46
Chapter 3. Alkena dan Alkuna: Nomenklatur dan Reaksinya Tutik Dwi Wahyuningsih Jurusan Kimia FMIPA UGM 2011

Chapter 3. Alkena dan Alkuna: Nomenklatur dan Reaksinya

  • Upload
    kelli

  • View
    436

  • Download
    0

Embed Size (px)

DESCRIPTION

Chapter 3. Alkena dan Alkuna: Nomenklatur dan Reaksinya. Tutik Dwi Wahyuningsih Jurusan Kimia FMIPA UGM 2011. Alkena dan Alkuna. Introduction: kegunaan alkena Struktur alkena Nomenklatur Alkena & Alkuna Nomenklatur E/Z Jenis/tipe ikatan rangkap dua Reaksi pada Alkena Adisi - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

Chapter 3. Alkena dan Alkuna: Nomenklatur dan Reaksinya

Tutik Dwi WahyuningsihJurusan Kimia FMIPA UGM

2011

Page 2: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

2

Introduction: kegunaan alkenaStruktur alkenaNomenklatur Alkena & AlkunaNomenklatur E/Z Jenis/tipe ikatan rangkap duaReaksi pada Alkena

Adisi Substitusi Diels Alder Pemutusan

Alkena dan Alkuna

Page 3: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

3

Example : a mixture of and bonds, but no triple bonds

Page 4: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

4

Commercial Uses: Ethylene

=>

Page 5: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

5

Commercial Uses: Propylene

=>

Page 6: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

6

Other Polymers

=>

Page 7: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

7

Industrial Methods• Catalytic cracking of petroleum

Long-chain alkane is heated with a catalyst to produce an alkene and shorter alkane.

Complex mixtures are produced.• Dehydrogenation of alkanes

Hydrogen (H2) is removed with heat, catalyst. Reaction is endothermic, but entropy-favored.

• Neither method is suitable for lab synthesis =>

Page 8: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

8

Alkenes

Geometrical isomers are possible since there is no rotation about a C=C bond.

Cis- and trans- isomers possible.

Page 9: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

9

Functional Group

• Pi bond is the functional group.• More reactive than sigma bond.

Page 10: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

10

Orbital Description

• Sigma bonds around C are sp2 hybridized.• Angles are approximately 120 degrees.• No nonbonding electrons.• Molecule is planar around the double bond.

Page 11: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

11

Pi Bond• Sideways overlap of parallel p orbitals.• No rotation is possible without breaking

the pi bond (63 kcal/mole).• Cis isomer cannot become trans without

a chemical reaction occurring.

=>

Page 12: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

12

IUPAC Nomenclature

• Parent is longest chain containing the double bond.

• -ane changes to -ene. (or -diene, -triene)• Number the chain so that the double

bond has the lowest possible number.• In a ring, the double bond is assumed to

be between carbon 1 and carbon 2. =>

Page 13: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

13

Name These AlkenesCH2 CH CH2 CH3

CH3 C

CH3

CH CH3

CH3

CHCH2CH3H3C

1-butene

2-methyl-2-butene

3-methylcyclopentene

2-sec-butyl-1,3-cyclohexadiene

3-n-propyl-1-heptene =>

Page 14: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

14

Alkene Substituents

= CH2

methylene(methylidene)

- CH = CH2

vinyl(ethenyl)

- CH2 - CH = CH2

allyl(2-propenyl)

Name: =>

Page 15: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

15

Common Names

• Usually used for small molecules.• Examples:

CH2 CH2

ethylene

CH2 CH CH3

propylene

CH2 C CH3

CH3

isobutylene=>

Page 16: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

16

Cis-trans Isomerism

• Similar groups on same side of double bond, alkene is cis.

• Similar groups on opposite sides of double bond, alkene is trans.

• Cycloalkenes are assumed to be cis.• Trans cycloalkenes are not stable

unless the ring has at least 8 carbons. =>

Page 17: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

17

Name these:

C CCH3

H

H

CH3CH2

C CBr

H

Br

H

trans-2-pentene cis-1,2-dibromoethene

=>

Page 18: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

18

E-Z Nomenclature

• Use the Cahn-Ingold-Prelog rules to assign priorities to groups attached to each carbon in the double bond.

• If high priority groups are on the same side, the name is Z (for zusammen).

• If high priority groups are on opposite sides, the name is E (for entgegen). =>

Page 19: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

19

Example, E-Z

C CH3C

H

Cl

CH2C C

H

H

CH CH3

Cl1

2

1

2

2Z

2

1

1

2

5E

(2Z, 5E)-3,7-dichloro-2,5-octadiene =>

Page 20: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

20

Definisi

• Ikatan rangkap dua terkonjugasi : dipisahkan oleh satu ikatan tunggal.

Page 21: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

21

• Ikatan rangkap dua terisolasi : dipisahkan oleh dua atau lebih ikatan tunggal.

• Ikatan rangkap dua terakumulasi : ikatan rangkap dua berdekatan.Contoh : 1,2-pentadiena

Page 22: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

22

Substituent Effects• More substituted alkenes are more stable.

H2C=CH2 < R-CH=CH2 < R-CH=CH-R < R-CH=CR2 < R2C=CR2

unsub. < monosub. < disub. < trisub. < tetra sub.

• Alkyl group stabilizes the double bond.• Alkene less sterically hindered.

=>

Page 23: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

23

Alkenes

Page 24: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

24

Disubstituted Isomers• Stability: cis < geminal < trans isomer• Less stable isomer is higher in energy, has

a more exothermic heat of hydrogenation.

27.6 kcalTrans-2-butene

28.0 kcal (CH3)2C=CH2Isobutylene

28.6 kcalCis-2-butene CH3C C

CH3

H H

HC C

CH3

CH3 H=>

Page 25: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

25

Physical Properties

• Low boiling points, increasing with mass.• Branched alkenes have lower boiling points.• Less dense than water.• Slightly polar

Pi bond is polarizable, so instantaneous dipole-dipole interactions occur.

Alkyl groups are electron-donating toward the pi bond, so may have a small dipole moment. =>

Page 26: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

26

Polarity Examples

= 0.33 D = 0

=>

cis-2-butene, bp 4°C

C CH

H3C

H

CH3

trans-2-butene, bp 1°C

C CH

H

H3C

CH3

Page 27: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

27

ADDITION REACTIONADDITION REACTION

An addition reaction is one in which the tworeactants add together to make the product

A + B AB

with no other pieces lost or left over.

Page 28: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

28

ELECTROPHILIC ADDITION TO DOUBLE BONDSELECTROPHILIC ADDITION TO DOUBLE BONDS

EXAMPLES:

conc.

conc.

OSO3HC C

H

C CH

OH

C CH

Cl

+

+

+

C C

C C

C C

C CE

XC C + EX

H2SO4H2O

H2SO4

HCl

0 oC

electrophilicreagent

explainedlater

Page 29: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

29

Addition Reactions of Alkenes and Alkynes

A common addition reaction is hydrogenation:

CH3CH=CHCH3 + H2 CH3CH2CH2CH3

Hydrogenation requires high temperatures and pressures as well as the presence of a catalyst (e.g. Ni).

Note: hydrogenation forms alkanes from alkenes.

Page 30: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

30

Addition Reactions of Alkenes and Alkynes

It is possible to cause hydrogen halides and water to add across bonds:

CH2=CH2 + HBr CH3CH2Br ( a bromide)

CH2=CH2 + H2O CH3CH2OH (an alcohol)

The addition of water is usually catalysed by H2SO4.

Page 31: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

31

Addition Reactions of Alkenes and Alkynes

The most dominant reaction for alkenes and alkynes involves the addition of something to the two atoms which form the double bond:

Note that the C-C bond has been replaced by two C-Br bonds.

H2C CH2 + Br2 H2C CH2Br Br

Page 32: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

32

Electrophilic Addition

• Step 1: Pi electrons attack the electrophile.

C C + E+C

E

C +

C

E

C + + Nuc:_

C

E

C

Nuc

=>

• Step 2: Nucleophile attacks the carbocation.

Page 33: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

33

Addition of HX (1)

Protonation of double bond yields the most stable carbocation. Positive charge goes to the carbon that was not protonated.

X =>

+ Br_

+

+CH3 C

CH3

CH CH3

H

CH3 C

CH3

CH CH3

H

H Br

CH3 C

CH3

CH CH3

Page 34: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

34

Addition of HX (2)

CH3 C

CH3

CH CH3

H Br

CH3 C

CH3

CH CH3

H+

+ Br_

CH3 C

CH3

CH CH3

H+

Br_

CH3 C

CH3

CH CH3

HBr =>

Page 35: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

35

Reaksi Adisi via Intermediet KarbokationHidrasiHidrasi

Adisi Hidrogen halidaAdisi Hidrogen halida R CH CH2

H+R CH CH3

+

secondarycarbocation(primary R+

not formed)

H2O

X-

R CH CH3

OH

R CH CH3

alcohol

X

alkyl halidewhere X = Cl, Br, & I

Reaction products are examples of Markovnikov addition

Page 36: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

36

CCH3

CH3CH2 CCH3

CH3CH3

Cl+ CHCH3 CH2

Cl

CH3HCl

major minor

A REGIOSELECTIVE REACTIONA REGIOSELECTIVE REACTION

One of the possible products is formed in larger amounts than the other one(s).

Compare

REGIOSPECIFICREGIOSPECIFIC Only one of the possible products is formed (100%).

REGIOSELECTIVEREGIOSELECTIVE

THIS IS

>90% <10%

Page 37: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

37

Regiospecificity• Markovnikov’s Rule: The proton of an

acid adds to the carbon in the double bond that already has the most H’s. “Rich get richer.”

• More general Markovnikov’s Rule: In an electrophilic addition to an alkene, the electrophile adds in such a way as to form the most stable intermediate.

• HCl, HBr, and HI add to alkenes to form Markovnikov products. =>

Page 38: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

38

MARKOVNIKOFF RULEMARKOVNIKOFF RULE

CH2

+ HCl

CH3Cl

When adding HX to a double bond,the hydrogen of HX goes to the carbonwhich already has the most hydrogens

..... conversely, the anion X adds to the most highly substituted carbon ( the carbon with most alkyl groups attached).

majorproduct

PREDICTING THE MAJOR PRODUCT

Page 39: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

39

Markovnikoff formulated his rule by observingthe results of hundreds of reactions that heperformed.

AN “EMPIRICAL” RULEAN “EMPIRICAL” RULE

EMPIRICAL = DETERMINED BY OBSERVATION

He had no idea why the reaction worked thisway, only that as a general rule it did give the stated result.

Page 40: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

40

SOME ADDITIONAL EXAMPLESSOME ADDITIONAL EXAMPLES

CH3

+ HCl

CH3Cll

CH2

+ HCl

CH3Cl

CH CH2 CH CH3Cl+ HCl

Only the major product is shown - all are regioselective.

All these reactions follow the Markovnikoff Rule.

Page 41: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

41

ANOTHER WAY TO STATE THE RULE

When the reaction forms the carbocation intermediate,the most highly substituted carbocation is favored : tertiary > secondary > primary.

MARKOVNIKOFF RULEMARKOVNIKOFF RULE

methyl carbocation

primary carbocation

secondary carbocation

tertiary carbocation

leastfavored

mostfavored

CR

R

R+

R CH R+

R CH2+

CH3+

(lowest energy)

Page 42: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

42

Addition Reactions of Alkenes and Alkynes

Reactions of alkynes resemble those of alkenes:

CH3CH2C CCH2CH3

HCl

CH3CH2CH CClHCH3CH3

Cl

H

Page 43: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

43

Addition Reactions of Alkenes and Alkynes

CH3CH2CH CClHCH3CH3

HCl

Cl

H

Cl

ClH

H

3,3-dichlorohexane

Page 44: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

44

Alkene SynthesisOverview

• E2 dehydrohalogenation (-HX)• E1 dehydrohalogenation (-HX)• Dehalogenation of vicinal dibromides (-X2)

• Dehydration of alcohols (-H2O) =>

Page 45: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

45

Dehydration of Alcohols

• Reversible reaction• Use concentrated sulfuric or phosphoric

acid, remove low-boiling alkene as it forms.

• Protonation of OH converts it to a good leaving group, HOH

• Carbocation intermediate, like E1• Protic solvent removes adjacent H+

=>

Page 46: Chapter 3. Alkena dan Alkuna:  Nomenklatur dan Reaksinya

46

End of Chapter 3