34
ESE319 Introduction to Microelectronics 1 Kenneth R. Laker, updated 18Sep13 KRL BJT Biasing Cont. & Small Signal Model Bias Design Example using “1/3, 1/3, 1/3 Rule” Small Signal BJT Models Small Signal Analysis

BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

Embed Size (px)

Citation preview

Page 1: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

1Kenneth R. Laker, updated 18Sep13 KRL

BJT Biasing Cont. & Small Signal Model

● Bias Design Example using “1/3, 1/3, 1/3 Rule”● Small Signal BJT Models● Small Signal Analysis

Page 2: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

2Kenneth R. Laker, updated 18Sep13 KRL

Emitter Feedback Bias Design

Two power supply version Single power supply version

I1 I

C

IE

IB

VB

RC

RE

RB

VCC

RC

RE

R1

R2

V B=R2

R1R2V CC

RB=R1 R2

R1R2R1=RB

V CC

V B

R2=R1

V B

V CC−V B

Specify VCC

, VB and RB, and solve for R

1 and R

2:

Page 3: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

3Kenneth R. Laker, updated 18Sep13 KRL

“1/3, 1/3, 1/3 Rule” Bias Procedure:1. Bias so that VCC is split equally acrossRC, VCE , and RE .2. Specify the desired collector current.3. Assume IE = IC to determine RC & RE.4. Add 0.7 V to V

RE = VCC/3 to find VB.

Assume base current through RB isnegligible; hence 5. Choose RB approximately equal to . (β

min is lowest value of β )

6. Finally compute R1 and R2, and check that I

B << I

1 << I

C

V B≈V BEV RE

min1RE /105.Or choose RT=R1R2=

V CC

I 1=

V CC

I C /10

VB

RC

RE

RB V

CC

Check RB << (β

min +1)R

E

Page 4: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

4Kenneth R. Laker, updated 18Sep13 KRL

Example

V CC=12V

V RE=V RC

=V CC

3=4 V

I C=1 mA

Then:RC=RE=

410−3=4⋅103=4 k

V B=V CC

30.7 V=4V 0.7V =4.7 V

RB=min1RE

10≈

50⋅400010

=20 k

For a single power supply:50≤ ≤150

RB

RE

RC

VCC

VB

R1=RB V CC

V B=20 k 12V

4.7V=51 k

R2=R1

V B

V CC−V B=51 k 4.7V

7.3V=32.9 k

RT=R1R2=83.9 k⇒ I 1=0.14 mA

Page 5: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

5Kenneth R. Laker, updated 18Sep13 KRL

Completed Bias DesignWhy does our design differ from the simu-lation?

Electronics Workbench simulation results

4.7 V1 mA

RT=R1R2=83.9 k

Δ < ±10%

RC

R1 R

C

RE

R2

VCC

Page 6: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

6Kenneth R. Laker, updated 18Sep13 KRL

Completed Bias DesignOur design differs from the simulation be-cause we neglected the base current.

There is no point in including the base current, since we will build the circuit us-ing resistors that come only in standard sizes and with 5% tolerances attached to their values. The closest available resist-ors in the Detkin Lab are 47 kΩ, 33 kΩ, and 3.3 kΩ (or 4.7 kΩ).

Voltage & currents are specified as ranges (V

min ≤ V ≤ V

max), not absolute values.

Electronics Workbench simulation results

4.7 V1 mA

RT=R1R2=83.9 k

Δ < ±10%

RC

R1 R

C

RE

R2

VCC

Page 7: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

7Kenneth R. Laker, updated 18Sep13 KRL

Completed Bias DesignOur design differs from the simulation be-cause we neglected the base current.

There is no point in including the base current, since we will build the circuit us-ing resistors that come only in standard sizes and with 5% tolerances attached to their values. The closest available resist-ors in the Detkin Lab are 47 kΩ, 33 kΩ, and 3.3 kΩ (or 4.7 kΩ).

Voltage & currents are specified as ranges (V

min ≤ V ≤ V

max), not absolute values.

Electronics Workbench simulation results

4.7 V1 mA

RT=R1R2=83.9 k

Δ < ±10%

RC

R1 R

C

RE

R2

VCC

Page 8: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

8Kenneth R. Laker, updated 18Sep13 KRL

BJT Small Signal Models

Conceptually, the signal we wish to amplify is connected in series with the bias source and is of small amplitude.

We will linearize the signal analysisto simplify our mathematics – to avoid having to deal with thenonlinear exponential collector current

iC− I S evBE

V T

VCC

VB

RE

RCR

B

Page 9: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

9Kenneth R. Laker, updated 18Sep13 KRL

BJT Small Signal Models

Page 10: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

10Kenneth R. Laker, updated 18Sep13 KRL

Linearization Process

iC= I Cic= I S evBE

V T = I S eV BEvbe

V T = I S eV BE

V T evbe

V T

Split the total base-emitter voltage and total collector cur-rent into bias and signal components:

iC= I C evbe

V T

Identify and substitute the bias current into the model:

Expand the exponential in a Taylor series:

f x =∑n=0

f n 0 xn

n!

I C

Page 11: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

11Kenneth R. Laker, updated 18Sep13 KRL

Analysis Using Collector Current Model

iC= I C evbe

V T

iC

I C=e

vbe

V T

log10 iC

I C = vbe

V T log10 e

log102=0.301

Useful constants:

log10e=0.4343

Let iC = IC + i

c be 2x I

C, i.e.

0.301= vbe

V T 0.4343

vbe=0.301

0.43430.025≈0.017 V

iC / I C=2

Page 12: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

12Kenneth R. Laker, updated 18Sep13 KRL

Linearization Using Taylor Series

For the exponential func-tion:

f x =ex=∑n=0

∞ xn

n!

evbe

V T=∑n=0

∞ 1n ! vbe

V T n

or:

evbe

V T=1vbe

V T

12 vbe

V T 2

16 vbe

V T 3

≈1vbe

V T

Expand in a Taylor series: f x =∑n=0

f n 0 xn

n!

when 12

vbe

V T2

≪1

Page 13: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

13Kenneth R. Laker, updated 18Sep13 KRL

Linearization Continued Recall: vbe of about 17 mV causes a 2x change in collector current i

C = I

C + i

c.

Let's expand in Taylor series for this value of vbe.vbe

V T= 0.017

0.025=0.68

evbe

V T=10.68 12 0.6821

6 0.683

evbe

V T≈10.680.23120.0524=1.9444

Compare with: e0.68=1.973

Four term expansion is accurate to about 1.5%, two term expansion is only accurate to about 15%, i.e.

vbe≈0.017V is not sucha small signal

Page 14: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

14Kenneth R. Laker, updated 18Sep13 KRL

Small Signal Model

And using the first two terms of the Taylor series expansion:iC= I Cic= I C e

vbe

V T

Using the grouping into bias and signal voltages/currents:

iC≈ I C 1 1V T

vbe= I CI C

V Tvbe=I Cic

We define transconductance and incremental (or ac) current as:

ic=gm vbegm=d iC

d vBEiC= I C

=I C

V T

bias current

Page 15: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

15Kenneth R. Laker, updated 18Sep13 KRL

Small Signal - Graphical Rep-

resentation

iC

Page 16: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

16Kenneth R. Laker, updated 18Sep13 KRL

Incremental (small-signal) BJT ModeliB= I Bib=

1

iC=1 I Cic

iB=1

I C1 I C

V T vbe

Define the incremental base current and base resistance:

ib=1 ic=

1 I C

V T vbe=1r

vbe

r=V T

I C=

gmbias current

I B ib

Page 17: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

17Kenneth R. Laker, updated 18Sep13 KRL

Equivalent ModelsEquations (3):

ic=gm vbe

ie=ibic

ib=ic

ib=

vbe

r

Equations (1):ic=gm vbe

ie=ibic

Equations (2):

ic= ib

ib=ie

1ie=1 ib=1

vbe

r=

vbe

re

Choose the model that simplifies the circuit analysis.

re=r

1=

1

V T

I Cic=gm r ib=

I C

V T

V T

I Cib= ib

Page 18: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

18Kenneth R. Laker, updated 18Sep13 KRL

Equivalent CircuitsEquations (3):

b

e

cic

g m vbe

ie=ibic

ib=ic

Equations (2):b

e

c

re

ib

ic= i bvce

r0

ib=ie

1

ie=vbe

re

Equations (1):

ib=vbe

r

ic=gm vbevce

r0

ie=ibic

b c

e

r r0

gm=I C

V Tr0=

V A

I C

r=V T

I B=

V T

I C=

g m

r0

re=V T

I E=

gm

=r

1

g m vbe r0

ic=gm vbevce

r0

icib

ie

ib ic

ie

ib ic

ie

Page 19: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

19Kenneth R. Laker, updated 18Sep13 KRL

Quick Small Signal Model Review

What is iC, I

C, v

BE, v

be?

Under what condition(s) can one justifiably approximate the above infinite series as

iC= I S evBE

V T =I C evbe

V T

evbe

V T≈1vbe

V T

12 vbe

V T 2

16 vbe

V T 3

evbe

V T≈1vbe

V T

Why is this important?

Page 20: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

20Kenneth R. Laker, updated 18Sep13 KRL

DC & AC Circuit Decomposition

RE

RCR

b

VCC

VB

RE

RCR

b

VCC

VB

RE

RCR

b

DC AC

DOES Rb = R

B = R

1\\R

2 ? ASSUMPTION: ?

Page 21: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

21Kenneth R. Laker, updated 18Sep13 KRL

DC & AC Circuit Decomposition

RE

RCR

b

VCC

VB

RE

RCR

b

VCC

VB

RE

RCR

b

DC AC

NO Rb ≠ R

B = R

1\\R

2

ASSUMPTION: signal v

s is pure AC!

ac source vs has

series input resistance

Rb=RBRs≈RB

Page 22: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

22Kenneth R. Laker, updated 18Sep13 KRL

Quick Review

“?” “?” “?”

“?”

“?”

What are each of the “?” parameters?

Page 23: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

23Kenneth R. Laker, updated 18Sep13 KRL

Quick Review

gm=I C

V T

r0=V A

I C

r=V T

I B=

V T

I C=

g m

re=V T

I E=

gm

=r

1

Page 24: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

24Kenneth R. Laker, updated 18Sep13 KRL

Small Signal Circuit AnalysisThe small signal model will replace the large signal model and be used for (approximate) signal analysis once the transistor is biased.

small signal BJT model

AC small signal circuit (Bias circuit set to “zero” (using superposition)

gmvberπ

b c

e

r rib

ie

ic

vc

RC

RE

RB

actual circuit, AC + DC

Assume for time being that Rb = R

B = R

1||R

2

rib

ie

ic

vc

RC

RE

RB

Rb

RC

REV

BV

B

vs

vs

Rb=RBRs≈RB

Page 25: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

25Kenneth R. Laker, updated 18Sep13 KRL

Biased Circuit Small Signal Analysis

r=V T

I C=100 0.025

0.001=2.5k

vs=ibRBrie RE

vs=ibRBrib1RE

ib=vs

Rbr1RE

vbe=ib r=r

RBr1REvs

rib

ie

gm=I C

V T=

0.001 A0.025V

=0.04 S=40 mSNote: S = siemen

Let: =100 and I C=1mA

ic

vc

20 k Ohm

e

cb

RC

RE

RB

vs

Page 26: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

26Kenneth R. Laker, updated 18Sep13 KRL

Small Signal Analysis - Continued

vbe=ib r=r

RBr1REv s

ic=gm v be=gm r

RBr1REv s

gm r=I C

V T

V T

I C=

vc=−RC ic=−RC

RBr1REvs

1RE≫RBr⇒ vc≈−RC

1REvs

Av=vc

vs≈−

RC

RE

=100

rib

ie

vc

ic

20 k OhmR

C

RE

RB

vs

Page 27: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

27Kenneth R. Laker, updated 18Sep13 KRL

Multisim Model of “Bias Design”

Av=vc

vs≈−

RC

RE=−1

1. RE needs to be large to achieve good op. pt. Stability!

2. Consequence: |Av| is low.

20 k Ohm

RC

RE

RB

VCC

VB

vs

vc

Page 28: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

28Kenneth R. Laker, updated 18Sep13 KRL

Multisim Input-output Plot

Av=vc

vs≈−

RC

RE=−1

Page 29: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

29Kenneth R. Laker, updated 18Sep13 KRL

Combining AC and DC Sources

vsv

s

vO

Rs

R1

R2

RC

RE

RC

RE

RB

VB

vO V

CCVCC

<=>

AC Source with low outputimpedance upsets bias.

Thevenin equivalent at base.

Rs=50

Page 30: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

What, if anything, is wrong with this amplifier design?

If there is something(s) wrong, how can it (they) be remedied?

Page 31: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

What, if anything, is wrong with this amplifier design?1. V

B is effectively shorted out by v

s.

2. DC on vs corrupts the op. pt. (i.e. V

C & I

C).

3. The voltage gain is - RC/RE.

Page 32: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

If there is something(s) wrong, how can it (they) be remedied?

1. Insert blocking capacitor Cin in series with R

S.

2. Insert bypass capacitor Cbyp

in parallel with all or part of RE.

Page 33: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

32Kenneth R. Laker, updated 18Sep13 KRL

ConclusionsConservative voltage bias for best operating point stability and signal swing works, but returns unity voltage gain.

How does one obtain operating point stability, and simultaneously achieve a respectable voltage gain?

Page 34: BJT Biasing Cont. & Small Signal Model - Penn Engineeringese319/Lecture_Notes/Lec_6_BJTSmSig1_13.pdf · ESE319 Introduction to Microelectronics Kenneth R. Laker, updated 18Sep13 KRL

ESE319 Introduction to Microelectronics

33Kenneth R. Laker, updated 18Sep13 KRL

Conclusion Cont.How does one obtain operating point stability, and simultaneously achieve a respectable voltage gain?

Cbyp

“Bypass Capacitor”

“Blocking Capacitor”

vs