31
ESE319 Introduction to Microelectronics 1 2009 Kenneth R. Laker, updated 25Sep12 KRL BJT Biasing Cont. & Small Signal Model Bias Design Example using “1/3, 1/3, 1/3 Rule” Small Signal BJT Models Small Signal Analysis

BJT Biasing Cont. & Small Signal Modelese319/Lecture_Notes/Lec_6_BJTSmS… · ESE319 Introduction to Microelectronics 2009 Kenneth R. Laker, updated 25Sep12 KRL 1 BJT Biasing Cont.&

  • Upload
    others

  • View
    38

  • Download
    11

Embed Size (px)

Citation preview

ESE319 Introduction to Microelectronics

12009 Kenneth R. Laker, updated 25Sep12 KRL

BJT Biasing Cont. & Small Signal Model

● Bias Design Example using “1/3, 1/3, 1/3 Rule”● Small Signal BJT Models● Small Signal Analysis

ESE319 Introduction to Microelectronics

22009 Kenneth R. Laker, updated 25Sep12 KRL

Emitter Feedback Bias Design

Two power supply version Single power supply version

I1 I

C

IE

IB

VB

RC

RE

RB

VCC

RC

RE

R1

R2

V B=R2

R1R2V CC

RB=R1 R2

R1R2R1=RB

V CC

V B

R2=R1

V B

V CC−V B

Specify VCC

, VB and RB, and solve for R

1 and R

2:

ESE319 Introduction to Microelectronics

32009 Kenneth R. Laker, updated 25Sep12 KRL

“1/3, 1/3, 1/3 Rule” Bias Procedure:1. Bias so that VCC is split equally acrossRC, VCE , and RE .2. Specify the desired collector current.3. Assume IE = IC to determine RC & RE.4. Add 0.7 V to V

RE = VCC/3 to find VB.

Assume base current through RB isnegligible; hence 5. Choose RB approximately equal to . (Use lowest value of 6. Finally compute R1 and R2.

V B≈V BEV RE

1RE /10 5.Or choose RT=R1R2=

V CC

I 1=

V CC

I C /10

VB

RC

RE

RB V

CC

ESE319 Introduction to Microelectronics

42009 Kenneth R. Laker, updated 25Sep12 KRL

Example

V CC=12V

V RE=V RC

=V CC

3=4 V

I C=1 mA

Then:RC=RE=

410−3=4⋅103=4 k

V B=V CC

30.7 V=4V 0.7V =4.7 V

RB=min1RE

10≈

50⋅400010

=20 k

For a single power supply:50≤ ≤ 100

RB

RE

RC

VCC

VB

R1=RB V CC

V B=20 k 12V

4.7V=51 k

R2=R1

V B

V CC−V B=51 k 4.7V

7.3V=32.9 k

ESE319 Introduction to Microelectronics

52009 Kenneth R. Laker, updated 25Sep12 KRL

Completed Bias DesignOur design differs from the simulation because we neglected the base cur-rent.

There is no point in including the base current, since we will build the circuit using resistors that come only in stand-ard sizes and with 5% tolerances at-tached to their values. The closest available resistors in the Detkin Lab are 47 kΩ, 33 kΩ, and 3.3 kΩ (or 4.7 kΩ).

Electronics Workbench simulation results

4.7 V1 mA

RT=R1R2=83.9 k

⇒ I 1=V B

RT=0.056 mA

I C

10

Δ < ±10%

RC

R1 R

C

RE

R2

VCC

ESE319 Introduction to Microelectronics

62009 Kenneth R. Laker, updated 25Sep12 KRL

BJT Small Signal Models

Conceptually, the signal we wish to amplify is connected in series with the bias source and is of small amplitude.

We will linearize the signal analysisto simplify our mathematics – to avoid having to deal with thenonlinear exponential collector current

iC− I S evBE

V T

VCC

VB

RE

RCR

B

ESE319 Introduction to Microelectronics

72009 Kenneth R. Laker, updated 25Sep12 KRL

BJT Small Signal Models

ESE319 Introduction to Microelectronics

82009 Kenneth R. Laker, updated 25Sep12 KRL

Linearization Process

iC= I Cic= I S evBE

V T = I S eV BEvbe

V T = I S eV BE

V T evbe

V T

Split the total base-emitter voltage and total collector cur-rent into bias and signal components:

iC= I C evbe

V T

Identify and substitute the bias current into the model:

Expand the exponential in a Taylor series:

f x =∑n=0

f n 0 xn

n!

I C

ESE319 Introduction to Microelectronics

92009 Kenneth R. Laker, updated 25Sep12 KRL

Analysis Using Collector Current Model

iC= I C evbe

V T

iC

I C=e

vbe

V T

log10 iC

I C = vbe

V T log10 e

log102=0.301

Useful constants:

log10e=0.4343

Let iC be 2x IC, i.e. :

0.301= vbe

V T 0.4343

vbe=0.301

0.43430.025≈0.017 V

iC / I C=2

ESE319 Introduction to Microelectronics

102009 Kenneth R. Laker, updated 25Sep12 KRL

Linearization Using Taylor Series

For the exponential func-tion:

f x =ex=∑n=0

∞ xn

n!

evbe

V T=∑n=0

∞ 1n ! vbe

V T n

or:

evbe

V T=1vbe

V T

12 vbe

V T 2

16 vbe

V T 3

≈1vbe

V T

Expand in a Taylor series: f x =∑n=0

f n 0 xn

n!

when 12

vbe

V T2

≪1

ESE319 Introduction to Microelectronics

112009 Kenneth R. Laker, updated 25Sep12 KRL

Linearization Continued Recall: vbe of about 17 mV causes a 2x change in collector current. Let's expand in Taylor series for this value of vbe.

vbe

V T= 0.017

0.025=0.68

evbe

V T=10.68 12 0.6821

6 0.683

evbe

V T≈10.680.23120.0524=1.9444

Compare with: e0.68=1.973

Four term expansion is accurate to about 1.5%, two term expansion is only accurate to about 15%, i.e.

vbe≈0.017V is not sucha small signal

ESE319 Introduction to Microelectronics

122009 Kenneth R. Laker, updated 25Sep12 KRL

Small Signal Model

And using the first two terms of the Taylor series expansion:iC= I Cic= I C e

vbe

V T

Using the grouping into bias and signal voltages/currents:

iC≈ I C 1 1V T

vbe= I CI C

V Tvbe=I Cic

We define transconductance and incremental (or ac) current as:

ic=gm vbegm=d iC

d vBEiC= I C

=I C

V T

bias current

ESE319 Introduction to Microelectronics

132009 Kenneth R. Laker, updated 25Sep12 KRL

Small Signal - Graphical Rep-

resentation

iC

ESE319 Introduction to Microelectronics

142009 Kenneth R. Laker, updated 25Sep12 KRL

Incremental (small-signal) BJT ModeliB= I Bib=

1

iC=1 I Cic

iB=1

iC=1

I C1 I C

V T vbe

Define the incremental base current and base resistance:

ib=1 ic=

1 I C

V T vbe=1r

vbe

r=V T

I C=

gmbias current

where I C=V T g m

I B ib

ESE319 Introduction to Microelectronics

152009 Kenneth R. Laker, updated 25Sep12 KRL

Equivalent ModelsEquations (3):

ic=gm vbe

ie=ibic

ib=ic

ib=

vbe

r

Equations (1):ic=gm vbe

ie=ibic

Equations (2):

ic= ib

ib=ie

1ie=1 ib=1

vbe

r=

vbe

re

Choose the model that simplifies the circuit analysis.

re=r

1=

1

V T

I Cic=gm r ib=

I C

V T

V T

I Cib= ib

ESE319 Introduction to Microelectronics

162009 Kenneth R. Laker, updated 25Sep12 KRL

Equivalent CircuitsEquations (3):

b

e

cic

g m vbe

ie=ibic

ib=ic

Equations (2):b

e

c

re

ib

ic= i bvce

r0

ib=ie

1

ie=vbe

re

Equations (1):

ib=vbe

r

ic=gm vbevce

r0

ie=ibic

b c

e

r r0

gm=I C

V Tr0=

V A

I C

r=V T

I B=

V T

I C=

g m

r0

re=V T

I E=

gm

=r

1

g m vbe r0

ic=gm vbevce

r0

icib

ie

ib ic

ie

ib ic

ie

ESE319 Introduction to Microelectronics

172009 Kenneth R. Laker, updated 25Sep12 KRL

Quick Small Signal Model Review

What is iC, I

C, v

BE, v

be?

Under what condition(s) can one justifiably approximate the above infinite series as

iC= I S evBE

V T =I C evbe

V T

evbe

V T≈1vbe

V T

12 vbe

V T 2

16 vbe

V T 3

evbe

V T≈1vbe

V T

Why is this important?

ESE319 Introduction to Microelectronics

182009 Kenneth R. Laker, updated 25Sep12 KRL

Quick Review

“?” “?” “?”

“?”

“?”

What are each of the “?” parameters?

ESE319 Introduction to Microelectronics

192009 Kenneth R. Laker, updated 25Sep12 KRL

Quick Review

gm=I C

V T

r0=V A

I C

r=V T

I B=

V T

I C=

g m

re=V T

I E=

gm

=r

1

ESE319 Introduction to Microelectronics

202009 Kenneth R. Laker, updated 25Sep12 KRL

DC & AC Circuit Decomposition

RE

RCR

b

VCC

VB

RE

RCR

b

VCC

VB

RE

RCR

b

DC AC

DOES Rb = R

B = R

1\\R

2 ? ASSUMPTION: ?

ESE319 Introduction to Microelectronics

212009 Kenneth R. Laker, updated 25Sep12 KRL

DC & AC Circuit Decomposition

RE

RCR

b

VCC

VB

RE

RCR

b

VCC

VB

RE

RCR

b

DC AC

NO Rb ≠ R

B = R

1\\R

2

ASSUMPTION: signal v

s is pure AC!

ac source vs has

series input resistance

ESE319 Introduction to Microelectronics

222009 Kenneth R. Laker, updated 25Sep12 KRL

Small Signal Circuit AnalysisThe small signal model will replace the large signal model and be used for (approximate) signal analysis once the transistor is biased.

small signal BJT model

ac small signal circuit (Bias circuit set to “zero” by superposition)

gmvberπ

b c

e

r rib

ie

ic

vc

RC

RE

Rb

actual circuit, AC + DC

Assume for time being that Rb = R

B = R

1||R

2

ESE319 Introduction to Microelectronics

232009 Kenneth R. Laker, updated 25Sep12 KRL

Biased Circuit Small Signal Analysis

r=V T

I C=100 0.025

0.001=2.5k

vs=ibRbrie RE

vs=ibRbrib 1RE

ib=vs

Rbr1RE

vbe=ib r=r

Rbr1REvs

rib

ie

gm=I C

V T=

0.001 A0.025V

=0.04 S=40 mSNote: S = siemen

Let: =100 and I C=1mA

ic

vc

20 k Ohm

e

cb

RC

RE

Rb

ESE319 Introduction to Microelectronics

242009 Kenneth R. Laker, updated 25Sep12 KRL

Small Signal Analysis - Continued

vbe=ib r=r

Rbr1REv s

ic=gm v be=gm r

Rbr1REv s

gm r=I C

V T

V T

I C=

vc=−RC ic=−RC

Rbr1REv s

1RE≫Rbr⇒ vc≈−RC

1REv s

Av=vc

vs≈−

RC

RE

=100

rib

ie

vc

ic

20 k OhmR

C

RE

Rb

ESE319 Introduction to Microelectronics

252009 Kenneth R. Laker, updated 25Sep12 KRL

Multisim Model of “Bias Design”

Av=vc

vs≈−

RC

RE=−1

1. RE needs to be large to achieve good op. pt. Stability!

2. Consequence: |Av| is low.

20 k Ohm

RC

RE

Rb

VCC

VB

vs

vc

ESE319 Introduction to Microelectronics

262009 Kenneth R. Laker, updated 25Sep12 KRL

Multisim Input-output Plot

Av=vc

vs≈−

RC

RE=−1

ESE319 Introduction to Microelectronics

272009 Kenneth R. Laker, updated 25Sep12 KRL

Combining AC and DC Sources

vsv

s

vOR

S

RS

R1

R2

RC

RE

RC

RE

RB

VB

vO V

CCVCC

<=>

AC Source with low outputimpedance upsets bias.

Thevenin equivalent at base.

ESE319 Introduction to Microelectronics

282009 Kenneth R. Laker, updated 25Sep12 KRL

Combining AC and DC Sources Cont.

ISSUES:1. Signal source v

s shorts out V

B.

2. DC bias on vs interferes with op point design.

vs

ESE319 Introduction to Microelectronics

292009 Kenneth R. Laker, updated 25Sep12 KRL

“Blocking Capacitor” Remedy

vs

R1

R2

RC

RE

vO

VCC

RS

What is the purpose of “blocking capacitor” Cin?

How does one determine the value of Cin?

ESE319 Introduction to Microelectronics

302009 Kenneth R. Laker, updated 25Sep12 KRL

ConclusionsConservative voltage bias for best operating point stability and signal swing works, but returns unity voltage gain.

How does one obtain operating point stability, and simultaneously achieve a respectable voltage gain?

ESE319 Introduction to Microelectronics

312009 Kenneth R. Laker, updated 25Sep12 KRL

Conclusion Cont.How does one obtain operating point stability, and simultaneously achieve a respectable voltage gain?

Cbyp

“Bypass Capacitor”

“Blocking Capacitor”

vs