5
Volume 89A, number 9 PHYSICS LETTERS 14 June 1982 CONFORMATION SPACE RENORMALIZATION THEORY OF SEMIDILUTE POLYMER SOLUTIONS T. OHTA’ Department of Physics, Kyushu University, Fukuoka 812, Japan and Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA and Y. 00N0 2 Department of Physics, Kyushu University, Fukuoka 812, Japan and Department of Physics andMaterial Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Received 11 March 1982 Revised manuscript received- 3 April 1982 A transparent conformation space renormalization group formalism is given which can incorporate arbitrary molecular weight distributions to the theory of semi-dilute polymer solutions. The closed forms for the osmotic pressure ir and the mean square end-to-end distance of a single test chain are given to order e = 4 d, d being the spatial dimensionality, as functionals of the molecular weight distribution function. The scaling form of ii is compared to the recent experimental result by Noda et al. A distribution sensitive universal plot is also proposed. The purpose of the present letter is to give a canonical ensemble renormalization group theoretic formalism for semidilute polymer solutions which is not dependent on the polymer—magnet analogy [1,2] and is capable of dealing with arbitrary polydispersity. As examples of the application of this formalism, the osmotic pressure ir and the mean-square end-to-end distance [R2] of a test chain in the solution are given in closed forms to order = 4 d, d being the spatial dimensionality. The obtained scaling form of ir is compared with the recent experi- ment by Noda et a!. [31. Furthermore, convenient approximants to ir and ER2] are proposed which depend on = M~ IMn, where M~ is the weight average molecular weight and Mn the number average molecular weight. A polydispersity sensitive universal plot which is experimentally accessible is proposed at the end of the letter. It is generally very difficult to prepare a strictly monodisperse polymer solution, so that it is important to assess the effect of the polydispersity in the analysis of experimental results. So far, however, there have been few reliable calculations of the polydispersity effects on physical properties of semidilute solutions with good solvents. Quite recently, Knoll et a!. [4] have calculated the scaling form of the osmotic pressure for arbitrary polydispersity with the aid of the polymer—magnet analogy. The analogy is, however, not free from controversy [5,6], especially, in the case of calculating correlation functions [5]. Although Wheeler and Pfeuty [7] have shown that the viola- tion of stability in the n 0 limit of the n-vector model does not appear in the polymer systems, their result does not cover the semidilute regime. Furthermore, the difficulty of the field theory due to the Goldstone mode below the critical temperature is not a genuine difficulty but an artificial one for polymer problems. In these circumstan- ces it is desirable to develop a theory of semidilute solutions free from the magnetic analogy. Indeed, des Permanent address: Department of Physics, Kyushu University, Fukuoka 812, Japan. 2 Permanent address: Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 460

Conformation space renormalization theory of semidilute polymer solutions

  • Upload
    t-ohta

  • View
    215

  • Download
    3

Embed Size (px)

Citation preview

Volume89A, number9 PHYSICSLETTERS 14 June1982

CONFORMATION SPACERENORMALIZATION THEORY OF SEMIDILUTE POLYMER SOLUTIONS

T. OHTA’DepartmentofPhysics,Kyushu University,Fukuoka812,JapanandDepartmentofPhysicsandAstronomy,UniversityofPittsburgh,Pittsburgh,PA 15260, USA

and

Y. 00N02DepartmentofPhysics,KyushuUniversity,Fukuoka812,JapanandDepartmentofPhysicsandMaterialResearchLaboratory, UniversityofIllinois at Urbana-Champaign,Urbana, IL 61801,USA

Received11 March 1982Revisedmanuscriptreceived-3 April 1982

A transparentconformationspacerenormalizationgroupformalismis givenwhichcan incorporatearbitrarymolecularweight distributionsto thetheoryof semi-dilutepolymersolutions.Theclosedformsfor theosmoticpressureir andthemeansquareend-to-enddistanceof a singletestchain aregivento ordere= 4 — d, dbeingthespatialdimensionality,asfunctionalsof themolecularweightdistributionfunction.Thescalingform of ii is comparedto therecentexperimentalresultby Nodaetal.A distributionsensitiveuniversalplot is alsoproposed.

Thepurposeof thepresentletteris to give acanonicalensemblerenormalizationgroup theoreticformalismfor semidilutepolymersolutionswhich isnot dependentonthepolymer—magnetanalogy[1,2] andis capableofdealingwitharbitrarypolydispersity.As examplesof theapplicationof this formalism,the osmoticpressureirandthemean-squareend-to-enddistance[R2] of a testchainin thesolution are given in closedformsto order� = 4 — d, d beingthe spatialdimensionality.The obtainedscalingform of ir is comparedwith the recentexperi-mentby Nodaet a!. [31.Furthermore,convenientapproximantsto ir andER2] are proposedwhich dependon= M~IMn, whereM~is the weight averagemolecularweight andMn the numberaveragemolecularweight.A polydispersitysensitiveuniversalplot which is experimentallyaccessibleis proposedat the endof theletter.

It isgenerallyvery difficult to preparea strictly monodispersepolymersolution,sothatit isimportantto assesstheeffect of thepolydispersityin theanalysisof experimentalresults.Sofar, however,therehavebeenfew reliablecalculationsof the polydispersityeffectson physicalpropertiesof semidilutesolutionswith goodsolvents.Quiterecently,Knoll et a!. [4] havecalculatedthe scalingform of the osmoticpressurefor arbitrarypolydispersitywith the aid of thepolymer—magnetanalogy.The analogyis, however,notfreefrom controversy[5,6], especially,in thecaseof calculatingcorrelationfunctions [5]. AlthoughWheelerandPfeuty [7] haveshownthat theviola-tionof stability in then -÷0 limit of then-vectormodel doesnot appearin the polymersystems,their resultdoesnotcoverthesemidiluteregime.Furthermore,the difficulty of thefield theorydue to theGoldstonemodebelowthe critical temperatureis nota genuinedifficulty butanartificial onefor polymerproblems.In thesecircumstan-cesit is desirableto developa theoryof semidilutesolutionsfree from the magneticanalogy.Indeed,des

Permanentaddress:Departmentof Physics,KyushuUniversity, Fukuoka812,Japan.2 Permanentaddress:DepartmentofPhysics,Universityof Illinois atUrbana-Champaign,Urbana,IL 61801,USA.

460

Volume89A, number9 PHYSICSLETTERS 14 June1982

Cloizeauxdevisedsucha theory [8] andcalculatedphysicalquantitiesup to onelooporder [9]. However,theresultantperturbationseriesarenot renormalizedto covergoodsolventsituationsasin Moore’spapers[10,11].Moreover,thefollowing canonicalensembleformalismis simplerthendesCloizeaux’sgrandcanonicalensembleformalismin the actualcalculations.The osmoticpressureobtainedby our methodiscomparedwith thatby thefield theoreticapproach.

Ourmodel of thegenerallypolydispersesemidilutesolutionin a box Vconsistsof continuouspolymerchainswith differentlength interactingwitheachotherandalsowith themselvesby the localized~-function-likerepul-sive potentialv~6(r), wherev0 is a positivebare interactionparameter(excluded-volumeparameter).More speci-fic ally, if wedecoupleall the chainsby theintroductionof thenormal stochasticfield [12], thepartitionfunctionof our modelis givenby [13]

z = fD[~] H ~ ~)exp(_ ~L f~2 ddr), (1)

whereD impliesthe uniform functionalmeasureoverreal scalarfunctions ,I’, N~is the baredegreeof polymeriza-tion of the ~th polymer,andn isthe totalnumberof polymersin the box.G isgivenby

N~

G(N~,i~1i)=f D[c] exp[_~.f (dcr)2 dr—if IP(c(r)dr], (2)

whereD impliesthe uniform measureon theset of all (continuous)conformationsof the athpolymerchaininthebox.Conformationsare designatedby c(r) withr beingthe contourvariable.It is understoodthat thereis animplicit cut-off contourlengtha to avoidself-interactions.

If we introducethedensitydistributionfunctionP0(N0)of thedegreeof polymerizationN0, then(1) canbe

rewrittenas

z= fD[~i]exp(n f P0(N0)ln G(N0, ~)dN0 — ~ f~p2ddr), (3)

which is themostconvenientstartingpoint to studytheeffect of polydispersity.To evaluatethepartitionfunction(3), we follow Edwards[12]. Ignoringthe effect of thewalls of thecontain-

er, we get the bare free energyFb to the lowest non-trivial orderin v0 aftera straightforwardcalculationas

r (N0)2n2V

0 ~ v I 2nv0Fb=kT[nlnV— 2V 2(~’1df ddkln~1+~ (So(k~No)))j~ (4)

‘ /

where( ) denotestheaverageoverF0, andS0(k,N0) = 2N0/k2— 4 [1 — exp(—N

0k2/2)] 1k4. Thebareosmotic

pressureIrb is given by —aFb/aV.The baremean-squareend-to-enddistance[R2]b canbeobtainedanalogously.The renormalizedmean-square end-to-end distance [R2I andtherenormalizedosmoticpressureir mustbewell

definedin thea -~ 0 limit. Thisexpectationwasverified in the samefashionasis explainedin our previouspapers[14,15]. Thuswe areleft with the following closedforms.

= 1 + — fj f dz z3 {ln[l + 2Xg~(z2)]— 2Xg~(z2)/[l+ 2Xg~(z2)]— 21z4(l — e_z)}, (5)

and

[R2]/[R2]~o exp(_~f dx(1 —x)x2 f dzz5eXz2 2Xg~(z2)/[l+2Xgp(z2)]), (6)

where c is the polymer number density, [R2]~,o is the mean-square end-to-end distance in the c -~ 0 limit. Xisgiven by X = c(NYhlIT2e/2with dv= 2 — �14+ O(e2), where N is the renormalizeddegree of polymerization, and( ) is the average with respect to the observed distribution function P of the degree of polymerization. gp is given by

461

Volume89A, number9 PHYSICSLETTERS 14 June1982

g~(z2)z2 —[1 —(exp(—Nz2/(N)))]z-4. (7a)

Eqs. (5) and(6) with (7a) are thegeneralscalingformsup to O(�).It is found that the following approximant(7b) to(7a)gives accurateresultsandenablesusanalyticevaluationof(S) and(6),

g~(z2)= (z2 + 2p)~, (7b)

wherep = (N)2/(A12) = Mn/MW. It mustbestressedthat this approximantwith p = 1/2 is exactwhenP is givenby theexponentialdistribution.Forgenera!functionofF theapproximant(7b) reproducesthecorrectasymptoticbehaviorin thebothlimit z-* 0 andz -~ 00• In themonodispersecasefor which p = 1, the numericalresultsdueto(5) and(6) with (7b) lie within about 3% errorof thosewith (7a).

Introducing(7b) into (5) and(6) yieldsthefollowing analyticclosedforms

ir/ckT= 1 + ~Xexp~ �[p/X+ (p2/X2) ln p + (1 — p2/X2) ln(X+ p)]} (8)

and

[R2]/[R2]~,~o=exp~�X~3/(X+p)—[3/2(Xi-p)2-t- l/(X+p)][1n2(X+p)+~]

+e2(~~I2)Ei(_2(X+p))[1—2/(X-i-p)+3/2(X+p)2]}, (9)

wherej’ ~ 0.5772is Euler’sconstant,X = �ir2c(N)th’[l + e(1J2+ ln 2)/4]/2 withdv = 2 — �14+ O(�2)andEi(—x)= —f°dtet/t. In theseexpressionstheorder e correctionsare exponentiated.This is necessaryespeciallyfor [R2].Otherwise,it becomesnegativefor largerX (or, we couldperturbativelycalculateln IT andln [R2] as wasdoneinref. [15]).

The graphof ir/ckTversusXis shownin fig. 1. The recentexperimentalresultsby Nodaet a!. [3] arealso

fl / ckT

• a—104 *

o n—12100 ~ a—103

A a—hO *

10 4 a—112

1~1 ~0.01 0.1 1.0 10 c/ce

Fig. 1. Therelation rr/ckT versusc/c” to ordere (e is setequalto 1). Thefull line showsthecaseM = 1 (monodisperse)andthebrokenline p = 0.01 (verybroaddistribution).Theexperimentalresults[3] for poly (c~-methylstryrenes)in tolueneat25°Carealsoplotted.a-104etc.specify thesampleswith differentmolecularweights.Seeref. [3] for details.Thepolydispersitymakesthecrossoverconcentrationfromthediluteto thesemidiluteregimesomewhatsmaller,but it is clearthat the polydispersityeffect isvery small.

462

Volume89A, number9 PHYSICSLETTERS 14 June1982

plotted.Wehaveadjustedtheunknownproportional constant between X and c/c”‘ withc” thecritical concentra-tion of chainoverlapping.Sincetheexperimenthasbeendonefor the sampleshavingsharpmolecularweight dis-tributions,the datashouldbe comparedto the monodispersescalingfunction(thefull line). Theagreementis quitesatisfactoryexceptfor theregimeof the largevaluesof X. Themain reasonis dueto thefirst order approximationusedhere.In fact eq.(8) gives IT X1+e14 for the largevaluesof X while the experimentis morecloseto Irx l/(dv 1) with v = 0.585.The secondordercalculationwould improvetheagreement.Theobtainedformula(8) shouldbecomparedwith theresultof the field theoreticcalculation.By usingthe free

energyformula for the n-vector0-modelgivenby Brésin et al. [16] anddesCloizeaux’scorrespondencebetweenpolymersandfields [2], ir/ckT canreadilybecalculatedandturnsoutto beidenticalto eq. (2) with p = 1/2(whichis exactto order �)andX beingreplacedwith X’ =gcN2 — e/4[1 + �(3/2+ ln 2)] /3, whereg is thecouplingconstantin the Ø4-model.Since thedifferencebetweenthe distributionof the degreeof polymerizationfor thefield theo-retic calculationandthe exponentialdistributionis of order� [17], this agreementis asexpected.Thesameresultcanalso be obtainedfrom theimplicit formulas(2.36), (2.39ii) and(2.40) of Knoll et a!. [4]. However, it shouldbe stressedthat thepresentmethodprovidesnot only thermodynamicquantitiesbutalso quantitiesrelatedto thecorrelationfunctionwithoutbeingaffectedby therecentcriticismsof field theoreticmethods[5].

In the largeX limit, IT behavesasX1~/4,which agreeswith the scalingargument[18]. In this limit [R2] be-havesasM(N>~/8X~i8andis alsoin agreementwith thescalingargument[19], whereMis the renormalizedde-gree of polymerizationof thetestchain. [R2] B containstermswhichdependonaX/M

0. In thecalculationabove,thea/M0 -+0 limit wastakenwith fixed X. In thehigh densitylimit, however,aX/M0 canbelarge(especiallywhen(N)/M~ 1 evenif themonomerdensityis finite). Therefore,theresult (6)or (9) cannotbeusedif the con-dition aX/M0 ~ 1 is notsatisfied.

Fig. 1 showsthat, to order �, theeffect of polydispersityis negligible.Since theresultsto order�are knownto

beat leastsemiquantitativelyreliable(e.g., refs. [20] and [211),the qualitativeconclusionis expectedto remainintact in thehigherordercalculations.However,thereis an observableuniversalfunctionwhich is fairly sensitivetotheratiop = Mn/MW.This is h (x) = NAØr/ckT— 1)/M~A2c,whereNA is Avogadro’sconstantandA2 is theosmoticsecondvirial coefficient.SinceA2 behavesaspEI

4 ascanbe seenfrom (8), thedependenceof h (x) on pis observable.

A p-sensitiveuniversalplot [R2]/ [R2]c0 versush(x) is given in fig. 2. Sinceit is well knownthat theratio of[R2] andtheradiusof gyrationis fairly insensitiveto theexcluded-volumeeffect [17,15], [R2]f[R2]c

0 may bereplacedby thecorrespondingratio of theradii of gyration.

In summary,we havecalculatedthepolydispersityeffectson semidiulatepolymersolutionsrenormalization-group-theoreticallywith theaid of our newformalism,theconformationspacecanonicalensembleformalism.If thepolydispersityis givenby theexponentialdistribution,our resultagreeswith thatby thefield theoreticalmethodasis expected.It hasbeenshownthat thereis a polydispersity-sensitiveuniversalplot which is experimentallyaccessible.

More detailedcalculationsandresultsaboutotherquantitiesaswell aspoor to goodsolventcrossoverbehaviorbegiven elsewhere.

~o.8. ~

0.7 - euitiuniv~rlp LLR;0h:~.

o c I aregivenin thefigure.p = 1 is monodisperse,p = 0.5 corre-I 2 3 spondsto theexponentialdistribution(exactto ordere). ph = 0.1 showstheeffect of higherpolydispersity.

463

Volume89A, number9 PHYSICSLETTERS 14 June1982

T.O. Wishesto thankProfessor Kyozi KawasakiandProfessor David Jasnowforvaluablediscussions.A travelsupportto T. 0. by Yosida ScienceFoundationis also acknowledged.Y. 0. isgrateful to ProfessorH. Mori,ProfessorK. KawasakiandProfessor1. Ohtafor their hospitalityat Kyushu University.Particularthanksare dueto ProfessorM.E. McDonnell for sendingT. 0. his preprintwith Dr. J.Amirzadeh,throughwhich we were awareof ref. [3]. Thiswork is supported,in part,by the University of Illinois MRL GrantNSF-DMR-80-20250.

References

[11 P.G.deGennes,Phys.Lett. 38A (1972)339.[2] J. desCloizeaux,J. dePhys.(Paris)36(1975)281.[3] I. Noda, N. Kato, T. Kitano andM. Nagasawa,Macromolecules14 (1981)668.[4] A. Knoll, L. SchaferandT.A. Witten, J. dePhys.(Paris)42 (1981)767.[5] P.D. Gujrati, preprint (1981)andJ. Phys.A14 (1981)L345.[6] M.A. Moore andC.A. Wilson, J. Phys.A13 (1981)3501.[7] J.C.WheelerandP. Pfeuty,Phys.Rev.A23 (1981)1531.[8] J. desCloizeaux,J. dePhys.(Paris)41(1980)749.[9] 1. desCloizeaux,J. dePhys.(Paris) 41(1980)761.

[10] M.A. Moore, J. dePhys.(Paris) 38 (1977) 265.[11] M.A. Moore andG.F. Al-Noaimi, J. dePhys.(Paris)39 (1978)1015.[12] M. Kac, in: Applied probability, ad.L.A. MacCoil (McGraw-Hill, NewYork, 1957).[13] S.F.Edwards,Proc.Phys.Soc.88(1966)265.[14] Y. Oono,T. OhtaandK.F. Freed,J. Chem.Phys.74 (1981) 6458.[15] T. Ohta,Y. OonoandK.F. Freed,Phys.Rev. A, to bepublished.[16] E.Brezin, J.C.LeGuilleu and J. Zinn-Justin,in: Phasetransitionsandcritical phenomena,Vol.6, eds.C. Domb andM.S.

Green(AcademicPress,New York, 1976).[17] T.A. Witten andL. Schafer,J. Phys.All (1978) 1843.[18] P.G.deGennes,Scalingconceptsin polymerphysics(CornellUP, Ithaca,1979).[19] J.F.Joanny,P. Grant,L.A. TurkevichandP. Pincus,J. dePhys.(Paris)42 (1981)1045.[20] Y. Oono,T. Ohtaand K.F. Freed,Macromolecules14 (1981)880.[21] Y. OonoandT. Ohta,Phys.Lett. 85A (1981)480.

464