27
1 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1. Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial en la generación de OEM). Inducción magnética: Fuerza de Lorentz. (0,5 hora) 2. Flujo magnético; ley de Gauss del magnetismo y líneas de campo magnético. Campo magnético creado por corrientes y expresión de la ley de Biot y Savart para el campo de una corriente rectilínea que circula por un conductor muy largo y por una espira circula en su centro. ( 1 hora) 3. Ley de Ampère: enunciado y aplicación al campo magnético creado por un solenoide. Generalización de la ley de Ampère. (1 hora). 4. Acciones del campo magnético: a) Movimiento de una carga puntual en un campo magnético, b) Fuerza sobre un conductor con corriente, c) Fuerza entre conductores paralelos que transportan una corriente y d) Momento dinámico sobre un circuito en cuadro con corriente. (1,5 hora) 5. Magnetización e intensidad de campo magnético. Ferromagnetismo; histéresis magnética. Aplicación:

11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

Embed Size (px)

Citation preview

Page 1: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

11

TEMA 3: MAGNETOSTÁTICA (5 HORAS)

1. Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial en la generación de OEM). Inducción magnética: Fuerza de Lorentz. (0,5 hora)

2. Flujo magnético; ley de Gauss del magnetismo y líneas de campo magnético. Campo magnético creado por corrientes y expresión de la ley de Biot y Savart para el campo de una corriente rectilínea que circula por un conductor muy largo y por una espira circula en su centro. ( 1 hora)

3. Ley de Ampère: enunciado y aplicación al campo magnético creado por un solenoide. Generalización de la ley de Ampère. (1 hora).

4. Acciones del campo magnético: a) Movimiento de una carga puntual en un campo magnético, b) Fuerza sobre un conductor con corriente, c) Fuerza entre conductores paralelos que transportan una corriente y d) Momento dinámico sobre un circuito en cuadro con corriente. (1,5 hora)

5. Magnetización e intensidad de campo magnético. Ferromagnetismo; histéresis magnética. Aplicación: almacenamiento magnético. Cabezales con efecto GMR. (trabajo personal).

Ejercicios (1 hora)

Page 2: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

22

Experimento de Oersted (1819): existe una relación entre los fenómenos eléctricos y magnéticos. Al pasar una corriente por un alambre conductor la brújula se orienta de manera perpendicular al alambre.

alambre

brújula

sentido de la corriente

Page 3: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

33

Experimentos de Faraday, 1831: (a) Observó que si tenemos dos circuitos muy próximos y en uno de ellos (el primario) se origina una corriente, al cerrar el interruptor S, también se genera una corriente instantánea en el otro (secundario).

S

(b) Si se acerca o se aleja un imána un solenoide se detecta el pasode corriente en el amperímetro.Sólo si se detiene el movimientorelativo del imán respecto de la bobina deja de pasar corriente por el amperímetro.

Page 4: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

44

CONCLUSIONES:1. El experimento de Oersted demostró que las corrientes

(movimientos de cargas) producen efectos magnéticos.2. Los experimentos de Faraday que el movimiento de imanes genera

corrientes.

Hoy día se admite que los fenómenos magnéticos proceden de las fuerzas originadas entre las cargas en movimiento. Las cargas móviles, por ejemplo los electrones, además de las fuerzas eléctricas dadas por la ley de Coulomb ejercen fuerzas magnéticas. Esto indica la estrecha relación entre los fenómenos eléctricos y magnéticos. El marco que une ambas fuerzas se denomina teoría electromagnética.

Aceptamos que las cargas móviles y las corrientes crean campos magnéticos.

ACTUALIDAD:

Page 5: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

55

Se dice que existe un campo magnético en un punto si (además de la fuerza electrostática) se ejerce una fuerza sobre una carga móvil que pase por dicho punto.

Se suele comenzar el estudio del magnetismo considerando las fuerzas que existen entre cargas móviles.

CAMPO MAGNÉTICO ó INDUCCIÓN MAGNÉTICAFUERZA SOBRE UNA CARGA MÓVIL: Ley de LORENTZ.

ley de Lorentzregla mano derecha

α

Page 6: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

66

Unidad de campo magnético ó inducción magnética, SI: Tesla (T)

mN/A1Cm/s

N1T1

sistema cgs, el gauss (G): T10G1 -4

campo magnético terrestre: igual o inferior a 0,5 Gcampo magnético de una RMN: del orden de 0,5 Tcampo magnético próximo a imanes poderosos: de 0,1 T a 0,5 Tcampo de grandes electroimanes: de 1 a 2 T

qvsen

FB magnética

α

Page 7: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

77

FUERZA DE LORENTZ

)( BvEqF

Flujo magnético (F.M), ley de Gauss del magnetismo (L.G.M.) y líneas de Campo magnético (L.C.M.).

sup

sdBmag

0sdBmag

F. M

L. G. M.

L. C. M cerradas

Unidad: weber: Wb

Líneas de campo magnético

Page 8: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

88

N S

Líneas de campo magnético

Page 9: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

99

6. CAMPO MAGNÉTICO CREADO POR CARGAS PUNTUALES Y POR CORRIENTES: LEY DE BIOT Y SAVART

(a) Campo de una carga puntual.

20

4 r

r̂vqB

277

0 /104/·104 ANAmT permeabilidad magnética del vacío:

Page 10: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1010

(b) Campo creado por un elemento de corriente eléctrica: Ley de Biot y Savart.

I

Idr

Bd

20 ˆ

4 rrId

Bd

Ley de Biot y Savart

rr

r

ˆ vector unitario en la dirección de r

P

dl

r

r

dB

m

n d

i

n

m r

sendliB

20

4

Page 11: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1111

n

m r

sendliB

20

4

Para un hilo recto indefinido, el módulo del campo en un punto P a distancia d del hilo, vale:

d

iB

2

0

200

1

c

Relación entre la permitividad eléctrica y magnética del vacío:

d

Page 12: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

12

Campo creado por una espira de corriente en el centro.

rr

r

ˆ vector unitario en la dirección de r

2

I

20 2

4 R

senIddB

RI

B2

0

Page 13: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1313

LEY DE AMPÈRE. UTILIDAD Y LIMITACIONES.

“La circulación del campo magnético a lo largo de cualquier línea cerrada, L, es igual a 0 veces la corriente total que atraviesa cualquier superficie, (S, S’, etc.) limitada por la curva L.

B

d

i

superficie

P

línea cerrada L

L LporitadaerficieladetravésaTotalIldB limsup0

S

Page 14: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1414

B

d

i

superficie

P

línea cerrada L

La aplicación más simple corresponde a la determinación del campo magnético creado por un conductor infinitamente largo portador de corriente:

d

IB

2

0

La ley de Ampère es válida para cualquier curva siempre y cuando las corrientes sean estacionarias y continuas, lo que significa que la corriente no varia con el tiempo (estacionaria) y que no hay acumulación de carga en ningún punto del espacio (continua).

Page 15: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1515

La ley de Ampère es útil para determinar el campo magnético en situaciones de simetría, en las cuales podamos sacar el campo magnético fuera de la integral. Si no hay simetría, no es útil para el cálculo de campos magnéticos, aunque siga siendo válida.

En resumen: La ley de Ampère relaciona el campo magnético y la corriente eléctrica que crea ese campo como ocurre con la ley de Gauss de la electricidad, la cuál relaciona un campo eléctrico con la carga eléctrica que crea ese campo. En ambos casos su aplicación sencilla requiere situaciones de simetría para resolver fácilmente la integral que aparece en la ecuación:

S

SaeriortotalQSdE

0

int

Ley de Gauss

Ley de Ampère L LporitadaerficieladetravésaTotalIldB limsup0

Page 16: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1616

Aplicaciones de la ley de Ampère: CAMPO MAGNÉTICO CREADO POR UN SOLENOIDE IDEAL Y POR UN TOROIDE.

nIB 0

(a) Solenoide ideal, L>>D (diámetro)

I I

B

N

L

D

Page 17: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1717

El campo se refuerza en el interior y se debilita en el exterior, como se observa en la figura adjunta. Los círculos con una x indican que la corriente entra hacía el plano y los blancos que salen de él. También se observa que el campo B en el interior corre paralelo al eje del solenoide.

x

x

x

x

x

x

x

x

x

B

BB B

Bneto 0

B

Page 18: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1818

Aplicando la ley de Ampère a un rectángulo como el dibujado, obtenemos:

NIBdB 0

1234

000

siendo ℓ la longitud del lado 2 - 3 y 4 - 1 y N el número total de espiras( indicadas por circulitos) que cruzan el rectángulo. Los otros productos son nulos porque o bien el campo es perpendicular al lado, caso de 1 - 2 y 3 - 4 o bien el campo en el exterior es casi nulo, caso del lado 4 - 1.

Luego el campo en el interior del solenoide vale: nIB 0

1

2 3

4

B

B

II

siendo n = N/ℓ, la densidad de espiras del solenoide, ó número de espiras por metro.

Page 19: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

1919

(a) Toroide

La corriente total a través de la superficie Slimitada por el circulo de radio r para:a < r < b es NI. Por lo tanto la aplicación dela ley de Ampère da:

NIrB 02 por tanto B vale:

r

NIB

20

Si r < a, no existe corriente a través de S, por tanto B = 0.Si r > b, por cada corriente I hacia dentro del plano existe otra corriente I que saledel mismo, por tanto la corriente neta que atraviesa la superficie vale cero y el campo B = 0.En las figuras siguientes se expone con mayor precisión todo lo mencionado.

Page 20: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2020

Como vemos en la figura, la intensidad que atraviesa la circunferencia de radio r (en color azul) es cero. Aplicando la ley de Ampère

B·2 r=0 ·0

B=0

Fuera del toroide (r < a)

Dentro del toroide (a < r < b)Cada espira del toroide atraviesa una vez el camino cerrado (la circunferencia de color azul de la figura) la intensidad será Ni, siendo N el número de espiras e i la intensidad que circula por cada espira.

B·2 r=0Nia

b

a

r

NIB

20

Page 21: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2121

Fuera del toroide (r>b)

b

Cada espira del toroide atraviesa dos veces el camino cerrado (circunferencia de color azul de la figura) transportando intensidades de sentidos opuestos.

La intensidad neta es Ni - Ni=0, y B=0 en todos los puntos del camino cerrado.

En definitiva: El campo magnético está completamente confinado en el interior del toroide.

Page 22: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2222

Generalización de la ley de Ampère: Ley de Ampère - Maxwell

a

i

superficie S1

2superficie S

condensador

dL

P cerradaLinea diildB )(0

dt

di elecd

0

Mientras que i está asociado a un movimiento real de cargas, id está asociado con un campo eléctrico variable.

S

ie

qSdE

0

eiq 0

dt

d

dt

dqI ei

d

0

Sdt

EIIIdB

)C(SC d

0000

Page 23: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2323

ACCIONES DEL CAMPO MAGNÉTICO: fuerzas que aparecen sobre cargas en movimiento y circuitos con corrientes que se encuentran en presencia de un campo magnético.

Fuerzas sobre una carga móvil: movimiento de una carga puntual en un campo magnético.

v

q

v

v

B

FmagFmag

Los campos magnéticos no realizan trabajo sobre las partículas cargadas ni modifican su energía cinética.

BvqEqFFF magelecT

Page 24: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2424

Fuerza total sobre el segmento del cable:

BLIF

)nALBv(qF d

AnqvI d

http://www.walter-fendt.de/ph11s/index.html

Fuerza sobre un conductor con corriente

Page 25: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2525

FUERZA MAGNÉTICA ENTRE CONDUCTORES PARALELOS.

1222 BdIdF

d

IB

2

101

d

II

d

dF 2102

42

Definición de Amperio

F

i1

2i

d

1

1

2

F

2

B1

2Bd

Page 26: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

2626

B

eje de giro

i

B

B

A B

CD

FCD

FAB

B

BF

BC

FDA

B

C

FCD

FAB

B

B

A

dvista lateral

Momento dinámico sobre un circuito en cuadro con corriente.

I

BAiiABsensenlFdF BCABAB

Page 27: 11 TEMA 3: MAGNETOSTÁTICA (5 HORAS) 1.Cómo se puede originar un campo magnético: cargas en movimiento y campos eléctricos variables con el tiempo (esencial

27

Momento sobre una espira con corriente.

B

Ai

Momento dinámico sobre la espira. Se debe a las fuerzas de origen magnético que actúan sobre la espira cuando ésta es recorrida por una corriente i y la espira se encuentra dentro de un campo magnético B. Si pudiese girar sobre un eje, mientras mayor sea el momento mayor será su velocidad angular.

Momento magnético. Se mide en A m2.