6
NZ Journal of Physiotherapy – November 2005. Vol. 33, 3 95 ML Roberts Prize Winner This literature review won the ML Roberts prize in 2004. The ML Roberts prize is awarded annually for the best 4 th year undergraduate study research project. NZJP publishes the resulting paper without peer review. A structured review of the role of gluteus maximus in rehabilitation Judy Wilson, MEd, Dip PhysEd, Dip Physio School of Physiotherapy, University of Otago Emma Ferris BPhty* Anna Heckler BPhty* Lisa Maitland, BPhty* Carol Taylor BPhty* *These authors were, at the time this study was undertaken, 4 th year Physiotherapy Students at the University of Otago. ABSTRACT Gluteus maximus is the largest muscle in the body and is important in many functional activities such as walking, running and lifting. The aim of this structured review was to investigate the role of gluteus maximus in functional rehabilitation. A computerised literature search of five electronic databases was conducted to seek papers which reported investigations of function, altered function and rehabilitation of gluteus maximus. A total of 34 articles were identified for inclusion in the present structured review. Gluteus maximus has a role in walking and lifting activities as well as providing stability to the sacroiliac joint. The function and properties of gluteus maximus may be altered when changes to the kinetic chain of the lower limb occur as a result of injury or altered biomechanics. The activation level of gluteus maximus was found to be highest when a full squat exercise was performed. Incline running, the use of balance shoes and, to a lesser extent, level running are also effective methods of increasing the activity of gluteus maximus. While research has identified which exercises most effectively activate gluteus maximus, it is still unknown whether the neuro-muscular activation during these particular exercises is high enough to bring about a training effect within the normal population. Wilson J, Ferris E, Heckler A, Maitland L, Taylor C (2005). A structured review of the role of gluteus maximus in rehabilitation. New Zealand Journal of Physiotherapy 33(3) 95-100. Key words: Gluteus maximus, function, rehabilitation INTRODUCTION Gluteus maximus is superficially the largest muscle of the body. This important muscle is distinctive in comparison with other primates due to evolutionary postural changes from quadrupeds to bipeds. In the human, gluteus maximus has increased leverage due to its superior attachment on to the dorsal ilium (Marzke et al., 1988) and in a morphological study comparing baboon hind legs with human legs, it was found that gluteus maximus has a larger relative weight in humans (Ito et al., 2000). This single joint muscle allows for increased force production to maintain an upright position needed for bipedalism. Jenkins (1998) describes the insertion of gluteus maximus proximally into the sacrum, the dorsal sacral ligaments, the posterior portion of the crest of the ilium and the sacrotuberous ligament. The muscle fibres run inferiorly and laterally to the distal insertion, where it splits in two components. The upper half of the muscle inserts into the iliotibial tract of the fascia lata and the lower half into the gluteal tuberosity of the femur. Due to its attachments, gluteus maximus is primarily involved in hip extension and lateral rotation (Kendall et al., 1993). In addition to these latter actions, the upper fibres abduct and the lower fibres adduct the thigh. It is also thought that, due to its attachment into the iliotibial tract, gluteus maximus may play a role in stabilising the knee in extension. Fischer & Houtz (1968) found in an electromyographic (EMG) study that the strongest contractions of gluteus maximus occurred with muscle setting by isometric contraction, external rotation, abduction with resistance and vigorous hyperextension exercises of the thigh and trunk in an erect posture. To obtain a significant strengthening effect, it was suggested by Atha (1981), that the level of activity required must exceed 66% of maximum voluntary isometric contraction (MVIC). Gluteus maximus is important in many daily activities such as lifting, walking and running, and plays a role in pelvis stability. It is appropriate to investigate, therefore, not only the manner in which gluteus maximus functions during these daily activities, but also how its function is altered due to pathology or altered biomechanics. Treatment of impairment needs to be incorporated into activities that can be repeated on a daily basis in order to have a carry over effect from physiotherapy to function. The purpose of this structured review was to synthesize the information on the role of gluteus maximus in functional rehabilitation and to identify areas of further research. At the time of undertaking this work no other structured review addressing the role of gluteus maximus in functional rehabilitation

A structured review of the role of gluteus maximus in rehabilitation

Embed Size (px)

Citation preview

Page 1: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3  95

ML Roberts Prize Winner

This literature review won the ML Roberts prize in 2004. The ML Roberts prize is awarded annually for the best 4th year undergraduate study research project. NZJP publishes the resulting paper without peer review.

A structured review of the role of gluteus maximus in rehabilitationJudy Wilson, MEd, Dip PhysEd, Dip Physio

School of Physiotherapy, University of OtagoEmma Ferris BPhty*

Anna Heckler BPhty* Lisa Maitland, BPhty* Carol Taylor BPhty*

*These authors were, at the time this study was undertaken, 4th year Physiotherapy Students at the University of Otago.

ABSTRACTGluteus maximus is the largest muscle in the body and is important in many functional activities such as walking, running and lifting. The aim of this structured review was to investigate the role of gluteus maximus in functional rehabilitation. A computerised literature search of five electronic databases was conducted to seek papers which reported investigations of function, altered function and rehabilitation of gluteus maximus. A total of 34 articles were identified for inclusion in the present structured review. Gluteus maximus has a role in walking and lifting activities as well as providing stability to the sacroiliac joint. The function and properties of gluteus maximus may be altered when changes to the kinetic chain of the lower limb occur as a result of injury or altered biomechanics. The activation level of gluteus maximus was found to be highest when a full squat exercise was performed. Incline running, the use of balance shoes and, to a lesser extent, level running are also effective methods of increasing the activity of gluteus maximus. While research has identified which exercises most effectively activate gluteus maximus, it is still unknown whether the neuro-muscular activation during these particular exercises is high enough to bring about a training effect within the normal population. Wilson J, Ferris E, Heckler A, Maitland L, Taylor C (2005). A structured review of the role of gluteus maximus in rehabilitation. New Zealand Journal of Physiotherapy 33(3) 95-100.Key words: Gluteus maximus, function, rehabilitation

IntroductIonGluteus  maximus  is superficially the largest

muscle  of  the  body.  This  important  muscle  is distinctive in comparison with other primates due to evolutionary postural changes from quadrupeds to  bipeds.  In  the  human,  gluteus  maximus  has increased leverage due to its superior attachment on  to  the dorsal  ilium  (Marzke  et  al.,  1988)  and in a morphological study comparing baboon hind legs with human  legs,  it was  found  that gluteus maximus has a larger relative weight in humans (Ito et al., 2000). This single  joint muscle allows for  increased  force  production  to  maintain  an upright  position  needed  for  bipedalism.  Jenkins (1998) describes the insertion of gluteus maximus proximally  into  the  sacrum,  the  dorsal  sacral ligaments, the posterior portion of the crest of the ilium and the sacrotuberous ligament.  The muscle fibres run inferiorly and laterally to the distal insertion, where it splits in two components.  The upper half of the muscle inserts into the iliotibial tract of the fascia lata and the lower half into the gluteal tuberosity of the femur.

Due  to  its  attachments,  gluteus  maximus  is primarily  involved  in  hip  extension  and  lateral rotation (Kendall et al., 1993).  In addition to these latter actions, the upper fibres abduct and the lower fibres adduct the thigh. It is also thought that, due

to  its attachment  into the  iliotibial tract, gluteus maximus may play a role  in stabilising the knee in extension.  Fischer & Houtz (1968) found in an electromyographic (EMG) study that the strongest contractions  of  gluteus  maximus  occurred  with muscle setting by isometric contraction, external rotation, abduction with resistance and vigorous hyperextension exercises of the thigh and trunk in an erect posture. To obtain a significant strengthening effect, it was suggested by Atha (1981), that the level of activity required must exceed 66% of maximum voluntary isometric contraction (MVIC).

Gluteus  maximus  is  important  in  many  daily activities such as lifting, walking and running, and plays a role in pelvis stability. It is appropriate to investigate, therefore, not only the manner in which gluteus  maximus  functions  during  these  daily activities, but also how its function is altered due to pathology or altered biomechanics.  Treatment of impairment needs to be incorporated into activities that can be repeated on a daily basis in order to have  a  carry  over  effect  from  physiotherapy  to function.  The purpose of this structured review was to synthesize the information on the role of gluteus maximus in functional rehabilitation and to identify areas of further research.  At the time of undertaking this work no other structured review addressing the role of gluteus maximus in functional rehabilitation 

Page 2: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3 96

was able to be identified. Although a wide variety of  different  exercises  are  advocated  to  train  and condition  gluteus  maximus  and  surrounding musculature, there are no specific guidelines for rehabilitation using best evidence based practice.  A critical review of the literature, therefore,   with an  emphasis  on  functional  rehabilitation  would seem timely and appropriate.

search strategyA computerized literature search of five electronic

databases was conducted: Medline (Index Medicus), CINAHL (Cumulative Index to Nursing and Allied Health  Literature),  EMBASE  (Excerpta  Medica), AMED  (Allied  and  Complementary  Medicine) and  PubMed  (National  Center  for  Biotechnology Information).    Using  these  databases  the  search strategy  was  based  on  the  key  words:  gluteus maximus,  function  and  rehabilitation.    The search was expanded by using the related terms: gluteal  muscles,  anatomy,  structure,  treatment, strengthening,  impairment,  exercise,  training protocol and hip extension.

Articles  were  retrieved  from  the  University of  Otago  Dunedin  Medical  Library,  Electronic Journals, Document Delivery and Remote Services both  within  New  Zealand  and  overseas.    On obtaining  the  articles  their  reference  lists  were searched for further articles to be included in our research.    Only  articles  written  in  the  English language  were  included  in  any  of  the  searches.  The  selected  articles  examined  a  broad  range  of functions associated with gluteus maximus.  There were  limited  studies  on  the  gluteus  maximus muscle specific to the topic of rehabilitation and no  randomized  controlled  trials  were  reported.  Therefore  the  scope  was  widened  to  include  a range  of  papers  that  addressed  the  function  of gluteus  maximus  in  healthy  subjects.    Articles were excluded if mention was only made to gluteus maximus in the abstract or the  introduction but without further reference to the muscle.

Thirty four articles were included in this study and were allocated into three categories; function, altered function and rehabilitation.  Of the studies reporting  clinical  trials    the  following  outcome measures had been used: EMG, MVIC. speed of lift, biomedical models, video analysis, sacroiliac joint (SIJ) stiffness, force displacement, electromagnetic sensor, ground reaction force, electro-goniometer and  isokinetic  dynamometer measures.   As  only six papers specifically addressed the role of gluteus maximus  in  functional  rehabilitation,  papers discussing  function  in  both  normal  and  altered biomechanics were included.  These two aspects were considered to be fundamental to understanding the functional role of gluteus maximus and therefore its importance in rehabilitation.  

the role of gluteus Maximus in normal function

Gluteus maximus has many different functions such  as  providing  sacroiliac  joint  (SIJ)  stability, 

strength for lifting and control of gait. Stability to the SIJ is provided by compression thus creating a  self-bracing  mechanism.  There  is  very  little movement at  the SIJ which  is  important  for  the primary  function of  load transfer  from the trunk to legs.  If excess movement occurs at the joint, a positional change may occur between the ilia and sacrum thus compromising the L5-S1 intervertebral joints and disc, SIJ and pubic symphysis and could lead to SIJ dysfunction and low back pain.  Due to its proximal attachment on to the sacrotuberous ligament,  gluteus  maximus  is  thought  to  cause tightening  of  the  ligament,  giving  dynamic  joint stability and thereby reducing mobility (Vleeming et al., 1989).   Snijders et al (1993)  also examined SIJ  stability  using  a  biomedical  model  and hypothesized  that  the  large  shear  forces  caused by  the  body  weight  above  the  sacrum  would  be counteracted by the self-bracing and compressive mechanism of a gluteus maximus contraction. In a study on male weight lifters, Lafond et al (1998) found that hip extensor contraction reduced sacral mobility significantly. This appreciation of the role of gluteus maximus in the control of the SIJ may have a practical application in the treatment of SIJ dysfunction.    

During  the  task  of  lifting  gluteus  gluteus maximus has also been shown to have an important role in extending the hips and stabilising the pelvis. Research  has  shown  that  emphasis  should  be placed  on  contraction  during  the  early  phase  of the lift to provide pelvic stability, enabling a safe and effective movement to occur (Noe et al., 1992; Vakos  et al., 1994).  

Gluteus maximus also makes a large contribution to gait, and ineffective functioning can compromise many  aspects  of  the  gait  cycle.  The  muscle contributes most significantly to support the lower limb via the vertical ground reaction force during the early stance phase from foot flat to just after contralateral  toe  off  (Anderson  &  Pandy,  2003).  Gluteus  maximus  initiates  foot  rotation  in  the rocker action, and also has a role in the amplitude of  the  second  rocker  (Jonkers  et  al,  2003a).  In addition, knee extension during stance is partially controlled  by  gluteus  maximus  working  as  an antagonist.  During the stance and swing phases, gluteus  maximus  contributes  to  hip  extension and controls the rate of hip flexion. Jonkers et al (2003a)  also  found  that  when  gluteus  maximus was excluded from the stance limb, hip flexion was prolonged. This was found to prevent initiation of hip extension and of the 3rd rocker stage thereby inducing prolonged stance-phase knee flexion. The action  of  the  gluteus  maximus,  therefore,  is  not confined to the proximal hip joint which it directly spans, but also  to  the control of  the more distal joints.   

role of gluteus Maximus in Abnormal function

Alterations in function and properties of gluteus maximus  have  been  found  in  association  with 

Page 3: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3  97

kinetic chain changes of the lower limb due to pain or injury.    For example, patients (n=20) suffering from  ankle  sprain  injuries  have  been  shown  to have reduced activation levels of gluteus maximus (Bullock-Saxton  et    al.,  1994).    Freeman  et  al (1965) proposed that damage to the proprioceptive feedback loop via a lateral ankle sprain may alter postural control by changing muscle firing patterns in lower limb muscles. Bullock-Saxton et al (1994) investigated altered hip muscle function in patients with a Grade II or III ankle sprain and found that in  the  injured  subjects,  the  activation  patterns of  gluteus  maximus  during    hip  extension  were significantly delayed (p<0.01) compared with the controls.  Notably, this delay was not only isolated to  the  injured  limb  but  affected  hip  extension bilaterally. These findings suggest there is a need to focus on muscle activation and co-ordination of more proximal muscles during  the rehabilitation process even with injuries in the distal part of the limb.

The  changes  in  muscle  firing    patterns identified in gluteus maximus have implications for  rehabilitation  of  lower  limb  dysfunction.  For example,  an    antalgic  gait  at  the  time  of  injury may lead to muscle inhibition or atrophy and if the activation  of  gluteus  maximus  is  delayed,  pelvic stability may become compromised. Potentially, this could result in compensation by the lower back and other structures round the SIJ leading to further altered firing patterns and function. The finding of altered firing patterns in gluteus maximus in more distal lower limb problems also demonstrates the clinical significance of examining beyond the immediate  site  of  injury.    In  the  case  of  ankle injuries, rehabilitation may need to focus more on muscle  activation  and  co-ordination  of  proximal muscles such as gluteus maximus.

 Altered activation patterns in gluteus maximus are not limited to acute trauma. It has been found that in patients with single above-knee amputations, gluteus  maximus  has  slower  activation  patterns along with  increased atrophy   on the amputated side  in  comparison  with  the  other  side  (Burger et al., 1996). These authors also  found  that gait dysfunction when walking with a prosthesis was due to imbalance of the muscles around the hip following the removal of major muscles such as hamstrings, adductors and quadriceps. The associated change in muscle activation patterns in gluteus maximus emphasizes the need for above-knee amputees to undertake strengthening exercises for this muscle to help control the prosthesis during gait.

Patients  who  suffer  from  low  back  pain  often avoid painful movements and subsequently have reduced activity of gluteus maximus and decreased muscle  endurance  through  disuse.  Low  back pain  has  been  associated  with  changes  in  the hip  extensor  recruitment  pattern  and  disturbed lumbo-pelvic  rhythm,  both  to  which  the  gluteus maximus muscle contributes (Leinonen et al., 2000; Vogt et al., 2003). Gluteus maximus has also been 

found to fatigue faster  in subjects with low back pain  (Kankaanpää  et  al.,  1998)  with  avoidance of  aggravating  movements  of  the  lumbar  spine leading to subsequent deconditioning of the back and hip extensor muscles. The finding of increased fatigue  levels  in  gluteus maximus highlights  the need to incorporate this muscle in low back pain rehabilitation as a strategy to minimize the potential cycle of pain avoidance behaviour.    

  Analysis of Gluteus Maximus in Task Specific exercise

  The  literature  suggests  rehabilitation  of gluteus maximus is an important strategy in the correction  of  lower  limb  biomechanics  following injury  or  dysfunction.  While  a  wide  variety  of different exercises are used clinically to strengthen gluteus maximus, however, little is known about their effectiveness in specifically targeting this muscle.   

Konrad et al (2001) investigated the activation and  co-activation  patterns  of  the  main  trunk and  hip  muscles,  including  that  of  gluteus maximus, in various positions of hip flexion and extension, trunk flexion, extension and lateral flexion.    These  investigators  found  that  in  a diagonal  hip  and  shoulder  extension  exercise gluteus  maximus  showed  a  low mean  activation in comparison with the other exercises.  Further, in the bridging exercise, which is commonly used in  the  rehabilitation  setting,  the  activation  level was  found  to  be  less  than  14%.  of  MVIC  thus  demonstrating that gluteus maximus was not the primary force generating muscle in this particular set of exercise (Konrad et al., 2001). 

In  yet  another  exercise  Worrell  et  al    (1998) found  that  gluteus maximus displayed  relatively consistent  levels  of  activation  during  the  lateral step-up without resistance with small increases in activation when holding weights. Both exercises, however, showed low levels of EMG activation with less than 25% of MVIC.  On the basis of these latter findings the lateral step-up exercise, therefore, cannot be recommended as a specfic exercise to strengthen gluteus maximus.

Clark et al (2002) evaluated the effect of increased resistance and repetitions on EMG activity of the gluteus  maximus,  biceps  femoris  and  lumbar extensor muscles during dynamic trunk extension. Their results showed that EMG activity of gluteus maximus increased significantly in comparison to that of the lumbar extensor muscles.  With an increase in resistance there was a corresponding significant increase in EMG activity of gluteus maximus Clark  et  al  (2002). Hypothetically,  this would suggest gluteus maximus is responsible for accommodating the increased resistance.

Souza et al  (2001) compared the EMG activity of the trunk flexors and extensors during two different  spine  stabilisation  exercises,  dying  bug and quadruped exercises (the dying bug exercise performed  in  supine  and  that  of  the  quadruped 

Page 4: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3 98

exercise  in  the  four  point  kneeling,  both  with reciprocal arm and leg movements).  The quadruped exercise,  in  the  four  point  kneeling  position, showed  gluteus  maximus  was  the  most  active muscle  during  leg  raise  on  the  ipsilateral  side.  During  the  leg  lowering  phase  of  this  exercise the  ipsilateral  gluteus maximus activity dropped to  less  than 6% MVIC.   During  contralateral  leg raising and lowering, gluteus maximus activity was greatly reduced implying that this muscle does not contribute  to  stability  of  the  pelvis  during  these phases.    As  exercise  instensity  increased  there was also an increase in EMG activity of the gluteus maximus  muscle.    In  the  dying  bug  exercise, gluteus maximus showed no functionally significant activity during any phase and did not  vary with exercise  intensity.  The  results  showed  that  even though gluteus maximus muscle was active in the quadruped exercise, it did not give a strengthening effect in the healthy subjects as the EMG activity was less than 32% (Souza et al., 2001).  

The  influence  of  unilateral  hip  extension exercise in prone with flexed knees on the gluteus maximus activation pattern has also been examined (Arokoski et al (1999). Again it was found, however, that  with  this  task  EMG  activity  was  less  than 30% MVIC indicating that in a normal population, these  exercises  performed  in  this  way  would not  give  a  strengthening  effect.  When  knee  and hip  extension  were  combined,  gluteus  maximus force production was  reduced  (Yamashita 1988), indicating that combined hip and knee extension is  another  unsuitable  exercise  for  strengthening gluteus maximus.

Analysis of glueus Maximus in closed kinetic chain exercise

Closed kinetic chain exercises allow functional muscle recruitment patterns to occur throughout multiple  joints  and  are  frequently  used  in strengthening and functional rehabilitation of the lower  limb.    The  squat  is  a  closed kinetic  chain exercise  and  is  a  complex  movement  involving the ankle, knee and hip  joints. Analysis of EMG activity in the unloaded squat, has demonstrated that, while gluteus maximus is active throughout the entire squat,  it  is most active from 90-60º of hip flexion during the ascent phase. Furthermore it  was  estimated  that  during  the  ascent  phase gluteus maximus worked at an average of 16.9 % of the MVIC.  (Isear et al., 1997).  Schwab & Worrell (1995)  have  also  measured  the  EMG  activity  of gluteus maximus during an  isometric squat and found  that  the  isometric  squat  EMG  values  for gluteus maximus were equal to or less than 40 % of the MVIC. 

Altering positions of body segments and support during  a  squat  may  change  the  way  in  which these  exercises  are  performed  and  the  muscles which  are  targeted  (Blanpied,  1999).    McCaw  & Melrose (1999) analyzed the EMG activity of gluteus maximus during a squat of narrow stance (75 % of 

shoulder width) and wide stance (140 % of shoulder width), with low resistance (60 % of 1 Repetition Maximum) and high resistance (75 % of 1 Repetition Maximum). The EMG values showed a significant load by stance relationship with greater values in the wide stance compared with a narrow stance, but only with high loads.  On average the EMG values for the ascent phase of the squat were 2.25 times higher than those for the descent phase. 

Blanpied (1999) compared gluteal EMG activity during  a  wall  slide  squat  and  a  squat  machine exercise.  The exercises were varied in two ways; firstly having the foot in line with the hip compared with the foot forward, and secondly with the support located at the hip compared with the scapula level.  They  found  the  gluteal  muscle  activation  was maximal with the foot placed forward with scapular support for both the wall slide and squat machine exercises.   Activation of  the gluteal muscles was greater for the squat machine in comparison with the wall slide (Blanpied, 1999).

Collectively,  the  above  results  show  that,  in order  to  target  and  activate  gluteus maximus,  a full squat should be performed with a wider stance and with higher loads (McCaw and Melrose, 1999).  Also  a  squat  machine  with  scapular  support and  feet placed  forward  is  the preferred protocol compared with a wall squat protocol for maximal gluteus maximus activation during squat exercises (Blanpied, 1999).  

Analysis of gluteus Maximus during runningTo  improve  sprint  performance,  training 

programmes have been designed to enhance muscle loading  at  the hip,  knee  and ankle  by  including incline  treadmill  running.   Swanson & Caudwell (2000)  compared  incline  treadmill  running  with that of level running with two different conditions using EMG. Gluteus maximus was significantly more active during the incline running at 4.5ms-1 at 30% incline in comparison with level running.  The activity of gluteus maximus during the swing phase also increased in response to the level running with the  same  higher  stride  frequency  as  the  incline condition. Therefore this finding suggests that incline running and, to a lesser extent, level running with a high stride frequency, are effective methods of increasing the activity of gluteus maximus.

An unstable base of  support  creates  the need for increased postural activity inducing heightened proprioceptive  flow  via  the  cerebellovestibular regulatory circuits of motor control.  Bullock-Saxton et al (1993) found a significant increase in the EMG activity  of  gluteus  maximus  in  subjects  wearing balance shoes during gait compared with barefoot on the first day. There was also a significant decrease in the time taken for gluteus maximus to reach 50%, 75% and 90% of maximum activation during a gait cycle following one week of training with balance shoes.  These results demonstrate the immediate  response of  the body  to  sensorimotor stimulation and the need for an establishment of 

Page 5: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3  99

a  motor  programme  for  gait  that  incorporates  a more effective activation of  the gluteus maximus muscle (Bullock-Saxton et al 1993).  Sensorimotor stimulation in the form of balance shoes offers a form of rehabilitation that automatically facilitates gluteus maximus, which may otherwise be difficult to activate effectively with conscious control during complex activities such as gait.

the response of gluteus Maximus to strength training

Mooney et al (2001) carried out a study using a rotary strengthening exercise program for training gluteus  maximus  on  patients  with  sacroiliac dysfunction (N=5) and found all patients returned to normal function with no need for further pain medication.  It  needs  to  be  noted,  however,  that the MedX torso machine which has been used in this  research  project  is  not  widely  used  in  New Zealand.

conclusIons And IMPlIcAtIons for clInIcAl PrActIce

Gluteus maximus has many different functions such as providing SIJ stability, strength for lifting and control of gait and  it  is hypothesised that  it provides  stability  to  the  SIJ  by  creating  a  self-bracing  mechanism.  Gluteus  maximus  has  also been  shown  to  be  an  important  muscle  during lifting activities. Research has shown that emphasis should be placed on contraction during the early phase  of  the  lift  to  provide  pelvic  stability  thus enabling a safe and effective movement to occur.  Gluteus maximus also makes a large contribution to gait and ineffective functioning can compromise many aspects of the gait cycle.  Weakness of this muscle may affect not only movement at the hip joint during gait, but also the distal joints. 

Changes to the kinetic chain of the lower limb via pain or injury has shown to cause alterations to the function and properties of gluteus maximus in conditions such as ankle sprains, above knee amputations and low back pain. The findings would suggest  that  re-education  and/or  strengthening of  gluteus  maximus  should  be  considered  in many conditions involving lower limb dysfunction including that of the lumbar spine.

In  comparison  with  other  exercises  both  the quadruped exercise and full squat exercise achieve high levels of activation specific to gluteus maximus. It is recommended, however,   that the full squat exercise should be performed with a wide stance and high loads to target gluteus maximus optimally. In addition a squat machine with scapular support and with feet placed forward is the preferred protocol compared with a wall squat.  Incline running and to a lesser extent, level running with a high stride frequency, are also effective methods of increasing the  activity  of  gluteus  maximus.    Rehabilitation of gluteus maximus may also be performed using sensorimotor  stimulation  in  the  form  of  balance shoes designed to reflexly recruit contraction of

gluteus  maximus.  A  reservation  regarding  these recommended  exercises  is  made  if  effectiveness is defined in terms of strength improvement, as the neuromuscular activation of these exercises is probably not high enough to bring about a training effect in the normal population.  Further research is needed to investigate a training programme which incorporates  exercises  such  as  the  full  squat  in order to identify the relevant parameters required to bring about a training effect in gluteus maximus.

AcknowledgeMentThe authors wish to thank Dr Gillian Johnson, Senior Lecturer,

School of Physiotherapy, University of Otago, for assistance in the preparation of this paper for publication.

references Anderson  FC  and  Pandy  MG    (2003):    Individual  muscle 

contributions to support in normal walking.  Gait & Posture 17: 159-169.

Arokoski JPA., Kankaanpää M., Valta T, Juvonen I, Partanen J, Taimela S, Lindgren K and Airaksinen O  (1999):  Back and hip extensor muscle function during therapeutic exercises. Archives of Physical Medical Rehabilitation  80(7): 842-850.

Atha  J    (1981):    Strengthening  muscle.  Exercise and Sports Science Reviews  9: 1-73.

Blanpied  PR  (1999):    Changes  in  muscle  activation  during wall  slides  and  squat-machine  exercise.  Journal of Sport Rehabilitation Medicine 8, 123-124.

Bullock-Saxton JE, Janda V and Bullock MI (1993): Reflex activation of gluteal muscles in walking.  Spine 17(2): 225-229.  18(6): 704-708.

Bullock-Saxton  JE,  Janda  V  and  Bullock  MI  (1994):    The influence of ankle sprain injury on muscle activation during hip extension.  International Journal of Sports Medicine 15: 130-134.

Burger  H,  Valencic  V,  Marincek  C  and  Kogovsek  N  (1996):  Properties  of  musculus  gluteus  maximus  in  above-knee amputees.  Clinical Biomechanics 11(1): 35-38.

Clark BC, Manini TM, Mayer JM, Ploutz-Snyder LL and Graves JE (2002): Electromyographic activity of the lumbar and hip extensors during dynamic trunk extension exercise.  Archives of Physical Medical Rehabilitation 83: 1547-1552.

Fischer FJ and Houtz SJ (1968):  Evaluation of the function of the gluteus maximus muscle.  American Journal of Physical Medicine 47(4): 182-191. 

Freeman  MAR,  Dean  MRE  and  Hanham  IWF  (1965):    The aetiology and prevention of functional instability of the foot.  Journal of Bone Joint Surgery 47: 578-685.

Indahl A., Kaigle A, Reikeras, O and Holm, S (1999): Sacroiliac joint  involvement  in  activation  of  the  porcine  spinal  and gluteal  musculature.    Journal of Spinal Disorders  12(4): 325-330.

Isear JA, Erickson JC and Worrell TW (1997):  EMG analysis of lower extremity muscle recruitment patterns during an unloaded squat.   Medicine & Science in Sports & Exercise 29(4): 532-539.

Ito J, Shiraishi N, Umino M, Kimura T and Akita, H  (2000):  Morphological evaluation of the baboon hind limb muscles based  on  relative  weight  Okajimas Folia Anatomy Japan 77(5): 161-166.

Jenkins  D  (1998):  Hollinshead’s  functional  anatomy  of  the limbs and back. (7th ed) Philadelphia; London; Boston:  WB  Saunders .

Jonkers  I,  Stewart  C  and  Spaepen  A  (2003a):    The  study  of muscle action during single support and swing phase of gait: clinical relevance of forward simulation techniques.  Gait & Posture 17(2): 97-105.

Jonkers  I,  Stewart  C    and    Spaepen  A    (2003b):    The complementary role of the plantarflexors, hamstrings and gluteus  maximus  in  the  control  of  stance  limb  stability during gait.  Gait & Posture, 17(2): 264-272.

Kankaanpää  M,  Taimela  S,  Laaksonen  D,  Hanninen  O  and Airaksinen O (1998):  Back and hip extensor fatigability in chronic  low back pain patients and controls.  Archives of

Page 6: A structured review of the role of gluteus maximus in rehabilitation

NZ Journal of Physiotherapy – November 2005. Vol. 33, 3 100

Physical Medical Rehabilitation 79, 412-417.Kawamura H, Fuchioka S, Inoue S, Kuratsu S, Yoshikawa H, 

Katou K and Uchida A  (1999):  Restoring normal gait after limb salvage procedures in malignant bone tumours of the knee.  Scandinavian Journal of Rehabilitation Medicine 31, 77-81.

Kendall F, McCreary E and Provance P (1993): Muscles testing and function. (4th ed).  Baltimore: Williams & Wilkin.

Konrad P, Schmitz K and Denner A  (2001):   Neuromuscular evaluation of trunk-training exercises.  Journal of Athletic Training 36(2), 109-118.

Lafond D, Normand MC and Gosselin G (1998) Rapport force.  Journal of Canadian Chiropractor Association 42(2), 90-100.

Leinonen  V,  Kankaapää  M,  Airaksinen  O  and  Hanninen  O (2000):    Back  and  hip  extensor  activities  during  trunk flexion/extension: effects of low back pain and rehabilitation. Archives of Physical Medical Rehabilitation 81, 32-37.

Marzke MW, Longhill JM and Rasmussen SA (1988):  Gluteus maximus  muscle  function  and  the  origin  of  hominid bipedality.  American Journal of Physical Anthropology 77, 519-528.

McCaw ST, Melrose DR (1999):  Stance width and bar load effects on leg muscle activity during the parallel squat.  Medicine & Science in Sports & Exercise 31(3), 428-436.

Mooney V, Pozos R, Vleeming A. Gulick J and Swenski D (2001):  Exercise treatment for sacroiliac pain.  Orthopedics 24(1), 29-32. 

Noe DA, Mostardi RA, Jackson, ME, Porterfield JA and Askew MJ (1992):  Myoelectric activity and sequencing of selected trunk muscles during isokinetic lifting.  Spine 17(2), 225-229.

Schaub PA and Worrell TW (1995):  EMG activity of six muscles and VMO:VL ratio determination during a maximal squat exercise. Journal of Sport Rehabilitation 4, 195-202.

Snijders  CJ,  Vleeming  A  and  Stoeckart  R  (1993):    Transfer of  lumbosacral  load  to  iliac  bones  and  legs.    Clinical Biomechanics 8, 285-294.

Souza GM, Baker LL and Power CM (2001): Electromyographic activity  of  selected  trunk  muscles  during  dynamic  spine stabilization  exercises.  Archives of Physical Medical Rehabilitation 82, 1551-1557.

Swanson SC and Caldwell G (2000):   An integrated biomechanical analysis of high speed incline and level treadmill running.  Medicine and Science in Sports and Exercise 32(6), 1146-1155.

Vakos JP, Nitz AJ, Threlkeld AJ, Shapiro R and Horn T (1994):  Electromyographic activity of selected trunk and hip muscles during a squat lift.  Spine 19(6), 687-695.

Vleeming A, Van Wingerden JP, Snijders CJ, Stoeckart R and Stijnen  T  (1989):    Load  application  to  the  sacrotuberous ligament; influences on sacroiliac joint mechanics. Clinical Biomechanics, 4(4), 204-209.

Vogt L, Pfeifer K and Banzer W (2003):  Neuromuscular control of walking with  chronic  low-back pain.    Manual Therapy 8(1), 21-28.

Worrell TW, Crisp E and LaRosa C (1998):  Electromyographic reliability and analysis of selected lower extremity muscles during lateral step-up conditions.  Journal of Athletic Training 33(2), 156-163.

Yamashita N (1988):  EMG activities in mono- and bi-articular thigh  muscles  in  combined  hip  and  knee  extension.  European Journal of Applied Physiology 58, 274-277. 

Address for corresPondenceMrs J.G.Wilson, School of Physiotherapy, University of Otago,

PO Box 56, Dunedin, New Zealand.

PHYSIOTHERAPISTSPHYSIOTHERAPISTSPHYSIOTHERAPISTS --- Work in the UK Work in the UK Work in the UK Quality Locums, part of the MATCH GROUP - one of the UK’s largest healthcare staffing companies, helps internationally trained Physio’s and other allied-health professionals find work across the UK.

We offer: Assistance with UK registration (HPC) Great pay and benefits (inc. holiday pay) Choice of city and rural areas Flexible locum and contract positions Support from consultants with first-hand UK experience Wide variety of positions and specialties to choose from Work Permits organised if required (i.e. over 31) Help with banking, tax, accommodation & more!

To find out more or to request one of our free UK information packs, please contact our New Zealand office.

Freecall: 0800 10 75 73

E: [email protected]