Autocontrol Eng

Embed Size (px)

Citation preview

  • 8/13/2019 Autocontrol Eng

    1/65

    Copyright Hanyang University

    1-90

    . Control

    Ch. 1 Introduction

    Ch. 2 Basic Control Actions

    Ch. 3 Root-locus

    Ch. 4 Frequency Response

    Ch. 5 Compensator Design

    Ch. 6 Modern Control

  • 8/13/2019 Autocontrol Eng

    2/65

    Copyright Hanyang University

    1-91

    Ch. 1 IntroductionControl : to decide input to get the desired outputControl System : collection of components to have desired response

    (Plant, Controller, Sensor, Actuator)Process(Plant) : the object of control

    Open-loop ControlClosed-loop Control

    - Closed-loop Control : Measure and feedback the output andcompare with the desired output (feedback control)

    -

    -

  • 8/13/2019 Autocontrol Eng

    3/65

    Copyright Hanyang University

    1-92

    - Open-loop ControlNo feedback of the output.Feedforward using the prior knowledge of the system

  • 8/13/2019 Autocontrol Eng

    4/65

    Copyright Hanyang University

    1-93

    Example of Control Systems- Liquid level control

    - Driving a car

    - Toaster

    OpenlooporClosedloop ?

    .

  • 8/13/2019 Autocontrol Eng

    5/65

    Copyright Hanyang University

    1-94

    Motor speed controlOpen-loop

    Closed-loop

  • 8/13/2019 Autocontrol Eng

    6/65

    Copyright Hanyang University

    1-95

    Traffic light controlOpen-loop : fixed intervalClosed-loop : change interval depending on the traffic

    Open-loop Closed-loop (feedback) Simple less expensive Inaccurate Sensitive to

    parameter changeexternal disturbance

    Stable

    Complicated Expensive Accurate less Sensitive to

    parameter changeexternal disturbance

    May be unstable

    Special considerations required

  • 8/13/2019 Autocontrol Eng

    7/65

    Copyright Hanyang University

    1-96

    Control System Design Procedure

    Use a detailed model to predict the real responses and performance

  • 8/13/2019 Autocontrol Eng

    8/65

    Copyright Hanyang University

    1-97

    mathematical model- Represent the characteristics and behavior of a system in a

    mathematical form- Have to be detail to represent the real characteristics- If too complicated, not good for controller design simple model- Compromise between the two

    Modeling procedure- Derive the governing equations- convert to Laplace Transform, Transfer function

    State-space eqn.Block diagramSignal processing model

  • 8/13/2019 Autocontrol Eng

    9/65

    Copyright Hanyang University

    1-98

    Linearization

    pointoperating:),( 00 yx

    Taylor Series Expansion of f(x) around ),( 00 yx

    2

    02

    2

    00 )(

    !2

    1)()()(

    0

    xx

    x

    fxx

    x

    fxfxf

    xx

    y 0y

    )(

    )(ofionapproximatLinear:)(

    00

    00

    0

    xxKyy

    xfyxxx

    fyy

    xx

    Neglect higher-order terms

  • 8/13/2019 Autocontrol Eng

    10/65

  • 8/13/2019 Autocontrol Eng

    11/65

  • 8/13/2019 Autocontrol Eng

    12/65

    Copyright Hanyang University

    1-101

    Transfer functionLinear, Time-invarient, differential eqn Transfer function, G(s)

    )(

    )()(

    input

    outputsG

    :

    describes characteristics of the system, independent of input

    Example :

    kbsmssF

    sYsG

    2

    1

    )(

    )()(

    )()()( sFsGsY

    fkyybym

    )()()( 2 sFsYkbsms

    Let initial conditions zero

  • 8/13/2019 Autocontrol Eng

    13/65

    Copyright Hanyang University

    1-102

    n-th order differential equations => transfer functionxbxbxbxbyayayaya mmmmnnnn

    1)1(1)(01)1(1)(0

    nn

    nn

    mm

    mm

    asasasa

    bsbsbsb

    sX

    sYsG

    1

    1

    10

    1

    1

    10

    )(

    )()(

    : zero (): pole ()

    )(

    )(

    )())((

    )())((

    )(

    21

    21

    0

    0

    sD

    sN

    pspsps

    zszszsA

    asa

    bsbsG

    n

    m

    n

    n

    m

    m

    0)( sN izs

    0)( sD ips

    dif s

    integs

    1

  • 8/13/2019 Autocontrol Eng

    14/65

  • 8/13/2019 Autocontrol Eng

    15/65

  • 8/13/2019 Autocontrol Eng

    16/65

    Copyright Hanyang University

    1-105

    Operations of Block Diagram Cascade Connection

    Feedback connection

    Error ,

    )()()( 2 sXsGsY )()()( 1 sFsGsX

    )()()()( 21 sFsGsGsY

    )()()()(

    )()()()(

    sEsGsHsF

    sYsHsFsE

    )()()(1

    )(

    )()()(

    sFsHsG

    sG

    sEsGsY

  • 8/13/2019 Autocontrol Eng

    17/65

    Copyright Hanyang University

    1-106

    : Closed-loop Transfer function

    Basic Blocksconstant :

    integrator :

    differentiator :

    Summer(summing point) :

    )()(1

    )(

    )(

    )(

    sHsG

    sG

    sF

    sY

    )()( sKFsY )()( tKfty

    )(

    1

    )( sFssY

    t

    dttfty0

    )()(

    )()( ssFsY )()( tfty

    21)( FFsY )()( 21 tftfy

    )(sG

    )()( sHsG

    : feed forward T. F: open-loop T.F.

    Where,

  • 8/13/2019 Autocontrol Eng

    18/65

    Copyright Hanyang University

    1-107

    State-Space ApproachState variable : min number of variables to represent the states of asystem

    Ex :

    In Matrix form,

    Fkzzbzm

    zyzx

    Fuzx

    Let

    2

    1

    equationstate1

    1)(1

    212

    21

    2

    1

    um

    xm

    kx

    m

    kx

    xx

    um

    kzzbm

    zx

    zx

    1Output xy

    2

    1

    2

    1

    2

    1

    01

    10

    10

    x

    xy

    u

    mx

    x

    m

    b

    m

    kx

    x

  • 8/13/2019 Autocontrol Eng

    19/65

    Copyright Hanyang University

    1-108

    State-space representation

    VectorStatex

    x

    x

    2

    1

    ,

    State equation Laplace transform transfer functionL

    zero i. c.

    )()()(

    )()()(

    )()()(

    1

    1

    sUDBAsICsY

    sBuAsIsX

    sBusXAsI

    Transfer function :

    DuCxyBuAxx

    0,01,10

    ,10

    DC

    m

    B

    m

    b

    m

    kA

    )()()(

    Bu(s)AX(s)sX(s)

    sDusCXsY

    DuCxy

    BuAxx

    DBAsICsu

    sYsG 1)(

    )(

    )()(

    Space spanned by state vectors State space

  • 8/13/2019 Autocontrol Eng

    20/65

    Copyright Hanyang University

    1-109

    Ch. 2 Basic Control Actions Basic elements of feedback control system

    actuator : motor, hydraulic(pneumatic) motor, heatersensor : position encoder, potentiometer, LVDT

    velocity tachometerpressure transducer, accelerometer, themometer

    controller : computes control input uusing the error signal and sends out tothe actuator

    Basic industrial controllers1.Two-position (on-off)

    On-off with differential gap

  • 8/13/2019 Autocontrol Eng

    21/65

    Copyright Hanyang University

    1-110

    2.Proportional Control(P-control)

    3. Integral Control

    4.P-I Control (Proportional plus Integral)

    5.P-D Control (Proportional plus Derivative)

    6.P-I-D Control

    )( yyKu dp

    dtyyKu di )(

    )1

    1()(sT

    Ks

    KKsG

    i

    pi

    pc

    )1()( sTKsKKsG ddpc

  • 8/13/2019 Autocontrol Eng

    22/65

    Copyright Hanyang University

    1-111

    )1

    1(

    )(

    sTsT

    K

    s

    KsKKsG

    d

    i

    p

    idpc

  • 8/13/2019 Autocontrol Eng

    23/65

  • 8/13/2019 Autocontrol Eng

    24/65

    Copyright Hanyang University

    1-113

    Derivative Control increases damping. improve stability

    P-control under external disturbances

    pp KbsJs

    bsJs

    KbsJssDsE

    2

    2

    2

    1

    1

    1

    )()(

    Assume reference input, r(t)=0 ( 0)( sR )

    step disturbances

    TsD d)(

    Steady state error

    p

    dd

    ps

    sss

    K

    T

    s

    Ts

    KbsJs

    ssEe

    20

    0

    1lim

    )(lim

  • 8/13/2019 Autocontrol Eng

    25/65

    Copyright Hanyang University

    1-114

    PI control under external disturbances

    i

    p

    p

    i

    ip

    T

    KsKbsJs

    s

    bsJssT

    sTKbsJs

    sD

    sE

    23

    2

    2

    1)1(1

    1

    )(

    )(

    s

    TsD

    sR

    d

    )(

    0)(

    0lim23

    0

    s

    Ts

    T

    KsKbsJs

    se d

    i

    p

    p

    sss

    * Integral Control reduces the steady-state error,But may cause instability.

  • 8/13/2019 Autocontrol Eng

    26/65

    Copyright Hanyang University

    1-115

    Stability criterion

    Closed-loop T. F. )()(

    )(

    )(

    0

    0

    sA

    sB

    asa

    bsb

    sR

    sCnn

    m

    m

    A(s)=0 closed-loop polesStability Real[Closed-loop poles] < 0 : asymptotically stable

    0 : stableRouths Stability Criterion

    Determine stability without computing the Poles

    0110

    n

    nn asasa Condition 1 : 0

    i

    a If any 0ia , there exists at least one root with positive or zero

    real partCondition 2 : decide the number of unstable poles

  • 8/13/2019 Autocontrol Eng

    27/65

    Copyright Hanyang University

    1-116

    Example

    )10)(1(

    107

    ss

    s

    F

    Y , sF1 tt eety 10

    3

    2

    3

    11)(

    Dominant pole: located close to the imaginary axis :

    Can predict the response of a higher-order system by looking at thedominant pole

    Fast, well-damped system

    21 n

    n

    4.0

    time)(settling4

    st

  • 8/13/2019 Autocontrol Eng

    28/65

    Copyright Hanyang University

    1-117

    Example

    i) P-I control )1()(s

    KKsG ic

    innn

    in

    KKsKss

    KsK

    R

    Y2223

    2

    )1(2

    )(

    For stability, innn KKK 22 )1(2 0,

    12

    ini KK

    K

    KK

    ii) Integral controls

    KsG ic )(

    022223 ninn Ksss

    niK 20

    iii) P-control KsGc )( 0)1(2

    22 nn Kss

    1K

    22

    2

    2 nn

    n

    ss

  • 8/13/2019 Autocontrol Eng

    29/65

    Copyright Hanyang University

    1-118

    Steady-state Error Open-loop T.F.

    )1()1(

    )1()1()(

    1

    sTsTs

    sTsTKsG

    p

    N

    ma

    : Type N system

    Type : no. of free integrators

    )(lim

    )(1

    1

    )(

    )(

    0ssEe

    sGsR

    sE

    sss

    Step input

    ssR

    1)( 1)( tr

    ps

    ssKGsGe 1

    1

    )0(1

    1

    )(1

    1

    lim0 consterrorpositionstatic:)0()(lim

    0GsGK

    sp

    Type 0 system

    )1(

    )1()()0(

    s

    i

    pT

    sTKsGKGK

    "2Type

    "1Type

    system0Type

  • 8/13/2019 Autocontrol Eng

    30/65

    Copyright Hanyang University

    1-119

    Type 1 or higher system )0(GKp

    higheror1type:0

    0type:1

    1

    ss

    ss

    e

    Ke

  • 8/13/2019 Autocontrol Eng

    31/65

    Copyright Hanyang University

    1-120

    Performance Index

    Quantitative measure of the performance of a control system

    0

    )( dtefJ 1. I.S.E (Integral square Error)

    0

    2dteJ

    2. I.T.S.E (Integral of Time-multiplied square Error)

    0

    2dtteJ

    3. I.A.E (Integral Absolute Error)

    0

    dteJ 4. I.T.A.E (Integral of Time-Multiplied Absolute Error)

    0

    dtetJ

  • 8/13/2019 Autocontrol Eng

    32/65

    Copyright Hanyang University

    1-121

    5.others

    dteJor

    dteeJ

    ]e[

    ][

    0

    0

    22

    minimize J by choosing an appropriate controller and controlparameter.

  • 8/13/2019 Autocontrol Eng

    33/65

    Copyright Hanyang University

    1-122

    Ch. 3. Root-Locus

    Rouths stability Criterion : determine only stabilityRoot Locus method : plots trace of C.L. poles on s-plane as K varies.

    stability + help to select controller and gain K+ predict the system dynamics

    Root LocusLocus of C. L. poles in the s-plane as gain K is varied

    Example

    For stability 0K i) K1 , s=-1 1 Kj

    Kss

    K

    sR

    sC

    2)(

    )(2

    Kss

    Kss

    11,

    02

    21

    2

  • 8/13/2019 Autocontrol Eng

    34/65

    Copyright Hanyang University

    1-123

    Root LocusFeedback Control system(negative feedback)

    )()(1

    )(

    )(

    )(

    sHsG

    sG

    sR

    sC

    closed-loop poles C.E : 0)()(1 sHsG 1)()(

    T.Floop-Open

    sHsG traces of s satisfying the C.E.

    Root Locuss : complexG(s)H(s) : complex function

    Angle Condition ),21,0,(K360180)()( KSHsG Magnitude Condition 1)()( sHsG Traces of s satisfying the two conditions

  • 8/13/2019 Autocontrol Eng

    35/65

    Copyright Hanyang University

    1-124

    Note K = 0 K =

    Departs from pole arrives at zeroSource Sink

    Repel R.L. Attract R.L. pole pole real axis break away pt.

    zero zero real axis break in pt.

    break-away & break in locus real axis 90

  • 8/13/2019 Autocontrol Eng

    36/65

    Copyright Hanyang University

    1-125

    Double Pole Example

    2)4)(2(

    )1(11

    sss

    sKGH

    Example2

    )(1

    s

    asK

    314

    )1()4420(

    180,60asymptotes3

    14

    A

    mn

  • 8/13/2019 Autocontrol Eng

    37/65

    Copyright Hanyang University

    1-126

    Example

    )4(

    )1)(21(

    122

    2

    ss

    ssK

    Example

    -5 -4 -3 -2 -1 0 1 2 3 4-2

    - 1 . 5

    -1

    - 0 . 5

    0

    0 . 5

    1

    1 . 5

    2

    R e a l A x i s

    ImagAxis

  • 8/13/2019 Autocontrol Eng

    38/65

    Copyright Hanyang University

    1-127

    Ch. 4 Frequency Response

    Steady-state response of a system to a sinusoidal input

    - Frequency response is easily obtainedno need for modelingno need for characteristic eqn. .

    no need for poles/zeros

    At steady-state linear system : freq. of y is the same as freq. of xnonlinear system : y contains many freqs. depending

    on amp of x

  • 8/13/2019 Autocontrol Eng

    39/65

    Copyright Hanyang University

    1-128

    T.F.)(

    )()(

    sX

    sYsG

    Input tAtx sin)( Output )sin()( tBty

    shiftphase)(

    )()(

    ratio)ituderatio(magnampitude)(

    )()(

    jX

    jYjG

    jX

    jYjG

    A

    B

    T.Fsinusoidal:)()(

    js

    sGjG

    Frequency Response Graphical expression : )( jG plot1.Bode diagram : Already covered2.Polar plot3.Log-magnitude vs. phase plot

  • 8/13/2019 Autocontrol Eng

    40/65

    Copyright Hanyang University

    1-129

    Polar plot (Nyquist plot))(Im)(Re)( jGjjGjG

    i) 9011j

    1)(

    1)(

    jjG

    ssG

    ii) jjGssG )()( iii)

    2

    2

    2

    2222

    2

    1

    2

    1

    11

    1

    1

    1)(

    1

    1)(

    YY

    T

    Tj

    TTjjG

    sTsG

    YX

  • 8/13/2019 Autocontrol Eng

    41/65

    Copyright Hanyang University

    1-130

    Nyquist stability Criterion

    Char. Eq. : 0)()(1 sHsG

    RHP)in0GH1of(zerospolesCLunstableofno.:ZplaneGHin1-ofntencirclemewise-clockofno.:N

    GHofpolesunstableofno.:P

    PNZ Example

    )1)(1(

    )()(21

    sTsT

    KsHsG

    0-(iii)

    0

    090R(ii)

    1800

    0)(i

    js

    GH

    eRs

    GHKGH

    js

    j

    stable0

    1)-ofntencircleme(no0

    0

    Z

    N

    P

  • 8/13/2019 Autocontrol Eng

    42/65

    Copyright Hanyang University

    1-131

    Minimum phase systemNo O.L. poles or zeros in RHP

    )1)(1(

    )1)(1(

    21 sTsTs

    sTsTKGH ba

    0P

    For stability, N=0 Z=0polar plot 1

    Relative stability1. Polar plot GM / PM

    180

    1

    GMKm

  • 8/13/2019 Autocontrol Eng

    43/65

    Copyright Hanyang University

    1-132

    2. Gain Margin & Phase Margin in R-locus

    K

  • 8/13/2019 Autocontrol Eng

    44/65

    Copyright Hanyang University

    1-133

    Gain margin : gain

    180

    )(

    1

    jwG

    Kn

    Phase margin : Phase lag

    1)()(180

    jwGn jwG Stable

    0

    0

    n

    nK

  • 8/13/2019 Autocontrol Eng

    45/65

    Copyright Hanyang University

    1-134

    Magnitude-phase plot

  • 8/13/2019 Autocontrol Eng

    46/65

    Copyright Hanyang University

    1-135

    Bandwidth

    Cutoff frequency( 0w )db

    jR

    jC

    jwR

    jwC3

    )(

    )(

    )(

    )(

    0

    0 for 0ww cutoffw Frequency for which

    707.02

    1,3log20 input

    outputdb

    input

    output Bandwidth = Range of frequency where system tracks

    input sinusoids. Measure of speed of response ~rise time High bandwidth : better tracking properties for input of wide

    frequency range But, too high bandwidth Noise problem

    Higher cost

    Closed-loop T.FG

    G

    1

  • 8/13/2019 Autocontrol Eng

    47/65

    Copyright Hanyang University

    1-136

    Ch. 5 Compensator DesignEffect of additional poles : root locus .Effect of additional zero : root locus .

    Compensator : A controller to modify dynamics of a system to meetspecs.

  • 8/13/2019 Autocontrol Eng

    48/65

    Copyright Hanyang University

    1-137

    Lead compensator

    )0,10(1

    1

    )( pzps

    zs

    Ts

    Ts

    KsG cc

    Bode diagram of lead compensator ( )1.0,1 cK m : Maximum phase lead angle at nww

    1

    1sin m

    Lead compensator : phase margin , Lead compensator :

  • 8/13/2019 Autocontrol Eng

    49/65

    Copyright Hanyang University

    1-138

    Example

    4.18

    41.47.41)(

    s

    ssGc

    )4.18)(2(

    )41.4()(

    sss

    sKsGGc

    Frequency (rad/sec)

    Phase(deg);Magnitude(d

    B)

    Bode Diagrams

    -150

    -100

    -50

    0

    50

    100

    From: U(1)

    10-2 10-1 100 101 102 103-200

    -150

    -100

    -50

    0

    50

    To:Y

    (1)

    Gc

    G

    GcG

    Gc

    G

    GcG

  • 8/13/2019 Autocontrol Eng

    50/65

    Copyright Hanyang University

    1-139

    Lag compensator

    ),1(1

    1

    )( zpps

    zsK

    Ts

    Ts

    KsG ccc

    Lag compensator : static error coeff. Steady state error

    Frequency (rad/sec)

    Phase(deg);Magnitude(dB)

    Bode Diagrams

    -20

    -15

    -10

    -5

    0From: U(1)

    10-4 10-3 10-2 10-1 100-60

    -40

    -20

    0

    To:Y(1)

    Example

    ]

    Type 1 system : step input 0sse

    -0.24+j0.86

  • 8/13/2019 Autocontrol Eng

    51/65

    Copyright Hanyang University

    1-140

    Ramp input 11 v

    ssK

    e (too big) 1vK

    ccs

    cs

    v K

    sssT

    s

    Ts

    sKsGssGK

    )15.0)1(

    1

    1

    1

    lim)()(lim00

    vK cK .To reduce sse , increase cK to 5 for example

    If)15.0)(1(

    5,5)( 1

    sss

    GGGsG cc

    Lag compensator control

    )15.0)(1)(1100(

    )110(5)()(

    100

    1

    )10

    1(5.0

    1100

    )110(5)(

    ssss

    ssGsG

    s

    s

    s

    ssG cc

  • 8/13/2019 Autocontrol Eng

    52/65

    Copyright Hanyang University

    1-141

    Frequency (rad/sec)

    Phase(deg);Magnitude(dB)

    Bode Diagrams

    -200

    -100

    0

    100 From: U(1)

    10-2 10-1 100 101 102 103-300

    -200

    -100

    0

    To:Y(1)

    Gc

    G

    GcG

    Gc

    G

    GcG

    Summary

    ps

    zskGc

    )( Lead compensator : adds phase lead at crossoverw

    increase without decreasing nw Lag compensator : adds low frequency gain

    rcompensatolagpz

    rcompendatoleadpz

    :

    :

    Improve sse Disturbance reject

  • 8/13/2019 Autocontrol Eng

    53/65

    Copyright Hanyang University

    1-142

    PID controlPID Turning

    )1

    1()( dsi

    pc TsT

    KSG

    Parameter : dip TTK ,, trial & errorZieglerNichols rule

    Plant step response parameter

    1) (if no integrator) plant response parameter

    LLL

    T

    L

    L

    T

    LT

    TTK dp

    0.521.2PID

    03.0

    0.9PI

    0P

    i

  • 8/13/2019 Autocontrol Eng

    54/65

    Copyright Hanyang University

    1-143

    2)P() Kp 0 output crp KK

    crP :

    crcrcr

    crcr

    cr

    lp

    PPK

    PK

    K

    TTK

    0.1250.50.6PID

    02.1

    10.45PI

    00.5P

    i

    1.Ziegler-Nichols turning 25 overshoot

    2.plant model tuning3. .

    gain initial tuning trial & error

  • 8/13/2019 Autocontrol Eng

    55/65

  • 8/13/2019 Autocontrol Eng

    56/65

    Copyright Hanyang University

    1-145

    Example

    0

    21

    0

    1

    3

    02

    2

    1

    2

    1

    cP

    ux

    x

    x

    x

    2

    0

    1,

    3

    02

    AB

    BA

    ableuncontroll0

    lecontrollab0)det(

    cP 2x

    Observability ()Output y state variable x

    observable0)det(

    nn:

    1

    Q

    CA

    CA

    C

    Q

    n

    22 3xx

  • 8/13/2019 Autocontrol Eng

    57/65

  • 8/13/2019 Autocontrol Eng

    58/65

    Copyright Hanyang University

    1-147

    Optimal Control

    CXY

    BuAXX

    min ft

    dttuXgJ0

    ),,( Control Law : state feedback ( state )

    Kxu

    x

    xKKxKxKxKu

    n

    nnn

    1

    12211

    Closed-loop systemXAXBKABKXAXX *)(

    Problem J feedback gain Ki

    e.g. desired 0dX 0X

    ft T

    dtXXJ0

    )( XXPXX

    dt

    d TT )( P symmetric):n(n

  • 8/13/2019 Autocontrol Eng

    59/65

  • 8/13/2019 Autocontrol Eng

    60/65

    Copyright Hanyang University

    1-149

    Performance Index

    2

    2

    2

    2

    221211

    2

    12

    2

    )0()0(

    K

    KK

    PPP

    PXXJ T

    2,1 min2 JKWhen

    Optimal Control with Energy term

    Control gain Pbr

    KT 1

    whereP

    is obtain fromequationRiccati:0

    1 QPPbb

    rPAPA

    TT

    factorgweightin:r)(:..

    :

    energy

    2

    0dtruXQXJIP

    KXuControl

    buAXX

    T

    1

    1)0(xAssume

  • 8/13/2019 Autocontrol Eng

    61/65

    Copyright Hanyang University

    1-150

    Ch. 6 Modern Control1.Linear Quadratic Control System model

    0),()()( tttuBtxAtx

    Performance index

    T

    t

    TT

    T

    dttuRtutxQtx

    TxTSTxtJ

    0

    ))()()()((2

    1

    )()()(2

    1)( 0

    0,0,0)( RQTS

    Riccati EducationQSBRBSASSAS

    TT

    1

    Algebraic Riccati Equation(ARE) (When T )QSBRBSASSA

    TT 1

    0

    Feedback control gainSBRK

    T1

  • 8/13/2019 Autocontrol Eng

    62/65

    Copyright Hanyang University

    1-151

    2. Adaptive Control () .

    1) Direct Adaptive control1. -Output error controller gain adjust.

    2) Indirect Adaptive control- Plant model parameter adjust controller gain .

    1) Gain scheduling2) Model Reference Adaptive Systems3) Self-Tuning Regulator4) Dual Control

    Controller

    DesiredReference model

    Process

    Adjustmentrule

    ym

    yr u

    e

    y

    +-

  • 8/13/2019 Autocontrol Eng

    63/65

    Copyright Hanyang University

    1-152

    3. Intelligent ControlControl strategy and decision are made at a symbolic level throughperception and reasoning and learning.

    Signal Symbol Control

    Pattern recognition Neural network

    Rule based control Fuzzy logic control

    A. Neural NetworkBiological neurons are believed to be the structural constituents of the

    brain. A neural network can:

    Learn by adapting its synaptic weights to changes in the

    surrounding environments

    Handle imprecise, fuzzy, noisy, and probabilistic information

    Generalize from known tasks or examples to unknown ones

  • 8/13/2019 Autocontrol Eng

    64/65

    Copyright Hanyang University

    1-153

    Membership Function

    Neural NetworkControl

    B. Fuzzy logic control Control Decision system Boolean Logic Fuzzy logic

    Fuzzy Set Membership Function Fuzzy Logic

  • 8/13/2019 Autocontrol Eng

    65/65

    Fuzzy controller Fuzzifier Fuzzy Inference Engine Fuzzy Rule Base Defuzzifier

    Merits of Fuzzy Controllera. Linguistic control rulesb. Highly nonlinearc. Fewer rules

    OutputDefuzzifier

    FuzzyInference Engine

    Fuzzy

    Rule Base

    Input 1

    FuzzifierInput 2

    < Block Diagram of fuzzy logic controller >