50
David Muller 2008 Scanning Electron Microscopy

3 Scanning Electron Microscopy

Embed Size (px)

Citation preview

Page 1: 3 Scanning Electron Microscopy

David Muller 2008

Scanning Electron Microscopy

Page 2: 3 Scanning Electron Microscopy

David Muller 2008

10 4

10 5

10 6

10 7

10 8

0 100 200 300 400 500 600 700

Inte

nsity

(arb

. uni

ts)

Energy Loss (eV)

O-K edge

Si L edge

Incident Beam

Valence Excitations

Electron Energy Loss Spectrum of SiO2

Most likely energy transfer is ionization of valence electrons

Page 3: 3 Scanning Electron Microscopy

David Muller 2008

Path of the Electron Beam

SE1SE1SE2SE2BS2BS2

Page 4: 3 Scanning Electron Microscopy

David Muller 2008

Kanaya-Okayama Depth Penetration Formula

RR= = ____________________________0.890.89(Z (Z ρρ))

0.0276 A E0.0276 A E 1.671.67μμmm

R= Depth PenetrationR= Depth PenetrationA= Atomic Weight (g/mole)A= Atomic Weight (g/mole)E= Beam Energy (KV)E= Beam Energy (KV)Z= Atomic numberZ= Atomic numberρρ = density (g/cm )= density (g/cm )22

Page 5: 3 Scanning Electron Microscopy

David Muller 2008

The Affect of Accelerating Voltage

30KV30KV 15KV15KV 5KV5KV 1KV1KV .5KV.5KV

3.1 3.1 μμmm

.99 .99 μμmm

.16 .16 μμmm.01 .01 μμmm(100A)(100A)

35 A35 A

Depth Penetration in IronDepth Penetration in Iron

Primary BeamPrimary Beam

(predictions from the KO formula)

Page 6: 3 Scanning Electron Microscopy

David Muller 2008

Interaction Volume vs Accelerating Voltage

25 kV25 kV

15 kV15 kV5 kV5 kV

Better control of where SE, BSE and x-rays are produced at lower beam voltages

Page 7: 3 Scanning Electron Microscopy

David Muller 2008

Interaction Volume –Sample Composition

SilverSilver

CarbonCarbon

IronIron

(20 kV incident beam in all 3 cases)

Pear to apple-shaped

Page 8: 3 Scanning Electron Microscopy

David Muller 2008

Secondary Electrons

SE1SE1SE2SE2

SE3SE3

final lensfinal lens

specimenspecimen

BSEBSE

Page 9: 3 Scanning Electron Microscopy

David Muller 2008

Electron Interactions (Between Primary Beam and Sample)

• SE1- at point of primary interaction• SE2- away from initial interaction point• SE3- by BSE outside of sample• BSE1- at point of primary interaction• BSE2- away from initial interaction point

Page 10: 3 Scanning Electron Microscopy

David Muller 2008

Lateral Distribution of SE

SE1SE1

SE2ASE2A

SE2BSE2B

SE Escape DepthSE Escape Depth

Total Beam Penetration VolumeTotal Beam Penetration VolumeSE1 > 100KXSE1 > 100KXSE2ASE2A-- 50KX50KXSE2B< 15KXSE2B< 15KX

Page 11: 3 Scanning Electron Microscopy

David Muller 2008

Lateral Distribution of BSE

BS2ABS2A

BS2BBS2B

BS1BS1

BS2A Escape DepthBS2A Escape DepthBS2B Escape DepthBS2B Escape Depth

Page 12: 3 Scanning Electron Microscopy

David Muller 2008

One Primary Electron In Can Create Several SEs Out at Low Accelerating Voltages

100 100 AngstromsAngstroms

inPEoutSE

=δSecondary Electron Yield Coefficient

Page 13: 3 Scanning Electron Microscopy

David Muller 2008

Energy Distribution of Emitted Electrons

00 50 50 eVeV 2 kV2 kV EEPEPE

SESE BSEBSE

AugerAuger# of

ele

ctro

ns#

of e

lect

rons

colle

cted

colle

cted

electron energyelectron energy

inPEoutSE

=δSecondary Electron Yield Coefficient

Page 14: 3 Scanning Electron Microscopy

David Muller 2008

As-received samples are all coated with a carbon contamination layerOverall scaling factor is from the different backscattering responses of the substrate

Secondary Electron Yields

Cleaned in-situCarbon-contaminated

Page 15: 3 Scanning Electron Microscopy

David Muller 2008

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0KV

EC1

EC2

KV

Charge Neutralizationδ

Incident Beam Voltage

Electron Yield δ= # SE out / # Inc e- in

Sample charges +ve(increases landing energyOf incident electrons)

Sample charges –ve(reduces landing energyOf incident electrons)

Q: If sample charges, does it get brighter?

Page 16: 3 Scanning Electron Microscopy

David Muller 2008

Voltage Contrast with SE

The floating end of the via chain is bright because of trapped negative charge causes secondary electrons to be repelled.

The remainder of the chain is neutral, and thus

darker.

(http://www.acceleratedanalysis.com/hepvc.html)

(SE have low energies so are easily deflected by small voltages)

Page 17: 3 Scanning Electron Microscopy

David Muller 2008

High Vacuum E.T. Secondary Electron Detector

Photomultiplier

Light guide

glass target

Phosphorousscreen (Al-coated)(10 kV)

Faraday cage(-150 - +300 V)

Scintillator

Page 18: 3 Scanning Electron Microscopy

David Muller 2008

Secondary Electron Detectors

Specimen

PMT

E.T. SED

TLD

InternalLens

Page 19: 3 Scanning Electron Microscopy

David Muller 2008

Field-Free Operation Immersion Lens

Small area, high resolutionLarge area, lower resolution

Lens Modes of a Modern SEM

Page 20: 3 Scanning Electron Microscopy

David Muller 2008

TLD in BSE Mode

Specimen

• Within-the-lens detector ispart of the final lens

• Bias voltage down to -150V SE

SE3

BSE

Page 21: 3 Scanning Electron Microscopy

David Muller 2008

Topography Affects Secondary Electron Emission (Angle of Incidence)

Page 22: 3 Scanning Electron Microscopy

David Muller 2008

Scanning Action of the Electron Beam in a 3-D

Specimen

Page 23: 3 Scanning Electron Microscopy

David Muller 2008

Location of Detector Leads to Shadowing

AABB

CC

+300 V+300 V

SESE--detectordetector

Increasing the detector bias will wash out the shadows

Page 24: 3 Scanning Electron Microscopy

David Muller 2008

What Is “Reality” in the SEM ?

Page 25: 3 Scanning Electron Microscopy

David Muller 2008

What Is “Reality” in the SEM ?

Previous image turned upside down. We need to know where the detector is to tell bumps from pits!

Page 26: 3 Scanning Electron Microscopy

David Muller 2008

Why Edges Appear Brighter

Page 27: 3 Scanning Electron Microscopy

David Muller 2008

Edge Effect at Lower Voltage

Page 28: 3 Scanning Electron Microscopy

David Muller 2008

Edge Effects on a Sphere

A

B

50

100

150

200

250

0 200 400 600 800 10002nd

e- In

tens

ity

Distance (microns)

Page 29: 3 Scanning Electron Microscopy

David Muller 2008

Example of Sample charging in a Secondary Electron Image

Charging is worseOn this faceAs more secondariesescape

Page 30: 3 Scanning Electron Microscopy

David Muller 2008

A Line Profile on a Semi-conductor Line

One Micron SiO2 in SiOne Micron SiO2 in Si

The EThe E--Beam line profile of the specimenBeam line profile of the specimen

Where do you measure “One Micron” ?Where do you measure “One Micron” ?

Page 31: 3 Scanning Electron Microscopy

David Muller 2008

A Line Profile on a Semi-conductor Line

One Micron SiO2 in SiOne Micron SiO2 in Si

A 1 KV bean has minimal beam penetration and can giveA 1 KV bean has minimal beam penetration and can givean image that is closer to ‘reality’.an image that is closer to ‘reality’.

1KV1KV

.99 .99 μμmm

Page 32: 3 Scanning Electron Microscopy

David Muller 2008

A Line Profile on a Semi-conductor Line

One Micron SiO2 in SiOne Micron SiO2 in Si

A 5KV beam penetrates deep into the specimenA 5KV beam penetrates deep into the specimenwhich gives the appearance of the peakswhich gives the appearance of the peaks

being closer togetherbeing closer together

5KV5KV

.74uM.74uM

Page 33: 3 Scanning Electron Microscopy

David Muller 2008

Line Profiles on the Same Sample Can Change with Accelerating Voltages

1KV1KV

3KV3KV

2KV2KV

5KV5KV

.99 .99 μμmm .92 .92 μμmm

.85 .85 μμmm .74 .74 μμmm

This was a 1 This was a 1 μμm linem line

Page 34: 3 Scanning Electron Microscopy

David Muller 2008

Secondary Electrons

SE1SE1SE2SE2

SE3SE3

final lensfinal lens

specimenspecimen

BSEBSE

Page 35: 3 Scanning Electron Microscopy

David Muller 2008

Angular Distribution of BSE

• Normal angle of incidence

• Greater angle of incidence

Page 36: 3 Scanning Electron Microscopy

David Muller 2008

Angular Distribution of BSE

• Contrary to SE images, BSE images can have dark edges

Page 37: 3 Scanning Electron Microscopy

David Muller 2008

Electron Emission Coefficient Vs. Atomic Number at 20 KV

• Electron Emission Coefficient

• Atomic Number

TotalTotal

BSEBSE

SESE

2020 8080

11

.2.2

Page 38: 3 Scanning Electron Microscopy

David Muller 2008

SE Electron Emission Coefficient Vs Atomic Number at Various KV

• SecondaryElectron Emission Coefficient

• Atomic Number

2KV2KV

5KV5KV

10KV10KV

15KV15KV20KV20KV

2020 8080

11

.2.2.2.2

Page 39: 3 Scanning Electron Microscopy

David Muller 2008

SE Emission Coefficient Vs. KV at Various Atomic Numbers

• Secondary Electron Emission Coefficient

• Accelerating Voltage in KV

55 1515 2525

11

.2.2.2.2

AUAUALAL

CC

Page 40: 3 Scanning Electron Microscopy

David Muller 2008

Z Dependence of BSE

From “Scanning Electron Microscopy and X-Ray Microanalysis”, Goldstein et al, 3rd ed. Chap 3

Page 41: 3 Scanning Electron Microscopy

David Muller 2008

Tilt Dependence of BSE

From “Scanning Electron Microscopy and X-Ray Microanalysis”, Goldstein et al, 3rd ed. Chap 3

Page 42: 3 Scanning Electron Microscopy

David Muller 2008

Reverse Biased S.E.D. Repulses Secondary Electrons

--150 V150 V

SESE--detectordetector

AABB

CC

Page 43: 3 Scanning Electron Microscopy

David Muller 2008

Backscatter Electrons Ignore the Bias

--150 V150 V

SESE--detectordetector

BSEBSE

AABB

CC

Page 44: 3 Scanning Electron Microscopy

David Muller 2008

A Solid State BSD Can Image Two Ways

• Elemental backscatter images are acquired by adding detectors A+B.

• Topographical backscatter electron images can be acquired by subtracting b from a (A-B)

Page 45: 3 Scanning Electron Microscopy

David Muller 2008

Solid State BSD

From http://www.jeol.com/sem_gde/bkscat.html

Page 46: 3 Scanning Electron Microscopy

David Muller 2008

-ve Biased E-T Noisy Backscattered Signal

-ve Biased E-T Secondary Electron Signal

Grains in a Polished Fe-Si Alloy imaged by Different SEM methods

Backscattered A-B “Topographic” SignalBackscattered A+B “Composition” Signal

Page 47: 3 Scanning Electron Microscopy

David Muller 2008

Electron Channeling in a Crystal

Electron wave fields within a crystal for incident electron directions close to the Bragg angle qB. The vertical lines are the position of the Bragg reflecting atomic planes. From H. Niedrig, “Electron backscattering from thin films”, Journal of Applied Physics -- April 1982 -- Volume 53, Issue 4, pp. R15-R49

Page 48: 3 Scanning Electron Microscopy

David Muller 2008

Electron Channeling in a Crystal

Electron Backscatter Diffraction Pattern of Germanium. Right –automatic indexing software matches the high symmetry zone axes and spacing between them to identify the crystal type and orientation. (University of Queensland, http://www.uq.edu.au/nanoworld/xl30_anl.html)

Page 49: 3 Scanning Electron Microscopy

David Muller 2008

Electron Backscattering Diffraction Patterns (EBSD or EBDP) for Orientational Imaging

Orientation Imaging Map (color shows grain orientation)

Boundary – Color shows angle of grain boundary

(From http://www.edax.com/technology/EBSD/OIM/intro6.html)

Page 50: 3 Scanning Electron Microscopy

David Muller 2008

Sample Prep for EBSD

No pattern visible3 micron diamond polish

Pattern Image Quality (IQ) = 251 micron alpha alumina

Pattern IQ = 17710 minutes colloidal silica

Pattern IQ = 22430 minutes colloidal silica

http://www.edax.com/TSL/support/EBSD_Sample_Prep.html

Damage layer must be much less than the range of the electrons