
ISI
useful
fldj fT
fldj fT
fldj fT
fld
j fT
fldj fT
=
=
2 2 2
2 2
2
2 2
power of fluctuation of G about its mean
mean of G
TELIN
16
Intersymbol interference (15)
Intersymbol interference power (cont.)
Zero ISI is obtained when
( )G efldj fT2
=constant (Nyquist criterion)
Equalization : elimination (or reduction) of ISI
8/12/2019 Egali Satie 1
9/31
9
TELIN
17
Intersymbol interference (16)
Example
Transmit pulse : P(f) = 50% square-root cosine rolloff
Channel : direct path + reflection
H f b j f ch ( ) exp( )= + 1 2
reflection : delay , magnitude b (0
8/12/2019 Egali Satie 1
10/31
10
TELIN
19
Intersymbol interference (18)
Example (cont.)
0.01
0.1
1
10
-0.5 -0.3 -0.1 0.1 0.3 0.5
fT
Grec,f
ld(exp(j2fT))
0 dB ripple
5 dB ripple10 dB ripple
20 dB ripple
Transmitter :50% sqrt cosinerolloff pulse
Channel : reflectionwith 3.5T delay
Hrec(f) : matched to
transmit pulse +channel
Folded Fourier transformmatched filter output pulse
TELIN
20
Intersymbol interference (19)
Example (cont.)
-0.20
0.00
0.20
0.40
0.60
0.80
1.00
-10 -5 0 5 10
t/T
grec
(t)
0 dB ripple
5 dB ripple
10 dB ripple
20 dB ripple
Transmitter :50% sqrt cosinerolloff pulse
Channel : reflectionwith 3.5T delay
Hrec(f) : matched totransmit pulse +channel
Matched filteroutput pulse
8/12/2019 Egali Satie 1
11/31
11
TELIN
21
Intersymbol interference (20)
Example (cont.)
Eye diagram at matched filter output (0 dB ripple)
2
1
0
-1
-20 1 2
t/T
TELIN
22
Intersymbol interference (21)
Example (cont.)
Eye diagram at matched filter output (5 dB ripple)
2
0
-20 1 2
t/T
8/12/2019 Egali Satie 1
12/31
12
TELIN
23
Intersymbol interference (22)
Example (cont.)
Eye diagram at matched filter output (10 dB ripple)
0 1 2
t/T
0
-3
3
TELIN
24
Intersymbol interference (23)
Example (cont.)
Ripple [dB] P
PISI
useful
[dB]
0 -
5 -9.96
10 -6.03
15 -4.84
20 -4.47
8/12/2019 Egali Satie 1
13/31
13
TELIN
25
Zero-forcing linear equalizer (ZF-LE) (1)
Decompose the receive filter as
( )H f H f C j fTrec( ) ( ) exp( )=
analogprefilter
linear equalizer!"$ ! "## $##
2
( )C e c j fmTj fT mm
22
=
=
+! exp( )
cm: m-th equalizer tap
Equalizer structure
TELIN
26
Zero-forcing linear equalizer (2)
z(t c x(t mTmm
) )=
=
+
! z(kT c x(kT mTmm
) )=
=
+
!
Equalizer structure (cont.)
8/12/2019 Egali Satie 1
14/31
14
TELIN
27
Zero-forcing linear equalizer (3)
z(kT c x(kT mTmm
) )=
=
+
!
Equalizer structure (cont.)
TELIN
28
Zero-forcing linear equalizer (4)
Equalizer structure (cont.)
8/12/2019 Egali Satie 1
15/31
15
TELIN
29
Zero-forcing linear equalizer (5)
( )G f P f H f H f C j fTtr ch recf
( ) ( ) ( ) ( ) exp( )
( )
=
G periodic in f,period 1/T
rec
! "### $### ! "## $##
2
( ) ( ) ( )G e G e C efld j fT rec fld j fT j fT2 2 2 = ,
The zero-forcing linear equalizer should be selected such
that the resulting Gfld(exp(j2fT)) is constant (equalized),
in order to eliminate all ISI
Equalizer transfer function
TELIN
30
Zero-forcing linear equalizer (6)
The ZF-LE is not unique : different choice of Hrec(f)
yields a different equalizer and a different Pnoise/Puseful
( ) ( )) =C e
G e
j fT
rec fld j fT
2
2
1
,
Equalizer transfer function (cont.)
8/12/2019 Egali Satie 1
16/31
16
TELIN
31
Zero-forcing linear equalizer (7)
Optimum zero-forcing linear equalizer
H(f) minimizes Pnoise/Puseful, under the restriction
of zero ISI
Solution : ( )H f P f H f C j fTtr ch( ) ( ) ( ) exp( )* *
=
matched filter linear equalizer! "## $## ! "## $##
2
G f P f H f rec tr ch( ) ( ) ( )= 2
( )( )
C eG e
j fT
rec fldj fT
22
1
=
,
TELIN
32
Zero-forcing linear equalizer (8)
Noise enhancement
As H(f) for the optimum ZF-LE is different from the
matched filter, the equalizer eliminates ISI at the
expense of an increased noise level
P
P
P
Pnoise
useful matchedfilter
noise
useful ZF LE
*
+,
-
./
) = ) =
2 2 0
G z g mT z Gz
rec fld recm
m
rec fld, ,*
( ) ( )*
= = *+, -
./
=
+
! 1
poles and zeroes of Grec,fld(z) occur in pairs :
zpand 1/zp* (poles), znand 1/zn* (zeroes)
8/12/2019 Eg