45
ECE 340 ELECTRONICS I BJT APPLICATIONS AND BIASING

ECE 340 ELECTRONICS I BJT APPLICATIONS AND BIASING

Embed Size (px)

Citation preview

ECE 340ELECTRONICS I

BJT

APPLICATIONS AND BIASING

SHORTHAND CIRCUIT DIAGRAM

VS

R1

R2

R1

R2

VX

VX

VS

BJT REGIONS OF OPERATION

• CUTOFF

• ACTIVE OR LINEAR

• SATURATION

NPN BJT BIAS CIRCUIT ANALYSIS

VE

VC

VB

RB

RE

Q1

RC

VBB

VCC

+ VBE -

-VCB+ +VCE

-IB

IC

IE

NPN INPUT CIRCUIT ANALYSIS

EB

BEBBB

BE

EEBEBBBB

RR

VVI

II

RIVRIV

1

1

0

NPN OUTPUT CIRCUIT ANALYSIS

EC

CECCC

CE

EECECCCC

RR

VVI

II

RIVRIV

0

NPN DC VOLTAGES

EEE

BBBBB

CCCCC

RIV

RIVV

RIVV

NPN REGIONS OF OPERATION

SATCECEBCEB

BCEB

CEB

VVVVandVVSATURATION

VVandVVLINEARorACTIVE

IVVCUTOFF

,:

:

0:

NPN OPERATING LIMITS

CCMAXCEE

C

CCMAXC

EC

CCCE

EC

C

VVR

R

VI

RR

VV

RR

I

,,

1

NPN OPERATING LIMITS

CCMAXCE

EC

MAXCECCMINCSATCEMINCE

EC

CCCE

EC

C

VV

RR

VVIVV

RR

VV

RR

I

,

,,,,

1

PNP BIAS CIRCUIT ANALYSIS

VC

VEVB

QRB

RC

RE

VBB

VEE

IB

IE

IC

PNP INPUT CIRCUIT ANALYSIS

EB

EBEEB

BE

BBBBEBEEEE

RR

VVI

II

VRIVRIV

1

1

0

PNP OUTPUT CIRCUIT ANALYSIS

EC

ECEEC

CE

CCECEEEE

RR

VVI

II

RIVRIV

0

PNP DC VOLTAGES

CCC

BBBBB

EEEEE

RIV

RIVV

RIVV

PNP REGIONS OF OPERATION

SATECECBCEB

BCEB

CEB

VVVVandVVSATURATION

VVandVVLINEARorACTIVE

IVVCUTOFF

,:

:

0:

PNP OPERATING LIMITS

EEMAXECE

C

EEMAXC

EC

EEEC

EC

C

VVR

R

VI

RR

VV

RR

I

,,

1

PNP OPERATING LIMITS

EEMAXEC

EC

MAXECEEMINCSATECMINEC

EC

EEEC

EC

C

VV

RR

VVIVV

RR

VV

RR

I

,

,,,,

1

SINGLE RESISTOR BIASING CIRCUIT

Q1

RB RC

VCC

ICIB

SINGLE RESISTOR BIASING

• SETS BASE CURRENT

• DIRECTLY CONTROLLED BY SUPPLY VOLTAGE

INPUT KVL EQUATION

B

BECCB

BEBBCC

BEBBCC

R

VVI

VRIV

VRIV

0

0

INPUT LOAD LINE EQUATION

B

CCBEQ

BBQ

B

BECCB

R

VV

RI

R

VVI

1

COLLECTOR CURRENT DEPENDENCE ON VBE

CCB

BEQB

CQ

B

BECCC

B

BECCB

VR

VR

I

R

VVI

R

VVI

OUTPUT KVL EQUATION

CCCB

BEB

CCCE

CCCCCE

CECCCC

RVR

VR

VV

RIVV

VRIV

0

OUTPUT LOAD LINE EQUATION

CB

BEQCCCCCEQ

CCCCCEQ

RR

VVVV

RIVV

RESISTOR DIVIDER BIASING CIRCUIT

Q1

R1

RC

VCC

R2

IC

VOLTAGE DIVIDER BIASING

• PROVIDES TWO METHODS OF DETERMINING BIAS CONDITIONS

• SETS VBE VOLTAGE

• SUPPRESSES DEPENDENCE ON β

DIRECT METHOD

• FIND THEVENIN CIRCUIT AT BASE NODE

• CREATES INPUT CIRCUIT

RESIDUAL CIRCUIT FROM THEVENIN CONVERSION

Q1

RC

VCC

VBB

RB

IB

IC

INPUT EQUATION

B

BEBBB

BEBBBB

R

VVI

VRIV

0

INPUT LOAD LINE EQUATION

B

BBBEQ

BBQ

B

BEBBB

R

VV

RI

R

VVI

1

COLLECTOR CURRENT DEPENDANCE

BBB

BEQB

CQ

B

BEBBC

B

BEBBB

VR

VR

I

R

VVI

R

VVI

OUTPUT EQUATION

C

CECCC

CECCCC

CECCCC

R

VVI

VRIV

VRIV

0

0

OUTPUT EQUATION LOAD LINE

C

CCCEQ

CCQ

C

CECCC

R

VV

RI

R

VVI

1

INDIRECT OR APPROXIMATE METHOD

• ASSUME IB ≈ 0

• VBE IS SET BY VOLTAGE DIVIDER

INPUT EQUATION

T

CCSCC

T

BESCC

CCBE

V

V

RR

RII

V

VII

VRR

RV

21

2

21

2

exp

exp

ITERATIVE METHOD FOR CONVERGENCE

SC

CTBE

T

CCSCC

T

BESCC

CC

BECCBE

I

IVV

V

V

RR

RII

V

VII

V

V

RR

RVandVChoose

ln

expexp

2

21

2

21

21

ITERATIVE METHOD FOR CONVERGENCE

• SUBSTITUTE VBE2 FOR VBE1

• CONTINUE ITERATION UNTIL VBEN+1 ≈ VBEN

VOLTAGE DIVIDER WITH EMITTER DEGENERATION

Q1

RC

VCC

RE

R1

R2

RESULTANT CIRCUIT FROM THEVENIN CONVERSION

Q1

RC

VCC

RE

RB

VBB

INPUT EQUATION

EB

BEBBB

BE

EEBEBBBB

RR

VVI

II

RIVRIV

1

1

0

COLLECTOR CURRENT DEPENDENCE

E

BEBBCBE

BEEB

BBEB

C

EB

BEBBC

R

VVIRR

VRR

VRR

I

RR

VVI

1

11

1

ITERATIVE METHOD

SC

CTBE

E

BEBBC

BECCBB

I

IVV

R

VVI

VChooseVRR

RV

ln2

1

121

2

ITERATIVE METHOD FOR CONVERGENCE

• SUBSTITUTE VBE2 FOR VBE1

• CONTINUE ITERATION UNTIL VBEN+1 ≈ VBEN

SELF-BIASED CIRCUIT

Q1

RC

VCC

RB

IB

INPUT EQUATION

βR

VVI

RβR

VVI

RβR

VVβI

RβR

VVI

VRIRIβVVRIRIV

C

BECCC

CB

BECCC

CB

BECCC

CB

BECCB

BEBBCBCCBEBBCECC

large

11

1