35
Guifre Vidal International Workshop on DMRG and related stuff Entanglement Renormalization Beijing, China, August 27 th 2010

Guifre Vidal- Entanglement Renormalization

  • Upload
    imaxsw

  • View
    32

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Guifre Vidal- Entanglement Renormalization

Guifre Vidal

International Workshop on DMRG and related stuff

Entanglement Renormalization

Beijing, China, August 27th 2010

Page 2: Guifre Vidal- Entanglement Renormalization

Outline

• Frustrated antiferromagnets (2+1 D) *

• Entanglement renormalization

• MPS and MERA

Introduction

• Quantum critical systems (1+1 D) *, **

Applications

• interacting fermions

• anyons

• topological order

• lattice gauge theory

other applications (not in this talk):

* Glen Evenbly

** Robert Pfeifer

Page 3: Guifre Vidal- Entanglement Renormalization

Outline

• Entanglement renormalization

• MPS and MERA

• Quantum critical systems (1+1 D)

• Frustrated antiferromagnets (2+1 D)

Introduction

Applications

Page 4: Guifre Vidal- Entanglement Renormalization

1 2 ... N

d

N

1) What is a tensor network state/ansatz?

• quantum spin model: N spins

1 2

1 2

... 1 2

1 1 1

...N

N

d d d

i i i N

i i i

i i i

• state of the N spins (e.g. ground state of a local Hamiltonian)

difficulty:Nd coefficients

• variational ansatz: tensor network state

1 2 ... Ni i i

...1i

2i 3i

Ni

4iNd coefficients ( )O N coefficients

1i 2i 3i 4i ... Ni

Page 5: Guifre Vidal- Entanglement Renormalization

• tensor network states:

1 2 3 4 ... Ni i i i i

Nd coefficients ( )O N “small” tensors

1i 2i 3i 4i ... Ni

N quantum spins

• Efficient representation of many-body states

2) What are tensor network states useful for?

• Characterize and classify phases of matter and phase transitions

e.g. symmetry-breaking and topological order, fixed points of RG, etc

(variational parameters = coefficients in the tensors)

• Variational ansatz for numerical approaches

H

Page 6: Guifre Vidal- Entanglement Renormalization

3) Examples of tensor network states for 1D systems:

Matrix Product State MPS

Multi-scale Entanglement Renormalization Ansatz

MERA

Tree Tensor Network

TTN

• Wilson’s NRG(Numerical Renormalization Group)

• White’s DMRG(Density Matrix Renormalization Group)

• Entanglement Renormalization

• Morningstar-Weinstein’s COREno tensor network state comes out

• Dasgupta-Ma-Fischerrandom systems (strong disorder) perturbative (corrections to TTN)

Page 7: Guifre Vidal- Entanglement Renormalization

4) Quick comparison

MPS

MERA

N sites

N sites

layers2log N

Page 8: Guifre Vidal- Entanglement Renormalization

N

/ 2N

/ 4N

/ 8 1N

4) Quick comparison

MPS

MERA

• Number of tensors:

(1 1/ 2 1/ 4 1/ 8) 2N N

N tensors

2N tensors

N sites

N sites

layers2log N

Page 9: Guifre Vidal- Entanglement Renormalization

4) Quick comparison

MERA

• Connectivity and correlations:

L

2log L

MPS

( ) LC L e

exponentialcorrelators

( ) qC L L

polynomialcorrelators

L

L

L

log logL L

log L

Page 10: Guifre Vidal- Entanglement Renormalization

L

L

4) Quick comparison

MERA

• Entanglement entropy of a block:

MPS

( ) const.S L

constant

( ) logS L L

logarithmic

2log L

Page 11: Guifre Vidal- Entanglement Renormalization

Outline

• Entanglement renormalization

• MPS and MERA

• Quantum critical systems (1+1 D)

• Frustrated antiferromagnets (2+1 D)

Introduction

Applications

Page 12: Guifre Vidal- Entanglement Renormalization

Entanglement Renormalization

quantum spin system

W

wu

• Preservation of locality

• Coarse-graining transformation

Page 13: Guifre Vidal- Entanglement Renormalization

Entanglement Renormalization

• Preservation of locality

wu

u

u†

w

w†

Page 14: Guifre Vidal- Entanglement Renormalization

Entanglement Renormalization

• tensor network state

uw

Page 15: Guifre Vidal- Entanglement Renormalization

Entanglement Renormalization

• tensor network state with built-in coarse-graining

smallscale

largescale

Page 16: Guifre Vidal- Entanglement Renormalization

Entanglement Renormalization

• tensor network ansatz corresponding to a quantum circuit

small scaleentanglement/correlations

large scaleentanglement/correlations

00

00

0000

00000000

Page 17: Guifre Vidal- Entanglement Renormalization

Outline

• Entanglement renormalization

• MPS and MERA

• Quantum critical systems (1+1 D)

• Frustrated antiferromagnets (2+1 D)

Introduction

Applications

Page 18: Guifre Vidal- Entanglement Renormalization

Applications

• Renormalization group flow andRG fixed points:

• topological order Aguado, Vidal, PRL 100, 070404 (2008)Koenig, Reichardt, Vidal, PRB 79, 195123 (2009) Chen, Gu, Wen, arXiv:1004.3835v2

• frustrated antiferromagnets Evenbly, Vidal, PRL 104, 187203 (2010)Lou, Harada, Kawashima (in preparation)

• Variational approach for strongly correlated systems in 2D

Vidal, PRL 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010) (free fermions)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) (free bosons)Cincio, Dziarmaga, Rams, PRL 100, 240603 (2008) (Ising 8x8)Evenbly, Vidal, PRL 102, 180406 (2009) (Ising)Cincio, Dziarmaga, Oles, arXiv:1001.5457v1

• interacting fermions Corboz, Evenbly, Verstraete, Vidal, PRA 81, 010303(R) (2010) Pineda, Barthel, Eisert, PRA 81, 050303(R) (2010) Corboz, Vidal, PRB 80, 165129 (2009) Barthel, Pineda, Eisert, PRA 80, 042333 (2009)

• quantum critical systems

Vidal, Phys. Rev. Lett. 99, 220405 (2007) Vidal, Phys. Rev. Lett. 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) Giovannetti, Montangero, Fazio, Phys. Rev. Lett. 101, 180503 (2008)Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)Montangero, Rizzi, Giovannetti, Fazio, Phys. Rev. B 80, 113103 (2009) Giovannetti, Montangero, Rizzi, Fazio, Phys. Rev. A 79, 052314(2009)Evenbly, Pfeifer, Pico, Iblisdir, Tagliacozzo, McCulloch,Vidal,arXiv:0912.1642

Evenbly, Corboz, Vidal, arXiv: 0912.2166Silvi, Giovannetti, Calabrese, Santoro, Fazio, arXiv: 0912.2893

• Anyonic systems Koenig, Bilgin, arXiv:1006.2478v1Pfeifer, Corboz, Buerschaper, Aguado, Troyer, Vidal, arXiv:1006.3532v2

Page 19: Guifre Vidal- Entanglement Renormalization

Applications

• Renormalization group flow andRG fixed points:

• topological order Aguado, Vidal, PRL 100, 070404 (2008)Koenig, Reichardt, Vidal, PRB 79, 195123 (2009) Chen, Gu, Wen, arXiv:1004.3835v2

• frustrated antiferromagnets Evenbly, Vidal, PRL 104, 187203 (2010)Lou, Harada, Kawashima (in preparation)

• Variational approach for strongly correlated systems in 2D

Vidal, PRL 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010) (free fermions)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) (free bosons)Cincio, Dziarmaga, Rams, PRL 100, 240603 (2008) (Ising 8x8)Evenbly, Vidal, PRL 102, 180406 (2009) (Ising)Cincio, Dziarmaga, Oles, arXiv:1001.5457v1

• interacting fermions Corboz, Evenbly, Verstraete, Vidal, PRA 81, 010303(R) (2010) Pineda, Barthel, Eisert, PRA 81, 050303(R) (2010) Corboz, Vidal, PRB 80, 165129 (2009) Barthel, Pineda, Eisert, PRA 80, 042333 (2009)

• quantum critical systems

Vidal, Phys. Rev. Lett. 99, 220405 (2007) Vidal, Phys. Rev. Lett. 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) Giovannetti, Montangero, Fazio, Phys. Rev. Lett. 101, 180503 (2008)Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)Montangero, Rizzi, Giovannetti, Fazio, Phys. Rev. B 80, 113103 (2009) Giovannetti, Montangero, Rizzi, Fazio, Phys. Rev. A 79, 052314(2009)Evenbly, Pfeifer, Pico, Iblisdir, Tagliacozzo, McCulloch,Vidal,arXiv:0912.1642

Evenbly, Corboz, Vidal, arXiv: 0912.2166Silvi, Giovannetti, Calabrese, Santoro, Fazio, arXiv: 0912.2893

• Anyonic systems Koenig, Bilgin, arXiv:1006.2478v1Pfeifer, Corboz, Buerschaper, Aguado, Troyer, Vidal, arXiv:1006.3532v2

Page 20: Guifre Vidal- Entanglement Renormalization

Outline

• Entanglement renormalization

• MPS and MERA

• Quantum critical systems (1+1 D)

• Frustrated antiferromagnets (2+1 D)

Introduction

Applications Glen Evenbly

Robert Pfeifer

Page 21: Guifre Vidal- Entanglement Renormalization

Scale invariant MERA

(3)

(2)

(1)

(0)

Vidal, Phys. Rev. Lett. 99, 220405 (2007) Vidal, Phys. Rev. Lett. 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) Giovannetti, Montangero, Fazio, Phys. Rev. Lett. 101, 180503 (2008)Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)Montangero, Rizzi, Giovannetti, Fazio, Phys. Rev. B 80, 113103 (2009) Giovannetti, Montangero, Rizzi, Fazio, Phys. Rev. A 79, 052314(2009)

Evenbly, Pfeifer, Pico, Iblisdir, Tagliacozzo, McCulloch,Vidal,arXiv:0912.1642Evenbly, Corboz, Vidal, arXiv: 0912.2166Silvi, Giovannetti, Calabrese, Santoro, Fazio, arXiv: 0912.2893

critical systems (1D)

critical exponentsOPE, CFT

boundary & defectsnon-local operators

computational cost: pNinhomogeneous system

logp Ntranslationinvariance

p

scaleinvariance

Page 22: Guifre Vidal- Entanglement Renormalization

8 16 24 32 40 48 56 64 7210

-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Refinement Parameter,

En

erg

y E

rro

r,

EIsing

3-state Potts

XX

Heisenberg

• Example I: accuracy in ground state energy (infinite chain)

Evenbly, Vidal, Phys. Rev. A 79, 144108 (2009)

Page 23: Guifre Vidal- Entanglement Renormalization

Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)

• Example II: operator content of quantum Ising model

scaling operators/dimensions: scaling dimension

(exact )

scaling dimension

(MERA)error

0 0 ----

0.125 0.124997 0.003%

1 0.99993 0.007%

1/8 0.1250002 0.0002%

1/2 0.5 <10−8 %

1/2 0.5 <10−8 %

Iidentity

spin

energy

=36 =20

disorder

fermions

Page 24: Guifre Vidal- Entanglement Renormalization

OPE for local & non-local primary fields

4( 6 10 )

1 / 2C

1/ 2C

/4 / 2iC e

/4 / 2iC e

C i

C i

fusion rules

I

I+

I

I

I

...

{I, , , , , }

{I, } {I, , }

{I, , } {I, , , }

local andsemi-localsubalgebras

Page 25: Guifre Vidal- Entanglement Renormalization

Boundary critical phenomenasee also Silvi, Giovannetti, Calabrese, Santoro, Fazio, arXiv: 0912.2893

uw

• infinite chain (bulk)

bulk MERA

uw

w

MERA with boundary

• semi-infinite chain (boundary)

Evenbly, Pfeifer, Pico, Iblisdir, Tagliacozzo, McCulloch,Vidal, arXiv:0912.1642

Page 26: Guifre Vidal- Entanglement Renormalization

2

0

3

4

1/ 2

1 1/ 2

2 1/ 2

Free BC

2

0

3

Fixed BC

1/ 8

1 1/ 8

2 1/ 8

Bulk

2

0

1

0

2

Boundary scaling operators/dimensions• Example: Ising model

Page 27: Guifre Vidal- Entanglement Renormalization

2

0

3

4

1/ 2

1 1/ 2

2 1/ 2

Free BC

2

0

3

Fixed BC

1/ 8

1 1/ 8

2 1/ 8

Bulk

2

0

1

0

2

Boundary scaling operators/dimensions

scaling dimension

(exact )

scaling dimension

(MERA)error

0 0 ---

1/2 0.499 0.2%

1+1/2 1.503 0.18%

2 2.001 0.07 %

2+1/2 2.553 2.1%

scaling dimension

(exact )

scaling dimension

(MERA)error

0 0 ---

2 1.992 0.4%

3 2.998 0.07%

4 4.005 0.12 %

4 4.062 1.5%

Iidentity

spin

Iidentity

Free BC

Fixed BC

Page 28: Guifre Vidal- Entanglement Renormalization

Outline

• Entanglement renormalization

• MPS and MERA

• Quantum critical systems (1+1 D)

• Frustrated antiferromagnets (2+1 D)

Introduction

Applications

Glen Evenbly

Page 29: Guifre Vidal- Entanglement Renormalization

• Frustrated antiferromagnets

Applications to 2D lattices:

topological order

interacting fermions

Vidal, PRL 101, 110501 (2008)Evenbly, Vidal, Phys. Rev. B 81, 235102 (2010) (free fermions)Evenbly, Vidal, New J. Phys. 12, 025007 (2010) (free bosons)Cincio, Dziarmaga, Rams, PRL 100, 240603 (2008) (Ising 8x8)Evenbly, Vidal, PRL 102, 180406 (2009) (Ising)Cincio, Dziarmaga, Oles, arXiv:1001.5457v1

Aguado, Vidal, Phys. Rev. Lett. 100, 070404 (2008)Koenig, Reichardt, Vidal, Phys. Rev. B 79, 195123 (2009)

Evenbly, Vidal, Phys. Rev. Lett 104, 187203 (2010)Lou, Harada, Kawashima (in preparation)

Corboz, Evenbly, Verstraete, Vidal, PRA 81, 010303(R) (2010) Pineda, Barthel, Eisert, PRA 81, 050303(R) (2010) Corboz, Vidal, PRB 80, 165129 (2009) Barthel, Pineda, Eisert, PRA 80, 042333 (2009)

2D MERA

Heisenberg antiferromagneton Kagome latticewith 2D MERA

frustrated spins

Evenbly, Vidal, Phys. Rev. Lett. 104, 187203(2010)

Page 30: Guifre Vidal- Entanglement Renormalization

Heisenberg antiferromagnet on Kagome lattice

,

i j

i j

H S S

• favours antiferromagnetic alignment i jS S

• Geometric frustration

• Ground state?

(Quantum Monte Carlo techniques suffer from sign problem)

Evenbly, Vidal, Phys. Rev. Lett. 104, 187203(2010)

Page 31: Guifre Vidal- Entanglement Renormalization

Singh, Huse, Phys. Rev. B 76, 180407 (2007)

Series Expansion

Marston, Zeng (1991), Syromyatnikov, Maleyev (2002) Nikolic, Senthil (2003), Budnik, Auerbach (2004)

Jiang, Weng, Sheng, Phys. Rev. Lett. 101, 117203 (2008)

DMRG

Ran, Hermele, Lee, Wen, Phys. Rev. Lett. 98, 117205 (2007)

Gutzwiller ansatz

Spin Liquid ?Valence Bond Crystal ?

Page 32: Guifre Vidal- Entanglement Renormalization

Ground state computation with 2D MERA

• minimization of

,

i j

i j

S S

• initial state:

• movie !!! (click here)

Evenbly, Vidal, Phys. Rev. Lett. 104, 187203(2010)

Page 33: Guifre Vidal- Entanglement Renormalization

MERA solution (infinite lattice with 36-spin unit cell):

Order VBC

1 -0.375

2 -0.42187

3 -0.42578

4 -0.43155

5 -0.43208

Series Expansion (Singh, Huse)

VBC

8 -0.4298

14 -0.4307

20 -0.4314

26 -0.4319

32 -0.4322

MERA (Evenbly, Vidal)

N E0/N

48 -0.43591

108 -0.4316

N E0/N

192 -0.42866(2)

432 -0.42863(2)

DMRG(Jiang, Weng, Sheng)

Gutzwiller ansatz(Ran, Hermele, Lee, Wen)

-0.420

-0.426

-0.432

-0.423

-0.429

5th4th

3rd

2nd

81420

26energy

series expansion

MERA

32DMRG

Gutzwiller

108N432N

Page 34: Guifre Vidal- Entanglement Renormalization

Conclusions

• Characterize and classify phases of matter

• Variational approach for many-body problems

• 2D frustrated antiferromagnets

• emerges from natural ansatz for

• emerges from natural ansatz for

MPS DMRG gapped systems

MERA entanglement renormalization

critical systems

• Tensor network states:

Efficient representation of many-body states

Applications:

also interacting fermions • anyons • topological order • lattice gauge theory

• 1D quantum critical point MERA conformal field theory

Page 35: Guifre Vidal- Entanglement Renormalization

My talk next week (Thursday morning):

Beyond the entropic boundary law with entanglement renormalization

Evenbly, Vidal, in preparation

L

1( ) L logDS L L

0( ) log logS L L L L

MERA

1D

L

0( ) =const.S L D

MPS

2D

L

( )S L D

PEPS

• Boundary law for entanglement entropy 1( ) LDS L ( ) LDS L(and not )