27
1 微微微微微微微微 - 微微微微微微 微微 : A New Broad-Band Method for Magnetic Thin-Film Characterization in the Microwave Range 微微微 : 微微微微微微 49636098 微微微 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005 Southern Taiwan University Southern Taiwan University Department of Electron Engineering

微波工程期中報告 - 論文研讀報告

Embed Size (px)

DESCRIPTION

微波工程期中報告 - 論文研讀報告. 主題 : A New Broad-Band Method for Magnetic Thin-Film Characterization in the Microwave Range 報告人 : 四技網通四乙 49636098 羅冠閔 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005. - PowerPoint PPT Presentation

Citation preview

  • *- : A New Broad-Band Method for Magnetic Thin-Film Characterization in the Microwave Range

    : 49636098

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    Southern Taiwan University Department of Electronic Engineering

  • *AbstractIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *Index Terms (Anisotropic media)

    (ferrites)

    (ferrite thin films)

    (microwave measurement)

    (permeability tensor measurement)IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *INTRODUCTIONdc IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *MEASUREMENT CELL(Fig. 1) DCalong the -axis in Fig. 1xzFig. 2 [13] -[15]IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *Fig. 1.Cross section of the measurement cellIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    Fig. 1.

  • *Fig. 2. Microwave magnetic field inside the filmIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    Fig.2

  • *THEORY1. The following Maxwells equation is used:

    2.The permeability tensor is defined as [5]

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORY3.

    4.

    5.

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORY

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    As a consequence, the magnetic field components inside themagnetized film are.

    .

    6.7.8.

  • *

    9.

    10.

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    THEORY

  • *THEORYIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    Using Maxwells second equation:11.

    12.

    13.

  • *THEORY

    14.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORYIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORYApplying this averaging procedure to (12)(14), two equations from a simple algebra operation are obtained

    15.

    16.

    From (9), we also deduce that

    17.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORYSubstituting (16) and (14) into (15), we obtain

    18.

    19.

    20.

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORYFinally, the expressions for constitutive magnetic parameters areobtained as follows:

    21.

    22.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *Fig. 3. Flow graph used to determine S-parameters.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

    Fig. 3

  • *THEORY

    23.

    24.

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORY25.

    26.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *THEORYIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • *CONCLUSION TEMPoldersYIGBAM

    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  • google

    *

  • REFERENCES[1] D. Polder, On the theory of ferromagnetic resonance, Philos. Mag.,vol. 40, p. 99, Jan. 1949.[2] G. T. Rado, Theory of the microwave permeability tensor and faraday effect in nonsaturated ferromagnetic materials, Phys. Rev., vol. 89, p.529,1953.[3] E. Schloemasan, Microwave behavior of partially magnetized ferrites, J. Appl. Phys., vol. 41, pp. 204214, Jan. 1970.[4] J. J. Green and F. Sandy, Microwave characterization of partially magnetized ferrites, IEEE Trans. Microw. Theory Tech., vol. MTT-22, no.6, pp. 641645, Jun. 1974.[5]P. Gelin and K. Berthou-Pichavant, New consistent model for ferrite permeability tensor with arbitrary magnetization state, IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 11851192, Aug. 1997.[6]Y. Hayakawa, A. Makino, H. Fujimori, and A. Inoue, High resistive nanoerystalhine fe-m-o (m = hf; zr; rare-earth metals) soft magnetic films for high-frequency application, J. Appl. Phys., vol. 81, no. 8, pp. 37473752, Apr. 1997.

    *

  • REFERENCES[7] E. Schloemann, Integrated DC/RF design theory for ferrite circulators, J. Appl. Phys., vol. 81, no. 8, pp. 50705072, Apr. 1997.[8] H. How, A. Olivier, W. McKnight, P. M. Zavracky, N. E. McGruer, C. Vittoria, and R. Schmidt, Theory and experiment of thin-film junction circulator, IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 16451653, Nov. 1998.[9] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Duverger, An improved permeameter for thin film measurement up to 6 GHz, J. Appl. Phys., vol. 85, no. 8, pp. 51515153, 1999.[10]M. Yamaguchi, S. Yabukami, and K. I. Arai, A new 1 MHz2 GHz permeansce meter for metallic thin films, IEEE Trans. Magn., vol. 33, no. 5, pp. 36193621, May 1997.[11] P. Qufflec, M. Le Floch, and P. Gelin, Broad-band characterization of magnetic and dielectric thin films using a microstrip line, IEEE Trans. Instrum. Meas., vol. 47, no. 4, pp. 956963, Aug. 1998.

    *

  • REFERENCES[12]P. Qufflec, S. Mallgol, and M. Le Floch, Automatic measurement of complex tensorial permeability of magnetized materials in a wide microwave frequency range, IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 21283134, Sep. 2002.[13]C. P. Wen, Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications, IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 12, pp. 10871090, Dec. 1969.[14]B. Bayard, D. Vincent, C. R. Simovski, and G. Noyel, Electromagnetic study of a ferrite coplanar isolator suitable for integration, IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 18091814, Jul. 2003.[15]D. Vincent, B. Bayard, B. Sauviac, and G. Noyel, Optimization des performances dun isolateur coplanaire couche magntique, in Proc. J. Caractrization Microondes et Matriaux, Mar. 2002, pp. 195198.[16]T. Itoh and R. Mittra, Spectral-domain approach for calculing the dispersion characteristic of microstrip lines, IEEE Trans. Microw. Theory Tech., vol. MTT-21, no. 7, pp. 496499, Jul. 1973.

    *

  • REFERENCES[17]Y. Fukuoka, Y. Shih, and T. Itoh, Analysis of slow-wave coplanar waveguide for monolithic integrated circuits, IEEE Trans. Microw. Theory Tech., vol. MTT-31, no. 7, pp. 567573, Jul. 1983.[18]S. Clerjon, B. Bayard, D. Vincent, and G. Noyel, X-band characterizationof anisotropic magnetic materials: Application to ferrofluids, IEEETrans. Magn., vol. 35, no. 1, pp. 568572, Jan. 1999.[19]B. Bayard, J. P. Chatelon, M. Leberre, H. Joisten, J. J. Rousseau, and D. Barbier, The effect of deposition and annealing conditions on crystallographic properties of sputtered barium ferrite thin films, Sensors Act.A, vol. 99, pp. 207212, 2002.*

    **