408
FARM MANAGEMENT HANDBOOK OF KENYA VOL. II - Natural Conditions and Farm Management Information - ISBIC LIBRARY KE - 1982.04 Part A WEST KENYA (Nyanza and Western Provinces) Wageningen The Netherlands

WEST KENYA - WUR eDepot

Embed Size (px)

Citation preview

FARM MANAGEMENT HANDBOOK OF KENYA

VOL. II

- Natural Conditions and Farm Management Information -

ISBIC LIBRARY

KE - 1982.04

Part A

WEST KENYA (Nyanza and Western Provinces)

Wageningen The Netherlands

Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact soil.isrictawur.nl indicating the item reference number concerned.

Ç>"bHX

r~>?N. 34 E 3 4 ° 3 0 ' E /

WEST KENYA f ƒ

35 E

ADMINISTRATIVE BOUNDARIES

/ ' / BUNGOMA L. >»—•r*

„ * * *

• f \WESTERN

f /Busia

. /

/ Bungoma ..^- '•

M*

J-S0

\ BUSIA "> PROVINCE

. / N - "*N

i—i'i—I-I—i International Boundary

Provincial Boundary

District Boundary

Provincial Headquarter

District Headquarter

1"N

0°30'N-

0°30 'S-

1°S-

Farm Management Handbook of Kenya:

VOL. I Labour Requirement Availability and Costs of Mechanisation

VOL. II Natural Conditions and Farm Management Information

II/A WEST KENYA Nyanza and Western Provinces

II/B CENTRAL KENYA Rift Valley and Central Provinces

II/C EAST KENYA Eastern and Coast Provinces

VOL. Ill Farm Management Information - Annual Publications

III/A Agriculture Land, Holdings and Farm Statistics

III/B Costs and Prices, Gross Margins, Cash Flows and Farm Models

VOL. IV Production Techniques of Agricultural and Livestock Enterprises

VOL. V Production Techniques and Economics of Horticultural Enterprises

Publisher: Ministry of Agriculture, Kenya, in Cooperation with the German Agricultural

Team (GAT) of the German Agency for Technical Cooperation (GTZ)

VOL. II: composition by Erhart GmbH. Trier, printed by typo-druck, Rossdorf, W-Germany. 1982

Ministry of Agriculture

FARM MANAGEMENT HANDBOOK OF KENYA

— Natural Conditions and Farm Management Information —

VOL. II/A

W E S T K E N Y A

(Nyanza and Western Provinces)

by

Ralph Jaetzold

— Professor of Cultural and Regional Geography —

University Trier

and

Helmut Schmidt

— Farm Management Research Officer —

Ministry of Agriculture

German Agricultural Team

Nairobi

Contributions by: R. Swoboda - execution of Small Farm Survey; CM. Kang'e & J.G.M. Muasya — assessment of farm management data; W. Zet-telmeyer — computing farm data; H. Kutsch — computing crop water relations for yield probabilities, rainfall analysis, crop list; M. Buch — transcripting soil maps; M. Kronen — soil requirements and fertility groups; H. Ritz — district climate tables; F.N. Muchefoa, B.J.A. van der Pouw, W. Siderius, W.G. Sombroek and H.M.H. Braun - simplified district soil maps and climatic map; CG. Wenner and S.N. Njoroge — soil conservation

ACKNOWLEDGEMENT

In compiling this Handbook, we have relied on the support of many officers from a variety of institutions too numerous to mention, who made available their data and experience. We would like to thank them for their invaluable assistance.

I would also like to thank my colleagues, the Research Officers, the District Land and Farm Management Officers, for their cooperation, and a special thank you to those who typed the draft edition.

Our particular thanks go to Prof. Dr. Ralph Jaetzold, University of Trier, for his selfless support in compiling this Handbook and for his assessment of the natural conditions in­cluding land and population. His deep understanding of the needs of agricultural extension officers and farmers was a great asset. Our thanks also to Dr. H. Kutsch, University of Trier, who computerized a large and complex amount of information involved in establishing the AEZs.

Many thanks also to the staff of the Geographical Department of the University of Trier, Germany, for their major effort in drawing up maps of outstanding quality, the centrepiece of the work.

Nairobi, May 1982 Helmut Schmidt

Farm Management Research Officer

PREFACE

A sound knowledge of the natural conditions of a country is the basis for agriculture and a precondition for successful farming. Any research, planning or advising in agriculture requires clearly defined borders. The Agro-Ecological Zones (AEZ) have been delineated with this in mind, and show natural farming potential. Kenya's unique and diverse ecology is the reason for her very diverse land use system and the socio-cultural diversity of her rural population. The Handbook attempts to describe the condi­tions of the farming community as they are today.

A tremendous amount of agricultural and other research findings have been collected and compiled in this country by various institutions. If all this were readily available to the agricultural extension officer in the field, and thus to the farmer, it would provide a sound data base for decisions as to the most suitable types of crops to be grown and hence contribute to accelerated agricultural output. If used judiciously by the various Ministries in planning for rural development, it would provide a realistic base for decision making for the welfare of the rural population in general and the farmers in particular.

Due to growing diversification of life-styles, the urbanisation of the decision makers, and the advance in agricultural research, communication between various sections of the community has become increasingly inadequate, in particular between the farming community and the rest of the population. This unwelcome trend is very much at the expense of Kenya's farmers, the section of the population on which the wellbeing of the whole country depends. It is hoped that the definition and mapping of the Agro-Ecological Zones will provide better communication between research, planning and advisory work.

In compiling the Farm Management Handbook, the Ministry of Agriculture is taking a first step towards providing a common source of reference for all those working for rural development. I recommend all Ministries and Institutions dealing with the rural sector to use the AEZs in their work and communications.

The task involved in compiling the Handbook was a considerable one, as agriculture is practised under a wide range of condi­tions from sea level to 3 000 m above sea level and the natural conditions often vary within small areas. Rural life is constantly developing and changing; any description of it can never be complete, but the information made available in this Handbook is a big step forward and is a sound base for future developments in this field and in agricultural production. It is impossible to acknowledge all contributors individually. However, I should like to thank the staff of the Ministry of Agriculture, especially the Farm Management Branch, for their efforts in compiling the Handbook. I would like to thank Prof R. Jaetzold for the de­finition of the Agro-Ecological Zones; without his selfless efforts and outstanding knowledge of the subject, the work would not have been completed. In particular I would like to thank the German Agricultural Team (GAT) for its excellent cooperation and assistance with personnel and finance.

Nairobi, May 1982

J.K. Muthama DIRECTOR OF AGRICULTURE

Vol. II of the Handbook covers the following areas:

VOL. IIA WEST KENYA

Nyanza Province: Kisii, South Nyanza, Kisumu, Siaya Districts

Western Province: Busia; Bungoma, Kakamega Districts

VOL. IIB CENTRAL KENYA

Rift Valley Province: Nandi, Kericho, Trans Nzoia, Uasin Gishu, West Pokot, Keiyo (Elgeyo) Marakwet, Baringo, Laikipia, Nakuru, Narok, Kajiado Districts

Central Province: Nyandaruä, Kiambu, Murang'a, Nyeri, Kirinyaga Districts

VOL. HC EAST KENYA

Eastern Province: Embu, Mem, Machakos, Kitui Districts

Coast Province: Lamu, Tana River, Kilifi, Taita Taveta, Kwale Districts

The Handbook is supplemented by :

Large coloured district maps (mainly 1:250 000) Transparent mother prints for large district maps (mainly 1:100 000) Electronic data bank containing the rainfall data (1926-76) Electronic data bank containing the farm management data Agriculture Land Statistics obtained from Survey of Kenya

The information is kept by the Farm Management Research Officer, Ministry of Agriculture, Kilimo House, Nairobi. In addition to that there exists an electronic programme packet for decadic water requirements of about 50 crops in different climates kept by Dr. H. Kutsch, Fachgruppe Geographie/Geowissenschaften, Universität Trier, West Germany

LIST OF CONTENTS

VOL. IIA

Page

Introduction to the Handbook 11

Explanation of the Evaluation of the Natural Potential 13

Method of the Agro-Ecological Zonation by Ralph Jaetzold 13 Calculation of Yield Probabilities out of Crop-Soil Water Relations by Horst Kutsch 17 Main Agro-Ecological Zones for Kenya 29

Suitable Crops for Kenya and their Requirements 33

Agro-climatological Crop List 34 Bioclimatically Suitable Grasses and other Fodder Crops for the AEZ in Kenya 41 Soil Requirements of Crops 45 Table of Soil Characteristics 48

Explanatory Notes on Farm Management Information 49

General Statistics 49 Tables Compiled from Small Farm Survey (SFS) 50 Production Levels per Crop and Agro-Ecological Zone, Output & Nutrient Input 51

Remarks 51 Assessment of the Data, Yields 52 Nutrient/Fertilizer Required 53 Assessment of Data 53

Yield Tables Results of Crop Cuttings - Variety and Crop Fertilizer Trials in Farmers' Fields and Research Stations: 55

Results from Farmers' Fields 55 Maize Yields, Results of Crop Cuttings in Farmers' Field, First Rains, 1975 to 1979 55 National Maize Performance Trial (1979), 1st year Results from 6 Locations 56 Yields from 1st Maize Contest in Farmers' Fields (1972) 57 Results of Fertilizer Trials in Farmers' Fields, Nyanza and Western Provinces 58 Results of Fertilizer Trials in Farmers' Fields, Rift Valley Province 59 Results of Fertilizer Trials in Farmers' Fields, Central, Eastern and Coast Provinces 60

Results of Trials carried out on Research Stations and Farmers' Fields 61 The Productivity of Grasslands in Mixed Farming Areas in t/ha, Kisii - Kakamega - Baraton/Kapsabet - Kitale 61 The Productivity of Grasslands in Mixed Farming Areas in t/ha, Eldoret - Lanet - Naivasha - Oljoro-Orok - Embu 62 Results of Fertilizer Trials in Maize (NARS, Kitale) 63 Results of Fertilizer Trials in Sunflower (NARS, Kitale) 64 Results of Fertilizer Trials in Maize at Application of 178 kg N + 104 kg P2O5 per ha, West Kenya and Rift Valley 65 Results of Fertilizer Trials in Maize in Machakos and Kitui Districts, 1974 66 Results of Fertilizer Trials in Maize and Sorghum, 1977/78 67 Results of Fertilizer Trials in Wheat by NARS, Njoro (1) 68 Results of Fertilizer Trials in Wheat by NARS, Njoro (2) 69 Results of Fertilizer Trials in Wheat by NARS, Njoro (3) 70 Results of Fertilizer Trials in Triticale and Barley by NARS, Njoro 71 Results of Fertilizer Trials in Different Crops During 1977—1979 72

Page

Soil Conservation by CG. Wenner and S.N. Njoroge 75

District Information and Statistics: 81

Introduction to West Kenya 81 Nyanza Province 83

Kisii District 83 Natural Potential 83

Introduction 83 Climate Tables 84 Rainfall Maps 85 Agro-Ecological Zones Map 88 Agro-Ecological Zones, with Land Use Potential and Water Availability & Requirement Diagrams 89 Soil Map 94 Soil Distribution, Fertility and Major Characteristics 95

Population and Land 97 Population per Location and Division 97 Household Composition per Location and Division 98 AEZ - Land Area Available per Location, Division, and per Household and Person 99

Agricultural Statistics (Area, Production, Yields and Number of Growers of Major Cash Crops) 100

Small Farm Survey 102 Farm Organisation according to Farm Size Groups 104 Assets, Land Use, Farming Intensity, Inputs 106 Cropping Pattern 108 Herd Composition 110 Inputs and Yields of Major Crops 112 Disposal of Crops 114 Distribution of Farming Activities per Month 116

Production Levels per Crop and Agro-Ecological Zones, Output & Nutrient Input 122

South Nyanza District 127 Contents as for Kisii (above) for all districts, see for relevant section 127

Kisumu District 179

Siaya District 223

Western Province 267

Busia District 267

Bungoma District 309

Kakamega District 357

Agro-Climatic Zones of Kenya by H.M.H. Braun, 1:3 Mio Map in back cover

List of Abbreviations

Agro-Ecological Zone m = medium

Alpine mat. = maturing

additional max. = maximum

and others min. = minimum

average NARS = National Agricultural Research Station

beginning norm. = normally

black 0. = Office

bimodal rainfall P = permanent

Cooperative per. = period

Central Arid Zone Research Station pi. = planting

(Jodhpur, India) pr. = precipitation

composite r. = rains, rainy season

District res. = resistant

evaporation of a water surface R. = Reserve

end s = short

for instance sec. = secondary

Forest St. = Station

Farmer, Farmers T = Tropical

Highland ; with crop name: hybrid t = temperature; with yields: tons

heavy U = Upper

hectar ur = unimodal rainfall

intermediate rains v = very

crop coefficient as potential var. = variety

évapotranspiration of a crop expressed y- = year

in parts of E0 < = less than

Lowland, lower > = more than

long 'V = about, nearly, around

Livestock unit of 300 kg & = and

Midland

INTRODUCTION

1. In general, the Kenyan farmer is well informed as to the potential of his own farm, the needs of his own family and the pro­duction techniques to be used when planting crops cultivated for generations. In the past, this was a perfectly satisfactory situation, but today, the fanner is called on to feed a rapidly increasing population and earn a major share of vital foreign currency through exports, i. e. he has to shoulder the costs of urbanisation in Kenya.

Traditional farming methods are no longer capable of meeting all the demands made on the farming community; widespread application of scientific methods is required, but knowledge of these methods is obtained, compiled and stored elsewhere, out of reach of the farmer.

The Handbook has been compiled primarily to assist the agriculture field advisor, who often has little scientific training but who is the most important officer in rural development. Extension work is organised within political units, i. e. division, location and district, and therefore information has been compiled according to AEZs per district, which in some cases has led to repetition. The layout and approach of the book has to be seen in this context.

A large number of officers working in many different Ministries and institutions for rural development are also increasingly in need of information about farming, as their contact with practical farming is often minimal.

It is a safe assumption that less than ten percent of relevant knowledge now available reaches the Technical Assistant and subsequently the farmer; it may also be assumed that a large number of planning officers spend more than two-thirds of their time in search of agricultural information, much of which is never uncovered, and/or has to be discovered again and again by each new, incoming officer.

On the research side, it is not always clear what the needs of the farming community are. This results in an increasing amount of irrelevant research, especially into rural socio-economics, which swallows scarce resources urgently needed to find answers to more pressing problems.

Information flow from research to the farmer, and vice versa, and among the various institutions involved in rural develop­ment is seriously hampered by the lack of a common source of reference.

Output of agricultural produce could be doubled if the knowledge already accumulated in Kenya were available to the far­mer. The work output of the planning officer could also be doubled and its quality substantially improved if he had this knowledge on hand, which would go a long way towards improving the welfare of the rural population.

The increasing demand for information and communication calls for increased efforts to make the information accumulated available.

2. This transfer of "know-how" to those who need it is a major task and can not be achieved by the Farm Management Branch (FMB) of the Ministry of Agriculture alone - it requires a joint effort. The Farm Management Branch has now made a ma­jor effort to establish and compile information required by the farmers and those who work for the farming community.

This information will be published in five volumes of which Vol. II "Natural Conditions and Farm Management Information"!) is the centrepiece.

3. The Farm Management Approach is the most reliable method yet developed to assist farming. It is therefore very desirable that other institutions try to make use of this system. The use of Handbooks is compulsory for all officers of the Ministry of Agriculture.

Due to pressure of other work, the compilation of the Handbooks had to be done as a sideline job^). Farm management in­formation in particular is incomplete and there is much scope for improvement. Assistance and suggestions are most wel­come, a new revised edition with improved farm management data is planned for the year 1990-91.

It is of course evident that the information given can not be blindly applied but requires assessment for its relevance to the actual case. Much of it, especially fertilizer recommendations, will be replaced within the next ten to twenty years. It is im­portant to take note of these replacements.

The information is given per district and per AEZ, but the diversity of the farms in any one AEZ and the limitations of the data base make it essential to evaluate the data supplied i. e. it is most important to read the accompanying explanations.

4. The Farm Management Handbook (Vol. II) consists of the following parts.

a) The three Volumes of the Handbook.

b) Large AEZ district maps printed in colour (scale mainly 1:250 000)

c) Transparent mother prints of large AEZ maps (scale mainly 1:100 000) from which black and white copies can be made.

d) The Agro-Climatic Map of Kenya enclosed in the back cover of the Handbook.

e) An electronic data bank containing rainfall data collected in Kenya from 1926 to 1976, readable at the Government main computer (IBM).

f) An electronic data bank containing the findings of the Small Farm Survey (SFS), readable at the Ministry of Agriculture desk computer (Hewlett & Packard).

11

All items (a-f) are kept by the Farm Management Research Officer of the Ministry of Agriculture. They are available for further use provided the permission of the Ministry can be obtained. All items are owned by the Ministry of Agriculture.

5. It was not possible to compile a list of authors of the sources used as in most cases they were unknown. Practically all in­formation used and/or included was established or compiled by persons working in the Kenyan Civil Service or for the Government; thus the product of their work is owned by the Kenyan Government.

' Farm Management information which depends largely on financial facts had to be excluded, like Gross Margins, Cash Flows, Farm Models are published by the FMB annually and can be obtained from Kilimo House.

2) It was impossible to assess the large amount of statistical data in detail - the F.M.R.O. could only copy what was available in the respective departments.

12

E X P L A N A T I O N O F T H E E V A L U A T I O N O F T H E N A T U R A L P O T E N T I A L

METHOD OF THE AGRO-ECOLOGICAL ZONATION

by Ralph Jaetzold

Agro-ecological zones were established by FAO in 1978. ' They are suited to make decisions in international and long term agricultural policy. In order to give advice to farmers in the districts a more differentiated system showing yield probabilities and risks as well had to be developed:

1. The zone groups are temperature belts (Table I) defined according to the maximum temperature limits within which the main crops in Kenya can flourish; cashew and coconuts for the lowlands, sugar cane and cotton for the lower midlands. Arabica coffee for the upper midlands (usually known as "Highlands" - the term 'midlands' is used here to denote their central importance), tea for the lower highlands, pyre thrum for the upper highlands. The highest zone is high altitude rough grazing i.e. tropical alpine (or afro-alpine) vegetation. The threshold values of annual mean temperatures have been estab­lished along similar lines to those of H.M.H. BRAUN (see map on back cover)-) but supplemented by limiting factors for many crops e.g. mean minimum temperature, frost etc.

2. The main zones (Table 1) are based on their probability of meeting the temperature and water requirements of the main leading crops i.e. climatic yield potential, calculated by computer (see p. 19). The zones are roughly parallel with Braun's climatic zones of the Precipitation/Evaporation Index (see map in back cover), but there are differences according to the influence of the length and intensity of arid periods, a factor also considered by the computer programme.

The names of the main zones refer to the potentially leading crops there; many of them can be grown in some other zones, too (see p. 32)

The colours assigned to the main zones become lighter at higher altitudes (Table I). Additionally they become more red in the drier climates and at higher altitudes. This is due to the fact that with the same amount of water, the production of bio-mass is still less in cooler altitudinal climates. Also, the chances to ripe a crop before the end of the rainy seasons become smaller in these higher belts because of the increasing length of growing periods. Therefore, the Ranching Zone which covers Zone 6 in the Lowlands occurs already in Zone 5 in the Lower Highlands and even in Zone 4 in the Upper Highlands.

3. These main zones are divided into subzones according to the yearly distribution and the lengths of the growing periods on a 60 % probability factor i.e. the given length of the growing period should be readied or surpassed in at least 6 out of 10 years (Table II). "Growing periods" are definded as seasons with enough moisture in the soil to grow most crops, starting with a supply for plants to transpirate more than 0.4 E 0 (i.e. > 40 % of the open water evaporation), coming up to > E 0 (in the ideal case) during the time of peak demand, and then falling down in the maturity phase again. The length is normally given in decades (i.e. a ten day period) for medium soils. Figures are also available for heavy and light soils, and they are also considered in the computer programme for the yield potential of H. KUTSCH and H.J. SCHUH (see. p. 19)

This programme compares the water requirement curves of almost all the main crops (as provided by the FAO, 1977-') and 19794>. re-calculated by H. KUTSCH for 50 Kenyan varieties and adapted to the different agro-climates of R. JÄTZOLD5)) with all rainfall occurrences in Kenya from 1926 to 1976, in decades ( 10 day periods), and their effects on the water supply to the root zone for 3 soil groups and 3 plant population densities. On this basis, an ecological land use potential has been drawn up for each subzone, showing climatic yield expectations and risks.

The length of the growing period is the key to selecting the right annual crops within an agro-ecological zone. The symbols used for the lengths of the growing periods are straight-forward:

vl = very long 1 = long

m = medium s = short

vs = very short

These are further defined to give more detailed information by the use of "short to medium" "medium to long" etc. (Table II). If it is not desirable to subdivide the growing period in this way, the letter " f ' for "fully" occurs before the symbol for the period.

The growing period formula is put in brackets if there is a weak performance i.e. although the moisture content is sufficient for growth, the peak demand which exceeds 0.8 E 0 is not satisfied in die right time.

Where diere are 2 rainy seasons per annum (bimodal rainfall areas), this is shown by a plus sign ( + ) between the two grow­ing periods to show the yearly pattern.

If there is no distinct arid period of at least 3 decades (30 days) between humid growing periods, the sign — is introduced i.e. both periods are bridged together. Expressed in words, it means ".... followed by".

* O) Ui t* Cu ro

£>??f

CD Q .

» -. O)

CT CD 3 . O

a

CD DJ

a «< o o

» * m ! 10 2 S CD Q 2 D CD w

0) 3 CD 2 o" 3 Q-CD 3

°» 3 (D D> O ? -~ co

EF3

(D 0)

Q 1 3 CL

ta

iilil N CD "o CD » co » oi en

« o S» 3 » _ 3 •< -g

IQ 3 01 = . 0

o S. a 0 » a CD _ 3 &

" S - ™ - c ? w "D co 2 . 3 ^ § o 3 3

o 5' 3 <D o "O CO = tn 3

2 a S o ö « « 3 g =» a- 3 " Z. Ô c d O. 3 $ - , SS 3- — ai 3 S CD J - i a m - , co a N CD N w • CD • O Qj 5

- 3 CD

If as-g»

Ë 01 3 3

01 o n — W CD g

o

O) (O

3 «

Sil! 1?

0) 3 a

a o 3 a

$ M O 5 a

œ 3 a. 0)

Q o O

c |-CL 3

D CD

O S

a a r o S a

z œ 3

3 CD —1

8 Si l i l < CD o,

CD 5 01 01

01 = —

2.01 -— CL 3

oi 5 —

œ O _

ST »

ai o CT 01 g

S 2 S a ­ai CD

</> (/)

O

> 3

3 m S

a> o a — — N 0 o _ 3 3 CD Q. 01 Is "S 5 "S N Si

3 H

œ > 01 -— O"

» o c 0 co C CD

c7 s CD _ — 01

»S 01 = -CD "<

2 ^ CO 3 01 3

il 0> 0) co ro

O

o

Kff

N I l-O 01 O 3 3 €

» f i s

5 a

11

«1

2 £ co 3 — ni 3 r

! i > 3 ro 5 m 01 2 X D CD V V |— co ro o • * * • *

CD

N

N O r-o o o S. =* * to o

3 0)

a

N O

CD §

CL

N o

= < o S ® 2 i

— J2. qj O 3 o a

N j r o » o 10 ? §

f! 01

N 3 O Q 3 CD

3 ? 5 3 u CD M

i

r e «

•Ji r

3 3 o ^ ^ â

N c/> ç

o C m

(D 01 1Ç

s 1 CD

N o r-

§ I J 01

3 a.

m

N O S O O CD

CD o 'Q <j>3 3 _ eu

N 2 Î T f"

"Il 3

»?

N 3) O 0) a 3 ro o

II D.

2 a.

ir 3 3 i CD T oi

' CD

- i CD

N H O O fti o 3 Qi 3 CD CD

CD

w N O S O O 01 ro mco

CD Q

CD

N c/) r o o 3 I —

m B

C U d »

N 33 C O oi _ • li

tu

Z C

CD Q-

^ f C

- , => 3 o œg T " - » 3 O - * _ oi en

N ° z< O 0) CD 3 = M (0 «5 '

N "TJ 2 S 2 ^ 2 3

ro N CD

3 » 2

g B« 3

a

M CD < O Oi J

s | s

CD W O

y

N n r o 01 _ 3 D I CD O ,Q

? 3 3 m"

a

8?

gi 3 CT

Ml ° I

io

N O C/) O 01 3 3 T CD CD « ^ CD

ê j "

? 3

N CD < rs est ^

N I C J ~ I

1 4 ffl i

ro > ' 3

O P ôi

01 3

> H H D O > 3 2 CD n N 2

V%

Ci

C)

ta

(/)

I Q. CD CD 3 " 01 Q) ^ "D 3 S CD 01 C

a eu ^1

a > O X Ü Ü

m 01 o CT ü S

o o o > r 01

CD N O

3 CO C z 3 m D. CV)

o o f H 3 I g ^ m O 3 H

D O

— • ^ ^ — "D O

01 (/) 3 , 7 Ü1 ai 3

g

i0»

TABLE ïï: SUBZONES ACCORDING TO GROWING PERIODS FOR ANNUAL CROPS

Formula Cropping seasons Lengths of growing periods1 ' exceeded in 6 out of 10 years

Samples of combination during the year in Kenya

p Normally permanent vl Very long vl/l Very long to long l/vl Long to very long / Long

l/m Long to medium m/l Medium to long m Medium

m/s Medium to short S/m Short to medium S Short S/vs Short to very short

vs/S Very short to short vs Very short

More 285 -235 -

than 364 days 364 days 284 n

215 - 234 H

195 - 214 H

175 - 194 H

155 - 174 ii

135 - 154 M

115 - 134 H

105 - 114 H

85 - 104 n

75 -55 -

84 7 42)

n

H

40 - 543> H

a very long cropping season, dividable in a medium cr. s. followed by a short one

-

/

^—. -

r m i / / S N. / I- 0.8 E0

0.2 E„

a med. er. season, interm. rains, and a short one - v ^—^ -

k-f /—s—V : k-f /—s—V : 0.8 E0

0.2 Eo

a medium cropping season and a short one

a (weak) m. cr. season, int. rains, and a (w.) sh. one

Additional information: ur=unimodal rainfall, br = bimodal r.,tr = trimodal r.

i =

0 = + =

f =

intermediate rains (at least 5 decades more than 0.2 E 0 ) 4 )

weak performance of growing period (most decades less than 0.8 E 0 )

Distinct arid period between growing periods No distinct arid period between growing periods

full, i.e. no subdivision ofgrow.periods, for inst. fm means 115-174 days

1 ) Growing period = life of annual plants from seed to physical maturity. Figures show the time in which rain and stored soil moisture allow évapotranspiration of more than 0.4 Eo (in medium soils of at least 60 cm depth), enough for most crops to start growing. During main growing time they need more, of course (>0.8Eo).

2) Lowlands and lower midlands, in UM, LH and UH 65-74 days

3) Lowlands, in LM 45-54 days, in UM 50-64 days, in LH and UH 55-64 days

4) That means moisture conditions are above wilting point for most crops

In Rift Valley and Western Kenya, the rainfall is unimodal (i.e. one major rainy season p.a.) but the length of the vegetation periods allows for the planting of one late-maturing crop or two early-maturing crops. In this case the words ".... or two" are used after the symbol for the length of the season. In some cases 3 crops per vegetation period are possible, in which case the words ".... or three" occur after the length symbol. In some areas, e.g. the Coast, the rains do not stop suddenly, and there is sufficient rainfall between the humid seasons to allow for the growth of some crops (cowpeas, simsim). However, this ist not regarded as a real growing period; those "inter­mediate rains" are symbolized by an "i" if they last at least 5 decades (50 days) (see Table II, footnote 4).

These complicated annual rainfall patterns make it difficult for the seasonal rainfall probability maps included for each district to set rigid limits for the start and the end of the rainfall. Then the most likely periods are chosen; in clear bimodal rainfall areas, the probabilities are given for the growing period itself.

4. The climatic agro-ecological zones are printed on soil maps derived from the Exploratory Soil Map of Kenya 1 : 1 Mio. (Kenya Soil Survey, 1982) to show agro-ecological mosaics within the zones. The soil units were roughly shaded on the basis of their natural fertility, in order to illustrate their potential and the inputs needed to improve them.

The soils should be considered as closely as possible. For many areas special reports from the Kenya Soil Survey already exist. The average yield expectations given for the Agro-ecological Zones of the district only show what is climatically possible (on prevailing soils) when other conditions are optimized.

Therefore, many other factors apart from soil and climate have to be considered as technologically standard, possibilities of additional irrigation") and so on. For drier areas of Kenya this is described in the volumes of the Kenya Marginal and Semi-arid Land Pre-investment Reports (Nairobi 1978). From the given agro-ecologically land use potential for each AEZ it has to be chosen carefully what is economically and sociologically reasonable for the time being.

15

5. The agro-ecological zones are illustrated by rainfall (water availability) and water requirement diagrams (see district des­criptions). The curves in the diagrams are calculated — or if proper datas are not available they are estimated — for optimum water requirements of crops from seeding to physical maturity. Harvest is later according to ripening stage, but then the plants need little or even no water.

*' FA0.1978: Report on the Agro-ecological Zones Project. Methodology and Results for Africa. (= World Soil Resources Rep., 48/1), Rome

2 ' Kenya Soil Survey, 1982: Exploratory Soil Map and Agro-Climatic Zones Map of Kenya, scale 1 : 1 000 000. Rep. E 1, Nairobi

3) FAO, 1977: Crop Water Requirements.- (= Irrigation and Drainage Paper, 24), Rome

*' FAO, 1979: Yield Response to Water.- (= Irrigation and Drainage Paper, 33), Rome 5> JÄTZOLD, R., 1978: Klimageographie - Ostafrika. Afrika-Kartenwerk E 5, Berlin, Beiheft Berlin 1981

° ' Artificial irrigation possibilities are normally not yet considered in the land use potentials of the Agro-ecological Zones, because they go

beyond the climatic natural potential. Nevertheless, we are able' to calculate if requested decadically water requirements of irrigated crops for

defined sites.

16

CALCULATION OF YIELD PROBABILITIES FROM CROP-SOIL WATER RELATIONSHIPS

by Horst Kutsch

1. Introduction

Agro-ecological zones must be defined as zones of potential land-use on the basis of the natural local factors so that they can be employed as a fundamental element for agricultural advice on the district level, advice which may be further differentiated into small areas. Sufficiently precise possibilities of calculating the water balance of defined crop stands are available for this purpose. By using electronic data processing ecological simulation calculations are made which produce concrete recommen­dations for cultivation, such as the species, variety and crop density. Cultivation objectives with regard to water intake (root development) and water requirements (water requirement curves) can also be deduced from those calculations.

The basic framework for the calculations is provided by a balance between effective rainfall (see FAO, 1974) plus soil water on the one hand and, on the other hand, evaporation of crop stands (plants + soil). This initial stage is made more precise by employing suitable methods to calculate and measure plant transpiration (cf. EKERN, 1973; VAN EIMERN, 1964; PERRIER, 1975; STANHILL, 1965). It is felt that the soil's water holding capacity for different climatic evaporative demands must be incorporated. The proceeding developed by THORNTHWAITE/MATHER (1955) is used for this.

One defect of many models of plants' water balances is that the root growth is not included in the mathematical statement. Yet a fixed quantity for the root-space is justified only in the case of permanent crops while for annual crops the result of the water balance calculations seems to be distorted to varying degrees.

So it was necessary to develop some mathematical form for covering the growth of the rhizosphere and thus the corresponding soil-water reserves. Recent biométrie methods have been considered for this (CAUSTON/VENUS, 1981). In practice, a sim­plified model devised by the author for the growth of a root complex was used in the calculations. Apart from a more dynamic statement of the soil-water/plant relationship (FRANQUIN/FOREST, 1977) the water requirements had to be formulated more precisely than hitherto for more accurate calculations. Mean values over longish periods are unsuitable since considerable errors may be reproduced in models using short-term calculations (e.g. pentades, decades) of the water balance. On the basis of an approximation in graph form (FAO, 1977) KUTSCH/SCHUH (1980) have devised a mathematical formula for day-to-day calculations of the water requirement coefficient (kc).

A sophisticated model of soil-water dynamics including all climatic, soil-hydraulic and plant-physiological parameters was recently published by HILLEL (1977). Unfortunately, some of those required parameters are not available in every case and so the search for a simpler but still sufficiently accurate method of calculating plant-soil water relationships continues.

The model presented here calculates the theoretical water requirement curve and the actual water consumption curve in annual and decadal stages. The calculations relate first to a "normal" cultivated plant with specific ranges for kc and root values. Any cultivated plant whatsoever can then be processed in a second stage. In every case level cultivated land or operations to restrict run-off on slopes are assumed.

A final statistical process with the model produces detailed practical information. This model which is useful for simulation calculations enables us to answer a number of both theoretical and practical questions:

— How often does a specific growing period occur with defined characteristics regarding water requirements and roots and under given climatic and soil conditions?

— What is the frequency of a specific threshold value for water consumption over the individual decades? This makes it possible to define periods when the reliability of water supplies keeps within various ranges; this is particularly important for the peak water requirement phase which determines the yield.

— What is the best time for sowing or planting? — How must the water holding capacity of the soil be improved so that plants with specific water requirements and root

characteristics can exploit the given climatic conditions to the optimum? — How should the development of the root complex appear if with a specific amplitude in the water requirement curve the

plants are to exploit the given climatic and soil conditions to the optimum? or: How is the kc amplitude — an essential feature of the water requirement curve — to be procured so that, with specific root development, the plant may exploit the given climatic and soil conditions to the optimum?

The last two questions will not be examined further in this book. They should, however, be of interest with regard to experi­mental ecology for growing cultivated plants, and their answers could also provide plant breeders with properly-directed guide­lines on selecting certain varieties of cultivated plants.

2. Structure of the programme

This programme is made up of three parts:

— A superordinate controlling part processes the 6 million or so items of climatic data, consisting of daily rainfalls in Kenya since 1926 and calculated evaporation figures (WOODHEAD, 1968), as well as the various scenarios (here: 50 crops and varieties with characteristic crop coefficients and root development characteristics).

17

— In the first section of the main programme (central algorithm) the annual length of the agro-humid period is calculated using a "normal" crop. In this context "normal" means that the general water-consumption curve of a crop (see Fig. 2) is taken as the basis. When adapted to the special agro-climatic conditions of Kenya, the initial value (kc/i) is then 0.4 when related to the mean daily PENMAN evaporation of 5-6 mm and the mean frequency of significant rainfalls of about 1 day in 3 at the beginning of the rainy season. The peak water requirements are indicated by the kc value 1.0 which corresponds to the maximum evaporation capacity of most cultivated crop stands. The final value (kc/m) is fixed at 0.4 and the mean root depth at 60 cm. The length of the agro-humid period (simply called growing period) can be very accurately determined by using this "normal" crop.

The principal parameter for estimating the lengths of agro-humid periods for the "normal" crop is the (actual) crop water supply (SUP). It is calculated as a ratio of available moisture (rainfall + soil moisture) to given (= potential) crop water re­quirements per decade. The following definition of this ratio is provided. The numbers correspond to an internal programme codification:

"0": SUP < 0.2 (dying period for most crops), " 1 " : SUP = 0.2 to 0.4 (survival period, especially for most perennial crops), "2": SUP = 0.4 to 0.8 (normal water supply in which the range of 0.4 to 0.6 could be described as sub-normal, tending more or less towards the survival period, especially during peak water requirements), " 3 " : SUP > 0.8 (optimum water supply).

The year-to-year distribution of crop water supply gives us an approximate feature of the length of the growing period for the "normal" crop. The inter-annual water supply curve now enables us to calculate different probabilities (PROB):

— Probability for the best start (> = 60 %) of sowing, defined by a water supply in the pre-phase of at least " 1 " . In our ex­ample (Fig. 1) this probability (PROBj ) is 60 % in the 3rd decade and 80 % in the 4th.

— Probability for a selected and defined length of a growing period, irrespective of when the decades start. In our example we can select a length of 10 decades (without pre-phase) over all years and define a water supply of at least "2" in the initial decade and "2" or " 3 " in the following decades with no deficiency (= "0"). This pattern occurs in only 4 of the 10 years shown (2nd, 3rd, 7th and 8th year, decade 5 to 14, PROB2 = 40 %).

— Probability for a selected and defined length of a growing period as a function of a defined initial decade. In our example we can select a length of 11 decades over all years and define the 5th as the initial decade and the 4th decade as pre-phase; we can also define "2" or " 3 " in the following decades with, possibly, only one deficiency (= "0"). This occurs in 4 of the 10 years shown (PROB3 = 40 %).

— Probability per decade of a given water supply threshold. In our example we can define the threshold as "3" . We then obtain a probability sequence which gives us some idea of more or less reliable seasons with the given water supply thres­hold. In our example a relatively reliable season includes decades 7, 8 and 9 with PROB4 = 80—100 %.

— Probability for any deficiencies (water supply = "0") in a defined growing period. In our example the probability (PROB5) of a deficiency (= "0") occurs in several decades, mostly between the 12th and 15th decades.

Decade : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17 18.

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

2 3 0 v.3v . Y 3 \ . 7 3 7 2 2 3 2 0 0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

2 3 0 2 2 3 2 0 0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1- . . 2 . • 3 - .\3.\ • 3 - • 3 - • 3 3 - . 3 . 3 - • 2-

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1- . . 2 . • 3 - • 3 3 - . 3 . 3 - • 2-

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

0 ' 2 ' 2 ' 3 3" " 3 ' 3 ' ' 2 '

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

0 ' 2 ' 2 Y 2 \ .v3\ . 7 3 7 ' 3 3" " 3 ' 3 ' ' 2 '

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1 • . 2 • 0 • .-.3.- • 3 - • 3 - . 3 - . 2 . 2 . - 2 . 2 •

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1 • . 2 • 0 • . 3 - . 2 . 2 . - 2 . 2 •

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

'1 • • 2

2 3

' 3 '

0

' 2 '

2

' 1

2

• o - • r

3 2

• 0 •

0

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

'1 • • 2

2 3

' 3 '

0

. . 3 . . . Y 3 \ . 7 3 7 ' 2 '

2

' 1

2

• o - • r

3 2

• 0 •

0

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

'1 • • 2

2 3

' 3 '

0

' 2 '

2

' 1

2

• o - • r

3 2

• 0 •

0

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

'1 • • 2

2 3

' 3 '

0 7.3.' . Y 3 \ . 7 3 7

' 2 '

2

' 1

2

• o - • r

3 2

• 0 •

0

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

'1 • • 2

2 3

' 3 '

0

' 2 '

2

' 1

2

• o - • r

3 2

• 0 •

0

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1- • -2 • •3- .'.3.-. • 3 - • 3 - • 3 3 - . 3 . 3 . • 2-

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1- • -2 • •3- • 3 3 - . 3 . 3 . • 2-

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

' 0 ' ' 2 ' 2 " 3 3" " 3 ' 3 ' " 2 "

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

' 0 ' ' 2 ' 2 :2: . v 3 \ . 7 3 7 "3 3" " 3 ' 3 ' " 2 "

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1 . 2 • 0 • . \ 3 . \ : 3 - • 3 - . 3 . . 2 . 2 . . 2 • 2 .

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1

• 1 . 2 • 0 • . 3 . . 2 . 2 . . 2 • 2 .

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1 "1 " ' 2 ' 3 ' • 2 ' " 1 • 0 ' ' 1' • 0 "

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1 "1 " ' 2 ' 3 ' Y 3 V .73 ' . . 7 3 7 • 2 ' " 1 • 0 ' ' 1' • 0 "

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

1 0

0 0

0 1

0 1

0 1

1 0

0 0

0 1

0 1

0 1 "1 " ' 2 ' 3 ' • 2 ' " 1 • 0 ' ' 1' • 0 "

0

• 1 •

. 1 .

' 0 '

• 1 •

0

• 1 •

. 1 .

0 '

• 1 •

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

!

PROB .,=60

PROB =40 b

I ^=80

P=20

I P = 4

O

P4 = 8 0 - 100 I P = 20 b

I I

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Year 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a. s. 0.

0

1

0

1

0

0

1

0

1

0

!

PROB .,=60

PROB =40 b

I ^=80

P=20

I P = 4

O 3

I P = 20 b

1 P_=4( b

)Ç=4

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

Fig. 1 : Example of the decadal distribution of water supply (SUP) for a "normal" crop with different probabilities (see text)

18

From the given water supply feature (Fig. 1) we can therefore deduce a very brief but fairly accurate picture:

- The best time for sowing (pre-phase) is the 4th decade,crops with a longer pre-phase could be sown yet in the 3rd decade; planting (of seedlings) recommended in the 5th decade (initial period);

— Relatively reliable situation for optimum water supply from the 7th to the 9th decade ;

- Growing period to physical maturity normally to the 14th decade or to the 15th in the case of crops which are more adapt­ed to drier conditions during their maturity;

— Short dry periods (not more than 10 days) are more frequent from the 12th decade.

In the second part of the main programme the water requirements, root development and — through the soil water balance — the actual water consumption of specific crops are calculated in line with the length of the growing period of a "normal" crop. As in the case of the "normal" crop, the calculations conclude with a determination of the crop water supply.

These values for the crop water supply are compared with yield reduction values (ky; FAO, 1979, specific to each crop). The water supply during the period of the plants' peak water requirement (SUP rpeakl) ' s especially important as regards any possible yield reduction. The yield reduction (YR, in %) is calculated from the water supply deficit (1-SUP) and the ky values using the following simple equation:

YR = 100-ky(1-SUP l p e a k ]) (1)

This value YR is corrected, if necessary, by our own regional experience in yieldings. The inter-annual distribution of this modified yield reduction for different crops provides us with some probabilities of yield expectations which finally enable us to establish the crop potential feature within a specific area (here for agro-ecological subzones). Yield expectations are given as a percentage of the potential optimum yield:

Probability of very good yield corresponding to 80-100 % of optimum of good yield " 6 0 - 80% of fair yield " 4 0 - 60% of poor yield " 2 0 - 40% of total crop failure " 0 - 20%

3. Central Algorithm

3.1 General structure of the water requirement curve for defined crops

Without going into details of the extremely complex agro-climatic problem concerning the determination of the water re­quirements of a defined crop stand (see Introduction), a general accepted approximation (FAO, 1977) will be employed here:

E Tcrop [ m m ] = k c - E 0 ( 2 )

where ETcr0p is the crops' water requirement related to the evaporative demand of a given climate (E0) ' ) over a specific length of time (month, decade, day). The coefficient kc expresses the actual water requirements of a crop stand in relation to E0. This coefficient which can be ascertained only by empirical methods is governed by a large number of factors: a) General macro — and micro-climatic conditions, b) Species, variety and age of the cultivated plants, c) Vegetation stage, d) Crop density (plants per m^ or ha), e) Any associated crops, f) Frequency of rainfall during the early stage of annual plants (or during the leaf development phase of deciduous tree-

crops) because with a small amount of cover or shadow more account must be taken of the proportion of moistened soil in the crop evaporation.

Unfortunately the kc values given in the literature are not specified in detail and so the area in which they can be applied or transferred remains unclear. This is particularly true as regards (a), (d) and (f) above. The appropriate kc value can be selected only by taking all the climatological, biological and cultivation aspects into account. For this purpose the FAO (1977) has published water requirement coefficients for a wide range of cultivated plants and these are employed in this book. The FAO values are based primarily upon irrigation trials and relate to a few characteristic points or periods during the vegeta­tion cycle (initial phase, peak water requirements and physical maturity). A graphic method of determining any mean kc value is also proposed for the purpose of practical calculations. For our more precise investigations, however, which require decadal values the course of the curve should be expressed mathematically. This needs seven parameters (see Fig. 2) which are also given in the appropriate tables of the FAO (1977, pp. 40-44):

l' Eo defined as evaporation from a free, i.e. theoretically unlimited water surface according to the formula of PENMAN (1948) modified here

by McCULLOCH (1965). Other approaches are possible: Pan Class A, formula of BLANEY-CRIDDLE (1950).

19

— water requirement coefficient for the initial phase^)(kc/i), — water requirement coefficient for the peak water requirement period (kc/p), — water requirement coefficient for the time of physical maturity (kc/m), — duration of the initial phase (t,), — period from the end of the initial phase to the beginning of the peak water requirement (tj), — duration of peak water requirement (tp), — period from the end of the peak water requirement to the beginning of physical maturity (tj).

The phenological data are obtained from pertinent regional observations in the planning area or have been deduced from comparable cultivation areas.

The general course of the curve for the water requirement coefficients (taken from FAO, 1977, p. 39) is shown in Fig. 2.

1,2-

1,0

o ^ 0 , 8 CD 'o i t CD

8 0,6-a 2 O

0,4

0,2-

Kc/i

Kc/p

in days

Kc/m

initial period

* - t i -

crop development

- t , •

mid-season peak requirements

tp late season

time = t (days)

Fig. 2: General course of the curve for the water requirement coefficients, kc (from FAO, 1977, p. 39, modified). kc: Crop coefficient as fraction of climatic evaporative demand (E0); i = initial, p = peak,

m = at physical maturity

3.2 Mathematical representation of the water requirement coefficients

3.2.1 Initial phase

Owing to the small amount of cover or shade obtaining at that time, the average daily kc value during the initial phase of an annual or perennial crop depends upon the climatic evaporation capacitiy (E0) and the interval between significant rainfalls-^) (X). The mathematical representation of the relationships which have been empirically ascertained is based on the assumption of an e-characteristic of the corresponding curve.

2) 3)

Germination of seed or rooting of plantlets or resumption of plant activities in the case of perennial crops (e.g. rising sap in trees)

For tropical climates a threshold value of at least 1 mm/day can be assumed.

20

kc/i

1,0

0,8

0,6

0,4 H

0,2

0 -r~ 8

Mean interval between signifikant rainfalls

9

2 days

4 days

7 days

10 days

20 days

— I —

10 2 3 6

EQ (mm/day)

Fig. 3: General course of the curve for the water requirement coefficients in the initial phase kc/i (from FAO, 1977, p. 39)

The approximate mathematical expression is complex:

kc/i = a.,-e + a 2 -e exp2 + (3)

The first exponent contains as a variable element the mean daily evaporative demand of the climate during the initial phase (E0/day):

exp l = -(0.2311-E0 -0.2)

The second relates to the mean rainfall interval or irrigation interval (X in days) during the same period:

exp2 = -(0.2385- i + 0.2)

The coefficients occuring in the basic equation have the values 0.5447 (aj) and 0.9971 (a2); b is a constant with the value 0.185.

The mean kc/i value obtained by this means is also suitable for calculating the maximum evaporation of uncovered land (see FAO, 197T p. 53). In that case, however, tion behaviour of the various types of soil. FAO, 1977^ p. 53). In that case, however, correcting factors would have to be incorporated to allow for the different evapora-

3.2.2 End of initial phase to physical maturity

The physiological water requirement of annual crops rises steadily from the end of the initial phase until the beginning of the peak water requirements. The amount of cover for the soil increases in parallel to about 80 %. Complete leaf development is reached during the period of peak water requirements which is critical for most cultivated plants.

In the case of perennial crops we must distinguish between deciduous species whose water requirement characteristics are comparable to those of annual plants, and the subtropical/tropical evergreens. The latter have a permanent physiological water requirement at a high but varying level. Certain fluctuations are caused by the sequence of phases in which transpiration is greater (flowering, formation of the ovaries) and lesser (maturing of the fruit), such as those found in coffee (cf. PEREIRA, 1957).

21

The curve for the daily water requirement coefficients during the period until the peak water requirement (t^) can be defined fairly accurately by the following root/e-functiom

kc/d = k c / p - ( k c / p - k c / i ) ^ 1 - | ^ L (A)

where t ranges from 1 (= first day after the end of the initial phase) to t^.

The duration of the middle coefficients for peak water requirements (tp) is an important phenological factor. In conjunction with the value of kc/p it has a crucial influence on the total water requirements of any crop. It also defines the vegetation phase during which in most cases the plants' hydrature reacts particularly strongly to any shortages in the water supply. This causes yield reductions and even total loss of the crop (FAO, 1979).

Consequently, one objective of growing cultivated plants in the semi-arid areas is to find species or varieties whose peak water requirement periods is very limited.

The peak water requirement period generally ends when the maximum size of the fruit is achieved. From then onwards the physiological water requirements decrease quickly to kc values between 0.2 and 0.6 ("normal" crop 'v- 0.4) but at varying speeds until physical maturity is reached. During this period the processes of forming the flavour and other substances and the colouring predominate. In the case of perennial trees or shrubs the formation of young shoots requires extra water. The course of the curve for the daily kc values in the late phase is calculated analogously to (4)

where for t:

kc/l = k c / p - ( k c / p - k c / m ) \ / l + ° : ( t d . / p l ' V t p H . , / 1 0 0 «S)

3.3 Ascertaining the water requirements (kc curve) for "normal" crops

On a decadal and biannual basis the following relationship is formed between the measured rainfall (P0) and the climatic evaporative demand (E0):kc* = P0/E0. These kc* values are then projected in an enveloping curve with a selectable amplitude and a specific relationship, between the various vegetation phases, whereby the envelope is automatically adjusted to the course of the general kc curve (see Fig. 2). The water requirement coefficient during the initial phase (kc/i), which is a function of the climatic evaporative demand (E0) and frequency of rainfall (X) (see Fig. 3), essentially determines the course of the curve until the peak water requirement is reached. One problem which has not yet been solved is the transition from the kc values for the initial period (kc/i) to the values for the developing period (kc/d); the kc/i value at the very end of the period as obtained from equation (3) is high and so, according to (4), this produces an excessively high branch of the curve until the peak water requirement is reached. In reality, however, the kc value may decrease after the initial period has been completed when (in the case of annual crops) a complete plant cover in the crop stand has been formed and the soil evaporation proportion of the crop evaporation has been reduced. Observations by the author justify the provisional approach to the effect that when the kc/i value at the end of the initial period is greater than 0.7 a virtual value of 0.7 should be employed for kc/i in equation (4).

The growing period is to be taken to begin (TI) at the point when the first kc/i value is equal to or greater than 0.4 and, at the same time, the corresponding values during the initial period are equal to or greater than 0.4. In some cases acpre-phase of mostly not more than one decade and with kc values below 0.4 could be of agronomic interest, especially for sowing. The end of the growing period (TE) can be taken as the point where the two kc* values before the last one are above the selected kc/m value (in our case 0.4) and the last kc* approaches it.

22

k* i ' k Tl : Calculated begin of an AGROHUMID PERIOD 3: Selected kc/p for peak water requirements

TE : Calculated end of an AGROHUMID PERIOD 4 : Selected kc/mfor water requirements at phys. maturity 1 : Calculated kc/i = f (E0, X ) in decade 2 J : Calculated kc* = P0 /E0

2 : Calculated kc/i = f (E0. X ) in decade 3 „ . „ , „ . .. , . . . . „ . . u Selected ratio of growing sub-periods = a:b:c:d

72 Decade

Fig. 4: Example of the automatic construction of the water requirement curve (kc curve) for a "normal" crop

3.4 Water consumption curve

3.4.1 Mathematical-logical structure of the water balance model for a defined crop stand

The actual water consumption between the beginning (TI) and end (TE) of the growing period can be defined by a coefficient "kc (a)". This is derived from calculation of the crop's water balance over a decade using the sub-factors of effective rainfall (Pe), stored soil water brought forward from the previous decade (Sj.j), the volume of soil water tapped by root growth (Dj) and, finally, the climatic evaporative demand (E0j). The FAO (1977) mentions the importance of correctly estimating the effective rainfall (Pe) from the measured values (P0) with the help of empirical reduction coefficients (r). For the current decade (i) we obtain:

kc (a); =(Pe . + S i . 1 + D iJ/E t f. (6)

A particular methodological problem is to determine the actual soil moisture at the beginning of a growing period, i.e. Sj.j for i = TI, while, for annual crops, D is omitted. Generally speaking, even the strata of the soil near the surface do not dry out completely if an insulating dry topsoil only a few centimetres thick protects the soils (cf. VERNET, 1963). Another problem is how to estimate the depth of the soil stratum involved in the evaporation process during the initial phase; this would be needed if we are to obtain a better definition of Sj\.\- The model presented here employs a variable "S*" for S-fj.j which is given in the scenario. In theory it also includes the proportion of capillary water rising from the underlying moist strata of the soil. The quantity of soil water rising by capillary processes from the strata below the root space cannot be calculated without further recourse to special parameters and calculation methods. So empirical or estimated values (K) are used here. Since the variable K is in the nature of a constant, it must be employed with great care. To prevent incorrect calculations at the beginning of the agro-humid period (shallow root depth) the point in time when K is taken into account in the calculations is given by the scenario variable TK.

The water supply per decade (SUPj) is calculated from the relationship between the coefficients for the actual water consump­tion (kc (a)j, see equation (6)) and the theoretical water requirements (kcj):

SUPj= kc(a)j/kCj (7)

23

I

This SUP value is the basis from which crop losses can be estimated by equation (1). The calculation of the crop's water balance for the decade (Bj) which depends upon S and D and thus implicitly upon the root development assumes that the increasing root space may tap soil water reserves which have been formed during previous infiltrations of soil water. D also includes a rising capillary flow of soil water (K).

B; Pe. + S M + D i -kC i -Eo . (8)

Tl Initial decade K,TK

TE End decade SUP i Continuous index kc(a)

Po Recorded rainfall kc

P* Effective rainfall B

En Climatic evaporation power Cm r Reduction coefficient for P0 Ce

S Soil water surplus Ce.m(d)

D Drainage water reached by root development A d

D* Intermediate value for D Z

Capillar water (K) during decades i Tl +TK Water supply Actual crop coefficient (for actual water consumption) Crop coefficient (for theoretical water requirements) Water balance Maximal water holding capacity of soil Effective water holding capacity of soil Water holding capacity (e.m) within d Root development from one decade to another Effective water holding capacity within A d [>Ce(AdfJ

kc (a ) | : = (P e . + S M + D i ) / E o i

3_

kc (alj : = kc i

i

S U P i ^ k c l a l j / k c ;

B i : = Pe. • S ; . , + Di - kc ; • E0 i

D: . , : = 0

Sj : = Ce (d;}

D*.,:= B j - C J d - , ) +K

A d i : = d i . , - - d i

Z : : = C e ( A d i D*.i : = 0*, , -K

D i . i : = D* i . i

i : = i+1

Fig. 5: Mathematical-logical model for the water balance of a defined crop stand

24

3.4.2 A mathematical approach to root growth

The author's observations of a large number of cultivated plants have shown that the daily situation regarding the increasing depth of an 80 % root complex (dj in cm) can be defined most easily and with sufficient approximation to the actual situation by the logistic function:

di = D[1+e«P-Kt»]-i (9)

where "t" is the current day and "D" the mean optimal length (in cm) achieved by the 80 % root complex. "0/K" generally represents the time until the period of the plants' peak water requirements. Since in our case, however, the annual varying amounts of available water produce different durations of the agro-humid period and thus different values for K, parameter must be re-calculated each year. So the current value t* is introduced, ß is a function also of the empirical starting value (d0) of d-development.

d = D [l+eP<1 t / t * » ] - 1

with: (3 = l n ( D / d 0 - )

Fig. 6: Situation of the parameters D, d0 and t* of an 80 % root complex

The calculation is in two stages. We are given t, D, d0 and t* (= period from TI to begin of peak water requirements in days):

t * = t - t d

ß =ln(D/d0-1) f

K = p/t*

d -D t l ^eP ' 1 ^ ' 1 * 1 ] " 1

(10)

A more sophisticated biométrie method for calculating root growth was recently published by CAUSTON/VENUS (1981, pp. 234 ff.). They use given foliage estimates to predict the growth of stems and roots. In our case, however, we do not have such values available. Like CAUSTON/VENUS we too assume a linear allometric relationship between foliage growth, described as leaf area development by KUTSCH (1978, pp. 44/45), and root growth.

3.4.3 Calculating the actual soil moisture

The actual soil moisture and especially the storage values Zl and Z2 (see Fig. 5) are calculated by referring to the "multi-strata soil moisture model" given by KOITZSCH (1977). As in that model, the following factors are taken into account:

25

I

— with optimum water supply the plants take water mainly from the soil strata near the surface; — when water becomes short the water drawn from every sub-stratum is proportionate to the amounts of water in the

sub-stratum which can still be used by the plants; — after heavy rainfall the water requirements are initially met from the filled sub-strata; — during the infiltration process the infiltration water can be used by the plants for as long as it is in the root area.

In the model presented here the soil moisture strata are obtained from the lengths developed by the 80 % root complex each decade. When drawing up the balance at the end of any decade the sum of the former soil moisture strata which were taken into account when preparing the water balance is set against the next stratum tapped by the advancing roots. By this means we discover whether any stored moisture exists which is carried forward to the next decade either as a straightforward transfer (S) or together with surplus infiltration water (D) which may be stored in the stratum tapped by the advancing roots. The amount of capillary water (K) which must be estimated or determined empirically is added to the transferred amount. This model is further refined by the fact that for each 10 cm of stratum a representative value can be given for the maximum (Cm) and the effective, i.e. the plant-available water holding capacity (Ce). The value for the effective water holding capacity must be deter­mined by means of special tests. The value for rain-fed cultivation differs from the value for irrigation conditions. Since the availability of soil water also depends upon the vegetation (type, stage, root development) Ce must be determined in relation to the crop under consideration in each individual case. The Ce values have not been differentiated according to the vegetation stage because only comparatively few empirical data exist in this connection (cf. FAO, 1977) and there is no suitable biométrie method.

Ce(1)° rSl)

Ce(2 )orCm(2)

Decade (i)

Ce (n)° rC"(n) Root Development

Depth (d|) [cm]

Fig. 7: Example of a multi-strata soil moisture model taking account of root growth and the different stored moisture in various strata

The given values for the water holding capacity are linked with the actual values for the root lengths (dj) by a special algorithm (Fig. 8). The following are calculated for a specific decade i:

— The cumulative water holding capacity (Cm e (d-V)> i-e- the capacity until root length d is reached, and

— the differential water holding capacity in the next stratum tapped by the advancing roots (Cm e (Ad-))' w n e r e

A d i = d i + 1 - d i

26

( begin )

i : = Tl

Cefol : = 0

r, := dj/10

r2 := d r ( ry10)

r3 : = d i t1/10

r4 :=d i t 1 - ( i y10)

C. (d i ) := £ C e ( j ) * r 2 - ( C e /10)

j = o

r3

C e ( A d i ) : = J Ce + r 4 - ( C /10)- Ce(d;î

^— IJ) (r+1) j=0 3

i := i+1

+ { iS TF >

Fig. 8 : Example for calculating the cumulative and differential effective water holding capacity using the multi-strata soil moisture model

TI.TE: Initial and final decade of calculation dj: Actual length of 80 % root complex r: Intermediate value

-e0) : Effective water holding capacity for each layer of 10 cm (j) Cumulative effective water holding capacity W(dj)-

Ce( dj): Differential effective water holding capacitiy

27

REFERENCES

BLANEY, H.F. u. CRIDDLE, W.D. (1950): Determining Water Requirement in Irrigated Areas from climatological and Irriga­tion data. - U.S. Dept. Agric. Conserv. Service, Washington, D.C.

CAUSTON, D.R.; VENUS, J.C. (1981): The Biometry of Plant Growth, London

EKERN, P.C. (1973): Evaporation and Transpiration. Water Resources Research Center, Hawaii, Contribution 27

FAO (1974): Effective rainfall. - (= Irrigation and Drainage Paper, 25), Rome — (1977): Crop Water Requirements. — (= Irrigation and Drainage Paper, 24), Rome — (1979): Yield Response to Water. — (= Irrigation and Drainage Paper, 33), Rome

FRANQUIN, P.; FOREST, F. (1977): Des programmes pour l'évaluation et l'analyse fréquentielle des termes du bilan hy­drique. — Agron. Trop., 32/1

HILLEL, D. (1977): Computer Simulation of Soil-water Dynamics; A Compendium of Recent Work. Ottawa, IDRC

KOITZSCH, R. 1977: Schätzung der Bodenfeuchte aus meteorologischen Daten, Boden- und Pflanzenparametern mit einem Mehrschichtenmodell. - Z. f. Meteorol., Berlin, 27, p. 302-306

KUTSCH, H. (1978): Das Zerealienklima der Marokkanischen Meseta. - (= Trierer Geographische Studien, 3)

KUTSCH, H.; SCHUH, H.J. (1980): Versuch der mathematischen Darstellung der Wasserbedarfskoeffizienten für bewässerte Kulturen. - Zeitschrift für Bewässerungswirtschaft, Bonn, 15, (H. 2), p. 183-191

McCULLOCH, J.S.G. (1965): Tables for the Rapid Computation of the PENMAN Estimate of Evaporation. - East African Agric. & For. Journal, Vol. XXX, No. 3, p. 286-295

PENMAN, H.L. (1948): Natural Evaporation from Open Water, Bare Soil and Grass. - Proc. R. Soc, Ser. A, 193 (1032), 120 ff.

PEREIRA, H.C. (1957): Field Measurements of Water Use for Irrigation Control in Kenya Coffee. - J. of Agric. Sciences, 49, p. 459-466

PERRIER, A. (1975): Etude physique de l'évapotranspiration dans les conditions naturelles, III, évapotranspiration réelle et potentielle des couverts végétaux. — Ann. agron., Vol. 26, 3

STANHILL, G. (1965): The Concept of Potential Evapotranspiration in Arid Zone Agriculture. - Methodology of Plant Eco-Physiology, Proc. of the Montpellier Symp., UNESCO, Paris

THORNTHWAITE, C.N./MATHER, J.R. (1955): The Water Balance. - (= Publ. Clim. VIII, 1), Centerton (USA)

VAN EIMERN, J. (1964): Zum Begriff und zur Messung der potentiellen Evapotranspiration. Met. Rundschau, 17 (2)

VERNET, A. (1963): Evaporation de l'eau du sol. - Ann. agron., 14 (4)

WOODHEAD, T. (1968): Studies of Potential Evaporation in Kenya. - E.A.A.F.R.O., Nairobi

28

MAIN AGRO-ECOLOGICAL ZONES FOR KENYA

Formula in Map

TA

TAI

TAH

Group of Zones and Name of Zone

T R O P I C A L - A L P I N E Z O N E S Temperature conditions not suitable for trees or crops

TROP-ALPINE CATTLE AND SHEEP ZONE Climatic and soil conditions provide grazing for cattle, complete nature protection on slopes advisable (Nat. Park)

TROP.-ALPINE SHEEP ZONE Grazing not suitable for cattle; complete nature pro­tection on slopes advisable (Nat. Park)

Approximate Altitudes and Climatic Characteristics

3 000/3 200 to 4 400 m. Cold, annual mean temp. 2—10° C; mean daily max. below 13° C; night frosts common

Moderately cold and humid to semi-humid; annual average precipitation at least more than 50 % of the potential evaporation (E0)

Very cold and humid to arid; annual av. precip. less than 50 % of the pot. evaporation or more in higher altitudes

UH U P P E R H I G H L A N D Z O N E S Temperature conditions suitabel for frost-resistant crops, or for others between the frost periods

UH 1 SHEEP AND DAIRY ZONE OR FOREST RESERVE Climatic coniditions not well suited for grain crops except oats, but favourable for artificial pastures, if not forest is on slopes ecologically more advisable

UH 2 PYRETHRUM-WHEATZONE Climatic conditions good1) for pyrethrum and fair2) for wheat4)

UH 3 WHEAT-BARLEY ZONE Climatic conditions good for wheat and barley, fair to poor3) for pyrethrum4)

UH 4 UPPER HIGHLAND RANCHING ZONE Only marginal or not suitable for rainfed crops or dairy. Natural pasture for upgraded cattle and sheep, low density grazing5)

UH 5 UPPER HIGHLAND NOMADISM ZONE Not in Kenya

LH LOWER H I G H L A N D Z O N E S Temperature conditions very suitable for high quality tea and cold enough for pyrethrum

LH 1 TEA-DAIRY ZONE OR FOREST RESERVE Climatic conditions good for tea, dairy pastures, potatoes and vegetables, fair for maize

LH 2 WHEAT/MAIZE-PYRETHRUM ZONE6) Climatic conditions fair-good for pyrethrum and wheat, fair for maize

LH 3 WHEAT/(MAIZE)-BARLEY ZONE6)7) Climatic conditions good for wheat and barley, fair-marginal for maize

2 200/2 400 to 3 000/3 200 m. Cool, annual mean temp. 10-15°; mean nigthly min. below 8° C; night frosts occasionally in cold seasons

Cool and humid; annual average precipitation more than 80 % of the potential evaporation. Dry seasons negligible

Cool and sub-humid; annual average precip. 65—80 % of the pot. ev. (or more to store enough soil moisture for dry seasons affecting pyrethrum)

Cool and semi-humid; annual av. precip. 50—65 % of the pot. ev. and growing periods must have at least 130 days in 6 out of 10 years

Cool and transitional; annual av. precip. 40—50 % of the pot. ev.; 60 % probability of growing periods less than 130 days

Cool and semi-arid to arid

1800/1900 to 2 200/2 400 m. Moderately cool, annual mean temp. 15—18° C. Frost very rare and only limited to basins, valleys or holes

Moderately cool and humid; annual av. precip. at least 80 % of the pot. ev. (or more to store enough soil moisture for dry seasons affecting tea)

Moderately cool and sub-humid; annual av. precip. 65—80 % of the pot. ev. (or more to store enough soil moisture for dry seasons affecting pyrethrum)

Moderately cool and semi-humid; ann. av. precip. 50—65 % of the pot. e v.; growing periods must be well developed and at least 115 days in 6 out of 10 years

29

LH 4 CATTLE-SHEEP BARLEY ZONE Climatic conditions fair for barley and wheat. Natural pasture for medium density grazing

LH 5 LOWER HIGHLAND RANCHING ZONE Except of very early maturing barley not suited for rainfed crops or dairy. Nat. pasture for low density grazing

Moderatley cool and transitional; annual av. precip. 40—50 % of the pot. ev. and growing periods must be at least 105 days in 6 out of 10 years

Moderately cool and semi-arid; annual av. precip. 25-40 % of the pot. ev.; 60 % probability of growing periods less than 105 days

LH 6 LOWER HIGHLAND NOMADISM ZONE Not in Kenya

UM UPPER M I D L A N D Z O N E S Temperature conditions very suitable for Arabica coffee

UM 1 COFFEE-TEA ZONE Climatic conditions good to fair for Arabica coffee and tea, the same for maize

UM 2 MAIN COFFEE ZONE Climatic conditions good for Arabica coffee and maize

UM 3 MARGINAL COFFEE ZONE Moisture conditions fair to poor for coffee, then irri­gation profitable ; fair for maize 10)

UM 4 SUNFLOWER-MAIZE ZONE OR UPPER SISAL ZONE8) With unimodal rainfall good for sunflower and maize, with bimodal rainfall mainly fair 10); sisal good (large scale)

UM 5 LIVESTOCK-SORGHUM9) ZONE OR UPPER MARGINAL SISAL ZONE8) Climatic conditions fair for sorghum, poor for maize. Natural pasture for low density grazing. Sisal fair to poor

UM 6 UPPER MIDLAND RANCHING ZONE Only marginally or not suitable for rainfed crops or dairy. Nat. pasture for low to very low density grazing

LM LOWER M I D L A N D Z O N E S Temp, conditions suitable for cotton (nearly like low­land temperatures)

LM 1 LOWER MIDLAND SUGAR CANE ZONE Climatic conditions good for sugar cane, too wet for cotton, fair for maize

LM 2 LOWER MIDLAND MARGINAL SUGAR CANE ZONE Climatic conditions fair to marginal for sugar cane, good for maize

LM 3 COTTON ZONE Climatic conditions good to fair9) for cotton, fair for maize 10)

Mod. cool and arid; annual av. precip. less than 25 % of the pot. evaporation

1 300/1 500 to 1 800/1 900 m. Temperate, annual mean temp. 18-21° C. Absolutely no frost

Temperate and humid; annual av. precip. at least 80 % of the pot. ev. (or more to store enough soil moisture for dry seasons affecting tea)

Temperate and sub-humid;annual av. precip. 65-80 % of the pot. ev. (or more to store enough soil moisture for dry seasons affecting coffee)

Temperature and semi-humid; annual av. precipitation 50—65 % of the pot. ev. (or more to store enough soil moisture for survival of coffee in dry seasons)

Temperature and transitional; annual av. precipitation 40-50 % of the pot. evaporation

Temperate and semi-arid; annual av. precip. 25—40 % of the pot. ev.; growing periods must be at least 65 days in 6 out of 10 years

Temperate and arid; annual av. precip. 15-25 the pot. evaporation

.of

800 to about 1 300 m in Eastern Kenya and 1 500 m in Western. Warm, annual mean temp. 21—24° C, mean min. > 14° C

Warm and humid; annual av. precip. at least 80 % of the pot. ev. (or more to store enough soil moisture for dry season affecting sugar cane)

Warm and sub-humid; annual av. precip. 65—80 % of pot. ev. (or more to store enough soil moisture for dry seasons affecting sugar cane)

Warm and semi-humid; annual av. precip. 50—65 % of pot. ev. (or more to store enough soil moisture for dry seasons affecting cotton)

3 0

LM 4 MARGINAL COTTON ZONE OR MIDDLE SISAL ZONE8) Climatic conditions fair to poor for cotton an maize1 *), fair for pigeon peas, good for sisal

LM 5 LOWER MIDLAND LIVESTOCK-MILLET12) ZONE OR MARGINAL MIDDLE SISAL ZONE8) Climatic conditions fair to poor for millets, cowpeas and grams or sisal. Nat. pasture for low density grazing

LM 6 LOWER MIDLAND RANCHING ZONE Not suitable for rainfed crops. Nat. pasture for low to very low density grazing

Warm and transitional; annual av. precip. 40—50 % of pot. ev. (or more in bimodal rainfall areas for survival of cotton in dry season)

Warm and semi-arid; annual av. precip. 25-40 % of pot. ev., or less or more because growing periods must be at least 45 days in 6 out of 10 years

Warm, semi-arid in areas with intermediate rainfall, arid in other areas

L L O W L A N D Z O N E S 1 3 ) Temp, conditions very suitable for coco- and cashew-nuts

L 1 COCOA ZONE Not in Kenya

L 2 LOWLAND SUGAR CANE ZONE Climatic coniditons good to poor for sugar cane, good for coconuts, cassava, and maize

L 3 COCONUT-CASSAVA ZONE Climatic conditions good to fair for coconuts and cassava, cotton fair (danger of rainfall in open bolls), maize fair •

L 4 CASHEWNUT-CASSAVA ZONE OR LOWER SISAL ZONE8) Climatic conditions good to fair for cashewnuts^) and cassava, good for sisal, marginal for coconuts; cotton in subzones with suitable growing periods

L 5 LOWLAND LIVESTOCK-MILLET11) ZONE OR MARG. LOWER SISAL ZONE8) Climatic conditions fair to marginal for millets, cowpeas and grams or sisal. Nat. pasture for low density grazing

L 6 LOWLAND RANCHING ZONE Not suitable for rainfed crops. Nat. pasture for low to very low density grazing

L 7 LOWLAND NOMADISM ZONE Natural pasture for periodic low density grazing only

0-800 m, in Rift Valley 1 000 m. Hot, annual mean temp, more than 24° C

Hot and humid

Hot and sub-humid; annual av. precip. 65—80 % of pot. ev. (or more to store enough soil moisture for dry seasons affecting sugar cane)

Hot and semi-humid; annual av. precip. 50—65 % of pot. ev. (or more to store enough soil moisture for coconuts and cassava)

Hot and transitional; annual av. precip. 40-50 % of pot. ev. (or more to store enough soil moisture for cashewnuts and cassava)

Hot and semi-arid; annual av. precip. 25—40 % of pot. ev., or less or more because growing periods must be at least 40 days in 6 out of 10 years

Hot, semi-arid in areas with intermediate rainfall, arid in other areas

Hot and very arid (perarid), annual av. precip. < 15 % of pot. evaporation

*> Good = Average yield more than 60 % of the optimum on suitable soils

' Fair = Average yield 40 to 60 % of the optimum on suitable soils

*' Poor = Average yield 20 to 40 % of the optimum on suitable soils

' Modifications of the cropping chances, other crops or suitable varieties in all zones according to the combination with growing periods (see

Table II) and to localities (see District Maps) 5' Low density means here more than 4 ha per livestock unit (LU). The most practical LU in Kenya is 300 kg, averaging indigenous cattle over

3 years, equivalent of adult sheep and goats: 7 (see PRATT AND GWYNNE: Rangeland Management and Ecology in East Africa. London

1977, p. 279). It should not be mixed up with standard stock units (SSU) of 450 kg used still by veterinaries.

°' Wheat or maize domination depending on farm scale and soils.

' ' Maize normally less suitable, therefore in brackets

"' Sisal mainly in large scale farming areas

" ' At present mainly maize, but with high risk; on the margin it should be very early mat. dwarf sorghum (cold tolerant) or early maturing like

Serena

"' Depending on soils

31

**' Better and less risky with special early mat. varieties but they have lower yield capacities

' At present mainly maize, but with high risk. On the margin only new very short maturing millet varieties 1 3 ) In Kenya differentiation in CL = Coastal Lowlands and IL = Inner Lowlands (Tab. 1) not necessary. L 1-4 are coastal, 5 -7 inland (with

few exceptions) 1 4 ) If the bimodal rainfall distribution is not endangering the flowers or fruits of cashewnuts

Regrouping of Main Agro-Ecological Zones of Kenya into Simplified Agro-Economic Zones for Statistics

TA I and II Tropical Alpine Grazing or Conservation Zone, no agr. statist UHO Forest Zone, no agr. statistics

UH1 Sheep-Dairy Zone UH 2 and LH 2 Pyrethrum Zone UH 3 and LH 3 Wheat and Barley Zone LH 4 Ranching and Barley Zone LH1 Tea Zone UM 1 Coffee-Tea-Zone UM 2 and 3 Coffee Zone UM4 Sunflower-Maize Zone or Upper Sisal Zone ') UM5 Ranching and Sorghum Zone or Upper Marginal Sisal Zone') LM 1 and 2 Sugar Cane Zone (Inland) L2 " " (Coast) LM 3 and 4 Cotton Zone or Middle Sisal Zone*) L I (not in Kenya) L2 (very small in Kenya) L3 Coconut Zone L4 Cashewnut Zone or Lower Sisal Zone^) L 4 m Coastal Cotton Subzone

L 5 and LM 5 Ranching and Millet Zone or Lower and Middle Marginal Sisa L6, LM 6, UM 6, LH 5 and UH 4 Ranching Zone L7 Nomadism Zone

The names in the zones are thoseof potentially leading crops there, of course they can be grown also in some other zones:

Maize in zones: LH 1-3; UM 1-4; LM 1-4; L 2-4 Hybrid maize in zones : LH 1 —3 ; UM 1 —3 ; LM 1 —3 Wheat in zones : UH 2-3 ; LH 2-4 Rice unirrigated in zones : L 1 —3 ; LM 1 —2 Rice irrigated in zones: L 1—6, (7); LM 1—6, (7) Sorghum in zones: UM (1-3), 4 - 5 ; LM (1-3), 4 - 5 ; L (1-3), 4-5 Finger millet in zones: LH (1-3); UM (1-3), 4; LM (1-3), 4, (5); L (1-3), 4, (5) Groundnuts in zones: LM (1-2), 3-4; L (2-3), 4 Cotton in zones: LM (2), 3-4; L (2), 3-4 Sunflower in zones: LH (1-3); UM 1-4; LM 1-4, (5); L 2-4, (5)

Livestock is possible in all zones. Stocking rates decrease from zone 1 to zone 7. ( ), means that in this zone:, the crop is normally not competitive to related crops (f.i. sorghum to maize)

' Sisal in large scale farming areas

32

S U I T A B L E CROPS FOR K E N Y A AND T H E I R R E Q U I R E M E N T S

The climatic requirements regarding temperature (expressed in altitude range) and rainfall for important possible crops are shown in the agro-climatological crop list. At first come food crops (cereals, pulses, tuber crops) then cash crops. The listing of varieties of annual crops is done according to their growing periods, perennials are listed alphabetically. Vegetables and many fruits were not included because of lack of space and information.

Also it was not possible to list all varieties of crops. There are new ones coming out, and others loosing importance (see AC-LAND 1971 and 1979).

Some new crops like jojoba (see FINK and EHRLER 1979), buffalo gourds (see BEMIS a. o. 1979 and Nat. Ac. of Science 1975), Marama beans and Vigna (see Nat. Ac. of Science 1979), being still in experimental stage are mentioned, because they may become important in the future. Buffalo gourds have nutritious seeds and big tubers (but they need years to grow; their bitter­ness can be washed out).

If some crops are difficult to identify by their names, because they may be locally different, look for their scientific latin names which are mentioned in the adjoining soil requirement list (where there was more space to put them).

The growing periods are given for the time until physical maturity. The same is done in the water requirement diagrams in the districts. Only for maize, the difference to harvest time is so important and there is enough information available about it, so that it is included.

Altitude range is given according to ACLAND (1979), REHM and ESPIG (1976), and own observations. Rainfall requirements are calculated by a computer program developed by H. KUTSCH and HJ. SCHUH (see p. 19). For the farmers' purposes we adapted it to a 2/3 reliability of rainfall during the growing period, then they know they can expect this amount in at least 6 out of 10 years if they see that figure in the maps or tables of this book. We included average rainfall for perennials to compare it with the maps of annual rainfall. — Lower limit of optimum yield means very good yields in a field scale (with every other factor optimized), of course there may be higher yields on experimental stations.

The next list, which is that of suitable grasses and fodder crops, represents a first collection based on bioclimatological criteria. Therefore the list is still fairly long. It has to be further selected in each district due to local soil distribution, agrosocial condi­tions, herding habits, propagation possibilities and other factors. Important grasses and fodder crops are printed in darker letters.

There are also other possible fodder crops not mentioned here, especially trees, which are still in experimental stage, such as the salt tolerant Acacia halosericea. Apart from Government Research Stations valuable testing work is done for instance at the Catholic Mission at Kositei, Baringo District. It is impossible to mention all Government and other reports existing on the fodder question.

The soil requirements list is only an excerpt from what is laid down in literature (ACLAND 1975, REHM and ESPIG 1976, JACOB and UEXKÜLL 1963 and others). Further studies, especially about nutritional requirements, are necessary.

References

ACLAND, J.D. (1979): East African Crops. - 3rd ed., London (1st ed. 1971)

BEMIS, W.P.; BERRY, J.W.; WEBER, C.W.'(1979): Domestication Studies with the Feral Buffalo Gourd. - In: Arid Land Plant Resources, Texas Tech University, Lubbock, p. 371-383

FINK, D.H. a. EHRLER, W.L. (1979): Runoff Farming for Jojoba. - In: Arid Land Plant Resources, Texas Tech University, Lubbock, p. 212-224

JACOB, A. a. UEXKÜLL, H. v. (1963): Fertilizer Use. Nutrition and Manuring of Tropical Crops. - 3rd ed., Verlagsgesell­schaft für Ackerbau, Hannover

NAT. ACAD. OF SCIENCE (1975): Underexploited Tropical Plants with Promising Economic Value. - Washington, D.C.

NAT. ACAD. OF SCIENCE (1979): Tropical Legumes: Resources for the Future. - Washington, D.C.

REHM, S.; ESPIG, G. (1976): Die Kulturpflanzen der Tropen und Subtropen. - Stuttgart

AGRO-CLIMATOLOGICAL CROP LIST FOR KENYA

Growing Crop/Variety1'

period (or place of

(approx.) breeding)

Av. number of days

to phys. maturity/

to harvest

Altitudes accor- Required well distrib. Lower limit

ding to growing rainfall in growing of optimum

periods2' per. ' (not av.!) yields'*'

G R A I N C R O P S

Short to

very short

Short

Short to

medium

Short

Short to

medium

Long

MAIZE/ v.e.mat.: Dry Land

Composite

MAIZE/e.mat.: Katumani,

Composite B

MAIZE/e.mat.: Taboran

MAIZE/m.mat.:HX

105 A = Pioneer Hybrid

n MAIZE/m.mat : Coast

Composite

Medium MAIZE/m.mat : H511 ,512

Medium MAIZE/m.mat : H 622, 632

Medium to MAIZE/l.mat.: H612 ,613

long H 614

Long to MAIZE/l.mat.: H611

medium

Long to MAIZE/l.mat.: H 7801

medium

Long to very MAIZE/v.l.mat.: High Alt

long Composite

Very long MAIZE/v.l.mat.: Cuzco-Hybrid

7 5 - 85/ 85-100

85-105/100-120

105-135/120-150

90-110/105-125

100-115/120-140

105-120/120-150

125-150/150-185

140-155/180-210

160-180/190-230

180-200/225-245

200-220/245-270

165-185/195-220

210-240/250-280

^ 2 5 0 / u p t o 3 6 0

7 0 0 - 1 5 0 0 m

240-430 mm

260-450 mm

1 5 0 0 - 1 900 m 280-480 mm

380-600 mm

0 - 1 200 m 450-700 mm

550-700 mm

1 0 0 0 - 1 700 m 500-750 mm

1 0 0 0 - 1 700 m 550-800 mm

1 5 0 0 - 2 100 m 600-950 mm

1 800-2 100 m 600-900 mm

2 100-2 400 m 600-950 mm

1 5 0 0 - 2 100 m 700-1 100 mm

2 400 -2 700 m 650-1 000 mm

(if frost-free)

2 400- (2 800) m 700-1 100 mm

2 500 kg/ha

3 500 kg/ha

2 500 kg/ha

3 000 kg/ha

5 000 kg/ha

4 500 kg/ha

6 000 kg/ha

6 600 kg/ha

5 900 kg/ha

5 800 kg/ha

7 800 kg/ha

6 000 kg/ha

Medium to

short

Medium

Medium to

short

Medium

WHEAT/e.mat.: Kenya Tembo,

K. Fahari, K. Kiboko, K. Ngiri

K. Nungu, K. Nyangumi,

K. Kifaru, K. Paka, K. Zerbadi,

K 6927-1 (= K. Paa), K 6928-1

(= K. Kongoni)

WHEAT/e.mat.: K. Tembo,

K. Fahari, K. Kifaru,

K. Ngiri, K 6928-1

WHEAT/m.mat.: Afr. Mayo,

K. Nyoka, K. Màmba, K. Nyati,

R 199, R 200

and Bounty

Medium WHEAT/m.mat.: K. Leopard,

Fanfare

" & K. Kudu

Medium to

long " 34

110-125.

125-140

140-165

115-130

130-145

145-165

125-140

140-155

155-175

1 800-2 100 m

2 100-2 400 m

2 400 -2 800 m

1 800-2 100 m

2 100-2 400 m

2 400 -2 800 m

1 8 0 0 - 2 100 m

2 100-2 400 m

2 400 -2 800 m

350-530 mm

350-550 mm

400-600 mm

400-620 mm

450-650 mm

3 300 kg/ha

(most Kenya

varieties,

African Mayo,

Bounty)

3 700 kg/ha

(K. Fahari,

K. Nyangumi &

new varieties:

K 6927/28-1

4 000 kg/ha

(new varieties

R 199/200

Growing

period

(approx.)

Medium to

long

Long to

medium

Very short

to short

Short

Medium to

short

Medium

Medium to

short

Medium

Medium to

short

Medium

Medium to

long

Medium

Very short

Short

Medium

Short to

very short

Short

Crop/Variety '

(or place of

breeding)

WHEAT/l.mat.: K. Bongo

BARLEY/v.e.mat: (Kashmir)

BARLEY/e.mat. : Tumaini for

malting, Amani for stockfeed

BARLEY/m.mat.: Proctor & Kenya

Research for malting, B 106

for stockfeed

DURUM WHEAT/m.mat.:

K. Mwewe, K. Njiwa, K. Kungewa

TRITICALE5)e. and m.mat. :

T 6 5 . T 7 4

TRITICALE/l.mat.:T50

OATS/m.mat. : Suregrain, All 6

FOXTAIL MILLET (Setaria italica)

v.e.mat. (Jodhpur, CAZRI-Inst.)

FOXTAIL MILLET/e.mat: ISe 285

HOG MILLET/v.e.mat. (Jodphur)

PROSO MILLET (Panicum miliac.)/

e.mat.: Serere I

BULRUSH MILLET/e.mat. local

BULRUSH MILLET/e.mat.:

Serere Comp. II

BULRUSH MILLET/m.mat.

FINGER MILLET/e.mat. Ekalakala

FINGER MILLET/m.mat. lokal

SORGHUM/v.e.mat. IS 8595

SORGHUM/e.mat.: Serena

SORGHUM/e.mat.: 2KX 17

Av. number of days

to phys. maturity/

to harvest

160-180

180-200

5 5 - 75

75-115

110-125

125-145

120-135

135-155

115-125

125-140

115-140

140-155

155-175

125-155

155-170

170-190

130-145

145-165

4 5 - 55

5 5 - 75

5 0 - 65

6 5 - 80

8 0 - 95

40 - 50

50- 70

4 5 - 55

5 5 - 65

7 0 - 90

7 5 - 90

120-150

75-110

100-160

75-105

85-110

90-125

Altitudes accor­

ding to growing

periods2 '

2 200-2 400 m

2 400 -2 800 m

Required well distrib. Lower limit

rainfall in growing of optimum

per. ' (not av.!) yields '

500-750 mm

1 3 0 0 - 1 800 m 150-300 mm

1 8 0 0 - 2 800 m 180-350 mm

2 100-2 400 m

2 400 -2 800 m

2 100-2 400 m

2 400-2 800 m

1 800-2 100 m

2 100-2 500 m

1 600-2 100 m

2 100-2 400 m

2 400 -2 800 m

1 6 0 0 - 2 100 m

2 100-2 400 m

2 4 0 0 - 2 800 m

1 900 -2 400 m

2 400 -2 800 m

0 - 800 m

800-1 300 m

0 - 800 m

800-1 300 m

1 300-1 800 m

0 - 800 m

800-1 300 m

0 - 800 m

800-1 300 m

0 - 1 250 m

300-500 mm

400-600 mm

400-620 mm

450-650 mm

400-620 mm

160-290 mm

2 2 0 - 3 2 . „ m

160-290 mm

200-280 mm

220-400 mm

0 - 1 250 m 250-450 mm

(short r . - l 500m)

380-800 mm

0 - 2 100 m

0 - 2 4 0 0 m

0 - 1 500 m

(warmer seasons

and places up

to 1 800 m)

230-500 mm

500-900 mm

200-430 mm

220-480 mm

300-500 mm

3 500 kg/ha

2 000 kg/ha

3 500 kg/ha

4 500 kg/ha

(Amani)

3 500 kg/ha

4 500 kg/ha

(B 106)

\ 400-600 mm \ 3 000 kg/ha

4 200 kg/ha

4 500 kg/ha

2 500 kg/ha

1 800 kg/ha

3 000 kg/ha

1 500 kg/ha

2 800 kg/ha

2 000 kg/ha

4 000 kg/ha

4 500 kg/ha

3 800 kg/ha

4 000 kg/ha

3 800 kg/ha

4 000 kg/ha

5 000 kg/ha

35

I

Growing Crop/Variety1 ' Av. number of days

period (or place of to physical

(approx.) breeding) maturity

Short to SORGHUM/m.mat: White 100-130

medium

Medium to SORGHUM/l.mat.: E 1291, for 160-180

long stockfeed mainly

Long SORGHUM/v.l.mat. 180-240

Bimodal SORGHUM/ratoon from f.i. 90-115

Long

2KX 17 or others

SORGHUM/cold tolerant

Short to RICE/e.mat. = Sindano

medium

Medium RICE/m.mat. = Faya S

Short GRAIN AMARANTH/

to long diff. species

Medium QUINOA/var. Sajama

to long (Bolivia)

+ 90-110

95-130

120-160

90-180

150-180

Altitudes accor- Required well distrib. Lower limit

ding to growing rainfall in growing of optimum

periods^' per. ' (not av.!) yields4'

320-590 mm 5 000 kg/ha

400-800 mm 9 000 kg/ha

0 - 1 5 0 0 m

(warmer seasons

and places up 6 2 0 - l 000 mm 6 500 kg/ha to 1 800 m)

f.i. 280-500 mm 4 500 kg/ha

+230-450 mm + 3 500 kg/ha

(0 - ) 1800-2200 m 1981 still in experiment

0 - 1 200 m 750-1 070 mm 8 000 kg/ha

(irr. water) (transpl.)

(in W - l 500 m) 800-1 200 mm 9 000 kg/ha

(irr. water) (transpl.)

0 - 2 900 m 190-800 mm

2 300-3 200 m 300-800 mm

3 000 kg

3 500 kg

L E G U M I N O U S C R O P S

Very short BAMBARRA GROUNDNUTS/

v.e.mat. (Timbuktu)

Very short

to short " "

Short BAMBARRA GRDN./e.mat

Short to med. "

Short to GROUNDNUTS/e.mat.:

medium Valencia

Medium to GROUNDNUTS/m.mat.:

short Spanish

Medium GROUNDNUTS/l.mat.:

Mwitunde (partly Rosette

resistant)

Very short

to short TEPARY BEANS/v.e.mat.

Very short TEPARY BEANS, e.mat.:

to short Kiboko (Botswana)

Very short

to short COWPEAS6)/v.e .mat.

Short to

very short COWPEAS/e.mat. : Katuli

Short to

medium COWPEAS/less e.mat.

Medium COWPEAS/m.mat.: Emma

Long COWPEAS/l.m.

Very short

to short MOTH BEANS (India)7)

5 0 - 60

6 0 - 70

80-100

100-120

90-120

100-135

120-150

60-75

6 5 - 80

6 0 - 70

7 0 - 90

90-120

120-150

180-240

6 0 - 90

0 - 800 m

800-1 300 m

0 - 800 m

800-1 300 m

180-350 mm

250-500 mm

0 -1 500 m 280-550 mm

0 - 1 500 m 300-600 mm

0 - 1 500 m 350-650 mm

600-1 500 m 180-300 mm

600-1 300 m 200-320 mm

0 - 1 500 m 190-380 mm

0 - 1 500 m 200-400 mm

0 - 1 500 m 220-450 mm

0 -1 500 m 250-500 mm

0 - 1 500 m 300-700 mm

. 0 - 1 500 m 180-400 mm

1 000 kg/ha

1 500 kg/ha

1 800 kg/ha

2 200 kg/ha

2 500 kg/ha

1 500 kg/ha

2 000 kg/ha

1 200 kg/ha

1 900 kg/ha

2 000 kg/ha

2 300 kg/ha

2 500 kg/ha

1 600 kg/ha

36

Growing Crop/Variety '

period (or place of

(approx.) breeding)

Short to GREEN GRAMS

very short

Short "

Short BLACK GRAMS

Short CHICK PEAS =

YELLOW GRAMS

Short to BEANS/v.e.mat.:

very short Mwezi moja

Short BEANS/e.mat.: Canadian

Wonder, Mex. 142, Rosecoco

Short to

medium " "

Medium ..

Short to BEANS/m.mat. :

medium Cuarentino a.o.

Medium to

short "

Medium

Short to BONA VIST BEANS =

medium DOLICHOS LABLAB/ann. var

Medium to

long " "

Perennial BONAVIST BEANS =

DOLICHOS LABLAB/per. var.

Short to med. HORSE BEANS

Medium to

long " "

Short to TROPICAL LIMA

long BEANS/diff. var.

Long to

very long HORSE GRAMS

Short to

medium GARDEN PEAS

Medium to

short " (4

Short to PIGEON PEAS/e.mat.:

medium 422,423

Medium to PIGEON PEAS/m.mat.:

short Composite

Long to PIGEON PEAS/l.mat.

very long (bimodal)

Short SOYA BEANS/e.mat.:

Black Hawk, Hill

Av. number of days

to phys. maturity/

to harvest

7 5 - 90

90-100

85-100

100-110

85-100

70- 80

80- 90

80-100

100-120

120-150

90-110

110-130

130-160

100-140

140-180

> 3 6 5

100-140

140-180

90-270

210-240

90-120

120-140

110-130

120-140

180-260

80-110

Altitudes accor- Required well distrib. Lower limit ding to growing rainfall in growing of optimum

periods2' per.3'(not av.!) yields4'

0 - 1 200 m 1

1 2 0 0 - 1 500 m

(W-Kenya)

0 - 1 200 m

1 200-1 800 m

(W-Kenya)

190-400 mm 1

200-400 mm

0 - 1 500 m 200-390 mm

7 0 0 - 1 500 m

1 5 0 0 - 1 800 m

700-1 500 m

1 5 0 0 - 1 800 m

1 800-2 400 m

800-1 500 m

1 5 0 0 - 1 800 m

1 800-2 400 m

0 - 1 200 m

1 200-2 100 m

, 250-450 mm

200-700 mm

1 800-2 700 m 400-700 mm

0 - 1 500 m 180-350 mm

1 800-2 300 m

2 300-2 700 m

250-450 mm

0 - 1 500 m 370-600 mm

0 - 1 500 m 400-650 mm

0 - 1 500 m 500-800 mm

0 - 1 200 m 350-680 mm

1 500 kg/ha

1 500 kg/ha

\ 230-430 mm \ 1 500 kg/ha

1 900 kg/ha

1 600 kg/ha

2 500 kg/ha

1 800 kg/ha

1 900 kg/ha

0 - 2 100 m 800-2 000 mm 2 100 kg/ha

0 - 1 800 m 400-750 mm 2 500 kg/ha

2 000 kg/ha

0 - 2 400 m 4 0 0 - 1 200 mm 4 000 kg/ha

1 500 kg/ha

3 000 kg/ha

1 400 kg/ha

2 000 kg/ha

2 300 kg/ha

2 300 kg/ha

37

Growing Crop/Variety1 ' Av. number of days period (or place of to physical (approx.) breeding) maturity

Medium to SOYABEANS/e.mat:

short Black Hawk, Hill 110-130 .

Altitudes accor- Required well distrib. Lower limit

ding to growing rainfall in growing of optimum

periods2 ' per. ' (not av.!) yields '

Medium

Medium to

very long

Perennial

Short to

very short

Short

Short

Short to

medium

Medium

Medium to

short

Medium to

long

Medium

Very short

to short

Short to

medium

Medium

SOYA BEANS/m.mat.

TARWI (Lupinus

mutabilis, Andes) °^

MARAMA BEANS9)

O I L S E E D C R O P S

SUNFLOWER/v.e.mat.:

Russ. dwarf var.

SUNFLOWER/e.mat.:

Issanka

SUNFLOWER/e.mat.: 252

SUNFLOWER/e.mat.:

Hybrid S 345

SUNFLOWER/m.mat.: Vympel,

Mayok, 067, Luci, Sputnik

SUNFLOWER/m.mat.: Comet

SUNFLOWER/m.mat.:

Hybrid S 301 A

SUNFLOWER/Lmat.:

Kenya White

LINSEED ••

RAI/v.e.mat. (Jodhpur, CAZRI)

(Brassicajuncea, also for Mustard)

RAPESEED/e.mat.: Turget

RAPESEED/m.mat.: Midas,

SV 69/1229, SV Guile ,

Medium RAPESEED/l.mat

Nilla, SV 71/1225

Short to

medium SIMSIM/e.mat.

Medium SIMSIM/m.mat

Medium SAFFLOR

Medium CASTOR/Dwarf

Perennial CASTOR/C-15

110-130

130-150

150-330

more than 365

7 5 - 85

8 0 - 90

90-110

85-110

1 200-1 800 m

0 -1 200 m

1 200-1 800 m

350-680 mm

400-750 mm

1 800-3 600 m 450-1 500 mm

0 - 1 800 m 200-500 mm

0 - 1 500 m 180-330 mm

0 - 1 500 m 200-400 mm

0 - 1 800 m 250-500 mm

0^1 500 m 280-550 mm

2 300 kg/ha

2 500 kg/ha

2 800 kg/ha

still exp.

1 100 kg/ha

1 200 kg/ha

high oil cont.

1 600 kg/ha

high oil cont.

1 900 kg/ha

very high oil c.

110-120 0 - 1 500 m

120-135 1 500-2 300 m > 1 900 kg/ha

135-150 2 300-2 600 m 300--600 mm

120-130 1 000 -2 000 m 1 600 kg/ha

fair oil cont.

120-135 0 - 1 800 m 350--650 mm 2 800 kg/ha

very high oil c

140-175 1 500-2 300 m 350--700 mm 2 200 kg/ha

low oil cont.

120-150 1 800-2 700 m 300--600 mm 1 400 kg/ha

6 0 - 80 800-2 000 m 180-380 mm

110-125 1 8 0 0 - 2 7 0 0 m 250-500 mm 1350kg/ha

125-140 1 8 0 0 - 2 700 m 300-600 mm 1 850 kg/ha

140-155 1 8 0 0 - 2 700 m 350-700 mm 2 100 kg/ha

90-120 I 0 - 1 3 0 0 m ( E ) 300-500 mm 1 000 kg/ha

120-140 I 0 - 1 5 0 0 m ( W ) 350-600 mm 1 300 kg/ha

120-150 1 2 0 0 - 1 800 m 250-400 mm 2 000 kg/ha

130-170 500-1 500 m 350-800 mm 1 200 kg/ha

more than 365 0 - 2 100 m 400-650 mm 1 200 kg/ha

3 8

Growing Crop/Variety' '

period (or place of

(approx.) breeding)

Av. number of days Altitudes accor- Required well distrib. Lower limit

to physical ding to growing rainfall in growing of optimum

maturity periods2 ' per. ' (and average) yields4 '

T U B E R C R O P S

Very short

to short SWEET POTATOES/e.mat.

Medium to per. " " /m.mat

Very long to

perennial " " /m.mat

Long to

very long CASSAVA/e.mat.

Perennial /I mat.

Short to

medium

Medium

to long

Short to long

Perennial

Long to

perennial

Very long to

perennial

Very long to

perennial

Perennial

POTATOES/e.mat.

" /m.mat.:

Kenya Akiba, B 53 a.o.

YAM BEAN (Mexico)

TARO

WHITE GUINEA YAM

GREATHER YAM

YELLOW GUINEA YAM

BUFFALO GOURDS (Tucson)

MARAMA BEAN (Kalahari)9^

VIGNA lobatifolia (Kalahari)

6 0 - 90

120-180

270 and more

180-270

540-720

0 - 1 800 m 3 5 0 - 650 mm 8 t/ha

0 - 1 800 m 5 0 0 - 900 mm 20 t/ha

0 - 1 700 m 750-1 250 mm 35 t/ha

0 - 1 500 m 500-1 000 mm 20 t/ha

0 - 1 500 m 1 100-3 000 mm 40 t/ha

( ^ 8 5 0 - 1 700 mm ann. av.)

100-130 1 8 0 0 - 2 900 m

(if frost-free)

350-- 630 mm 20 t/ha

140-170 1 800-2 900 m 450-- 750 mm 35 t/ha

90-270 0 - 1 800 m 500--1 500 mm 60 t/ha

more than 365 0 - 1 800 m 1 300--2 300 mm 20 t/ha

180-300 0 - 1 800 m 1000--1 500 mm 30 t/ha

240-300 0 - 1 800 m 1 400--1 800 mm 45 t/ha

300 and more 0 - 1 800 m 1 200--1 800 mm 40 t/ha

more than 365 0 - 1 300 m 180-- 500 mm still exp

.. 0 - 1 800 m 200-- 500 mm .. ..

. . i . . . 0 - 1 800 m 250-- 600 mm L . • . .

F I B R E C R O P S

Long COTTON/Unimodal var

long staple

Very long

to long COTTON/Bimodal var.

BPA

Medium

to long FLAX

Short to

medium KENAF

Perennial NEW ZEALAND FLAX

Medium to

long ROSEL LE

Perennial SISAL

170-210

240-300

150-220

70-140

more than 365

130-180

more than 365

0 - 1 250 m(E)

0 - 1 4 0 0 m ( W ) 5 5 0 - 950 mm 2 000 kg/ha

0 - 1 250 m 1 800 kg/ha

1 800-2 700 m 4 5 0 - 900 mm 1 700 kg/ha

0 - 2 000 m 5 0 0 - 700 mm 3 000 kg/ha

1 8 0 0 - 2 500 m 750-1 200 mm

(A, 900-1 400 mm ann. av.)

0 - 1 500 m 1 0 0 0 - 1 800 mm 3 500 kg/ha

0 - 1 800 m 5 5 0 - 900 mm 8 0 0 -

O 650-1 050 mm ann. av.)2 500 kg/ha

1.-5. year

39

Growing Crop/Variety ) period (01 place of (approx.) breeding)

Av. number of days

to physical

maturity

Altitudes accor­

ding to growing

periods^'

Required well distrib. Lower limit

rainfall in growing of optimum

per. ' (not av.!) yields' ,4)

OTHER CASH CROPS AND FRUITS

Perennial AVOCADOES/West Ind.

/Mex.

BANANAS

CASHEW NUTS

CITRUS10)

COCONUTS

COFFEE/Arabica

" " /Robusta

DECIDUOUS FRUIT TREES

(Apples, peaches, pears)

JOJOBA

MACADAMIA NUTS

PINEAPPLE

PYRETHRUM

SUGAR CANE

TEA

Medium to

long TOBACCO/Virginia Perennial TUNG OIL

YEEB NUTS (bush)11)

more than 365

365-540

more than 365

150-170

more than 365

0 - 900 m 900-1 200 mm 10.0 t/ha

(1 0 0 0 - 1 900 mm ann. av.)

1 0 0 0 - 2 400 m 800-1 200 mm 8.0 t/ha

( 8 8 0 - 1 500 mm ann. av.)

0 - 1 800 m 9 0 0 - 1 700 mm 30.0 t/ha

( ^ 1 000-2 300 mm ann. av.)

0 - 750 m 7 0 0 - 1 000 mm 3.5 t/ha

(800-1 200 mm ann. av.)

0 - 2 000 m 800-1 400 mm 30.0 t/ha

(950-1 800 mm ann. av.)

0 - 700 m 900-1 800 mm 3.2 t/ha

(1 000-2 500 mm ann. av.)

1200

1500

600

2 000

-1900m(E) 900-

-2 100 m (W) (1050

-1500 m 1100-

1 500 mm 1.8 t/ha

1 800 mm ann. av.)

2 000 mm 3.0 t/ha

(1 300-2 500 mm ann. av.)

-2 800 m

0 - 1 250 m

0 - 2 000 m

0 - 1 700 m

1 800-2 900 m

0 - 1 600 m

1 2 0 0 - 2 300 m

1 2 0 0 - 1 600 m

6 0 0 - 1 500 m

0 - 1 000 m

850-1 300 mm 20.0 t/ha

(950-1 500 mm ann. av.)

(200) 380-700 mm 1.0 t/ha

(500- 900 mm ann. av.)

750 -1 200 mm 2.5 t/ha

(850-1 400 mm ann. av.)

5 0 0 - 1 300 mm 40.0 t/ha

(600-1 500 mm ann.av.)

9 5 0 - 1 300 mm 1.7 t/ha

(1 100-1 450 mm ann. av.)

1 250-1 800 mm 190/160/140

(1 400 -2 000 mm ann.av.) t/ha/ratoon

1 2 5 0 - 1 800 mm 3 ^ . 0 t/ha

(1 400 -2 000 mm ann. av.)

4 0 0 - 700 mm 1.5 t/ha

700-1 200 mm 3.0 t seeds/ha

(750-1 500 mm ann. av.)

2 0 0 - 400 mm

(250- 500 mm ann. av.) still exp.

' ' v.e.mat.

e.mat.

m.mat.

l.mat.

v.l. mat.

For some crops, esp. wheat, it is wise to use several varieties to spread the risk

(see recommendations of Nat. Research Stations)

= very early maturing varieties

= early " "

= medium " . "

late

= very late " "

2) Most suitable altitudes. Growing periods increase upwards and decrease downwards beyond the noted ranges until ecological limit is reached.

3) Lower figure for fair results, higher for very good results with some corrections due to rainfall distribution, evaporation and runoff losses.

This rainfall should be reached in at least 6 out of 10 years.

4) Approximate figures on well suitable soils, with manure resp. fertilizer and good husbandry

*' Performs better than wheat in marginal wheat growing areas and acidic soils

°' Major germplasm center at the International Institute of Tropical Agriculture/Ibadan, Nigeria

' ' Gives also very good fodder or hay (7 -10 t hay/ha, see Nat. Ac. of S e : Trop. Legumes. Washington 1979, p. 77)

°' Information see Nat. Ac. of S c : Tropical Legumes. Washington 1979, p. 86-92

" ' It produces tubers and beans. Information see Nat. Ac. of S e : Trop. Legumes. Washington 1979 1 0 ' By bioclimatological reasons no quality like in the culitvation regions of the Subtropics 1 1 ' Cordeauxia edulis from Somalia. Information see Nat. Ac. of S e : Trop. Legumes. Washington 1979, p. 103—107.

40

BIOCLIMATOLOGICALLY SUITABLE GRASSES AND OTHER FODDER CROPS FOR THE AGRO-ECOLOGICAL ZONES IN KENYA1)

1. UPPER HIGHLAND ZONES (norm, above 2 300 m)

Grasses:

Cereals:

Legumes:

Kikuyu grass (Pennisetum clandestinum) Rye grass (Lolium perenne), except in wheat areas Cocksfoot (Dactylis glomerata) Tall fescue (Festuca arundinacea)

Oats (Avena sativa) Fodder barley (Hordeum vulgare)/var. B 106 Fodder barley (Hordeum vulgare)/var. Amani

Lucerne (Medicago sativa), rust danger Kenya white clover (Trifolium semipilosum) Tarwi (Lupinus mutabilis) Subterranen clover (Trifolium subterraneum)

UH1,(2) UH1,2,3, (4) UH1,2,3, 4 UH 1,2,3, 4

UH1,(2) UH2 UH3,(4)

UH 1,2 UH 1,2,3 UH 1,2,3 UH3,4

2. LOWER HIGHLAND ZONES (norm, between 1 800 and 2 300 m)

a) UnimodaT rainfall (1 900-2 300 m): Grasses:

Kikuyu grass (Pennisetum clandestinum) Napier grass (Pennisetum purpureum) up to 2 000 m Nandi setaria (Setaria sphacelata) Rhodes grass (Chloris gay ana) up to 2 050 m var. Pokot Rhodes var. Mbarara Rhodes var. Masaba Rhodes var. Elmba Rhodes var. Borna Rhodes teff(Eragrostistef)

Root crops: Fodder beets (Beta vulgaris)/var. alba DC. Fodder radish (Raphanus sativus) Yam bean^) (Pachyrhizus tuberosus), not above 2 000 m

Louisana white clover (Trifolium repens) Green leaf desmodium (Desmodium intortum) Silver leaf desmodium (Desmodium uncinatum) Lotononis (Lotononis bainesii) Subterranean clover (Trifolium subterraneum)

b) Bimodal rainfall (1 800 m - 2 200 m): Grasses:

Kikuyu grass (Pennisetum clandestinum) Rhodes grass (Chloris gayana), var. Elmba and Borna, in lower places (up to 2 000 m) Nandi setaria (Setaria sphacelata) Napier grass (Pennisetum purpureum), lower places (up to 2 000 m) Congo grass (Brachiara ruziziensis)

Legumes:

Root crops: Fodder beets (Beta vulgaris)/var. alba DC. Fodder radish (Raphanus sativus) Yam bean^) (Pachyrhizus tuberosus) Yam bean/var. with short veg. cycle

LH 1 2 LH 1 2 LH 1 2, 3

LH 1 2 LH 2, 3 LH 2, 3 LH 2, 3, 4 LH 2, 3, 4 LH 2, 3, (4)

LH 1, 2 LH 1, 2 LH 1, 2, 3,(4)

LH 1, 2 LH 1, 2 LH 1, 2, (3) LH 2, 3, (4) LH 3, 4

LH 1,(2)

LH 1, 2,(3) LHl, 2,3 LHl, 2,(3) LH 2, 3

LH 1 2 LHl 2 LH 1 2 LH 3 (4)

1) Based on informations supplied by P.K. Kusew/Ag. Director, N.A.R.S, Kitale, and other sources, esp. Nat. Ac. of Se: Trop. Legumes, Washington D.C., 1979. Selection according to soils and economic conditions still necessary.

*•' Mainly for human nutrition but root also palatable to livestock (esp. for pigs). Seeds adapted to different altitudes and rainfall patterns available at Plant Tax. Lab., Plant Gen. and Germ Plasm Inst., Beltsville, Maryland (USA). Leaves and fruits may be toxic.

41

Legumes: Brazilian lucerne (Stylosanthes guyanensis) Green leaf desmodium (Desmodium intortum) Silver leaf desmodium (Desmodium uncinatum) Louisana white clover (Trifolium repens) Glycine (Glycine wightii) Subterranean clover (Trifolium subterraneum)

3. UPPER MIDLAND ZONES (norm, between 1 300/1 500 and 1 800 m):

a) Unimodal rainfall: Grasses:

Root crops:

Legumes:

Rhodes grass (Chloris gayana), in higher places var. Pokot Rhodes var. Mbarara Rhodes var. Masaba Rhodes var. Elmba Rhodes var. Borna Rhodes Nandi setaria (Setaria sphacelata), higher places Star grass (Cynodon dactylon) Napier grass (Pennisetum purpureum) Sudan grass (Sorghum sudanense) Bana grass (Pennisetum purpureum x P. typhoides) Guinea grass (Panicum maximum)/var. Makueni Masai love grass (Eragrostis superba) Buffel grass (Cenchrus ciliaris)

Flemingia vestita-') Yam bean-2) (Pachyrhizus tuberosus) Psoralea patens/P. cinerea^)

LH 1,2 LH 1,2 LH 1,2,(3) LH 1,2 LH 2, 3, (4) LH 3,4

UM 1 ,2 UM 2 3 UM 2 ,3,(4) UM 2 ,3,4 UM 2 3,4 UM 1 ,2,3 UM1 2,3 UM 1 ,2,3,(4) UM 2 3,4 UM 2 3,4 UM 3 4 UM 3 ,4 UM 4 5

UM 1 2,(3) UM 1 2,3,4 UM 3 4

UM 2 3,4 UM 1 2 UM 1 2,(3) UM 1 2,(3) UM 1 2,(3) UM 2 3,(4) UM 2 3,4 UM 3 4,(5) UM 4 5

UM 3 4 UM 4 5,(6) UM 4 5,(6) UM 5 6 UM 5 6

Siratro (Macroptilium atropurpureum) Green leaf (Denuodium intortum) Silverleaf desmodium (Desmodium uncinatum) Brazilian lucerne (Stylosanthes guyanensis) Butterfly pea (Clitoria ternatea) Townsville lucerne (Stylosanthes humilis) Glycine (Glycine wightii) Barrel medic (Medicago truncatula) Moth bean (Vigna aconitifolia)

Trees and shrubs: Horse tamarind (Leucaena leucocephala) Saltbush (Atriplex nummularia) Gao tree (Acacia albida) Mesquite (Prosopisjuliflora) Algarrobo (Prosopis chilensis)

b) Bimodal rainfall: Grasses:

Rhodes grass (Chloris gayana), in higher places var. Pokot Rhodes var. Mbarara Rhodes var. Masaba Rhodes var. Elmba Rhodes var. Borna Rhodes Nandi setaria (Setaria sphacelata), higher places Star grass (Cynodon dactylon) Napier grass (Pennisetum purpureum) Bana grass (Pennisetum purpureum x P. typhoides) Guinea grass (Panicum maximum) Guinea grass (Panicum maximum)/var. Makueni Coloured Guinea grass (Panicum coloratum) Congo grass (Brachiaria ruziziensis) Masai love grass (Eragrostis superba) Buffel grass (Cenchrus ciliaris)

3 ) Also edible. 7 months to mature. Seeds available at Nat. Bur. of Plant Gen. Resources, I.A.R.I., New Dehli (India).

4) Also edible. Seeds available at the Herbarium of the Northern Territory, Dept. of the Northern Territory, Alice Springs Australia). Bioclimato-

logical research still needed.

UM 1, (2) UM 1, 2,(3) • UM 1, 2,(3) UM 2, 3,(4) UM 2, 3,(4) UM 1, 2,3 UM 1, 2,3 UM 1, 2,3,(4) UM 2 3,4 UM 2 3 UM 3 (4) UM 2, 3 UM 2, 3 UM 3, 4 UM 4, (5)

Root crops:

Legumes:

Flemingia vestita^) Yam bean^) (Pachyrhizus tuberosus) Psoralea patens/P. cinerea^)

Desmodium species Brazilian lucerne (Stylosanthes guyanensis) Townsville lucerne (Stylosanthes humilis) Butterfly pea (Clitoria ternatea) Glycine (Glycine wightii) Siratro (Macroptilium atropurpureum) Barrel medic. (Medicago truncatula) Moth bean (Vigna aconitifolia)

Trees and shrubs: Horse tamarind (Leucaena leucocephala) Saltbush (A triplex nummularia) Gao tree, applering acacia (Acacia albida) Mesquite (Prosopis juliflora) Algarrobo (Prosopis chilensis)

UM 1, 2 UM 1, 2, 3,(4) UM 3, 4

UM 1, 2 UM 1, 2 UM 2, 3 UM 1 2 UM 2 3, (4) UM 2, 3, (4) UM 3, 4, (5) UM 4, 5

UM 3 4 UM 4 5, (6) UM 4 5, (6) UM 5 6 UM 5, 6

4. LOWER MIDLAND ZONES (norm, between 800 and 1 300/1 500 m):

a) Unimodal rainfall: Grasses:

Root crops:

Legumes:

Napier grass (Pennisetum purpureum) Bana grass (Pennisetum purpureum x P. typhoides) Guinea grass (Panicum maximum) Guinea grass (Panicum maximum)/var. Makueni Masai love grass (Eragrostis superba) Buffel grass (Cenchrus ciliaris)

Vigna vexillata-*) Flemingia vestita3) Psoralea patens/P. cinerea4)

Townsville lucerne (Stylosanthes humilis) Butterfly pea (Clitoria ternatea) Brazilian lucerne (Stylosanthes guyanensis) Centro (Centrosema pubescens) Glycine (Glycine wightii) Siratro (Macroptilium atropurpureum) Townsville lucerne (Stylosanthes humilis) Moth bean (Vigna aconitifolia) Cowpea (Vigna unguiculata)

Trees and shrubs: Horse tamarind (Leucaena leucocephala) Saltbush (Atriplex nummularia) Gao tree, applering acacia (Acacia albida) Mesquite (Prosopis juliflora) Algarrobo (Prosopis chilensis)

b) Bimodal rainfall: Grasses:

Root crops:

Napier grass (Pennisetum purpureum) Bana grass (Pennisetum purpureum x P. Typhoides) Guinea grass (Panicum maximum) Guinea grass (Panicum maximum)/var. Makueni Masai love grass (Eragrostis superba) Buffel grass (Cenchrus ciliaris) and others like Pakistani bajari")

Psoralea patens/P. cinerea4) Vigna vexillata-V

LM 1 2 3,(4) LM2 3 4 LM2 (3) LM3 4 LM3 4 LM3 4 (5)

LM 1 2 3 LM1 2, 3,(4) LM3 4, (5)

LM2 3, (4) LM 1 2, (3) LM 1 2, 3 LM2 3, 4 LM2 3, 4 LM2 3, 4 LM2 3, (4) LM4 5 LM4 5

LM3 4 LM4 5, (6) LM4 5, (6) LM5 6 LM5 6

LM 1,2, 3, (4) LM 2, 3, 4 LM 2, (3 ) LM 3, (4 ) LM3,4 LM 3, 4, (5)

LM3,4 LM 1,2

5' Also edible tubers. Seeds available at: see top 6.

4 3

I

Legumes: Brazilian lucerne (Stylosanthes guyanensis) Butterfly pea (Clitoria ternatea) Townsville lucerne (Stylosanthes humilis) Glycine (Glycine wightii) Siratro (Macroptilium atropurpureum) Moth bean (Vigna aconitifolia)

Trees and shrubs: Horse tamarind (Leucaena leucocephala) Saltbush (Atriplex nummularia) Gao tree, applering acacia ( Acacia albida) Mesquite (Prosopis juliflora) Algarrobo (Prosopis chilensis)

5. LOWLAND ZONES (norm, between 0 and 800 m): Grasses:

Coloured Guinea grass (Panicum coloratum) Guinea grass (Panicum maximum), also good under trees Napier grass (Pennisetum purpureum) Bana grass (Pennisetum purpureum x P. typhoides) Masai love grass and other Eragrostis species Buffel grass (Cenchrus ciliaris) and others like Pakistani bajra, Digitaria milanjiana, Brachiaria brizantha")

LM1 2 LM 1, 2, 3,( LM2 3 LM2, 3, (4) LM2, 3, (4) LM4, 5

LM3, 4 LM4, 5, (6) LM4, 5, (6) LM5, 6 LM5, 6

Root crops:

Legumes:

Winged bean ') (Psophocarpus tetragonolobus) Vigna lanceolata") Psoralea patens/P. cinerea

Brazilian lucerne (Stylosanthes guyanensis) Calopo (Calopogonium muconoides) Glycine (Glycine wightii), esp. on heavy soils Macrotyloma (Macrotyloma axillare) Butterfly pea (Clitoria ternatea) Townsville lucerne (Stylosanthes humilis) Siratro (Macroptilium atropurpureum) Centro (Centrosema pubescens) Marama bean°) (Tylosema esculentum) Moth bean (Vigna aconitifolia) Mauritius bean (Mucuna aterrima)

Trees and shrubs: Horse tamarind (Leucaena leucocephala) Gao tree, applering acacia (Acacia albida) Saltbush (Atriplex nummularia) Mesquite (Prosopis juliflora) Algarrobo (Prosopis chilensis)

There are also other possible fodder crops not mentioned here, especially trees, which are still in experimental stage, such as the salt tolerant Acacia halosericea. Apart from Government Research Stations valuable testing work is done for instance at the Catholic Mission at Kositei, Baringo District. It is impossible to mention all Government and other reports existing on the fodder question. Further information see BOGDAN, A. V. (1977): Tropical Pasture and Fodder Plants. Longman — Tropical Agriculture Series, London. Grasses for reseeding see PRATT, D. J. & GWYNNE, M. D. (eds., 1977): Rangeland Management and Ecology in East Africa. Hodder and Stoughten, London.

L 1,2,3 L 2,3 L 2,3,(4) L 2,3,4 L 4,(5) L 4,(5)

L 1,2 L 2,3 L 3,(4)

L 1,2 L 1,2,3 L 1,2,3 L 1,2,3,4 L 1,2,3(4) L 2,3 L 2,3,(4) L 2,3,4 L 3,4,5,6 L 4,5 L 4,5

L 3,4 L 4,5,(6) L 4 ,5 ,6 L 5,6 L 5,6

° ' Also edible tubers. Foliage palatable to livestock. Seeds available at Queensland Herbarium, Indooroopilly, Queensland (Australia). ' ' Also edible. Very rich in protein (about 20 %). All parts of the plant palatable to livestock. ° ' Still wild plant. Grows under extremely semi-arid conditions. Also edible. Seeds available at South West Africa Herbarium, Private Bag 13 184,

Windhoek (Namibia). °) Contact C.A.R.S. Kikambala and Mtwapa Research Station

44

SOIL REQUIREMENTS LIST FOR CROPS IN KENYA

Crops Preferred texture PH Drainage Remarks

G R A I N C R O P S

Maize (light to) medium

(Zea mays)

Wheat light to medium

(Triticum aestivum)

Durum wheat light to medium

(Triticum durum)

Triticale medium (to heavy)

(Triticum x se cale)

Barley medium

(Hordeum vulgare)

Oats medium

(Avena sativa)

Foxtail millet medium

(Setaria italica)

Proso millet medium

(Panicum miliaceum)

Bulrush millet light to medium

(Pennisetum typhoides)

Finger millet medium

(Eleusine coracana)

Sorghum medium to heavy

(Sorghum vulgare)

L E G U M I N O U S C R O P S

Tepary beans medium

(Phaseolus acutifolius)

Cowpeas light

(Vigna unguiculata)

Moth beans medium to light

(Vigna aconitifolia)

Green grams medium

(Vigna aureus)

Black grams medium

(Vigna mungo)

5.5-8.0 free draining soils

6.5-8.0 moderately well to well

drained soils

6.5-8.0 well drained soils

6.5-8.0 well drained soils

5.5-8.0 well drained soils

Chick peas=Yellow grams heavy ("black cotton

(Cicer arietinum) soils")

Beans

(Phaseolus vulgaris)

medium

Bonavist beans=Njahe medium

(Dolichos lablab)

Trop, lima beans various

(Phaseolus lunatus)

Horse beans medium medium

(Vicia equina)

Horse grams medium

(Dolichos uniflorus)

Groundnuts light

(Arachis hypogea)

5.5-7.5

5.5-7.5

6.2-7.5

not on very acid soils, not on waterlogging soils,

at least moderately fertile soils

in waterlogging conditions very poor yields,

moderately to highly fertile soils

moderately drought resistant

tolerates salinity, moderately drought resistant

intolerant of waterlogging, tolerates salinity

( - 1 %), moderately fertile soils

6.5-8.0 moderately drained soils also on poor soils

5.0-8.0 well drained soils

5.0-8.0 well drained soils

5.0-8.0 well drained soils

not very drought resistant

some varieties drought resistant

drought resistant, tolerates salinity

6.5-8.0 moderately drained soils Turcana varieties drought resistant

4.5-8.5 moderately well to well low to moderately fertile soils

drained soils

6.0-7.5 well drained soils

5.0—7.5 free draining soils

6.0-7.5 well drained soils

6.0-7.5 well drained soils

6.0-7.5 well drained soils

5.0-7.5 moderately to well

drained soils

6.0-7.5 free draining soils

6.0-7.5 well drained soils

6.0-7.0 well drained soils

moderately to well

drained soils

moderately to well

drained soils

drought resistant

drought resistant

drought resistant •

drougth resistant

drought resistant

fairly drought resistant

not drought resistant, need moist soil through­

out the growing period

very drought resistant

grows well also on infertile soils

drought resistant

drought resistant

well drained to somewhat until harvesting the soil must be moist, but

excessively drained soils sensitive to impeded drainage; moderately

fertile soils

45

Crops Preferred texture pH Drainage Remarks

Bambaxra groundnuts light

(Voandzeia subterranea)

Garden peas

(Pisum sativum)

Pigeon peas

(Cajanus cajan)

Soya beans

(Glycine max.)

medium

light

medium

O I L S E E D C R O P S

Sunflower

(Helianthus annuus)

Linseed

(Linum usitatissimum)

Rai

(Brassica juncea)

Rapeseed

(Brassica napus)

Simsim

(Sesamum indicum)

Safflor

(Carthamus tinctorius)

Castor

(Ricinus communis)

medium (heavy)

medium

medium

light to medium

medium

medium

6.2-7.5 well drained soils

5.5-7.5 well drained soils

(see beans)

5.0-7.5 free draining

no inform.

5.5-7.5 moderately well to well

(opt. 6.0-6.5) drained soils

soil aeration must be adequate, not on heavy

soils with pans; thrive better than groundnuts

on poor soils

some N good for start

fairly drought resistant

moderately fertile soils

6.0-8.0 moderately drained soils very drought resistant

5.5-7.5 moderately drained soils drought resistant

medium to heavy 6.0-8.0 moderately drained soils drought resistant

5.5-7.0 moderately drained soils not drought resistant

6.0-7.5 free draining soils moderately drought resistant

6.0-8.0 moderately drained soils tolerates salinity, moderately drought resistant

6.0-7.5 free draining soils moderately drought resistant, not on saline

soils

T U B E R C R O P S

Sweet potatoes

(Ipomea batatas)

Potatoes

(Solanum tuberosum)

Cassava

(Manihot esculenta)

Taro-Cocoyam

(Colocasia antiquorum)

White Guinea yam

(Dioscorea rotundata)

Greater yam (D. alata)

Yellow Guinea yam

(D. cayenensis)

Buffalo gourds

(Cucurbita foetidissima)

Marama beans

(Tylosema esculentum)

Vigna

(Vigna lobatifolia)

various (wide range:

swamps to eroded areas)

light to medium

light to medium

light to medium

medium

light

medium

various various but planted on

ridges in swamps

4.5-8.0 free draining soils

various free draining soils

4.5-8.0 tolerates waterlogging

4.5-7.0 moderately to weakly

drained soils

light to medium

6.0-7.5 well drained soils

6.0-7.5 well drained soils

6.0-7.5 well drained soils

drought resistant, need moderately fertile soils

not so drought resistant, need good supply of

nutrients

very drought resistant, not on very stony or

shallow soils, sensitive to impeded drainage,

thrives also on less fertile soils

grows esp. well on riverbanks, demands a fertile

soil

moderately fertile soils

very drought resistant

very drought resistant

very drought resistant

Crops Preferred texture pH Drainage Remarks

F I B R E C R O P S

Cotton

(Gossypium htrsutum)

Flax

(Linum usitatissimum)

New Zealand flax

(Phormium tenax)

Sisal

(Agave sisalana)

medium to heavy

medium

medium

medium

6.0-8.0

5.5-7.5

5.5-7.0

5.5-7.5

well drained soils, sensitive tolerates salinity (0,5-0,6 %); moderately to

to impeded drainage highly fertile soils; should contain bor

moderately drained soils

moderately drained soils

well to moderately

drained soils

on heavy soils it is necessary to form cambered

beds or to dig ditches for drainage

OTHER CASH CROPS AND FRUITS

medium 6.0-7.5 Avocadoes

(Persea americana)

Bananas

(Musa paradisiaca)

light to medium

Cashew nuts light

(Anacardium occidentale)

Citrus

(Citrus spp.)

Coconuts

(Cocos nucifera)

Coffee/Arabica

(Coffea arabica)

light to medium

light

medium

medium Coffee/Robusta

(Coffea canephora

var. robusta)

Deciduous fruit trees

(apples, peaches, pears)

Macadamia nuts

(Macadamia spp.)

Pyrethrum

(Chrysanthemum cinerariaefolium)

medium

medium

medium

Sugarcane

(Saccharum spp.)

Tea

(Camellia sinensis)

light to medium

medium

Tobacco medium

(Nicotiana tabacum)

Tung oil medium

(Aleurites fordii)

Ye-eb nuts medium

(Cordeauxia edulis)

5.0-7.0

well drained soils

well to moderately well

drained soils

5.0-7.5 unimpeded drainage

5.0-7.0 well drained soils

4.0-7.0 free draining soils

5.3-6.0 free draining soils

5.0-6.0 well drained soils

4.5-7.0 well drained soils

5.0-6.0 . free draining soils

5.6-7.5 well drained soils

5 .0- 7.0 moderately well to well

drained soils

4 .0-6.0 free draining soils

(4.5-5.5)

(5.0)5.5-6.5 well drained soils

4.5-6.5 well drained soils

not on saline soils

best places are fertile volcanic or alluvial soils.

Tolerate short floods; soil aeration must be

adequate, moderately to highly fertile soils

on dry and steep slopes against soil erosion;

thrive also on poor soils

soil aeration must ' be adequate, sensitive to

impeded drainage, moderately to highly fertile

soils

tolerate high salinity ( - 1 %), soil aeration must

be adequate. In arid regions groundwater should

be available in 1-2,5 m depth.

soil must allow reasonable water retention; very

sensitive to CaC03 (more than 1 % of the fine

earth) and CaS0 4 (> 0.5 % of the fine earth),

moderately to highly fertile soils

grows well in a wide range of various soils if they

are well drained; sensitive to CaC03 and CaSÛ4

like Arabica coffee

if the soil is deep they tolerate also lighter or

heavier soils

no inf. well drained soils

sensitive to waterlogging; groundwater should

be below 1 m depth. On heavy soils cambered

beds, ditches or furrows must be formed for

drainage. Moderately fertile soils

soil with good water retaining capacity is

essential, very sensitive to CaC03 (0 %) and

CaS0 4 (0 %), grows also on less fertile soils

not on heavy or/and saline soils, very sensitive

to CaC0 3 (> 1 % of the fine earth) and CaS0 4

(> 0 .5% of the fine earth)

very drought tolerant

47

I

X a.

•" o, Ä 0 es

fc 0 .a e e a ft e • . ' 0 o o

11

I!

co 3

S u

3 J .

ra o

a <

•a ü

£ >

o o

s g s

•a >>

M

s'

+* g *S co

o g « 4 3 CU o CU

•o s >> TD f ! JS JS JS 0 s n O BC

E _o s E O .e JS JS

g o g « JS o>

o <D »V T3 S Ü >> -o n j s j s JS S Ü K .SP

JS E o _o S! E o JS J S .SP JS

^ -S- ^ Ü -is. ^ JS ca JS ca J S

OU

>> •o • O r •o es >H o ü ü

S E o E ü E o

J 3 JS JS 2 .0J)

2 cu

T J o OU

JS 0)

TJ O

OU JS

2

o E O E o J2 11 s a

m T l ca T) T )

0> O O

oo to •o

O 0 00

(U • a

O 0 OU

• o o •o o •o o TJ o

TS O

E o E o E o o 00

o 00

o 00

o oo

o OD

E 2

o o o.

« rt T l T l

<D u O o •o T l •o T l T l

cu TJ

o o

O o O o o o cu

TJ

B E o o oo • o

00 o 00

ü 00

o OU

E o o o o,

P -c c -e

o o o.

o o a

o o a.

J2 .3 o

J= O

J 3 .3

(D cu CU J 3 fe > > > cd

1 O o O •c 1 • 9 •9 •e ca S ä ä

JS J S

ou JS X

o o cu ca tH XI

TJ JS TJ JS O O 01)

E JS E JS >

~ ~ ~ 4

.3 ia J ? • » J 3 ca 3 5 5 iS o

o .5 O

0 •s J S • o e (-e <u < p. U

S ca

JS cu e o

3 c o o

(O 1 B cu

§

S o

J= 1

° „ E 2

JO T l 1 O M

E >

1 2

o o o.

OU 0 0

J S J S J S

o o o n> CU CU J S J S

ÛJ

n) x> X> n t H JS

T J T J • o >> ü E

13 > >

O E

O E

eu

>

J3

48

EXPLANATORY NOTES ON FARM MANAGEMENT INFORMATION

Sound farm management, advice and planning must take into consideration the natural conditions of soil and climate, the socio-economic situation of the farm and cost/price developments.

Volume II of the Handbook describes these natural conditions^ i.e. the AEZ is the key to which crop can be grown with which degree of success in which part of the district.

Any planning done, operation undertaken or communication made must refer to a particular area of uniform natural con­ditions. The most economic and exact way to do so is by using maps.

All officers and institutions dealing in any way with rural development have been supplied with the Handbook and with large and small AEZ maps. All officers involved in rural development are requested to refer to the particular political unit (location, division etc.) and the AEZ into which the area under discussion falls. This can be done by using the charts which can be ob­tained from the maps without difficulty.

The fertility of the soils often differs widely within one agro-ecological zone. The extension officer must therefore study the information given and compare the soil conditions with the soil requirements of the crops before making any definite re­commendations. 2) A steep increase in fertilizer use is necessary but fertilizer is one of the most expensive inputs. It is there­fore essential to study the explanations for the input/output table. Information about the use of plant protective agents is forwarded to you annually ~) the costs of inputs and prices for agricultural produce are also given. It will be most important to observe the fertilizer use recommendations which will become available from new research towards the year 1985—90.

The conservation of the fertility of the soil or its improvement should be a major part of farm management advice, because it is the basis for successful farming, in particular when using large amounts of inputs. Soil conservation is probably one of the best investments a farmer can make and should always be included in overall farm budgets. Studying the advice on soil con­servation included in Vol. II will help you to give technically sound advice and assist in cost calculation.

' Vol. I supplies labour data, Vol. IV production techniques; information about farm organisation and profitability is published annually by the FMB.

2) Additional information about the soils of your region can be obtained from the National Soil Map of Kenya available at the DAO's office. 3' Farm management publication: „Yields, Costs and Prices"

GENERAL STATISTICS

Land Area )

As important as the knowledge of the potential of land is the knowledge of the actual land area available for production. Complete and exact land statistics exist only for those areas where land adjudication has been completed and for the former scheduled areas. ) The statistics have been compiled per sub-location, location, division, etc. The land areas of the political units below district level are constantly changing because of subdivision of sub-locations and reallocation of land areas etc. It is however advisable to use the statistics given in the Handbook.->)

The land areas of the former scheduled areas are recorded according to land reference numbers and cadastral sheet number. The land area of a farm can easily be established by identifying the land reference numbers belonging to one farm and adding up the areas belonging to each land reference number.

The creation of new land reference numbers is a legal act which requires measurement of the newly created area unit and can therefore be traced easily. Space is given in the land statistic tables to enter any future major changes by hand.

The land: population ratio is most important. For this reason the maps used for the 1979 census were used as base maps for the large AEZ maps. In order to find out the amount of land available, the land area which falls into the respective AEZ has been measured and the average land area per household and person calculated and printed in table. This table is the most suitable statistic for the production potential of particular areas. When using it together with the information on cropping patterns and yields, it is possible to calculate a fairly exact output statistic per area unit.

Population statistics

The land: population ratio is an important basis for land use recommendations etc. The total population and the household composition has been included.

Note: The number of households depends very much on the particular location, but is rapidly changing at present (1981/82) towards one extended household per farm, entered into the table as „total number of persons per household". The statistics were obtained from the 1979 census; the annual population growth rate is approximately 3.9 % p.a.

49

Other statistics

Statistics of the four most important industrial crops, pyrethrum, tea, coffee and cotton are published by the respective boards and the KTDA. Other information is compiled by the CBS. The Farm Management Research Officer will forward this infor­mation to the DAO in future, who should then enter it in the respective column by hand.

*> Official agricultural land statistics will be included in the annual publication of the Handbook Vol. Ill/A. 2 ' Land area statistics are compiled in two different departments: a) Survey of Kenya, b) Department of Lands. The Land statistics are not

always consistent, but it was not always possible to detect the errors.

*' Area transfer is usually done for political reasons and is legalised by the establishment of the new boundaries by the Survey of Kenya; the

time lag is usually 10 years.

TABLES COMPILED FROM THE SMALL FARM SURVEY (SFS)

The Small Farm Survey was carried out during 1977. A well trained group of ten enumerators interviewed 1,620 smallscale farmers asking each the same set of questions. The enumerators were closely guided by a supervisor and the team leader was an experienced agricultural economist. The investigation area was chosen according to its ecological potential and the socio­economic situation of the farming community. The farmers were selected at random from the members' register of the co­operative societies of the particular area.

Co-operative society members are usually involved in the cash economy and farmers who are co-op members usually practise somewhat more advanced farm management. It is a safe assumption that the production level reflected in the tables will be reached by the average farmer towards the year 1985.

The information obtained from the farmers is comprehensive, but in using the data, one should, however, keep in mind that data obtained in interviews has certain limitations.

The data is shown as obtained from the farmers and only obvious recording errors have been excluded. The aim of SFS was to get information about the average structure of family farms and the know-how and opinion of the farmer about his operation. In addition, information obtained from two individual farms is included: Upper Quartile and Lower Quartile. In a few cases, the information may seem illogical e.g. high input, low yield, but the overriding aim in compilation was to present the infor­mation as far as possible as it had been supplied by the farmer.

The tables are self-explanatory ; possible exceptions are the table a) „Inputs and Yields of Major Crops" and b) the graph „Distri­bution of Fanning Activities".

to a) As stated above, the information is printed as supplied by the farmer. The input/output relation in many cases does not seem logical. Besides purchased inputs there are however a large number of yield influencing factors like fertility, state of the soil, timely availability of the inputs etc. For example, a clear correlation between early planting of maize and grain yield was one of the outcomes of the survey, but it was not possible to establish a production function for fertilizer input. What the table clearly shows is that Kenya's family farmers*> know that the use of improved seeds, fertilizer and plant protective agents helps to increase the yield, but they are in urgent need of information as to how to use them best; the table also shows that field preparation is a major bottleneck on the small farms.

to b) The income of a family farm is the return on the work input of the farmer and his family. The vegetation period is roughly equal to the production period i.e. the time when the farmer can generate income through work. Practically nothing is produced during the dry season, thus the farmer cannot work and has very little income. The smaller the farm, the more crucial is the length of the vegetation-production period for the farmer's employment opportunities.

An ideal employment situation for the family farmer exists only in AEZs LH 1, UM 1 + 2, but in all other zones, labour peaks reduce his employment possibilities throughout the rest of the year. Planning and farm advice which does not con­sider labour management can only be incorrect and is of little value.

The graphs indicate the time of the year in which various operations are executed on the farms. They also reflect the con­straints to which a farmer is subject e.g. cultivation can only be started after a certain amount of rain has softened the soil but must be stopped before the remaining vegetation period gets too short, otherwise the returns on his efforts be­come marginal. 2) It is advisable to compare the distribution of farming activities with the precipitation graphs shown in this book, in order to detect possibilities of making better use of the full vegetation period. The graph does not give any information about the amount of work (mh) involved in the different operations. )

' „Family farm" is a holding where more than 50 % of the manual labour input is done by the farmer and his family — the aim of the operation

is to generate income through self-employment.

Large-scale farms are operated by employing labourers for practically all manual work; the income of the operation is a return on management

and capital invested.

2) For example, 3 weeks delay in maize planting reduces hybrid maize yield in UM 3—4 West of the Rift by 25 %..

3) For this, see Vol. I Labour Study. It is planned to compile two more labour studies, one for the bimodal rainfall region. It is hoped that they

will be available towards 1985-90.

5 0

PRODUCTION LEVELS PER CROP AND AGRO-ECOLOGICAL ZONE OUTPUT & NUTRIENT INPUT

Remarks

The input : output ratio is probably the most important single piece of information required by the farm management extension and agricultural planning officer.

Almost every enterprise yields more than one product, e.g. maize produces grain plus straw, legumes produce seeds, straw and enrich the soil with nitrogen etc. Therefore the actual value of the output can only be arrived at after assessing the sum of the individual values of the different products. However, most crops are planted in order to produce one major product which can be sold and/or consumed on the farm. This product is generally referred to as the yield of the enterprise.

Likewise a number of different inputs are required to grow a crop. The kind, variety, amount and number of inputs used de­pends on alarge number of circumstances and therefore can only be assessed properly on an individual basis. There are, however, two major inputs: (a) the work input, (b) the nutrient supply. Work execution on smaller family farms is usually done by hand, while large farms use tractors. These input components have already been dealt with in the Farm Management Handbook Vol. 11) and for this reason Table 15 gives information on the nutrient requirement of the different crops only.

The kinds of nutrients needed by each individual crop are many and the amount required depends on a large number of cir­cumstances and conditions. An attempt has been made to include the three most important factors — climate, soils and yields — in the table.

The table provides details on the yields and fertilizer requirement (N + P2O5) of the most important crops, for the AEZ where the individual crop is or can be grown, and for the soil type which covers the largest portion of land within the particular AEZ.

Yields and N+ P2O5 requirement are shown for three production levels and for a yield achievable without nutrient application. The proportions of farmers achieving any one of the three yield levels is so far known only very approximately2) and should be assessed as soon as possible using the yield figures given.

Production Level I — reflects traditional production techniques — farmers apply a regionally developed and relatively wide variation of production techniques; they do not apply fertilizer and/or plant protective agents (except for coffee and tea). They use their own seed, with the exception of maize where 75 % plant purchased hybrid maize. Cultivation is done by hand hoeing (in AEZ LH 1 + 2, UM 1 + 2 and L 2 + 3 + 4) (up to 60 %) and with the help of draught animals in LM 1-4 (65 %).

Production Level I includes small family farms only; when large farms achieve Level I yields only, this is usually because they fail to apply improved technology properly. It seems feasible that ±60 % of the family farms of Production Level I will reach Production Level II by the year 2 000.

Production Level II — Farmers apply the recommended husbandry methods, use fertilizer, new seed and plant protection methods within the constraints of practical farming. The larger family farms (above 5 ha) within AEZ LH 1—4, UM 1—4 and LM 1—2 in the Rift Valley, Western and Nyanza Province hire tractors for the first ploughing (± 50 %); farmers in AEZ LM 3—4—5 use draught animals (± 65 %) for ploughing.

Production Level II includes family farms and practically all large mechanised farms.

Production Level III -reflects the yield level which can be achieved under optimal conditions in practical farming, i.e. if the objective (natural) and subjective (management) conditons are optimal. Yield Level III shows the actual potential which can be reached if the knowledge available at present is put into practice. Although the yields shown are now being achieved by some fanners, a significant proportion (± 25 %) will not reach this Production Level III before the year 2 000.

The approximate distribution of family farms within the three Production Levels is at present (1981/82) as follows:

Production LeveP) Enterprises Major Food and Other Crops and

Cash Crops Cotton

I 75% 85% II 23% 15% III 2%

1' Labour Requirement/Availability and Economics of Mechanisation '•> For some guidance, see table 9 *' rainfed agriculture only

51

Assessment of the Data

Yields:

The only exact method of establishing reliable information on crop yields in non-book-keeping farms is to harvest and weigh the crop of an exactly measured area by a specially employed team over a number of years (crop cutting). This method has never been employed, thus exact on-farm yield figures are not available.

On the other hand, a large number of relatively small investigations have been carried out to acquire information about yields of some crops. Comparatively long term information is available from farms keeping books, and the results of approximately 30 years of agricultural research work give some insight into present yield levels and the production potential of Kenya's agri­culture.

Practically all information on yields available in Kenya has been analysed to assess the yield figures shown in Table ... The cli-matological yield potential for the individual crops within the different agro-ecological zones has become available through work on the AEZs, and information about the approximate soil fertility has been supplied by the K.S.S.. The Small Farm Survey (S.F.S.), executed to obtain basic farm management data for the Handbook, supplied additional information about the yield level in the smallholder sector at present.

The yield figures obtained from, or based on this considerable amount of data have been discussed throroughly and repeatedly with the agricultural extension and research officers. The author of the table was able to base his assessments on 10 years' ex­perience with agriculture in Kenya. He was therefore in a position to assess the magnitude of the impact of socio-economic constraints on yields in particular.

However, it is more difficult to predict yield developments, which depend on a large number of factors and constellations, many of them still unknown at present. On the other hand some likely development trends are visible. For example, a farmer will always produce enough food for his family and those who help to cultivate his farm, if he has sufficient land at his disposal, and the natural conditions are suitable. This is the case in AEZs: LH 1-2, UM 1-4, LM 1-2 and L 2 - 3 . It is therefore a safe assumption that agricultural output in this region will, in line with the population increase, increase by + 4 % p.a., but there is very little or no scope for increasing agricultural production in arid/semi-arid regions, employing the technology available at present. Food is also needed for the urban population and agricultural products required for export. The additional amount of products required can only be produced in the high rainfall areas (AEZ: LH,UM,LM 1—3) — thus an overall output increase of approximately 8 % p.a. is required. The natural potential of the high rainfall areas allows for a doubling of the present yields of most enterprises, employing the technology available at present.

The yield figures shown for the three Production Levels have been established in three steps:

a) Establishing the present Level using mainly the results of:

— the Small Farm Survey, — the demonstration trials in the farmer's field, — other socio-economic surveys and research results.

Based on this information, the yields per AEZ per district have been established. From these data, average yield figures for eleven zones of similar ecological and socio-economic potential have been compiled. These data have been used in turn to assess the impact of the socio-economic constraints by comparison with the deviation in yields in different localities of similar natural potential from the average yield of the particular zone.

b) Establishing the yield potential using mainly the results of:

— the work on the agro-ecological zones, — the work on the Kenya soil maps, — top farmers in national competitions and from various surveys, — agricultural research.

c) Establishing a likely possible development path using information from:

— advanced farms in advanced districts, — book-keeping farms, — past developments, and predicting future trends using the future possibilities and constraints presently known.

The yields given refer to the harvested, saleable product ; storage losses etc. have not been accounted for. Grass yields are given in kg of total digestible nutrients (TDN) because green matter and/or dry matter figures are less informative and difficult to compare. The figures have been arrived at by analysing the yield data, stocking rates, etc. available. The following formula has been used:

52

Feed Value of Grass*-'

Grass GM DM of GM TDNofDM2) DCPinDM2)

in % in % in %

Natural Pasture and Leys 100 20 65 25

Napier and Bana Grass 100 20 55 15

1) refers to AEZ: LH 1 - pasture grazed, napier grass = zero grazing 2' the digestibility of the DM has been reduced by 20 % - from 65 % in LH 1 to 45 % in LM, L 2-5 using a

straight line function in order to make up for the influence of the temperature; average of the crop when grazed and/or fed etc.

Nutrient/Fertilizer required

Apart from climate, the fertility of the soil, in the broadest sense, is the most important production factor in agriculture. Natural fertility has been reduced through intensive cropping — nutrients stored in the soil are absorbed by the crops grown and are re­moved with the harvest from the field and often from the farm because of selling the crop.

In traditional agriculture, land was left fallow in order to allow for a restoration of soil fertility, or in large commercial farms, leys were planted for the same reason. This rest period of 4—5 years was generally enough to maintain a fairly good nutritional balance. Both practices are no longer, or only occasionally practised today as the rapid population increase has led to continuous cropping. Furthermore, in traditional agriculture only the fertile lands were cultivated, while today all kinds of often extremely infertile soils are utilised.

Only three to four soil types in Kenya have good natural fertility, but most are extremely infertile, and for all these reasons, the natural fertility of agricultural land is declining quickly. Therefore the nutrient which is taken out of the soil must be given back to it. The amount of nutrient to be applied must be equal to the amount which is taken away with the harvested yield. Agricultural output must increase by roughly 10 % p.a. in order to keep pace with demand ; thus the amount of nutrients applied should increase by 10 % p.a. as well.

The only realistic way to achieve this is in the application of synthetic fertilizer. Kenyan farmers purchase fertilizer for approxi­mately KShs. 250 million p.a. at present (1981/82) and urgently need advice on its correct use.

Correct advice for fertilizer application can be based only on scientifically proven data. Good farm management advice on ferti­lizer use must be based on correctly assessed production functions. The advisor must know how much additional yield he can expect per additional amount of nutrient applied to a particular crop in a particular location. However, no scientifacally proven data basis for such information is available yet. )

On the other hand, some research work and a large number of fertilizer trials and demonstrations on farms have been implemented to get an insight into the fertilizer requirements and response of the major crops to nutrient application. Almost all data avai­lable on fertilizer application response in Kenya has been studied for the compilation of the data shown in table ... The data available indicate that there is very little response to K2O application and therefore no information is given for this nutrient.

' A large soil testing and fertilizer trial programme is presently planned ; comprehensive results will be available towards 1990-95.

Assessment of the Data

The data available on fertilizer use and response are insufficient for the compilation of proper fertilizer recommendations. In addition, research has concentrated on particular areas and crops, while other areas, and the so-called subsistence crops, have been virtually neglected. In order to arrive at some information for all areas suitable for rainfed agriculture, and for the most common crops, the assessment had to be done in two steps (a and b) and a number of assumptions had to be made.

a) The results of research work, demonstrations on the farm, results of book-keeping farms, etc. have been analysed to assess fertilizer response.

b) The nutrient removal per weight unit of the different crops has been compiled. The amount of nutrient to be applied has then been assessed by using a set of nutrient recovery rates for the three major ecological regions, as shown below:

53

Recovery Rate of Nutrients in%

Region Nutrients N P 2 0 5 K 20

Upper-Lower Highlands, Upper Midlands and Lower 60 15 70 Midlands in W. Kenya

Lower Midlands (East Kenya) 70 20 50

Lowlands (Coast) 50 20 50

The recovery rate of different plants varies, but this variation has been ignored because it is largely unknown. The data arrived at by way of these calculations have been altered somewhat according to (a) the natural fertility of the (20) most important soil types in the particular AEZ, (b) the length of the vegetation period and the kind of rainfall (c) the knowledge of fertilizer use on the part of the farmers of the particular region.

For coffee the recommendation of research stations has been included as published, the nutrient requirements for tea have been based on production function figures supplied by the tea research station.

The legumes included in the table produce approximately 25 kg N/ha per crop. This nutrient has been ignored as it is only partly available for the particular legume crop.

Note: The fertilizer recommendations given in district tables 15 can be a guide only. They will be replaced by the information obtained by the fertilizer use research programme within the next 10—15 years.

An underlying assumption is that farmers who apply more fertilizer apply improved husbandry as well. Thus the yield increase per amount of nutrient applied is due to both factors — better nutrient availability for the plant and better hus­bandry for its protection.

54

Y I E L D T A B L E S

Results of Crop Cuttings — Variety and Crop Fertilizer Trials in Farmers' Fields and Research Stations

MAIZE YIELDS3) RESULTS OF CROP CUTTINGS IN FARMERS FIELD

(First Rains only)

Province/District Ecol Qgical Zones of

AEZ b )

- • • - c 7 ' •

ïialds iceaßured in: 5 years average Province/District

M&P3

Qgical Zones of

AEZ b ) 1975 kg/ha

1976 kg/ha

1977 kg/ha

1973 kg/ha

1979 kg/ha kg/ha bags/ha

NÏANZA

Kisii

ti

South Nyanaa

n n

Kisumu

Siaya

1

2

3

2

3

3

LH 1

UM 1

LM 2

LM 3

LM 3-4

LM 3-4

3,879

4,502

2,990

3.777

3,194

4,037

4,195

3,739

2,384

2,664

2,782

3,531

2,093

2,604

2,392

3,300

3,500

2,540

2,340

2,400

2,600

3,858

3,997

2,979

3,187

3,469

3,762

3,935

2,765

2,715

2,810

3,056

42

44

30

30

31

34

WESTERN

Kakamega n

Busia

Bungoma n

2

1

2

1

2

ÜM 1

LM 1-2

LM 1-2

LH 1 - UM 1

LM 1-2

3,697

3,862

2i,647

"•',524

2,986

3,033

3,623

2,950

3,559

2,564

2,802

3,936

1,747

4,402

2,662

2,700

2,950

2,100

3,540

2,310

2,724

2,089

2,132

3,256

2,250

2,991

3,092

2,315

3,856

2,554

33

34

26

28

RIFT VALLEÏ (Large Farms)

Tran6 Nzoia

Oasin Gishu n n

Nakuru

Laikipia

(Small Farms)

Kericho

i,

Elgeyo Marakvet

7

1

7

7

8

1

2

1

ÜM 4

LH 3

ÜM 4

ÜM 3-4 ...

LH 1 - ÜM 2

LH 1

ÜH 1-2

4,390

3,399

3,005

4.116

6,6oo

4,933

4,236

3,500

2,699

3,672

2,248

4,349

4,549

4,625

3,175

4,416

2,863

4,506

4,327

3,125

3,748

2,500

2,520

3,450

2,180

3,770

4,390

3,430

2,853

3,202

1,600

3,970

3,133

2,902

3,913

2,223

4,208

4,966

3,831

44

35

32

43

25

47

55

42

CENTRAL

Nyandarua

Nyeri

Kirinyaga n

Muranga

n

Kiambu

i,

8

5

5

4

5

4

5

4

LH 3

ÜM 3

DM 1-2

LM 4

OM 1

LM 3-4

ÜM 2-3

LM 4

3,535

3,018

3,759

2,397

3,403

2,782

3,026

2,194

2,733

4,548

1,658

2,914

2,346

2,423

2,972

2,027

1,717

1,649

2,269

1,169

2,460

2,110

2,840

1,710

2,270

2,170

2,190

1,000

1,581

1,469

1,800

1,447

3,497

1,285

2.438

1,770

2,548

2,271

2,932

1,803

2,747

2,146

2,469

1,313

28

25

33

20

31

24

27

15

EASTERN

Embu n

n

Meru n

n

Hacbakos

Kitui

5

4

6

5

4

6

6

6

ÜM 2-3

LM 3

LM 3

LH 1 - UM 1

LM 3

LH 3

LM 3-4

LM 4-5

4,611

2,479

1,937

4,104

2,707

3,625

1,094

2,704

1,742

3,763

3,384

939

2,227

1,733

1,298

2,174

1,784

1,082

1,121

2,700

1,690

1,480

3,350

2,340

2,300

880

950

I.838

1,760

3,060

1,911

1,572

3,739

2,651

2,570

1,057

1,277

34

21

17

42

29

29

12

14

COAST

Kwal e

Kilifi

9

9

L 3-4

L 3-4

2,068

2,774

1,389

1,894

1,251

1,477

1,340

1,440

938

1,650

1,397

1.847

16

21

a) Source: Maize & Produce Board (M & PB)

b) Approximate - AEZ established later than M & PB sample areas

c) Results of crop cutting to arrive at farmers yields, 5 % for harvesting and 10-15 % for storage losses still be deducted

55

NATIONAL MAIZE PERFORMANCE TRIAL (1979) 1ST YEAR RESULTS FROM 6 LOCATIONS

/Site N.A.-R.S. KITALE

NSQCS LANÏT

P.B.S. NJORO

E.D. FARM

ENDEBESS

EMBU RESEARCH STATION

KAKAMEGA RESEARCH STATION

MEAN

Date Planted 11/ V79 3/ V79 19/ 4/79 10/ 4/79 5/ 4/79 12/ 4/79

Date Harvested 31/10/79 18/10/79 26/10/79 1/10/79 15/10/79 1/10/79

Altitude in m I89I 1920 2170 1891 1436 1647

Rainfall in mm (cropping period) 945 321 491 355 653 869

Hybrid/Yield in kg/ha

H. 78OI 6465 6734 3771 5051 5522 6869 5735

H. 7701 6465 7138 3906 4444 5926 5657 5589

H. 7802 7273 6195 3003 5118 5522 5253 5394

H. 6l4 C 6599 6869 3502 4310 2761 5926 4994

H. 612 C 5899 5791 3252 3771 J>%7 5253 4555

H. 613 C 5926 5222 2492 3367 3737 4983 4287

H. 512 4444 5118 2896 4983 3232 4983 4276

H. 511 3232 6465 2828 5158 3064 4o4o 4126

H. 622 3906 4983 2788 3502 4208 4175 3927

H. 632 5118 4714 2559 2828 2929 4983 3855

Pioneer X 105A 3636 3502 1279 2963 3300 2290 2828

Coast Composite 2828 4444 1515 2761 2458 2559 2760

Katumani Comp. B 1481 3771 1010 4o4o 1380 2222 2317

Station Mean 4867 5457 2677 4022 3644 4553 4203

56

YIELDS FROM 1ST MAIZE CONTEST IN FARMERS' FIELDS (1972)

Name Farm Yield of urain at 13» Name Farm K«/Hii Bags/Ac.

C. T. Hose

L.W. McDouall

O.A.S. Vorstcr

S-E-W. Andersen

J.H. Wickliam

P. S. Lou«

G-T. Luck

F. Pereira

Kerita Pyr. & Vc^-

R. A. Barbour

J- Ko^o

J.H.F. Mc^son

A.D.C., Sabwani

Enclebcss Estates

A-D.C, Chorlim

A. D. C, Japata

A. D. C , Zea

A-D.C, 01 N'^antonno

M er row Down

Saboti

N.A-R.S , Kitale

Co-op. Society

Bletchiey

Nai .

D'acrc

10,342

8,783

8,699

8,594

8,124

7,892

7,79S

7,054

6,796

6,716

5,691

5,514

5,243

46.1

39-2

38.8

38-3

36.2

35 2

34.8

31.5

30.3

30.0

25.4

24.6

23.4

Averages 7,479 33.4

L - - - . . -

DETAILS OF THE 3 BEST CROPS

Operations, etc. C. Rose Endcbess Estates L. McDouall

Previous Crop Perm, ^rass Sunflower G rass Ley

Ploughed Sept. 71

Dec 71

Dec. 71 Nov. 71 Jan. 72 Mar.. 72

Harrowed Nov. 71 Jan. 72 Mar. 72

March 72 April 72

Apr. 72

Planted Mar. 16 April 20 Apr. 28

Plants 1 per acre at harvest | per ha.

15,487 38,270

15,4jj 38,141

13,552 33,488

Fertilizer Kji /ha.

phosphate nitrogen

67 119

65 109

95 117

Hand Weeded May 9 May June

May 21 June 24

Cultivated

Herbicide

Insecticide

Harvested

Moisture % at harvest

24D- Am. April 6

5% D.D.T. May, June

Oct. 12

27.0

5% D.D.T. May

Nov. 16

29.9

May 20

Dipterex June

Jan. 13

15.4

Yield. Bags/Acre 46-1 39.2 38.8

W

z

g

w

H

N Q

z

z

O O O ^ o o o Ä o o o Ä o O ^ » vO H ^ 1 o - T VO 1 AJ CO r H ON -31 AJ

O C^ t A O VD o> rH O vO *>. M vC t ^ rH -3" • r A -3" • -3" -

1 rH rH 1 H -3" 1 t-i O H O» O O AJ O AJ -3" -3- -3"

u

« O O O J - O O O 00 ? 8 o ON O O I N

» 1 O I A 1 t v ru ? 8 VD AJ Cv

o O -3- rH O O r A O A l r A AJ AJ H -3- • -3" * -3- * « i t f-t 1 rH 1 r-i r H C

£0

O O O C

£0

O O O o O o O 1 t A 1 I A 1 -3- I A

O o j 1 1 O c*- 1 1 O co 1 1 ON 1 1

O H o O

O O O ^ O o O o 8 § O O O ^ o O ,*— O O O ^ o o O „^ o o O ^ O I A <-*

-3" I A 0 0 V« .3- I A * A VD - 3 8 § O J - O c o cv r A I N r A -3- V0 r-t [ V -3- Cv CO co .3- f A IV- I A AJ l A VO -3- OO H 1 t A "N i H i r-t VO l -< 1 JT t A vD H 1 rH I A l r A I A 1 - 3 I A f A lA - ^

O O o O - I A O f A O I A O -3--3"

1 AJ AJ

A i -3-

1 r-i oO -3"

I r H I A

r-i -3- H

1 *H (H 0 0

rH -3- rH

1 H •3- rH

1 rH -3- rH r H r-i H

O O O O O O O

s o O o v * o O S ftj o O O « O O O CO O O I A o o o vC O O O [ V O o O 0 N O O CO

"3 o t \ l l A 1 AJ S 1 0 0 c o 1 I A r A J - r-i 1 O I A 1 o r H I o -3" •>- O

"3 o 0 0 A I ' o 0~> r - t o VO rH O rH r*\ H C\J O 0'- r y O H f A O ru f A o PA a j - -3- -3- j - • -3- -3- • S 1 r4 1 1 t H rH 1 1 H 1 rH w\

o o u o

O O O O O O o o u o

o O o O o 8 O O O O o O O O O O 1 t N 1 At 1 8 t A l f A 1 i A 1 ON 1 v o r>-

o I A 1 1 o co 1 1 o t A 1 t O OO 1 1 ON 1 1 o vo r 1 O Cv 1 I O co 1 1 r- 1 I w 1 o H

1

o 1

o 1

O i

o O

1

o CU

o 05

CU

o 05 o O O ^ o O O ^ o

O A l O O Q O

1 O vO y_s O O ^ o o o Ä s s O ^ § 8 O ^ o O —

1 t v 00 O 1 vC O O 1 O A l <H O Q O 1 O vO •N VO vO o> -3- t A AJ vO s s A l r> § 8 -3- Cv r A vO O-

O o -3- VD •H o M? -3- AJ o r4 -* O c o -3--3- » *•

r-1 AJ A i r H 1 CA J " O O

1 vO O -

vC VC

1 -3-

o VC

vD r A tA w

-3-1 »A «H A I 1 »A t H f N t K \ 1 r\j *-( VO r A PU -3" r H . * r-t r H JT r-i rH • H

o J - o f A o O r-"\ r A 1 1 -3- - t f -3- J -

— 2 e O O

a o O O »A O 8 O 0 0 O O O AJ O O O 0> O O r A g o o o -3" o o O O N o o O ON O O CN-3 1 rH ru M 1 8 r A C* H 1 O VO <H O O H » i O tv- 1 vD -3- 1 o -3" I A 0 0 JS o C"* C* o l A K\ o VO o rH r>- l A I A (D O t V rH O r A f A O rt r A O A J

** -3- -3- J - -3- * - 3 j - • J -f-. 1 AJ 1 PU 1 rv 1 r y r y « 1 1 rH 1 i-H r*

o o O o O •> c O o w -5

o O o O o O O O O o o o o o o O 1 O 1 l > 1 oo 1 -3" O 1 - A 1 r y 1 SC r> o 1

( N i 1 o 1

M 1 1 o 1

V0 I 1 O »A 1 1 ••

l O 1 1 O t A 1 t

1 . O O 1 *

1 1 o r-i

1 1 r> 1 1

o rH o AJ o A l O r-i A l O O rH o

o O t A ^ o O O ^ o O O O O O ^ O O -* O o O O O ^ •? 8 8 Ä O O — 1 8 CO l A 1 -3* rA O l f \ j I N J f t r A I N t v VD t-i v 0 1 AJ 1 0 0 AJ I A •? 8 8 0 0 r- AJ CO

o 8 -3- i - t o I A A l r y o O« vO »H O O O- H -3- co r H O VO o t > CO r H O rt r A r H L*\ r-t r-t vo + vD \ D - X . r. vO vo * VO

1 I A I - * 1 -3- -3- 1 K \ *H 0> 1 J - H O .3- r H O 1 I A 1 -3" r H O 1 VS AJ 0 0 I A AJ t A

o l A O PA O n j O r A r A O O r A o r A P A

vo A J \£> vC vO VC vo V0

o O t A O O O O -3" O O O I A O O O r A O O - 3 O O O O O I A <? 8 O O O O t v © 1 K \ H r-t 1 t A A l i H l f\l t>- ^H 1 rH IT\ <H VD r H H 1 O 1 vO O r H <? 8 O AJ t A C rH M o H VO O »A 00 O H 00 C ^ t v -3" CO O r A O o CT» O O AJ -3* o •H v£j vo vO v 0 •• vc VO • vD «1 1 -3" 1 PA 1 r A 1 f A r A 1 J - 1 -3- 1 I A rH J 1

3E O o O O O O O

O 1

l A o 1

O f A

o 1

O t A

O O 1 vO

O I A

O o l o

O o 1 vD

O O 1 o S

o t A 1 1 o 1

i n 1 1 o 1

AJ 1 t O H 1 1 VD 1 1 O -3" 1 1

1 O rH 1 *

1 l O cc i *

1 1 "% 1 1

o r A o CM o AJ O rA A ' O I A O r A O WN, PA

4 » 4 * 4> „

- * J 4 «

c c c c c C 0 o CP • V a- V CP B s s E E E E

4» 4» 4 * 4* +> 4-> 4> ca 4 * d CD 4 * CD 4 > a 4 > d 4» CO o> C CD C e e C e ES V c CU C CP C E u CD u 0) t* a> u 9 CP t . CP r» CP IH CP C

4» ^H 4» 4> •H •H -rH 4> •H 4* • H •H •rt

(4 •3 4 * u •3 u 4* u 'S 4 * u o

f« 4*

rH 0 4 > u 1 (- u tf IH

4* I H 1 4» Q 4» O 4 * 3 CP 4 * 3 0) 4» 3 « 4» 3 +> * 4 * 3 CP 4> 3 CP 4 J 3 4 * 3 M C O « S C « e C M C C a Ü H G C M C C H c C c c

f i « «H V •ri © •ri O Cv Ti CU •H 9 - H Cl CP H B to I - t E W r-t E t o *-< E 60 E bD r-t e t c H E bo r-t E «0 E bO *H •o 0 J£ t H •ö V .* •o cv .* -H TJ O» JA -o o a. f t t Hl JÜ •rt TJ V Jd •H TS CP X T) CD X

4 » 4* H h 4» M u 4 » rH U 4» r-t U rM u o 4* rH U 4* rH fH 4» rH u H u

( > U « u 1* u CP o u k. « c- t , U tt) O h CD V u O f- V O I H U tt O tH U 4> o u O- c u i <D •H c o o • H c CP a' •rt C a> » • H C « c CP t . 4) tH C V 0) iH c <P t» -H c a> a o

"l H <M >> •H A . « H !» i H a * H >* -H a «M >» *H a, O» • H o. o <»H >* -rt a «~ » • r t O. »M >> -H Û, P^ •H C

1 1 CD N 0

C 1 C O « M CP C

^ -H z

3 E 3 0

CD >. CO

t o ca CD M

- U C a> cc £ ^

E O CO

c

E 0

t c l -0 S> t * *> 0) to

< H H -H » C ici 3 « >>

'Jl w < z 5 S 3

m a > o

< J5

c 3

58

a -4 W UH

wi tf w 1 < W i b U

z Z > o <: od O H

a; H

>-w Ca H J

w H J

N < J > H H

Ü.

o 1/5 H J GO

— o o o ^ O O ^N o O , o o *-* o O , o o ^ O o ,^ O O ^ o O *-* vO tf\ o CT* O VD 00 ru i r \ vO o fA K> ru Al I A r- r- CTv o o o ru O J - r4 - 3 rH

1 O <M r> co »A 0> i-C 0 0 VO rH co o\ H 0 0 ru rH O rA ru rA O CO rA I A -3-

o • • rA » * 1-1 VO * f co vo O - * tH w m w • *

rH H

»A co -3- rH t>-ru

o rA I A VO

o* ru CO rA

ru -3-i-t

ru I A C^ f > rA r-t

VO ON O

o vO i*i rH

s -£_ *A m _ -s § R -* O O vO 5 vo ru

p F o O O - * o O R o O o> 8 8 ru o o rA O O 0 0 o § R O N

O O vO 5 vo ru r>. F co o rA rH co co R I A I A H 8 8 I A ru § rA rA VO VO

*> tf\ VO . * iA ru a* m o CO co. o» r>- iH 0 0 f t rA § CO O 4 . •> *> 1 C - l/N VO »A ON "\ -3- CO ru CO rH O 1 ^ O Al O -3-O rH r-t ^ iH H M

o. vo o.

o O O o o o O O O O 1 I A -3" fv- r> o O o ru t N

<? ». C0 t^- M CTv VO c rA r> o S ru VO K \ l A r>. c co vo

1 o r>

o P-

O O ~ l A vO O

O O R o

O I A S CN.

o ru O vO

o ru -s- \0 vo »-^ ru l A r-( r> c t v I A —'

1 ru ru I N rH (H r-t K-S M

co rH rH

I A rH

o H

S _ i _

S O o m O O t s O » ' H 8 o K> o o H O O Ov

CO o O O t s O » ' H 8 KN r>. J - rH ON VO

er ru r> vo co rH - 3 J - -3- rA

rH H r-< H

g ° _

2 o o

nj O

O

vO

O rA O

O rA rH

CÛ è rH *-i M rH a.

o

a.

o K § o O *-N o o ^-s O O *— §

t > »A 1-4 co K\ O rA rA rH o i rv rH

rA 0 0 iH

K> CO H —

fA o

0 o O Al o O K> 9, O ru

« o vO r> ru 9, ON

3 s c*- 0 0 rH rv

m ° o S o

l A o o

o vO f - r>

° 0

8 R g O O O 8 O o 0> ^A

O O O o § s 8 o o O —» 8 R CO g co r> l f \ Ov O 8 co J - l A 0> ^A o I A CO I A c - ^A § s co 8 J - CO rA IA r> f . H rH 00 co r-l ru H H O vO H ru rH rH rA J - rH ru o ru ru ru rA "i r> H O r> H

. . • w 1 <Ti <\l VO .3- H H J H O i r \ r-t CO •3- rH O • * rH VO I A (M I A vo ru r>- ir, H Ov I A rH ON

_8_ •A K> rvj ru ru rA rA »A Al ru

o S Ä oo o O -3" O O f > O o -* O O r>- O O CD O s O O O Ov o O M O o ru

• 1 S Ä •H rA rH H m av vo J - H l A o> I A O •H vO s H I A I A rH vo O rH rA rA rH

» o vO O r- CO j - K \ rH co -3" rA I A r> r> vO H rH j f r>. O rv f VO

1 è .3* iH K\ K\ -3" rA rA rA I A >H -* J -

«? R o O vO

O O VO

O I A

o vO

O O S O

O

? I A a* O K\ O CO M o c rA

O K\ ru K\ K> rA ru rA -3- K\ »A

*> a 4J e C

-h> a a 4* •w *» j j +» ** *» •*» 4» +» o a fi h fi fi C C fi ta d d d u h ft U « h 4J h « t . a fc« 0 U o u a rl 9 U « k. « u « EH

* •H ft •H 0 9 a> *H * •H a> -H 0» - H s> •H a> T 4 O •H c * i O -H

> h > k. t» S >• »- > h £ h > (4 > h r* U > kt r> u r> h h O 4> o •w C O -M O *» e *» o *» o 4> 0 O 4 * o ** 0 *> ft S 3 <H 3 g S 9 9 9 9 9 9 u ft a o C « 0 • fi e> fi a> C © C « d O) d • d o d « a •H O a 10 O Q œ o o o Q n a rH al « af U «s H a u a « « u 0 U ca V 01 w « b£ 0 M a tù

•H •a c .* •o « M •o ft J * «O « X •o « M •o ? Jtf « a> Jd •o « JC •o e Jä •O 0 Jd •o « X •O « x 4* »-1 u «H u ^ h I >H h (H u H fc H Li rH u H t . H U •H u rH ki h o o t. e u k c o ki a> o k O o U « o h V O U « o h O o h e o ki C o u • O u e •r» S c •H c C •H c © • H C « •H B « e a •H a « c ft •r4 c o •r« C ft •H fi e <rt C ft u. >> -H D 4 >> •H 0 4 >» -H Ô | h <H C J ^ -H c P^ •H a •> •H Q >» • * *

O >> •H O J>» -H P IX o >» i n a

a +» 4* O O o « O ft

X G, 3 •a X O > to u +* •H u a os C 9 -H t« J£ m o e e a 0 o •o •H C -H •r* J= JE 3 O •H a« e e •rt k>

C u as o « œ -H JA L> •o t e kt k. ft u « V k, N e -H as a a a f-t al « > S m H Z » O -3 s z u: s U Z cq < a

59

s w E t/3 Di W

(Z3

-J <: S H Od N J H OS U h tu O H -J

CA

W BS

on M U g > O Od 0-,

H CO

<c O U Q

W H 00

< tq • 4

z U U

0 O O ^ O O ' - » O Ö N

O O ^ o o ~ O O ^ O O / s O tACO

O O O o o o -^ O O O *> O O * - O O ' - * o j oj I A O O M N O Ö N vOvO f A O O CTN vO O o j

O O / s O tACO O o I A Cs* O OJ O VC - 3 0O fs- 3 3 - C O J - rH OJ

00 ON rH O l A - 3 O N N O vO o j J - rH - * OJ OJ ^ f sO N J 1 C-sO VO r-i oj oj m 1 r/\ Os J - I A O OO J O Os

o • -—' • * r>- » » r A ON rA I A OJ l A r A ON 0 \ n j Ü M A - f f - l A v O OJ J - VO P A rA lAsO rH J " r> OJ l A s O U M A o so O -3" PA sO i n ^ 00 l A w

sO H ON rH vO r-t CN rH O rH O r-i Os rH r - r-i 0 0 rH CO 1 OJ co rH O rH I A r - t I-* r H o - 3 f A

S V A sO co C O

S Q O O O O O v ó Ö" O ÏA O O H O O rA O O rH O OoO O IA -±

o O O O O ON O O rH > O O O vO O O o j O O PA 0 COCO iA CvvO J " O O O O v O « ) N O O iA OJ SO v£>

O OoO O IA -± m m as PTN, m s o rH tf\ ff\ a i PA es- PA I A I A I A OsvO - 3

+J co ON -H c- - 3 rH ••O OJ I A OJ fs-sO r-oo I A -3- VÛ r-i O0 OO O O I A rH SO rH o v o j -a 10 VO • -•w eo OJ ONCJ - 3 I A P A - » OJ PA r-i rA O OJ OJ I A r-i -3" rH rH 0 1 N OJ - 3 PA V0 Al G O rH r H H r H r H rA O O rH rH rH

a \o s O a O O O 8 O O & O O O O O O

o £ rH O 8 O vO & O co 0 O O sO O P A 1 £ - 3 rA j f rA O O O r H - 3 - O N 1 PA I A - 3 -

o O • 1 I A s O Os Cs as 0 0 N Cs. r- ON 1 IA r H P A

o O rH rH rH

o O O "% O -3 sO

o o*-* H 0 O - 3

O O - ^ VO vO I A

r-i IA 1 —' O P A w O -3- *•" • ^ rH rH

O rH rH

OJ rH rH

3 3

3 o O O C O O O VO o o rv-C co oj vo »A C V N

*" co PA OO OJ CO OJ

t • ^

S _2 S ~ O O o

1 VO rA o

I I A VO vO

0 O O ^ o o ~ O O " ^ o o ~ O o ^ O O - s O O — O O N o " Q O O O O O <*+ O - O " - * O O " - * K M A V O OJCO O vO SOCO O K \ \ 0 lAcooO OJ l A o j O - 3 " LA OJ vO I A Cs- Os H rH I A -3" t v fA PA OJ sO o j J » C V « - ' fAO- rH l A s O -~* Os I A * - - I A V O - ' ON-fA1-* 0 - 3 - ^ OJ OJ o PA fA 0J r A ^ -

O PAS-- o j rA + » 0 0 • t > + f A - ts- CTs * H #• 0N •• co

-* H r-t H O 0J

H rH rH rH H H H H H H o 3 C

- 3 - rH rH rH rH ON

o H O

0J o 3 C

Ó D ~ o o o i O O O O O 0> o o r- O O Os O O N 8 S * O O 1 O

o 3 C O O O rH O O I A

so 5 O O I A O O Cv

3 • I T i N f lA rH rH -3- J - K > \ 0 Jt ts- i n oo 8 S * V O N • o 1 O OJ rH O O I A so 5 l A H - 3 CO

« o H -3- O s j - OJ K\ sO OJ OJ 1 ^ co o j co OJ O N co B o J - - 3 o o j Os OJ rH OJ > J - » 3 J -

B 9 1 r H r H H H O 1 r H r H rH

O O

o

"ö o O O O O O O O O O

~ O o O O

a. 1 GO J - o N r> Cs- s O V O o 1 « V O - 3 V O

o

oc

o

° vO I A Os rA oo I A I A O N C v o « C O Cv C O o

oc

o

Ô 1

i-i o o

oc

o «J - » O vO o O o o ^

N o OJ o o ~ O o « O O ^ O O ~ «J - » O vO o J - H

o o ^ N o OJ rH rHCO O I A I A PA rH VO 00 vO co

rH rH rH O PA 1 O ONrH -3" O S N ^ cv N + PAON*— - 3 - 0 0 '— » OJ * PA • OJ

rA H O O rH CO OJ PA rH OJ rH CO rH OJ rH OJ

B ~ _

O J O J r H

ürö" O O OJ O O ON O O rH O 0 - 3 - o o PA|O o r> O 0 - 3 • 5 <A 1X3 H VO sO ON OJ rH t A I A rH IA O rH CO VO rH 0 N C * - r H 5 <A 1X3 H

VO »A I A - 3 O I A -3- IA OvO rH I A b J -

° 1 OJ rH rH rH rH r H I 1 O I

"ö" o O O 1 O O O O

i J - O Cv O I A OJ OJ

<? o P A r H I A ON - 3 " S O

o OJ rH

™ " o o G O ­ O O ^ * O O 0J

O O ~» O O - v o o ~ O O ^ s O O O O - s O O ^ O O ~

'S 'D'O O O ^ * O O 0J I A I A 0 0 O OJ Cv O r A l A

O O H

-S- 00 fs- I A P A I A PA l A O J -3" J - - 3 - -3- -3* - 3 l A t A H sOCO OJ J - J - J - Oj OJ rA

O r A l A O O H rH O H OJ O- rH ONrH O ONrH O ONrH

• J - « **—» OO H 1 « ^ PA rH I A I A OJ rH ^ï- OJVO OJ rHSO OJ rH N OJ rH OJ - 3 OJ .3- OJ - 3

Ü J - « ^ - * • \D I A OJ OJ OJ OJ OJ

1 o O O K * O O K> O O OJ

O O K> o o o> O O rH O O O O O IA O O OJ O Q O O O H

O O O

•î=! N O O K> O O OJ OJ OJ rH I A C N - H i-i-f r~l J - t O H r-i ON H rnr-rH

O Q O O O H O O rH

3 •? O* Cv 00 ON I A I A Cv tv -ff- - » -3- f A rH I A Vu-T l A - 3 I A - 3 3 •? 3-2

<\J r-t »A Al H M OJ H rH ^ 5 ° o O O o O O O O o O

Kï 1

s o ON 8 & Cs-

Os sO O

OJ I A

co rH

O H

O rH

0 f \J f A r^ r-i r H rH r H r H

Ç S 0 / : O rAO. O O ^ O O ^

\0 0 \ s O o o ~

O rA O O O " - » O O ^ s o o ~ Ç

2S& O rAO. OJCO CO Os O s O \0 0 \ s O O H PA

PA N OJ O rA O I A OJ H O i M N O r j rv-2S& N O K » r- O o. -S" -tf OJ OJ co o j

O H PA PA N OJ -3- i A r H PASO OJ I A O OJ l A O o j

• » w

| I A rH O -ff- oj O I A OJ OJ I A rH Cs. I A rH I V J - rH PA -3" rHCO -3" rH rH I A OJ H I A ' M rH

_£ IA IA IA f A J - •3- P A I A ^

<D O 2%% Q O co O K N H

0 0 4 O O N O O H O O O O rH OJ

O O 0> O O O O 0 - 3 - O 0 - 3 -ta i 2%% Q O co

O K N H O vo o j t s - N r H O rA OJ O O O O rH OJ rH -3" rH rH 0 0 OJ l A Cv o j I A C V OJ

f-t ON j - r- \0 Os SC s£> OJ O0 *• 00 VO f > I A Cv - 3 ON - 3 ON <0 -3-E 1 J - rA J - -a- ' . 3 - P A P A P A . 3 - 3

1 O O o O O O O O O O 1 I A t v J - 8 t s - Os O P A co co H vu s O 8 r A l A C O N -3- •3"

° J A OJ rA •d- P A OJ O J O J r A »A

«, +> 4 *

B G

{ ë 0 E

+>

*> +> 4 J -*» + J *» « *» 0 4J *» A> C c t c a C C o a C 0 a 0 a B B 1 0 m * 0 « 0) 0 0 0 L, o k> 0 0 0

• * •ri • H • H • H • H • H • H * J • H 4* -H • H • H

rH h •ai f-t t- rH t. rH IH rH t- H k< H t i r~t U •3 i rH t . r-l U rH U rH k >• a u •ai 0 *J « *J S 4 i et ±> œ +j (8 - f al *» •3 i 0 *J L, « * * a ** 0 -M

« +> s ** 2 ** a * * 3 •M 3 +> 3 * * 3 V 3 • M 3 4J 3 * * 3 0 -** 3 ** 3 * * 3 M o c c c c c c a c a e c c c c e B a c e B B N B B B C E E

•»• o « « œ m V « 0 0 0 0 «H 0 0 0 8 tl - G 2 S b E b e u e te E U e u E u E bû e tu rH E b E W E W

« « .* •d 0 x •t) ff X •o * J< •o » Jd •o « X •O V M •o « X •O 0 ^ •o 0 X •C 0 J i •«-1 -O 0 X •o O X •o 0 X

" r4 b r^ (W rH »4 rH IH rH h r* U rH U r-i U rH U rH L. P . *> rH k. G. ** rH U irH U rH U «• 0 O h v u t . ft O u a< o h a> U 1- e> o u 0 O U 0 ü U 0 (J i- 0 O »H 0 L, 0 O h O U 0 t> U 0 O t-r 0 O t i C • H a « "* C ï •H c a T4 O a •H e o •H C ft) •H O « •H C 0 •H C 0 « H B O u 0 •H C 0 L> D - H B 0 - H C 0 •rt E 0

h. >*Ti D 4 > » - H P 4 >» -H B •4 f » ^ 0 J > » ' H 0 4 t*,-H Cw >»•** o S H O 4 ftt-H Q 4 > , . H CH o u. O - H a J U U. > > T ( d j > Ï - ^ O, >»-rt Û,

^ 3 o te <c

t 3 » e © O 0 O

— U 3 tC • , 60 X te •H bß 1. 3 .O •n c c m (S e a t ) «M 0

* j= e *<• O tH L 3 3 X L, rH -r* L,

« •s a W U U fti J 3 U u 0 • H 0 rH 0 •T t*> -H >» 3 *H > 6 0 a •> a * nH > C Ä -< 3 X i£ < K E X. < E - * ^ <

6 0

.-* ir» \ûcc oc -y * O K \

co O CT* O

r*"\ r-l r-l rH

O co fv vo r\j vo co -^ (\1 vO J fy ^ O IA co

1/3

w Bi <

z

ö

g s z

z « < •** -J ^ 5« c

2 O b O

> H U

Q O os CU

S H

M r-t

voce w\ry -a* ftj O in

m <\l CT*

ry r^i c\j

-* rvj r\j *o

rH QO (\J

r-î Ô rt

c~-3- r y v o r H l A V O K > m 00 O O \ O c o fA C*-

<\) r-t ^ r H »T\ iH J f\| K \ f - t - ^ f \ J F ^ H K\ rH

C^ H O

*- \ r^ K\.

fA 0 J - J - -ff- rH & 00 M>

^ 0 r - t l - i .H ru -1 H r H

rA F A ^ rw O r>. vO •A V D

O rH

r - l O r H O ( M r y H ( \ j f \ j • • • • • • • • • O H O M O O O O O

C T H O O ccaD ry >A • • •• •• •• t - i - 3 - O rA J " 0> 0 0 I A

J - l A O^fXJ CT\ I A O^ l A C ^ - T rtO\ V û N U"\CC O (M 0 0 rH

vO -=- \D - * 0 > \ 0 ON I A O ^ O v û OO m M A

rA <\J ru (\)

O O fj\ O^

CO ON

r\J AJ

O tv r\joo O N - J H r-\

r-t f> co H rvjao o o i A

j- 00 r- r>. rA r> rA-3" J- IA rA-3- VO VO ry O -3-00 -* 00

r>--3- IA rA co IA 00 IA co IA \o .a- r*-j- r -3-

§g se

o Z

E ~ M 6 ? 0 0

U JJ C 0

T ) C 0

0) T,

tu

O 3

T l

O

tu tu

T3 ^ Xi 0 0 • T )

x) <u . 0 II

<a J =

O >

N

< 0 »-< cd a)

O

.s N

Z

C

g t - i IM cm

- 1

S tu M

0 X <a O £ O • 0 •a

I * g *r> o a c 1 ^ ^ H M

QJ CT\ M « 0 0 S 3 S

3 a Q .g

^ 3 •a R Q .g

3 03

3 0

fi Z O H

<D îS

O

<1>

0 ï u a) u 3

*A ,*i Irt 4 J

x c h (U c/) S w H 0< «3 VI

<; c 0

3 z I M

0

^ 3 0

C O u 0

•s) Ja 0 N

'-3 H ? rt"

(U ( M

2 tu

is

'S. ai S

9 c 1>

03 0 •fi M T 3 ß

t U

0

>• CQ H ^

CO

<

< O z < u. Q

S Z co Q'

O u. O

> H U

Q O Bi Pu W

C^ 0^ l A C*» IM *A f A - 3 "

K\ »A

OO M K> «£)

CO i-i ^ n

-3- PA rA <M

K\. -j- -j in cc IA ry *A l f \ ^ l A <A rA <M CC iA

. i A i A J CO CO

; -S- 00 ifN LA rA

r\l CC CO

»A i A •-!

t ^ O O l \ l SO O J - 0 ^

t A i ^ CO I A -2" i A J - i M

IM K\

CT* LA D>- <-l

rA <M H iH

- t C^ J -

-H O rH

O K \ I S O - T O N v ß r A O C T N J - I A H O rH f A

r \ i i - i ^ T P A - 3 - i M « A r y \ O f A LA r A v£> J - LA f A

»A >A 0>

F A r y -H

O ^ O O l A V D C O -3" ["•-

C M A (As£> i A r - 4 H 3

LA r\j O"* r y vC

O n j -H I M i-(

iT\ ^ vß O CO 0 ^ C T > 0 >

r-l C\J rA »A AI 'M 'M f\J

K\ IM

r-t " (H

rH O

A ' (M

t o C1. H V C J r>- rA M r y \ C

i - l O r A i i H O O O 0 \ J

•-* VC SO cO f> O IA ru r K-, r>. j -

- 3 - C ^ C M A - S - I M O O

0 ^ - 3 " < \J \Û SO »A -3- (M

0^ IA ON O

-r (M >A ry vûco ry \o O i n j w ry so O O ry H O O l A f \ j P A r - i l A f \ i J - f \ j N f T \ C O - J ^ O f A v O f A

CT* r A Cv

iH IM rH

KN -a- so co rA (M »A i-t

J - H C^

c o d

-a- ry -3- ry sc >A r\j so i \ ! SO O l A - T f y LA A I

•A r y 0"s L A

n j r-i O O

( A C ^ O M A rH I A -3" l""^ CO -3" VO CO O"* O 3 N O

P A W J ' A I " S H r A r-t -3" f y f*S M » A I M PA A I

D rH r- IM r- I A sO IT ,

H O rt .H ^ H r-(

*>, .H c*- SO j - C^ CO CO

ri FA

s c a: n r n s n O H Q E- O H C H

Q f - O f -

C 01 4) l -•H e te m

O 2

.Si ra

S E ?, Q

e c e o

(U Z u 3 Tl

Q

E;

u 3 Tl S-

E; •o ïfc

X I c O o o •o XI II

CD • C

N UJ

o o

a

•1 Z N

UJ o

» M o>

< o

» N c

» § s

S Os

S a

T3 O

O

• O

•c

£ 5 S

Bi < z H 3

.s ° M JÛ

a B

> 05

Q _c Z Q H

n 3 X)

O

O ó

Z Q H S Q

3 Tl O O.

w N < z C/5

- )

I N

E* H ff! (* < fa O u. O H J C/5

tel

O o O O i f \ 0 « O Û O i r \ ^ O O o i r \ i r \ ^ O O O O N ^ O O O O O "~~~

O O O O O l A o o • H r y O N v o p - v o rt r y r > - * H C T » t > - f M V O t l O r\\£> o o w \ < A O » A r y r > . r t A - r t C N - L A r > . ^ f -* r> - 3 " - 3 " - 3 - V O

• M rt F - O N O » A K > \ £ > - * l A w ce O K \ r l J ^ l A v O v O O N f A i A O N r > - r y v O L A rt N £ > V O V O rt - f L A - 3 " - 3 - r A * - ' I ^ I A J H K N V O v û \ û U 3 r y H U \ v O I A L A K \ — ' L A L A L A l A r y f i V D V O v O rt

o c L A r H r y O O r y

e ry r y

« S • £ œ o O O O O O i A ^ O O i A O - O o o o o — o o o o r - - ' - . OOOt>-r> o o O O O L A ' -

• D C 0 0 v O O r y v D O rt r A O rt O L A r y i l \Û r u a » ^ i l A r H C O o O f A i A C N r y C ^ r y ^ î ru ro t?-^- - 3 - r y f A L A r > r * • * ^ J V û N w v û O ^ J ^ co e o M ^ H w rtOcovßrt^ O L A O A l r H rt *i f A O N rt v O ' - ' 0)> J - r y r A rt rt OJ V D . * rt OO r J - ^ O L P * r y \D - 3 , v û f A - 3 , r y r ^ v ß L A J - t A r y c v D L A v O r *

• H T 3 r y , - t r y r y C - <u > . C r y 8

>" 2 2 a 2 C 0 O O O O O I T l H Q O O l A L A

« H l A a O ftJ - » O J " CM O M O r - ( l A v O l > - rt O N O

O O r y O O U M A O Q O O O N - î O O O v O v û O u o o O O O L A » - H J - K \

O O O I T l H Q O O l A L A « H l A a O ftJ - » O J " CM O M O r - ( l A v O l > - rt O N O

r y t > - r y v O < H K M f \ l A O O l > - C r * J ' J - v û O J - v O C O f A r X J - r y C O O O N r t 1 O O N J " B * >

O O O I T l H Q O O l A L A « H l A a O ftJ - » O J " CM O M O r - ( l A v O l > - rt O N O Ooo t f > C M N O o s O N O r y C N . r y c o C N - r y r t

C O O O N r t 1 O O N J "

Il - » r A f A r t rtvOfArt ^ O i r \ i r « i r \ r y f A J - j - j - r t j - j - r A - » r t V O J - L A Il H o. O o O O L A O O L A O O O O O O O f A O O O O O O O O L A

LAO r> o. vo IALA ru >-* H O l V O O C O rtvûvOJ- O - r y t A o o O O L A LAO r>

« U N K \ P » V O r y O N r y M . H rt - 3 - r y

O D I T W D r y - 3 - r r \

c O L A r y i A r A - 3 - J - O r y r y r y r y c \ ^ f \ j n ^

OO rt J " L A L A L A

• > Ü 4 J

» I A r y r y ry r y r y r y rv! r y f A • r» o r y r H > H r y r y r-4 r y H fi

S * - . rvj V Û I A 1 A vo v O i A v O L A VO S z a.

> X X X = X X X X X

u f A f A L A v O - 3 - j - i r \ - 3 - J - L A J - J - J - r y f A

a r-rv r- r>- rv r>- r> t N r > - c>- CN- r - r * r-cO c o » O N o * O N C7N ON o> O N O N O N O N O N O N O N O N

t - i H i H , - t W r ^ H rt f i t-i ^ r-i t-i f i f i rt

O

•z.

H JSC L A

u. O rt f\J

rt >> & M M œ M O I M

O <M O O O al c O

a to b û M a i X * 0 © M . -< f i

c c C rt fi rt

o a o ai e r - t 1 rt ü n ß rt rtrtrt H

d 3 fl! CÖ « a to • r * rt

u o C rt fi rt

o a o ai o ce a* a ü n ß rt rtrtrt H d 3 fl! CÖ « •k> X Xi ( 0

< « ce +> ce * J x +> i . 4 « c x ^ a ; 4 J D to EG + » c E A4

c a c c C H - H - H C « L A « = B « V • • © • « c a> - 0> © 1« L, (-. « 4( E > > O «

d bO G a l « O B « E ffl bO E o bo E o o c to e « o 3 bO E d • u a i « u fa d fa fa M a> H a a> t j BS © b O t O t C C O V t * h J m « d • u a i « u fa d fa fa 3 v

d t . v . O U U r H ^ r H U b Ü • « u fa « o at o u 3 v al « u C B : = O » O - H - ^ r t o i ü c c o u

K • o •> > c t» c >» > c >* > G ä C ^ ^ U C •r* CO d > c S 0 - r t 3 1 * - H X - H S CÖ - H Ä a -H ce rt *-* 6 0 a ) - H »

E £ .c £ J C £ j *

6 0 a ) - H » E

** ** *» 4-> *» o d :

S 3 3 3 3 = = U z : 4 o O o 0 o a 4 to 0 3 w w y j z *

•3 ru a. O O O O O r y O ^ O O O 0 ~ O O O O C O o — - O O O O l T \ N « O O O O C N - r > . * — O O O f A O ^ > •3 ru a. H r l J J H O D N r t O . * r y t A i O J H O C C f / > M ) rtJ-H"\\OKNiO'A C T * i r y C O - 3 " - 3 " L A - 3 " O O f A L A L A f A f A

+* H l A l A - * » A v O r y r - — ' rt f A O - o O ' - ' O O l A rt I T \ O * O N * ^ J - K \ * ^ V Ü - * C C ' - ' r y O r A rt C O OO > - " - H c O rt O rt * - -

o a ( f w û N c o c o C ^ H i r \ t A r y ry ,-*co J - r * J l P \ » r \ K N C O - * 0 O - a - - 3 - l A r t l f \ M fi f A r > f A A - V u - 3 - rt - 3 - rt O N

« * H rt

't 't e o O O O O O O O r u o - ^ O O O O ' - O O O O N M A - ^ O O O O f A O - ^ O O o o O t N C N - ^ O O O t — 3 " — N

•o o ao v© • A i A c o r y K \ J - f A r y r y r y r y K N - S - O f N W N C ^ ' X i v O ( T , s O r y i A r y r t c o O N l A r t A ' - 3 - t A O rt r y - 3 " v O L A rt O N O N

r * - H ^ O N - 3 - J - r y r y t > H H K \ r - o o r u J " U^tf\r^O^O^ *—' O N - ï r y v û f A v C ' - ' \ ^ L A L A rt r> o rt L A c O f A O N O N - W

« LAVO voeo tT»r> iH «-' tA ru r y H ^ J - f A J f A I A r y F A C O J - J - L A rt rt f i f i r y CN f A — ' L A J - rt f A r y • H T J ru K > rt r y O N . f i

S r y r g

S e o O O O 0 0 0 0 - 3 * r y r y O O irs ir\eo O O O O U " \ r > O N O O O O K \ O J " O O O O A - t V V O O O O O t V L A

O S J - O N - 3 - rt f i e -< - * • * A I V v O v o v o O - o o r > K S o i T \ r y M \ H r y I A O O v û v£» rt rtvûvûvcr>-J-»A L A I f A O N t A rt r y O O O O t V L A O S J - O N - 3 - rt f i

B « N O O C * f \ J O N O J ( 7 M « > V O r*- O v K M A r y C*- r > f A n j i A r - O N f A c o O vu O N r y r y 0 O O N r N - L A v O

u K \ v û v o o o o o v û » H r y r H I A r A I A r y r A J - c o r y J - - 3 - f i f* r y L A t A - 3 - f A rt f A u H O . O o O O O O O r y O Q

ry ir\ j - ry i^ w o ex* O O O O O C O O O O O » A O O O O O O O O f A

r y o L A r y a. O O O O O r y O Q ry ir\ j - ry i^ w o ex* C A 1 O » A f - O N O V r - r u r y r y K > v £ , i J - f A O O N

O O O f A r y o L A r y

al K\ IT\ o\ ON eo m I N cr.ee i r , r > . F A f A c-- L A O N L A I A V D N ^ O A - r y O N O r H v o O N K N V Û K M f t r > - t r » » A rt J - r y r y rt L T N P A r A f A rt • f i r y L A r y L A r y rt r y

• » o o O

*> o tf\K\ f A f A r y r y r y A i

• H O M r H i-i r y r%j r y r y

S ^ ( \ H Û v O vc v u v u vo vu S z. a >

N—' W se X X X X X X

fa K > - 3 - J j \ o r«-\ » ^ ( A K \ f A f A r A J - - l A v C f A f A

a es-1^-r-r>-i>- c^-r^ t V P - I S I N t^ ^. cv r- r- r> o O N O O s O N O < r - C > O * O N O N O * C N O N O N 0 ^ O N ON

t M f ^ r l H H H r H i H t-i f i r4 r-* ft ^ M f* fi

rt rt C f i rt rt w

o f t rt rt HH rt U\

*» V 4 o ce • r t 0 O O d o ry • rt nH U T J - O T J

a Zu - C M O c e c V M ^ H "-t rt f-t a l rt s t e rt o.' a i © f i b a u « w CO rt rt > a >» « ^ a » * * « < X * * J ^ * * M »H

*> rt rt rt t - t 4-> O * * O j j • * < < * »

U a Ä c c C c c B

u 4i O a» o 3 m <n cd a» v • c a . et * W ©

a E Û D l T v t O B Ä t O E J* bC E ie to E as o M E co ta E

« I ^ N C • E CO (U o a t i K CO * N M co a> N d ©

o U h k i 3 u u h U h C fa I . B c i~ u C U f a © O H O * V V o o U t i o e v o a a eu o a © o

ce C > c * > c ^ t» c >> > c >, >> > c P-. » c • H + CO - H a - H a «H =: m rt z Ä CO T< S 0 rt

•*4 ^ i • H - C J 3 _- Ä

»-) • * J • *

CO œ co 3 3 3 3 - H • H • H O O O O

« Ü b : « 0 5 y ) to

63

w _J <

I C/i BS

z > 09 BS W

I -J ta

C/3

Z

< 2 H BS W N

b O

H - I

5

^

eo (\J vT

^

6 4

w <

z C/3 -1 -<

N J

W

b O C/3 H -1 C/3

ei 3 ? -> o- < w > o C « f eu £

° O

O H

^ CA W

00

- p o o o o o o o o o 1 <D O <\1 O - CM O N - ^ cO ON K \ Ö c\l CM v o c o v o j - o - o o r S

a K \ J - J - |T \ i r \ J " l A v û r -

^

CU Q)

a a O O O O O O O O O Cd 'ri O CM O N CM -^" H ( A l>- VO

- ö > O O V O - Î O H r-i C-- I A H cd CM r A I A I A -4- L A -cf I A O -M «

V

•3 o o o o o o o o o O O O O O O O O O •3 o - d - t A M D H O O N r - i K N , v o O H ON v o L A l>- C - r A - p r>- -d- l A l A I N o O O O ( A H ^ O H U ) 1 N H - 4 - C M H • H I A OO v£) (S- OO CO OO o ; o CM f A t>- O - CO O ON O O

^ p-é H H H t-\

O J3 O O O O O O

• H V f l H U J O m (H LA ON ON OO CM CD l"A<X> f A - d " OD

*!

+> Q>

ja O O O O O

eu O i H QNOO ON (Q O ( A K \ ( M 4 -ft I A OO CM LA r>-cd

^

O)

>» o o o o o o o o o 3 - d - ' O m r v J C ^ t N - i - O o O

, o 4" I A W J - | J 3 4 " M O tA Q) VU mcNC^-c^o-c^oö as

5

cd hO 0) O O O O O O O H I A W 1 N 4 - O 0 ( \ l cd -4" CM VO J - O CO CM

•3 OO VO O ON CM CO J -

•3 H H rH

*

cd

>> O O O O cd ( A C - r A - 4 "

• H c o vO f \ J -UI CM CM

U C O C O O O O O C O O O O O C O O O ON ON ON ON cd i>r>-c^-o-o-(Nr>-c^c^ o o- r>- tv CD O N O N G N O N O N O N C N O N O N ON ON 0 s . ON

M r H r H r H H c — 1 H H r i H H H i H H

•H • H

>» Ö O •P Cd O H Cd H r-l <D E r-l CM CM CM ^ 4 - CM O S H f M C M CM J " r A O O -

•H 3 i H f M t ^ i H r H i H O t > 3 H M ^ t H H H I > - C O

^ -P I A M 3 VO M3 VO VO I A t>- -P l A v O v£> ^ f i v o v o M S cd cd ti ^

> t ^ P3 £1* £M 3 3 £C PM HC tXj -** ÎXJ 2 - m 35 ^j^ r e ju, î-Ej

65

RESULTS OF FERTILIZER TRIALS IN MAIZE3) IN MACHAKOS AND KITUI DISTRICTS

Area Year Variety Treatments, Yields at 0 application & incremental

Machakos, Katumani Research 1974 Katumani 0 40 70 100

Composite 0 30 30 30

B 5920 5820 5140

incremental not

Machakos, Karigundo 1974 measured 3860 4550 52IO

incremental

Machakos, Kisau 1974 1060 1520 I6IO

incremental

Kitui, Ithookwe 1974 3370 296O 2940

incremental

Kitui, Kampi ya Mawe 1974 2680 2770 2720

incremental

Kitui, Yatta 1974 3120 2340 2080

incremental

Kitui, Kitungu 1974 1980 1940 2660

incremental

0 40 70 100

0 60 60 60

Machakos» Katumani Research 1974 Katumani 4670 563O 5330

incremental Composite not

Machakos, Karigundo B measured 4310 4170 396O

incremental

Machakos, Kisau 1974 1890 2490 I6IO

incremental

Kitui, Ithookwe 197^ 3440 3440 3480

incremental

Kitui, Kampi ya Mawe 1974 2510 2920 2730

incremental

Kitui, Yatta 1974 2080 2930 1690

incremental

Kitui, Kitungu 1974 2120 2110 2040

incremental

- — — i — ' — — '

a) no yield increase or even depressed yields as a result of fertilizer application

6 6

RESULTS OF FERTILIZER TRIALS IN MAIZE AND SORGHUM 1977/78

Area Variety Treatment Yield Area Variety N p 2 0 5

Yield

Kisii, Research Station H 613 120 80 120 120

90 60 90 90

5510 695O 3^0 86IO

Kitale, NAR Station 170 110 + 60 K20 7OOO

Thika, Hort. Research Station H 511 6 119 6if0

Embu, Research Station Smbu, Research Station

H 511 H 512

50 50

50 50

7500 72OO

Machakos, Katumani Research Station Katuraani Comp. B

ko 30 5920

Kilifi, Mtwapa Research Station Coast Comp. 100 100 25OO

Kilifi, Mtwapa Research Station Pioneer Hybrid 100 100 28OO,

Sorghum

Nakuru, Lanet Beef Research Station E 1291 62 67 7300:

Nakuru, Lanet Beef Research Station E 6518 62 67 1*200

Kilifi, Mtwapa Research Station H. 57 100 100 I8OO

Kilifi, Mtwapa Research Station Serena 100 100 9OO.

Si ay a Serena 178 104 I56O

67

o O oo O O -Î- O O er. <\J \D i r . M L^

• #\ _ ï H 'M 0^

O O J -iTi ON H

O O tr»

O

o o

•«: z .>

S3

as

z

2 H BS U N

H CÈ W (b b O (/3 H J

o te o

I Vi ÖS < z >-co H < Ui

X

Z C/5

J •<

S H OU M N J H Di W b u. O c« H D

f o

' • • ' ' O

f o o o C O O o ^ o o r>- O O I A O o J T o O O O ' o O N o o t A

a. o t A O N o o r y I A ON co I A r H r y 1 o r A 1 1 r y c V C i 1-1 r> r> V C CN. M ) » A I A r > ON C O - 3 I A

z i o r y

K \ H r y r y A I r H r H 1

o r y M r y

f O o

f O o o r O o I A o o - 3 - O O - 3 - O O 0 0 O o O o I A O o - 3 - O O t - *

a, C O r> •A r H I A co » A r y J - co r H O 1 cc f A r y O I A l A O r y i ) ON v C A - - 3 " J - r A V O f A t N - J - r- 1 r u - 3 - - 3 - r A v C r-

z O r y i H f y r y r y r H o r A r - l r A rH

5

r y J -

5 f o o

5 f o o o co O O r - l O O V C O O vX) o O ^ o o O O O - 3 - O O r y

^ a. v C I A r H K \ f A - 3 - r> ON co J - C O r y O N i O r y 1 1 O N - 3 - O I A r y ^ i ( C O I A f A J - t A v O f A t A A ' r>- r* r y r y r A f A

.* z O r y i H rv r y r y r H

* o -3"

r \ j . - t f A H

.2 .2 O o

a ^ 1 1 4 1 1 O O O •o- O O I A O o H O O O f A o o O O r A O O V C O O O

c a, - 3 - r y 0 0 i H O O • 3 - f N - i H C ^ 1 co r y A ' r y - 3 - f A r y H vc r H 0 0 f A r y

a> i 1 ON t A I A no I A - 3 - r y r H ON co 1 D N r H r v C f > O O E z O r y r H r y r y r y f-t o r y r y

- u r y - 3 -

S S £ 1

O o £ 1 o O O r A O O v O O o C O O O O r H O o O O C O o O I N O O O

u a. r y O N I A H r y r y r H r y I A r-v l ON f A r y J - 1 r y co r> H o I A r y I A O

« i 1 t A r y V O f A r y r - t O N \ C J - I A 1 i-i » A V C I A r> 0 0 N z o n j r H r y t-i r H H O r A r H r y

• H r y J -

i - t • H

o o k. * 1 1

C 1 o O O O N o O O r> o O O - 3 - O o O O I A O O o t A

c*. S l - l

1 o OJ

t A v C A J

ON A l

r y co ry

1 1 5-A )

f A f A o

(NJ

1 O J - J -NJD i-H

r-l 1

c - 3

V C O r A

I A A1

AJ

r H

1 O r A r y

I A t A

r A

f o

1 o O

-* O O i

o [ N - 1 1

O - 3 -

O o r - t l

o co l

O 1

f t

o r y J f r y

H r - t r y

r y r y

O r H

LfN, r H

z r y

f o 1

O o o

o O • H

o \o O t A

o 1 o O R O

I A

•ï o 1 r y

K N r H

o r y

K A r \ j 0 > r H o co

A l S ON

Z o - 3

I A I A I A I A I A I A I A t A t A

O O o O O O O O O r y r y r y r y A l r y r y r y r y

•o O . • ü 0 - •c C M T J CM •o •o ^ • D u • O Q , •o 0 , r H r H r H f-t H r H iH

a * bO * faD 0- h f a- t e a t £ V u: 4> bC 41 t o OJ w X Jf i • H X -r< JC •»H j« ; J « JC Jtf X - r i JÈ

"!» r > !*» >> >> >* >. • » >> >> "!» u u U L. U i . h u k i

* C t> c Ol c a> C 0) c V c 4> C <t e 4' c 4 i

5 • H a • H & • H a - H Q . • H a • H O , C • ^ a • • - • C -

5 V e « V O 4) « 4' o a> <u V « V 4.' a> 0 41 41 «> V o a> 41 4> a i OJ

n n m tt 0) CO O œ a te (0 10 <D a O to (0 10 œ (0 (0 m te (0 0 te to (0 e a a e as a c a d C d « C (T O c a d c a a i c d d C d d

• a o V » o * t> 0 V 0) 0 0) S) O 0) f o a> O o 4> OJ o Cl « 0 4) o I - * p . i * t * a, f* L. A u u a u t - a k u a u t . &, u o. u u a. L. u o to c o c o V ID u u c u o te Ü V IC f Ü <D V o o 0 to O CJ

O c C V c c © c C a> c c a> c c o c c a> c c u c c 0) c c 5 M ex M H i i r M M CC

" M ce " M cc M :x M M o: " t - i I X M 1,-t X r -

"

>> 4 J

V • H l -d

>

D . O *>

4 J 4 > 4 J 4 J +> U o S) a c S « CC a d

U e x o X

O) X 3 « 3

0)

5 4)

X 3 1

a> X

u m I A I A I A I A I A t A i n I A a j t N r>- [% t > - CN- r> r v - C S f > -

v o O N O N ON ON O N ON ( O N

>* f - t i-t r - i r H r H f H

" < H I - I

• D C

* •c T 3 • o r H •c •n C C c T 3 C

e « a (C X c d

•o e • D 0 E c O C rf

a> rt •a •o * D CT TS t.: f - t -c • B

< •D M O

0

0

z.

"o

43 U

O

• o

l d

0

u te 0)

X c •c c u

o

•v te te <c

a s

O

c as

• r t • r c 0

4) U O t £

O

0 te

z

r H

O

O

i-o

3 4.'

0

OD

to 0)

X -4>

• e c t d

69

o QU O

I

et < z

• »

H < w OB % Z c« J

H Od

j

W w b tu O c«

(/3

o

* 1

< o o s J - o O r-- O o <o O O K \ O o eu O o 00 O o t A o o r*

A. o o j ON CM o K \ vD \Û ru A J m OJ r- l A j - OJ ao 1 t A K \ J - c*- - ï m I T \ H^l P v t - * cr t^- - 3 l A vu

S= o

O j r - l K N f > r-t r j KN

o ; * O o I A O o - 3 - O O o O O o C G O o ao O O O O v ß

> o O V ß O oc vf> o 1 1 - 3 - r*- \£> . 3 * • A oc •T

0- cc l A - 3 «-H f A v i ) t N " OJ vD r-- \o ^ C O

« 1 1 o j r H . H OJ - 3 " r ^ H n j

-c 2 o •à

.* c • H c

* 1 O \ O O <-H O O O O O O O P H O o r- O O r H O O ^ (0 1 o -3- 1 t O t > • H 0 0 H H I A l r-i 1N OJ 0 0 t v vu OJ

^ vx> O »A vß - 3 " s O n j \ û l A - 3 ON U\ l A

a ' r-i r - l »H f A r^i » H r-4 OJ

t> 2 o E 4 «

a « fa e- o

« 1 O o J - O o r H O O o O O O O O o o O O l A O O r-fa ' o O t > ^ H m rA r ^ [N- o 0 0 m co m o OJ CN OO r •> ^

- 3 " t N m r H -J - OJ - 3 " C * o f - \ a-- co O t > OJ

K ' 1 o j H OJ K > H CM OJ

« 4 Z o r H

fa fa

« IM, o « 1 O O - 3 - O o r*. O o m o o OJ O O V C o o 0 0 O C O j -

c o O (S r H v£> J - rH r- o - H C O - 3 " CT» OJ H o t A H \o 1 OJ co OJ

^ CM - 3 - o j C -A H rA OJ O C K \ L A r^. r O N

i O OJ H r H K \ f A f-H r j

1 O 1

O fA

O OJ

O o -3-

O l A

o C - 3

CL 1

O 1 OJ

r- O D f\l rA r - l r H

- 3 OJ

Z o

t A l A m i r \ i r \ t A t A l A O O O o O O O O

O J I M n j OJ O J r g O j OJ

•o a T J a, •o û . * D a. •o a. t J a. •c CL, * D a. r H H W r-f M r H

I • te t> t o U te 0) bO 4) u 4 i te a> « 0 4> U) SC • H X * 4 j e f H JC •ri JC JC • H X •r* M X

\ t>> P> >. >> > > t >> >> tù u u U t . u u U i .

* c 4) C © C o C a> C 4> C 0) c O C 41 • n a a, a ( X • H Q. • H a a a

C f - t C 0)

« • o 4 ' a> 4' e w 4) 4) V 41 ai V 01 4» ft> 4) 4) 4> 4> 4) ID ffl u œ o a (0 CD a CO A to <c CC ce CO (0 o CD to a CD 0 IC

œ e a a c a a c a a c a O c: O co C CD C C CC (8 C O (0 • D o « • a~ o a» © o V 4 ' o 4 ) 0) 0 4 ) 4> o ft' 4 ' 0 a> 4> O 4> 4 ' H & t- u a h t . a %H t . a. L. u c t * U a u L, o. u U C M U L, O o l> V (0 o o (0 u o (0 U u D U (0 o to u U m U U

• r f cc C c V 0 c a1

c c 4' C c ft' C C 4> c C 4- c c a> c C

** CC M t - t ' ce M • H EX M M CE 1-1 1-1 a: r - l - H PS t - »H a: M M a: •— 1-1

>t

V

fa a >

o. 0 *»

J J +> 4-> 4-> +* A«

fa IC (C CD S (C a a Œ

o 4

3 £ S

(0

3

0) 4

3 s:

4

, KN

r* CTv fa v£> \o V£! vO Vu vu vr> H

« IN (N c ( N EN t N t>- ( e O C N o (T- c> 0^ a 0 0 X i H (-t r - l i-t ' VJO

r H

_ TJ E CO Cf 41

* H c t r ^

J->

ï <0 c T ) to 4> -o l - l e C C • c • o C S

*""' c c 0

er rH

T •o ^ a

a 0) ' r-* ^ -a 0

0 •o

u -

fa <c * •a - H 0 C

< J *

a

o (-, o z

4> C

* » 01

o T3

U

O

** C t -o

•c

u

0

a m a>

X U •c C

0 u o i-c

s

0

O

•z. w ce

0

CD

3 ce

s :

C a a> E

•C C a. U

o

70

O ry O \D 1 O O j -

\ o> o o-> m IT» J- CC V\ r\i o •H

^

^ N N>

O 0Ä O I—>

z c/3 OS < z >» sa >-fcü

<c ga

Q Z < w < u H

S H Z CA »J < S H öS U N

H

w b

o c« H -J 1/3 U Ci

OH

O os u H

z w fc =5. Q M z .s (/J oC

-> £:

27 r-

H öS W N ü

H Cd W b

O K/i H -J D

o o o O O »A O O O O O O O O O O N O O O O O I A O O O O o o O O o o o o o o o o o •c o o o O O - 3 o O O O O O O O O J - O O O O O co o o O o o o O I A O O l A O O O O O O

O O r H O O O O O O rH I A 0 0 o o> fA l A O O 0 O * A l A l A l A ( \ J l A r A r u ( V tv 0) o o o rH o o o rH O O l A O O O O O O O O r H O O O O O O

4> ffi «H Cs. O N O^ O AJ r-t O J N - \ j - r ^ l A O i A 0 0 r ^ r - ( O N f A IA o o <J> s£) K\ OJ -TN *A O O O O O tN- iA

* I A vO v£> r - rH rH

C ^ C ^ 0 O 0 J J ' C ^ t N - - 3 1 V O O O O O N . H r - t p - l r - l t - l r - l r H * A J - ^ w ~ \

ry «1 o> 0> oo ON \ 0 O O N O O t V r y - 3

o O O o o O O O O I A O I A c AJ ir\ I A I A I A I A I A I A IA O \ ß »A O^ 1 1 1 1 1 1 1 1 1 1 1 1 btf r-t r-t •o

rH

? S)

? >» 1 I A O O O O o O O O O O O O O >»

8R .888 ** AJ K> K\ rA »A sö n j OO rA I A fA fA 1 t 1 1 h 1 1 8R .888 0 a rH r4 0 rH H rH rH

S 0>

H o o 8 O o o o o o o o O O O i-i O O S 8 8 8 8 8 z o o O 8 I A l A I A i A l A l A l A l A O O l A O o \o O VO O S 8 8 8 8 8 fH AJ K \ M O

o H H m rum

•H a. a. ü

u e e u z z

>> H «H r H r - t H i H F H r - l r - l r - t i H i H f H f H r H «H 4» U O 0 o

1/ o j o j o j OJ AJ AJ rvi f\J A j c y r y o j f y r y f M A j r y A i r y r y f y fy 0 0 o e J " - 3 -3- # -3" jt -3- J - j - j ' j - j - j ' j - j ' j - j - j - j - j - ^ -3- T l " * ' ' »

0 « o a v L, O O o O o o o O O O O O O O O O O O O O O O ft) ** u u *J 0

O O o O O o O O O C J C J O Ü U U U Ü U O U O Ü Ü o _ c : :

> u 3 O 0

M H h e u

& d e te S - = : - -

CD X

L. 3 O 4-> o W l O

a O z Z Z z

*> 4> ** o c - * 0» r-l r - * = = r f H f y f f l E

« a ü cc 3 rH * M o •a

«M H * 4 H *H V V

r - * = = r f H f y f f l E « a ü cc 3 ai O u •a O 0 O 0 O

«I 4* -H CE) CQ * * O *> o 4» 4*

£ i-l tfi C M • rH c W c taO e bO a tt Q iH i_ O C U i* « x a » J£ •o o X 0 J£ • JC 0 o

< CO t l a a a B « (-. E 01 B B S * : : - H : : u te O t ß = = r » . H C « : r

•ri 3 U ï rH 0 •H *t fti rH C 0 rH C 0 rH -H E

C V 3 O t ß = = r » . H C « : r •ri 3 U ï rH U c 14 o bl O h M 0

C CQ co 60 = r to ü L. (-, o o U 0 O u o u Li o o b. es 8) o c a> z B 0 rH C <D e €> 4» e « » O a os a ^ a, T) P, O. ft 0 •«H 0 . 0 <H O, g

S K « je e G +> u

Li u s a S C « je e G +> u 3 = = rH

UI e m z = = 3 ^ 4* V O 0 : = s r». »>Ï o 0 e -*i * cc •z. Z U3 r4 AJ « iC

* • " « .

*— o ON o •o VC rH

rH 4> o o o I A tv O 0 0 M M ^ f A l A o o c O t v P ^ r H O J C O J - O^ J O O o O o O I A O

AJ O O I A 8 I A -3- o\ KN K\ CO rA \ 0 rH H 0 ^ - 3 ' t ^ - r - V Û O o o A J C ^ V C f \ J - 3 - O o o O 8 8

I A O AJ O i A t v 8

X ry -3- H VO rA rH i-( 0 \ r4 I A - 3 P - O ^ v û J ' j e O N J ' O O O o o o o 8 8 \ 0 O N AJ CO -3-

^3 iH I A vO O -ff t v O O O O r ^ l A o O l A O ^ f A O ^ l A ^ r ON fA -3- o j i A co O I A O ON oo V£> .-t A l OJ K\ rH r H r H f y n j r H r y r y f A r H i - H i H f A OJ • A Al f-i rH K\ KN ry AJ AJ

O rg O O o O S o o o o o o o o o o o o O O O O

o i A

O I A 1 1 i 1 1

S 5

S 1 ir, a € o O o o 8 o ^ • - 3 ' J - r f J ' J - - 3 ' - 3 - ^ ' ^ J ' - 3 - O O 4* AJ I A o 8 • * oO 00 ao oo oo co ob oo oo oo co co O O O O fA •A 1 t i 1 1 a u rH rA rA rf r 4 r 4 r 4 t - 4 r 4 r 4 * 4 > * * 4 r < r 4 r 4 V a

£ G. « £ « IA R N ( \ l i \ I W f t j ( M f y ( \ t l \ i r \ ( f g ( \ i o O O o O O s o o tv R r - t v r N - r ^ r ^ t v r ^ t v f s - r v - t v r - vO \ D vo \C I A I A 1 1 i 1 1

iH

ff-rH M

L< — 3 U

O 3 «

>» *> •i : = '- -s •u U h = = =

» »A rA t A O a VO rA tv-I A I A I A m e cc 0 0 0 i A rA u AJ Li CD ca CQ c •r4 V O «H ttf •H V H \ \ \ 0 0 H ce *» c rH 0 c 0 e \ -3- -3- O VO

> o, •rt- : z z >, m a 0 X I X I -H rA oo J - l>- O to CD e r r r e r z r jtf m -rt 0 «H O Jt Al ry n j H (0 0 o c fH -rl 3 3 3 3 I A O r> vû u o: ^: < O m z X X X I A I A KN u. -3-

0 0 CO o (D 0 0 e (D £ « w 0

a 0 0 O 0 O > 0 ** *» J J 4* 4-1 0

h 0 £ m a 0 0 r o : o O

0-o a,

4» o

4-> 0 a.

a>

> 4* O

« 0 ü

0 c e c c o

0 o o o -H I A I A •ri fH ^H 4* CO *> r O o + > . * - > + > 0 U CD AJ ry 4» 0)

O. & *» ** a -y zn x) V} W te

M tO 0 M a -H e

3

£ X M j c e o JS c * * J C B O a o o O O f H O U 0 tiOO 0 * r l U O U 4* u o -31 n j U *4 *> tr* U . f H J v H i . - H - P f r - 0 V 0 : •H AJ H a ** « c e a *» uj o; m ** <a oc 4-> « ï V a CU CO Z a s «i a -w e < 8 a* a *» S 0 e *» *> IO *" U5 -H C 0 - W J C - H t O * > f J 3 * 4 4> C

« c ta c u e te < P C 3 C © W U C 4) w e W OS >r l

cc V j * » j e v X OU «* -ri CC I d - H C S - n - H

« E 8 e - C O X » J = 0 j D X C X J= 0 ra O ai ft> «H e 1-4 V r-* tfuoË'ceoiLiEaooE (J a T3 u j * : L, b, i« j i u te ai je L. a as j«: i-. to » h 0 rH

« O t . U U v k. • r l S < r l , * > T i a e > i < H t B f - 4 > » 0 * «l J = C v a t> C V -c « H Z : J S o> CE; = J= « H Z « 4* -H H f 4 ft -H a •H P. É-I CD H O H CO

4.' • 4) * 0 * 0 0

X > ,

- C G . H - C C * - * 0 C f H CC 9 3 JO 3 jO 3 JD »0 J > - 0 j O * 0 X " 0 *rt e = E 3 k E 3 L. E 3 U 3 •H 0 C S J 3 - * 4 «C Xi i-t ( O J S ' H J3 rH Z

v i ^ B * * H B t f - H E «

a ,1 :•: ^ u z. u; :o z: ^ u z a *.

RESULTS OF FERTILIZER TRIALS IN DIFFERENT CROPS DURING 1977-1979 (2)

in kg/ha

Treatment Area Crop Variety Yield Area Crop Variety

N p2o5 K20 Yield

Kisii, Research Station Beans K.?^ 27 69 . 2000 Kakamega, 'Research Station 1! K.7^ 27 69 - I65O Kiambu, Thika Research Station II K.7*f 27 69 - 1200 Kiambu, Thika Research Station 1! K.7*f 36 92 - 250O Embu, Research Station H K.7^ 27 69 - 1300 Kisii, Research Station . II G.L.P.-2 27 69 - 275O Kakamega, Research Station 1" G.L.P.-2 27 69 - 2000 Kiambu, Thika Research Station 1 » G.L.P.-2 27 69 - I85O Kiambu, Thika Research Station II G.L.P.-2 36 92 - 2200 Kiambu, Thika Research Station II G.L.P.-24 27 69 - 2000 Embu, Research Station II G.L.P.-24 27 69 - 2400 Machakos, Katumani Res. Station

Kitui, Ithookwe

II

Cowpeas

Moja Wezi 27 69 — 2200

2556

Machakos, Katumani Res. Station

Kitui, Ithookwe

II

Cowpeas Emma 60 - 60 -

2200

2556 Kitui, Kampi ya Mawe

Machakos, Katumani Res. Station Pigeon

Katuli 107 " • 60 "* 2320

2212

Kitui, Kampi ya Mawe

Machakos, Katumani Res. Station Pigeon short maturity 90

2320

2212 Peas Composite

Nakuru, Beef Research Station Sunflower Kenya White 61.5 67 I9OO

Nakuru, Beef Research Station H Grey Striped 61.5 67 1200

South Nyanza, Horaa Bay FTC Groundnuts Homa Bay 30 30 20 900

Kilifi, Mtwapa Research Station H Homa Bay 30 30 20 I6OO South Nyanza, Homa Bay FTC M Asitiye Mwitunde 30 30 20 27OO South Nyanza, Homa Bay FTC H Makule Red 30 30 20 25OO

South Nyanza, Homa Bay FTC Soya Beans B.-Congo 35 30 50 2335 South Nyanza, noma Bay FTC n H Hill 35 30 50 2064

73

S O I L C O N S E R V A T I O N

by

CG. Wenner and S.N. Njoroge

CLASSIFICATION OF LAND

The land of a farm can be classified as to slope and soil, with the different classifications needing different considerations:

1) Flatland, sloping less than 2 %, can usually be farmed without any special soil conservation measures except contour farming.

2) On gentle slopes between 2 and 12 % terracing is not obligatory according to the present Agriculture Act, but terracing is usually desirable on slopes exceeding 5 %. In semi-arid areas and in areas with erodible soils, even slopes less than 5 % (2—5 %) usually need to be terraced.

3) On slopes exceeding 12 %, but not exceeding 55 %, terraces (preferably developed bench terraces) should be used if the depth of the soil is more than about 0.75 m. For very steep slopes modified bench terraces are recommended, i.e. narrow ledges cut into the slope, suitable for fruit trees, fodder trees, forest trees and coffee.

4) Slopes exceeding approximately 55 % should be covered with grass and/or forest. Under certain conditions it might be per­missible to cultivate tea, sugar cane or bananas with a layer of trash on the ground.

5) Soils which are rocky, stony or shallow, should be used as pasture or for forest or they should have stone terraces.

SOIL CONSERVATION IN GENERAL

The basic protection of soil against erosion is good farm management:

1) Ploughing and planting along the contour 2) Rotation of crop and grass 3) Manure favouring the growth of crops 4) Leaving crop residue on the ground. On slopes, good farm management by itself is not sufficient and it has to be combined with terraces.

TERRACES

Terraces can be made by machinery or, usually, by hand.

Terraces made by machinery

Mechanized soil conservation can only be used on slopes which are not too steep (preferably 2—12 %). Two types of terraces are used 1) The channel terrace and 2) the ridge terrace. See Figs. I and 3 on opposite page. The V-shaped channel, on one or both sides of a ridge, will usually be filled up by sediment and will thus develop into a bench terrace. But this could as well have developed from a grass strip.

Terraces made by hand

Terraces can develop from 1) unploughed strips, or 2) grass planted in one or two rows, or 3) trash lines laid along the terrace line. In the strips, water flows will be distributed between the grass stems and most of the water will be infiltrated into the ground.

To hasten the formation of a bench terrace you can make a ridge by digging a channel (2 feet wide, 2-3 feet deep) and throwing the soil uphill, using the so-called „Fanya Juu" method.

Bench terraces are usually preferable to channel terraces, as the benches change the degree of slope (Fig. 2 opposite page). They also retain eroded soil, moisture and nutrients.

Length of terraces

Terraces should not, if possible, be many hundreds of metres long. More than 400 m should be avoided.

Gradient of terraces

Terraces can be level or graded. Level terraces should be constructed on gentle slopes in permeable soils in dry areas. For graded terraces the following gradients are recommended: in erosion resistant soils (clay) 1 %, normally 0.5 % and in erodible soils (silty, sandy) 0.25 %.

74

TYPES OF TERRACES

Fig. 1

Channel terraces

F/g.2 Bench terraces

(machine -rnade on slopes Of less thon /2%)

Fig. 3 Ridge terrace excavated from two sides

(developed on s/opes of less thon 55 %)

Fig. 4 Modified bench terraces

(machine -mode on Slopes of less than 5 °/o)

(ledges / foot wide on slopes between 35 and 55 °/o, sometimes on steeper s/opes)

75

Vertical interval between terraces

The vertical interval (V.l.) between terraces depends on the slope and has been calculated in three different ways in Kenya:

A/ The ordinary formula - V.l. (in feet) = P o n t a g e slope | ;

4

B/ The bench formula - V.l. (in feet) = percentagsslope + j

C/ A constant V.l. of 5-6 or 2.5-3 feet (1.5-1.8 or 0.75-0.90 m).

The method selected depends on the slope:

5-12 % A,B or C, but the horizontal interval is preferably not greater than 80 feet (24 m) on erodible soils 12-35 %B or C 35-55 % C or modified bench terraces.

As shown above, a constant vertical interval (method C), corresponding to the eye height of a man, can be used on slopes between 5 % and 55 %. The vertical interval will vary with the eye height of the person setting out the terraces, i.e. between 5 and 6 feet (1.5 and 1.8 m). Such variation can be disregarded in setting out terraces. If terraces are needed on slopes between 2 % and 5 %, see page 1. The vertical intervals will then be less than the height of a person, because the horizontal interval should be a maximum of 24 m (80 feet):

Slope Vertical I interval % in metres in feet

2 0.5 1.7 3 0.7 2.3 4 1.0 3.3 5 1.2 4.0

Horizontal interval in metres in feet

24 80 24 80 24 80 24 80

Horizontal interval between terraces

V.I.x 100 % slope

The horizontal interval (H.I.) between terrace edges (grass strips) is calculated as H.I.

If the V.l. is expressed in feet, the H.I. will be in feet. If V.l. is expressed in metres, the H.I. will be in metres.

CUTOFF DRAINS

In general

Large water flows coming from outside a farm have to be diverted from the farm by a cutoff drain, e.g. collecting water from a hillside, or preventing water from a plateau from flowing down a terraced slope, or taking care of water from a roadside ditch. Cutoff drains should be dug only where there is evidence of large waterflows which cannot be stopped through normal terracing. Below the banks of terraces channels can be excavated instead of making cutoff drains.

In the survey of a cutoff drain, you should start with the outlet point. If you cannot discharge the water in a safe way, do not dig any cutoff drain. Before measuring and setting out the pegs, you should walk along the proposed cutoff drain, checking that the drain is properly sited regarding houses^ cultivation, rocky ground etc.

Do not dig any cutoff drain if the farmers do not agree to do terracing below the drain and to maintain the channel by re­moving the soil sedimentation. Special forms should be used.

Lenght of cutoff drains

As in terracing cutoff drains should usually not be longer than 400 m. If it is difficult to find a natural waterway within 400 m, it might be better to make the cutoff drain essentially longer than 400 m instead of digging an expensive artificial waterway.

76

CROSS -SECr/ONS

OF A CUTOFF DRA/N

Final stage

CROSS -SECTIONS OF

AN ARTIFICIAL WATERWAY

© Start

by cutting out the sods

Excavated soil is used for the embankments

Replace the sods Peg some of them

Final stage Cover of short grass

77

Gradient of cutoff drains

The same as for graded terraces (see page 74).

Intervals between cutoff drains

Usually one cutoff drain only is needed on a slope. Only at very long slopes might an extra cutoff drain be dug in exceptio­nal cases.

Size of cutoff drains

As to design of cutoff drains, and for the approximate dimensions of the cutoff channel see the upper figure on foregoing page. A cutoff drain dug by hand is often 5 feet (1.5 m) wide at the top, 3 feet (0.9 m) wide at the bottom and 2 feet (0,6 m) deep, giving a cross-section of 0.7 sq.m. A cutoff drain constructed by a motor grader often has a V — shaped cross-section and is made 6—8 feet wide (1.8—2.4 m) and 2.5 feet deep (0.75 m), giving a cross-section of 0.7—0.9 sq.m.

In semi-arid overgrazed areas cutoff drains, especially in silt and sandy soils, are useless without grazing control and establish­ment of grass cover on the ground round the gullies.

ARTIFICIAL WATERWAYS

In general

The water from cutoff drains as well as from terraces should be discharged into natural watercourses (rivers) or onto nonerodible areas such as stony ground or permanent pasture with a good grass cover. If it is not possible to find such an out­let point within a reasonable distance, the excess water has to be taken down the slope by an artificial waterway, covered with grass. A difficulty in constructing waterways is that protective grass cannot be established in the first year or two. Consequent; ly it would be reasonable to construct the artificial waterways and plant grass two years before the construction of the cutoff drains and terraces. Another way is to remove the grass before excavating the waterway and afterwards replace the grass as shown in the figure on the foregoing page.

A waterway should be wide (5 feet at least) and shallow (1 foot deep) to minimize erosion (see the lower figure on the foregoing page).

Width of waterways

The width can be varied depending on the size of the catchment area and the steepness of the slope. The. necessary width in feet of an artificial waterway in erodible soils can be read from the table below:

Catchment area of Steepness of the slope the waterways in acres less than 6% 6—12% more than 12%

. 5 10 15 20 30 40 50

In erosion resistant soils such as clay and clay loam, the width as shown in the table can be much less, but not less than 5 feet. If the central 1/3 of the waterway is covered with stones, the width as shown in the table can be decreased by about a half.

Experience has shown that farmers hesitate to accept even half of the widths recommended. An alternative then is to con­struct check dams as recommended for the floor in gully control (see the figure on the next page).

Depth of waterways

The depth of a waterway is related to the width in the following way :

Width Depth

up to 10 feet 1 foot 10-20 feet 1 1/4 feet more than 20 feet 1 1/2 feet

5 6 8 6 8 10 7 11 17 8 15 23 9 23 34 2 30 44 6 38 56

78

Divers/or» of water

possible not possible

Head of gully Side wo Us Floor of gully (usually no measure)

Stones

A. wide narrow

and shallow and steep

Small stones large Stones (g a bions) \ .

wooden large stones small stones (gabion)

79

GULLY CONTROL

The right measure for gully control can be selected from the figures on the next page.

COSTS OF CUTOFF DRAINS AND TERRACES

A daily worker can dig about 3 cu.m/day, varying between 2.70 and 3.90 cu.m/day depending on the soil. The daily wage is 7.90 shs/day, when this is written (1979). For normal soils the digging cost varies between 2,05 and 3.25 shs/cu.m. It is pre­ferable to express costs of digging cutoff drains and terraces in shs/cu.m of excavated channel instead of shs per m length of the channel, as this cost depends on the size of the cross-section. This can be seen from the table below showing data as to the cost of digging by hand (1978/79 wage levels):

Costs in shs/m if piece work payment is

2.05 shs/cu.m 3.25 shs/cu.m

0.75 1.05 1.10 1.55

1.45 2.10

As can be seen above the digging costs of a cutoff drain may vary between 1.45 shs/m and 2.90 shs/m. The cost of terracing varies between 0.75 shs/m and 1.55 shs/m.

Machine-made terraces, only suitable for slopes of up to 15 %, are usually neither cheaper nor better than terraces made by hand. The hourly cost (1979) for a Motor grader (Cat 12 or 14) is shs 190—225. Under good conditions a Motor grader can construct approximately 150 m of terraces per hour, i.e. shs 1.30—1.50 charged per metre.

Machine-made terraces have to be paid for in cash in advance, and an order for the work can be placed with the Soil Conser­vation Station of the Ministry of Agriculture. Hand-made terraces can be dug by the farmers themselves during the off-season, and at a rate which is convenient to the individual farmer.

GOVERNMENTAL POLICIY FOR SUBSIDIES

In principle the Governmental policy is that soil conservation on individual farms should be done by the farmers themselves. The main contribution of the Government is the digging of cutoff drains, which will take care of excess water flowing from areas outside the farms (plateaux, large hill-sides, road side ditches) or which will divert water from large and growing gullies which devastate the land.

Cross-sections Depth Average

width Area

m m sq. m

Fanya Juu terraces: 0.6 0.6 0.36 0.9 0.6 0.54

Cutoff drains: 0.6 1.2 0.72

80

D I S T R I C T I N F O R M A T I O N A N D S T A T I S T I C S

INTRODUCTION TO WEST KENYA

AND TO THE LAND USE POTENTIAL

Nyanza and Western Province together form West Kenya and both provinces are combined in this sub-volume. The rainfall is more or less continuous with little distinction between the first and second rains; this is due to the daily westerly wind from Lake Victoria which converge with the south-east passât (or trade wind), causing the air to rise, thus producing heavy showers, especially in the afternoon. In West Kenya these relatively wet agro-ecological zones (1,2 and 3, see Table 1) dominate except near the lake, where the air masses fall again.

Because of the more or less continuous rainfall, it is difficult to decide when the second rains start and planting occurs both be­fore and after their onset. There is no reason to divide the growing time into two defined periods, but nevertheless it is possible to plant two early maturing crops instead of one late maturing. To express this in the tables, „or two" is written after the sym­bol (Table 2) of the length of the growing period, in some wet areas with trimodal rainfall even „or three" (see Kakamega District).

The soils are generally not fertile because there is very little volcanic or other young parent material. Most are senile, diluted, some, as in Busia, even with laterite horizons. The soil maps and descriptions are derived from the National Soil Map of the Kenya Soil Survey. The symbols are simplified to make it easier for non-specialists to use them and an introduction is given to the soils of each district, as explained by SIDERIUS (1979)1)

Because of the soil problem, it must be remembered that the average yield expectations given for the AEZ show only what is climatically possible (on prevailing soils) when other conditions are optimized. In most places in West Kenya therefore, a lot of manure and fertilizer is needed to reach these yield figures, and weeding is also a big problem because of heavy witchweed (Striga) infection. Good husbandry, crop protection and rotation are also essential for combating diseases (especially fungus in the wet climate) and insect pests. Many nematodes in the soil reduce growth and yields of crops, especially of bananas. Phy to-sanitary aspects have been considered as far as possible, but more information is necessary.

A further difficulty is that West Kenya is far from the markets. Therefore one has to select carefully from the list of given eco­logical land-use possibilities what is economically reasonable. The annual crops are listed in the following order: cereals; pulses; tubers; oil seed;real cash crops;fruits and vegetables^). The perennial crops are listed more or less according to their importance. Some crops may not fit into the traditions. This has to be considered when trying innovations.

Very little information exists about pasture and forage apart from the real rangeland (PRATT and GWYNNE 1977)3), which is scarce here. Therefore all recommendations given are only a very rough guide, and fodder cultivation depends on may factors besides climate and soil. Livestock units (LU) in our estimated stocking rates are 300 kg, which is for smallholders with mainly indigenous cattle more realistic and understandable than the Standard Stock units (SSU) of 1 000 lb (450 kg) introduced by the British.

1J SIDERIUS, W.: Simplified Soil Maps of Kenya. KSS, 2nd ed. Nairobi 1979 *' It was impossible to list all vegetables which may be grown in each AEZ. Information about vegetables not mentioned may be found in VoL V

of the handbook or required from Kirchhoffs Seed Company, Box 30472, Nairobi. 3 ) PRATT, D. J. and M. D. GWYNNE (Eds.): Rangeland Management and Ecology in East Africa. London 1977

81

N Y A N Z A P R O V I N C E

K I S I I D I S T R I C T

C o n t e n t s District page

Natural Potential 3

Introduction 3

Climate Tables 3

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map 12

Soil Distribution, Fertility and Major Characteristics 13

Population and Land 15

Population per Location and Division 15

Household Composition per Location and Division 16

AEZ — Land Area Available per Location, Division, and per Household and Person 17

Agricultural Statistics (Area, Production, Yields and Number of Growers of Major Cash Crops) 18

Tea - Area - Production - Growers - Yield - Returns 1975/76-1979/80 18

Coffee - Area - Production - Yields 1974/75-1979/80 19

Pyrethrum - Trends in Production and Quality 1975/76-1979/80 19

Small Farm Survey 20

Farm Organisation according to Farm Size Groups 22

Assets, Land Use, Farming Intensity, Inputs 24

Cropping Pattern 26

Herd Composition 28

Inputs and Yields of Major Crops 30

Disposal of Crops 32

Distribution of Farming Activities per Month 34

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 40

83

KISII 3

N A T U R A L P O T E N T I A L

INTRODUCTION

The Kisii Highlands may be divided into a few agro-ecological zones only, most of which are high potential. This is important, because the district is very densely populated (some locations have more than 750 people per sqkm). More tea in the Tea-Coffee Zone is one of the development possibilities to support a high population density.

The climate of this district is one of the wettest in Kenya due to the fact, that it is situated in the center of the local conver­gence of the daily lakewinds with the easterlies during the generally dry seasons in Kenya. Therefore the rainy seasons are extended to a more or less continuous period of water availability. Annual rainfall is not only high, averaging 1 200 to 2 100 mm, but also reliable (1 100 to 1 750 reached or surpassed in at least 6 out of 10 years). The rainy seasons of the year are not easy to distinguish because there are normally no real dry seasons in between. First rains start at about middle of February. In August there is a second increase followed by a small third one in November (see Diagr. Kisii, D.O., and Singoiwek Farm).

The growing periods in the Tea-Dairy and in the Coffee-Tea Zone are normally permanent. They are dividable into a period of 215—230 days (which may be surpassed by late maturing crops), followed by a 135—150 day growing period. Rainfall re­liability during these periods is high. At least 800—1 000 mm or more can be expected in the first period, and at least 400—700 mm in the following one in 6 out of 10 years.

In the West of the district,temperatures are higher than those normally found at this altitude, but they reach normal altitude temperatures in the East (see Climate Tables). Humidity of the air is relatively high. Evaporation is low, normally between 1 650 mm (at 2 100 m) and 2 000 mm (at 1 500 m) per year.

KISII DISTRICT

TABLE 1 : RAINFALL FIGURES FROM VARIOUS STATIONS having at least 10 years of records up to 1976

_ _ _ _ _ No. and

altidude Name of Station

Years

of rec.

Kind of

rec.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Monthly rainfall in mm

May June July Aug. Sept. Oct. Nov. Dec.

9034001 Kisii, District 64 Average 1 784 70 89 176 265 220 146 111 151 171 138 141 107

1 740 m Office 60% prob.1' 1 602 45 70 126 238 198 126 83 134 131 107 104 78

9034005 Kamagambo Training 36 Average 1 600 57 101 148 236 206 123 82 113 128 126 165 115

1 500 m School 60% 1435 46 64 131 197 124 85 56 75 148 109 115 109

9034024 Singoiwet Farm 36 Average 1 429 87 95 156 190 157 132 78 132 101 81 104 161

1 920 m 60% 1 281 64 61 129 159 103 100 63 103 81 62 65 61

9034031 Nyanturago F. Coop. 27 Average 2 089 94 108 146 333 260 198 127 179 185 171 151 137

1680 m Society 60% 1 397 47 58 110 196 133 98 67 100 120 138 80 73

903432 Moromba F. Coop. 34 Average 2 056 83 96 169 307 255 180 127 190 191 161 167 132

1 890 m Society 60% 1 716 51 71 150 231 196 116 76 103 139 126 136 90

9034042 Nyathegogi F. Coop. 29 Average 1 826 71 80 187 287 221 161 90 134 146 143 170 130

1620 m Society 60% 1 647 17 50 129 197 180 107 51 90 104 107 138 69

9034046 N.Mugirango Nyabo- 26 Average 1 902 44 85 181 321 223 150 117 143 183 175 175 107

1 710m mite F. C. Society 60% 1 719 26 38 155 243 192 108 72 109 154 139 116 73

9034056 Nyakoe, Kisii F. C. 21 Average 1 741 79 87 162 256 222 124 96 141 161 130 165 118

1 500 m Society

9034072 Kiamokama Agric. 15 Average 1 622 68 93 173 220 182 87 65 132 109 155 211 127

1 500 m Holding

9034080 Kisii, Coffee Sub- 33 Average 1 952 72 103 194 290 238 155 104 169 193 148 165 122

1 680 m Station

9034088 Kisii, Exp. Station 11 Average 2 677 110 125 234 474 338 227 178 184 143 217 240 208

1 680 m

1) These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

K I S I I 4

KISII DISTRICT

TABLE 2: TEMPERATURE DATA

No. and Name of IN AEZ1)

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y.of

rec.

9034080 Kisii, Coffee UM

1 766 m Sub-Station 1

hp

9034088 Kisii, Experi- UM

1 765 m mental 1

Station hp

Mean. max. 27,2 27,4 26,7 25,6 25,8 25,3 25,0 25,4 26,0 26,5 25,4 25,9 26,0

Mean. temp. 19,4 20,2 19,8 19,4 19,6 18,9 18,4 18,8 19,1 19,5 18,7 19,1 19,2 l g

Mean. min. 11,8 12,9 12,2 13,1 13,3 12,4 11,8 12,1 12,1 12,4 12,0 12,2 12,3

Absol. min. 6,7 7,9 9,9 7,1 7,5 6,7 7,4 7,8 8,0 7,2 7,5 5,5 5,5

Mean. max. 25,8 (24,5) (24,6) (23,2) 23,6 23,8 23,4 23,8 23,9 24,7 23,6 23,9 24,1

Mean. temp. 20,5 (19,6) (19,8) (19,0) 19,2 19,0 18,5 18,8 18,9 19,5 18,9 19,2 19,2 s

Mean. min. 15,2 (14,7) (14,9) (14,7) 14,7 14,1 13,5 13,7 13,8 14,2 14,1 14,4 14,3

Absol. min. 11,1 11,7 13,3 12,2 13,3 11,1 11,1 11,1 11,1 11,1 11,1 10,0 10,0

1) AEZ = Agro-ecological zone; lp = lower places, hp = higher places within the zone

4 KISII DISTRICT

TABLE 3: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological

Zone Subzone

Altitude

in m

Annual mean

temperature

in°C

Annual av.

rainfall

in mm

60 % reliability

of rainfall 0

1st rains 2nd rains

in mm in mm

60 % reliability

of growing period

1st rains ' 2nd rains Total3)

in days in days in days

LH 1 p or

Tea-Dairy Zone 1 >-• m 'VI 900-2 211 18.0°-16.2° 1 400-2 100 800-1 000 400-700 215 or more about 150 365

LH 2 vi i or

Wheat/Maize- 1.-. (m)i

Pyrethrum Zone

'VI 800-2 165 18.0°-16.5° 1 3 0 0 - 1 6 0 0 700-900 350-450 200 or more 130-140 3 3 0 -

340

UM 1 p or

Coffee-Tea Zone 1 r-, m 1 5 0 0 - 1 9 0 0 4 ) 20.5°-18.0° 1 400-2 100 800-1 000 450-700 215 or more about 150 365

UM 2 - 3 v l io r

Coffee Zone two 1 550-1 750 20.2°-18.5° < 1 200 700-800 400-500 180 or more 110-130 2 9 0 -

310

LM 1

L. Midland See

Sugar Cane Zone

South Nyanza

LM2

Marg. Sugar 1/m .-.

Cane Zone (m/s)i

1 440 -1 500 21.0°-20.5° 1 400-1 600 800-1 000 500-700 180 or more 115-140 2 9 5 -

320

1) Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants.

2) More if growing cycle of cultivated plants continues into the period of second rains.

3) Only added if rainfall continues at least for survival (<0 .2 EQ) of most long term crops.

4) In 1980 the economic altitudinal limit between coffee and tea was about 1 700 m (± 100 m).

8 6

AVERAGE ANNUAL RAINFALL

in mm

35°IE

KISII

3490 3590

+ SOILS

89F m-h

* ?

@ Temperature recording station, operating 1976

+ Rainfall recording station, operating 1976 and having at least 10 years of records

56 Station number m grid

3490 Grid number

Broken boundaries are uncertain because of lack ol rainfall records

20 2S km I

Mln of Agr. German Agr. Team, R Jaetzold Soils KSS

8 7

35° IE

60% RELIABILITY OF RAINFALL IN FIRST RAINS

(mid Febr.- beg Aug.)

Amounts in mm. surpassed norm, in 6 out of 10 years

KISII

+ SOILS

O°JQ:

; i 15 D

Mln ol Agr.. German Agr Team R Jaetzniii

35°lE

60% RELIABILITY OF RAINFALL IN SECOND RAINS

(mid Aug.- beg. Feb.orless)

Amounts in mm, surpassed norm, in 6 out of 10 years

KISII

+ SOILS

176 U x m h

id Au/tf!\?13 u JatTK™

89F m-h

"f

Broken boun I • rtain

Min ol Agr. German Agr Team. R. Jaetzold Soils KSS

89

mi

KISII

AGRO - ECOLOGICAL

ZONES

+ SOILS

176 U

öf.

S

Unsuitable sleep slopes

Belt of A E Zones A. E. Zones Subzones

— — — Broken zonal boundaries are uncertain or mean transitional strips

Climatic data tor AEZ formulas see table I and n

Mln ol Agr. German Agr Team

15 20

AEZ A Jat/old 81

KISII 9

AGRO-ECOLOGICAL ZONES

LH = LOWER HIGHLAND ZONES

LH 1 = Tea-Dairy Zone

LH 1 = Tea-Dairy Zone with permanent cropping possibilities, p or dividable in a long cropping season followed by a medium one I r^m

V e r y g o o d y i e l d p o t e n t i a l (av. above 80 % of the optimum) 1st rains, start norm. mid. Febr.: Peas; cabbages, spinach, 2nd rains, start norm, mid Aug./Sept.: Potatoes ('v 80 %)U.

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: Late mat. maize like H 6 1 1 - 614 or H 7801 (mid F.-S./O.); rapeseed; carrots, leek, kales, cauliflower,

beetroot, celery, lettuce 2nd rains: Peas; cabbages, carrots, kales, leek, spinach beet Whole year, best planting time mid March: Tea, passion fruit (lower places)

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 1st rains: Finger millet; beans (below 2 000 m); potatoes (50-60 %)^), sweet potatoes; onions^) 2nd rains: Beans (below 2 000 m); onions^) Whole year: Pyrethrum (too wet), avocadoes

P a s t u r e a n d f o r a g e 0.5—0.7 ha/LU on sec. pasture of Kikuyu grass, well suitable for grade dairy cows; Nandi setaria for better long-term pastures; fodder crops of temperate zone, f. i. clover

LH2 = Maize/Wheat-Pyrethrum Zone$

LH 2 - Maize/Wheat-Pyrethrum Zone with a very long cropping season and intermediate rains, vl i or dividable in a long cropping season followed by a (weak) medium one and i. r. I /-i (m) i (see Diagram Singoiwet)

G o o d y i e 1 d p o t e n t i al 1st rains, start norm. mid. F.: Late mat. wheat like Kenya Bongo, late mat. triticale, maize H 611-614 (mid.

F.—S./O.); peas (^ 60 %), horse beans; potatoes'); late mat. sunflower like Kenya White, linseed, rapeseed (higher places); carrots, spinach

2nd rains, start around Aug. or earlier: E. mat. wheat like K. Tembo (June—O.), m. mat. barley like Research (June—O.); potatoes; beetroot, celery, carrots, kales

Whole year: Black wattle

F a i r y i e l d p o t e n t i a l 1st rains: Finger millet; sweet potatoes; m. mat. beans like Cuarentino; onions 2nd rains: Beans, peas; linseed; cabbages, onions, lettuce, cauliflower Whole year: Pyrethrum (nearly 60 % but relat, low Pyrethrine content), passion fruit, strawberries, avocadoes

P a s t u r e a n d f o r a g e 0.8—1 ha/LU on Kikuyu and tufted grass pasture; down to 0.6 ha/LU on art. pasture of Nandi Setaria or Rhodes grass; suitable for grade dairy cows; Louisiana white clover as add. forage

UM = UPPER MIDLAND ZONES

UM 1 = Co f fee-Tea Z o ne

UM 1 = Coffee-Tea Zone with permanent cropping possibilities, por dividable in a long cropping season followed by a medium one I <-v m (see Diagram Kisii)

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, end F.: Sweet potatoes; cabbages, kales, rinogu^) 2nd rains, start around Aug.: M. mat. sunflower like Hybrid S 301 A ('v 80 %) Whole year: Pawpaws, guavas ,

91

,— Average rainfall per decade I rainlall surpassed in 6 out of 10 years

Approx pol évapotranspiration of a permanent crop (pyrethrum)

Approx. pot évapotranspiration of late mat. maize like H611 1 838 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

100-

50-

UM1 p or l-m

Nr.: 9034001 Kisii, D.O.

0"41'S 34'47'E 1740m 64y. up to 1976

-100

M

- 5 0

Li F L M M

" 9 2 2 ' J O N

601 — D

r— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx. pot évapotranspiration of a permanent crop (bananas)

Approx pot évapotranspiration ol late mat maize like H611

1 922 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

K I S I I 1 1

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 612-614, 7801 (higher places), 622 and 632 (below 1 700m), finger millet,late mat.sorghum

C\> 60 % below 1 600 m);late mat. sunflower, soya beans (below 1 600 m); Chinese cabbages, onions, spinach 2nd rains: M. mat. maize like H 511, m. mat. sorghum: beans; sweet potatoes; e. mat. soya beans; kales, onions

spinach, rinogu^), tomatoes (below 1 600 m, above fair) Whole year: Tea (best above 1 700 m, below lower quality), bananas, taro, yams, egg plant, passion fruit, avo-

cadoes, loquats

F a i r y i e l d p o t e n t i a l 1st rains: Beans (50-60 %); potatoes (above 1 500 m); tomatoes, carrots (above 1 600 m), sweet pepper (below

1 600 m) 2nd rains: Maize H 622 and 632 (below 1 700 m), finger millet; potatoes (above 1 500 m); cabbages Whole year: Arabica coffee (below 1 700 m, above marginal because too wet), citrus

P a s t u r e a n d f o r a g e 0.6—0.8 ha/LU on star grass; down to 0.15 ha/LU feeding Napier or Bana grass, forage legumes, banana leaves and stems, maize stalks

UM 2-3 = Coffee Zone (undifferentiated, partly marginal) Potential see Kericho District UM 2 (for higher parts) and UM 3 (lower parts)

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone Very small, potential see South Nyanza (= Homa Bay) District

LM 2 = Marginal Sugar Cane Zone Small, potential see South Nyanza District. Late mat. groundnuts and soya beans good yield potential

1) Spraying against fungus diseases important. Use against blight and bacterial wilt resistant varieties

2) Fresh onions mainly (shallots)

3) Wheat or maize mainly depending on farm scale, here more maize

4) Local spinach (Solanum nigrum)

93

35°lE

KISII

SOILS

176 U

öf

s

GENERAL FERTILITY GROUPS

(according to soil list)

subject to local differences

high low

SERIOUS LIMITATIONS

(see descriptions)

—| Steep slopes,unsuitable for cultivation, not marked In Nat. Pks, For Res. and ranching areas

moderate to high K*! ' . " low to very low Shallow soil

moderate

: moderate to low

very low

variable

_ — _ j - _ Waterlogging

5 10 15 20 25 km

Soils KSS

KISII 13

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

The majority of the land in the district belongs to the south-western highlands with undulating topography. Several levels, which are occassionally separated from each other by scarps, can be distinguished. The parent rock is mainly volcanic and out­crops in a few hills.

Some hill soils (units H) are extremly shallow (units 22 H, 24 H) while others may be shallow (30 H) or moderately deep (20 H). The major soil units in the district are upland soils (119 U, 126 U, 142 U) with topsoils rich in organic matter. These soils have moderately high natural fertility and are intensively farmed. Soils similar to unit 119 U also occur on footslopes (89 F).

In the eastern and northern part of the area, soils of very low fertility (127 U) are found. In the extreme southeastern corner dark cracking soils (213 U, fertile if well drained) occur together with soils with a deep organic topsoil (like 118 U); the latter have a moderate to high natural fertility.

In the bottomlands alluvial soils (A) are clayly with distinct changes in texture and they are subject to flooding (337 A).

SOILS ON HILLS AND MINOR SCARPS

Soils developed on basic igneous rocks (serpentinites, basalts, nepheline phonolites; older basic tuffs included) 20 H = somewhat excessively drained, shallow to moderately deep, dark reddish brown, friable, gravely clay, w i th acid humic topsoil

x, h 1 ' (humic CAMBISOLS, partly paralithic phase)

Soils developed on acid igneous rocks (rhyolites, aplites), with recent volcanic ash admixture 22 H = somewhat excessively drained, shallow, dark reddish brown, friable, gravely clay; in places wi th humic topsoil, partly acid

x, h (RANKERS; wi th ando-haplic PHAEOZEMS, lithic phase and LITHOSOLS)

Soils deve loped o n quar tz i tes

24 H = somewhat excessivly drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places w i th acid humic

x, h topsoil (RANKERS; wi th LITHOSOLS and Rock Outcrops)

SOILS ON PLATEAUS AND HIGH LEVEL STRUCTURAL PLAINS

Soils developed on intermediate igneous rocks (syenites, trachytes, phonolites, etc.) 62 L = well drained, very deep, dark reddish brown to dark red,

h friable clay (nito-rhodic FERRALSOLS)

Soils developed on quartzites 64 L = well drained, deep to very deep, reddish brown, friable clay,

h wi th acid humic topsoil (jumic FERRALSOLS)

SOILS ON FOOTSLOPES

Soils developed on colluvium from acid igneous rocks (rhyolites), with volcanic ash admixture 89 F = moderately well drained to imperfectly drained, deep, dark reddish brown, mott led, friable clay loam, wi th humic topsoil

x-h and deeper subsoil of compact clay (gleyic PHAEOZEMS)

Soils developed on colluvium from quartzites 94 F = well drained, deep to very deep, reddish brown to yellowish red, friable, sandy loam to clay, often wi th acid humic topsoil

m-h (humic ACRISOLS; wi th luvic ARENOSOLS)

SOILS ON PIEDMONT PLAINS

Soils developed on alluvium from undifferentiated Basement System rocks 110 Y = moderately well drained, very deep, dark yellowish brown to strong brown, friable, lightly to moderately calcareous and slightly

h sodic, loamy sand to sandy clay loam (haplic XEROSOLS, sodic phase; with calcarocambic ARENOSOLS)

SOILS ON UPLANDS

Soils developed on acid igneous rocks (rhyolites), with volcanic ash admixture 118 U = well drained, deep to very deep, dark reddish brown, friable and slightly smeary silty clay loam, w i th thick humic topsoil (ando-

m luvic PHAEOZEMS)

Soils developed on intermediate igneous rocks (syenites, trachytes, andesites), with volcanic ash admixture 119 U = well drained, deep to extremly deep, reddish brown, friable clay, w i th thick humic topsoil ((dystro-) mollic NITOSOLS and

h chromo-luvic PHAEOZEMS)

Soils developed on intermediate igneous rocks (syenites, andesites, etc.), with volcanic ash admixture 126 U = well drained, extremely deep, reddish brown, friable clay, wi th thick humic topsoil ((dystro-) mollic

h NITOSOLS)

95

Soils developed on acid igneous rocks (rhyolites), with volcanic ash admixture 127 U = well drained, very deep, dark red to dark reddish brown,

h friable, sandy clay to clay (nito-rhodic FERRALSOLS)

Soils developed on basic igneous rocks (basalts, etc.) 142 U = well drained, deep to extremely deep, dark red, friable clay, wi th thick humic topsoil

h (molic NITOSOLS; wi th nito-luvic PHAEOZEMS)

Soils developed on granites 149 U = well drained, deep, dark red, friable clay, wi th acid humic

h topsoil (humic ACRISOLS)

Soils developed on biotite/hornblende granites 152 U = well drained, very deep, reddish brown to red, friable clay,

h wi th thick acid humic topsoil (nito-humic FERRALSOLS)

Soils developed on acid igneous rocks 176 U = complex of predominantly well drained, moderately deep to deep, reddish brown to brown, friable, gravely clay loam to clay,

x, m-h often wi th a humic topsoil; in many places shallow over petroplinthite (chromp-luvic PHAEOZEMS and orthic and chromic

LUVISOLS; wi th "murram cuirass" soils)

Soils developed on granites 180 U = complex of:

m — well drained, deep, reddish brown, friable, sandy clay loam, wi th acid humic topsoil (humic ACRISOLS)

— moderately well drained, shallow, dark reddish brown soils over petroplinthite (about 20%) ("murram cuirass" soils)

Soils developed on acid igneous rocks (rhyolites), with volcanic ash admixture 213 U = association of:

m — poorly drained, deep, very dark grey, very f i rm, cracking clay, often abruptly underlying a topsoil of friable humic loam;

on flat parts (eutric PLANOSOLS; wi th chromic VERTISOLS)

— well drained, moderately deep, dark reddish brown, f i rm clay loam, wi th humic topsoil; on slopes (chromo-luvic

PHAEOZEMS) ;

1) Soil texture-classes

h = heavy

m = medium

I = light

x = stony, bouldery

v = varying texture

m-h = medium to heavy

m,h = medium and heavy (e.g. abruptly underlaying a topsoil of different texture)

Soil description from Kenya Soil Survey: Exploratory Soil Map and Agro-climatic Zones Map of Kenya, scale 1 : 1 000 000, Rep. E 1, Nairobi 1982.

See this map also for colours; symbols simplified here.

KISII 15

P O P U L A T I O N A N D L A N D

The population of Kisii District counted, according to the Census of September 1979, 869 512 people (Table 4). Of this figure almost 30 000 people lived in Kisii Township, mainly not depending on agriculture. That is to say, about 840 000 people had to live on only 215 200 ha agricultural land. That means, per average household of nearly 6 people (Table 5), there was only 1.50 ha agricultural land available and per rural person not more than 0.26 ha (Table 6). In the zones of good tea po­tential (UM 1 and LH 1) this is still enough for a small farmer to do fairly well, but in the Wheat/Màize-Pyrethrum Zone (LH 2) it should be more than 1.8 ha per average household.

Regarding the population growth, agricultural intensification is absolutely necessary. Thé most critical location is Central Kitutu (LH 1 - UM 1) with 0.11 ha per person in 1979 (Table 6), less than 0.1 ha today.

TABLE 4: POPULATION PER LOCATION AND DIVISION KISII DISTRICT CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

Central Kitutu 16 256 17 289 33 545 5 661 43 764

Eronge 20 793 22 692 43 485 6 844 87 495

West Kitutu 25 359 26 915 52 274 8 882 ' 121 431

North Kitutu 21 789 24 100 45 889 7 326 110 415

Kitulu (East Kitutu) 18 819 20 696 39 515 6 423 92 427

Manga Division 103 016 111 692 214 707 35 136 455 471

Borabu 17010 14 577 31587 4 591 238 132

West Mugirango 45 108 46 598 91 706 13 754 183 501

North Mugirango 36 854 38 161 75 015 12 241 218 342

Nyamira Division 98 972 99 336 198 308 30 586 640 309

Nyaribari/Chache 24 624 26 153 50 777 8 770 116 437

Nyaribari Masaba 32 283 34 698 66 981 10 541 163 409

Kisii Township 15 102 14 559 29 661 5 410 35 844

Irianyi Division 72 009 75 410 147 419 24 721 314 468

Wanjare 23 788 25 388 49 176 9 574 123 398

South Mugirango Chache 17 163 19 003 36 166 6 333 114 315

South Mugirango Borabu 15 777 17 039 32 816 5 089 86 379

Bosongo Division 56 728 61 430 118 158 20 996 324 364

Majoge Chache 21 702 23 065 44 767 7 771 105 422

Majoge Borabu 24 426 25 888 50 314 7 785 112 446

Bassi Chache 25 125 25 991 51 116 8 190 127 400

Bassi Borabu 21472 23 250 44 722 6 422 114 390

Ogembo Division 92 725 98 194 190 919 30 168 461 414

Kisii District 423 450 446 062 869 512 141 607 2 196 395

97

KISII 16

KISII DISTRICT

TABLE 5 : COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3)

LOCATION/DIVISION No. of Households total

Farmers Family b) Non-Relatives Persons per

Households hv total ;

LOCATION/DIVISION No. of Households total

Adults >15 ye

Children ars < 15 years

Other Relatives

Non-Relatives Persons per Households hv total ;

Location:

Central Kitutu 5914 3.13 1.73 0.61 0.19 5.66

Eronge 7376 3.15 1.80 0.71 0.21 5.89

West Kitutu 9243 3.15 1.52 0.81 0.17 5.65

North Kitutu 5693 3.12 1.90 0.63 0.24 5.88

Kitulu 7708 3.13 1.95 0.64 0.22 5.95

Division: Manga 36934 3.15 1.76 0.69 0.20 5.81

Location:

Borabu 5004 3.21 1.62 0.79 0.65 6.27

West Mugirango 14459 3.44 2.05 0.52 0.32 6.33

North Mugirango 12762 3.30 1.86 0.53 0.18 5.87

Division: Nyamira 32225 3.33 1.93 0.57 0.32 6.14

Location:

Nyaribari/Chache 9115 3.08 1.72 0.52 0.23 5.55

Nyaribari Masaba 11086 3.18 2.04 0.49 0.32 6.04

Kisii Township 5569 2.87 1.10 0.84 0.29 5.10

Division Irianyi 25770 3.08 1.72 0.58 0.28 5.66

Location:

Wanjare 9909 3.00 1.34 0.44 0.18 4.95

South Mugirango Chache 6604 3.15 1.65 0.44 0.20 5.45

South Mugirango Borabu 5478 3.22 1.84 0.67 0.24 5.98

Division Bosongo 21991 3.11 1.55 0.50 0.20 5.36

Location:

Majoge Chache 8142 3.01 1.64 0.55 0.27 5.48

Majoge Borabu 8160 3.25 1.93 0.54 0.45 6.16

Bassi Chache 8726 3.14 1.69 0.66 0.34 5.82

Bassi Borabu 6822 3.28 2.05 0.81 0.40 6.55

Division: Ogembo 31850 - 3.15 1.83 0.63 0.36 5.98

DISTRICT. KISII 148770 3.17 1.78 0.60 0.27 5.82

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two person households as well

98

K I S I I 17

KISII DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqkm in '00 ha = sqkm in ha

Area

total

Non-agricultural land Agri­

cultural

A r ea i n a g r o - e c o 1 o g i c a 1 z o n e s Agric. and Area

total Unsuit. Forest Others

Agri­

cultural

A r ea i n a g r o - e c o 1 o g i c a 1 z o n e s Agric. and

Location/Division steep Res., (roads, land A E Z pei

without townships Census slopes lakes, home­

79 swamps steads,

rivers...)

LH 1 LH 2 UM 1 UM 2 - 3 LM 1 LM 2 household person

Central Kitutu 43 3 8 32 11 21 0.64 0.11

Eronge 87 18 69 20 49 1.14 0.18

West Kitutu 121 1 24 96 75 21 1.22 0.21

North Kitutu 110 22 88 80 8 1.54 0.25

Kitulu (East Kitutu) 92 18 74 68 2 4 1.29 0.21

Manga Division

Borabu

455 4 91 360 179 10 149 21 1.02 0.17 Manga Division

Borabu 238 2 24 212 43 169 4.62 0.67

West Mugirango 183 36 147 104 3 40 1.19 0.18

North Mugirango 218 3 44 171 60 92 1.58 0.26

Nyamira Division

Nyaribari/Chache

639 5 104 530 207 172 132 19 2.46 0.37 Nyamira Division

Nyaribari/Chache 116 24 92 25 67 1.19 0.21

Nyaribari Masaba 163 32 131 82 49 1.39 0.22

Iryianyi Division

Wanjare

279 56 223 107 49 67 1.29 0.21 Iryianyi Division

Wanjare 123 1 24 98 91 6 1 1.15 0.22

South Mugirango

Chache 114 1 22 91 87 4 1.61 0.28

South Mugirango

Borabu 86 1 18 67 64 3 1.49 0,23

Bosongo Division

Majoge Chache

323 3 64 256 242 13 1.42 0.24 Bosongo Division

Majoge Chache 105 22 83 83 1.21 0.21

Majoge Borabu 112 22 90 2 88 1.29 0.21

Bassi Chache 127 26 101 101 1.39 0.22

Bassi Borabu 114 22 92 66 6 20 1.60 0.23

Ogembo Division 461 93 367 68 6 292 1.22 0.19

Total rural area 2 152 12 215 1925 623 245 995 22 16 24 1.50 0.26

For official land statistics see supplementary publication to FM-Handbook, Vol. Ill A: Agriculture Land Statistics.

99

K I S I I 18

A G R I C U L T U R A L S T A T I S T I C S 1 )

Production and marketing of tea, coffee, pyrethrum and cotton is organised and controlled by statutory boards. Because of this, fairly exact information exists on these crops, which is not the case for almost all other crops.1)

The area planted with tea has increased at a rate of approximately 7 % per year in the last 5 years, with roughly 40,000 pro­ducers - the average area per farms is about 0.35 ha. The yield per ha ranges from 1,500 kg to 4,100 kg of green leaves per ha. Roughly 7,000 ha are planted with coffee; the average yield of 400 kg/ha reflects the fact that the Kisii climate is not very

KISII DISTRICT

Small Farmers

TABLE 7 a: TEA

Area - Production - Growers - Yields - Returns3^

Division Item Unit Year Division Item Unit

1975/76 1976/77 1977/78 1978/79 1979/80

Keumbu Keninbu

Area

Production

ha

t

2,861

4,709

3,513

6,117

3,739

9,079

4,000

9,239

4,395

Value '000 Shs 7,3*6 18,719 13,158 13,478 13,929

Growers No 9,780 11,837 12,336 12,684 13,662

Yield per ha kg 1,646 1,741 2,428 2,310

Value per ha Shs 2,563 5,328 *,856 4,620

Area per Grower ha 0.29 0.61 0.31

Returns per Grower Shs 751 1,581 M56 1,*57

Kitutu Area ha 2,056 2,259 2,464 2,605 2,781

Production t 5,693 7,163 9,075 9,514 7,295

Value '000 Shs 9,393 25,499 19,7*5 20,836 17,800

Growers No 6,818 7,503 8,001 3,186 8,605

Yield per ha kg 2,824 3,171 3,676 3,652 2,623

Value per ha Shs *,569 11,288 8,013 7,998 6,400

Area per Grower ha 0.30 0.30 0.31 0.31 O.32

Returns per Grower Shs 1,378 3,399 2,467 2,545 2,069

Nyaoira Area ha 2,198 2,380 2,574 2,687 2,847

Production t 5,758 7,469 9,206 10,309 7,713

Value '000 Shs 9,558 26,141 22,002 21,855 19,052

Growers No 6,924 7,5*9 8,034 8,175 8,528

Yield per ha kg 2,620 3,138 3,576 3,837 2,709

Value per ha Shs *,3*8 10,984 8,5*7 8,13* 6,692

Area per Grower ha 0.32 0.32 0.32 0.32 0.33

Returns per Grower Shs 1,380 3,463 2,739 2,673 2,234

West Sotik Area ha 928 943 965 985 1,007

Production t 1,899 2,805 3,5** *,128 3,131

Value '000 Shs 2,962 10,088 8,045 9,082 6,889

Growers No 1,102 1,160 1,209 1,292 1,418

Yield per ha kg 2,046 2,975 3,673 *,191 3,109

Value per ha Shs 3,192 10,698 8,336 9,220 6,840

Area per Grower ha 0.84 0.81 0.80 O.76 0.71

Beturns per Grower Shs 2,688 8,697 6,65* 7,029 *,856

a) Source: K.T.D.A.

1) Fairly reliable statistics exist for industrial crops only, for more detailed and up to date information see FMHB Vol. Ill A.

100

K IS M 19

suitable for coffee arabica, that farmers can choose between a number of enterprises and shift their attention to other crops during years when coffee prices are low. Pyrethrum production stabilized during recent years at between 4,000 and 5,000 t p.a. of dried flowers; the pyrethrin content however declined from 1.2 % to 1 %. The use of low content plant material and cultivation in relatively warm areas are reasons for this negative development.

KISII DISTRICT

TABLE 7 b: COFFEE AREA - PRODUCTION - YIELDS3)

Co-operatives

Item Unit Year Item Unit

7V75 75/76 76/77 77/78 78/79 79/80

Area

Production

Yield

ha

t

kg/ha

67^5

4920

729

6745

2551

378

6745

3321

4 92

6745

2330

345

6700

3380

504

6745

2213

328

TABLE 7 c: PYRETHRUM TRENDS IN PRODUCTION AND QUALITYb)

Item Year Item

1975/76 1976/77 1977/78 1978/79 1979/80

Production in t dried flowers 8916 6529 4138 3360 5028

Pyrethrin content % 1.22 1.21 1.16 1.14 1.09

a) C.B.K. b) Pyrethrum Board

101

K I S I I 2 0

S M A L L F A R M S U R V E Y 1 )

The SFS was carried out in order to provide planners and extension officers with a set of key data. It is important to keep in mind the limitattions of the survey when making use of the data. More detailed information is included in FMHB Vol. Ill A and III B.

Table 8 and 9 reflect the high development standard of the farms. Roughly one quarter of the land is used for annual crops and one quarter for perennial crops, while one third is under pasture. The arable land is intensively cropped (LH 1 = 1 crop, UM 1 = 1.5 crops p.a.); roughly 2.5 LU are kept per ha of grazing land. Practically all land is used but considerable output increase is possible through increased use of fertilizer, manure, and improved plant protection.

Table 10 shows the large cropping diversification possible in small farms under ideal natural conditions. Maize and beans, the staple food, occupy roughly half of the annual crop area in both AEZs. The colder climate in AEZ LH 1 limits the number of crops which can be cultivated during one year. Roughly 80 % of grazing LU are cattle and 20 % are goats and/or sheep. The proportion of relatively unproductive male cattle (40 % of total) indicates that there is much scope for improvement of the dairy enterprise (table 11). It is a safe assumption that the crop sold at the local market is consumed within the region; the district depends increasingly on other regions for supplies of basic food (table 13). Although the labour profiles of annual crops show labour peaks during the planting and harvesting period (Graphs in table 14), the labour requirement of the total farms is well distributed over the whole year (FMHB Vol. I). The output and nutrient input figures of table 15 are based on a large number of sources.2) They reflect the considerable, still untapped, production potential under the ideal natural con­ditions of the district, which can be realised if scientific farming is introduced and the necessary economic preconditions created. Intensive small-scale farming based entirely on manual cultivation will continue to form the basis for a good and re­liable income for the farming population of the district.

!) See also FMHB Vol. Ill B 2' See also notes on farm management information, output/nutrient input page 51

102

3H°lE

KISII

SMALL FARM SURVEY AREAS (1977) and AGRO-ECOLOGICAL

ZONES

+ SOILS

Y v M 7i or V:

I /»»' l-(m)i\ $1; Wheat/

m i

National Number of Survey Area

Survey Area, sample size 30 per number

Unsuitable steep slopes

Belt of A E Zones A E Zones Subzones

_ _ _ "i Uten tonai oouna tun are un

o°A

Climauc data tor AEZ formulas see tab le land I

Min ol Agi (isrrnari Agi liiain i •

10

K I S 11 2 2

< Li.

-z 3 c Ü

z S H <

S

•X 4.' c •4 6 . I»

E •-- 3

> . œ ai

'" c c c 1 H — U- 10

| S KN IPv

H rvi

-

E £ u e ir ^

r\i O so

--> • a a

-H O • O U u I • a a.

U >y • H

11

o oo m

ao 00 CT» ITS

H »A •#

_ o :_ c

O O O O

• * - =

U H

HS

O

N * H œ 'M VU o •*

lf\ 00 H

AV

O o

m C

- Ü Ui

^ i r • i 01

: n * i

- U)

r u ;. H

( k

3 I C X I h

rH O

c Ï B n e je x je x J :

I A ïft • O

^ - r r i».

oo *

rH «K O T-

O"- «"\

O o

ro so <\i f\J SO rH

. J -H -4

11 N bc

a S3 = -a d

-J

--• U C

r-y (T.

~-O c ' J

u

ï. ? a

:

o- e •S 3

104

K I S I I 23

V

5 H GO

3 C

o o a •O -H 3 (0 4-> O

•J t . U E C3

- 3 >» » 0) •P C N •H O -H « u a i c oi a> E *> E u

O 15 B5 b .

N W

<

c a i ^ 4

fù l i , 3 1-1 Ü

C 11 ™J o O

0) Ü O M u K

• r l c-. • H W 4-1

10 y ;

h 0) H U > U

* • H oi U . J u.

NO

* o

K\ I A

KN. K\

>ft

NO

tM

2 . i!

u F •C

& L i W E « 3

• r l U . O 4 J r - l

« M u U* <X O 01 O

.* a c d O OJ 0 t e

• H r^ - H c •4-1 -P +> U -P U = O its O s

&- u U . 0

o .o c

r-5

CT. O

• »

O O O

IA

O

ni

p . 0 U o w I u « 0 »

(U h l 'J 01 0> » 10

r-\ N r) 60 C • H • H C a

i H 3 t / j m tf i - I n 10

4-1 r. JE £ b . m o < U*

H

il

K\ ON lA H NO K\

IA IA r-l H

CO ON O ON NO <M

KN -3-

E •

* i3 I« -H

u. œ E 2 .5 S .Si r-l -C 01

13 l -11 9 4-1 T C bO i-l i l O w ^ -H W U TT -C t . O <t U C' I»

a. a

AV

INJ K\ I A

• • • O O O

r> -s- vo »M 0 0 r - < O K \ I M K \ K N . M I M

O K\ (M

•o t. 1-1 te o a: x: >s 01

V u ta 3

Ä o -C

NO O «M ru

K\ NO OJ K\ (M ON KN, r-l

O IA

bD bO bD bO bO

x U a a a

« a o a fmf j j • p B

,_( O « a • H a. *> m ^ 0

£ a. 01 bO h a bO s

e n 01 • H • P a • r i H s bc r H a> x> J i

• H « c bT o> o O

« 01 - H C * a 0 X m [ x U w o o

>R IM * NO • l\J

K\ IA

O O O O

0) o H •

• H Œ CTJ 0 1 £ m

KN. ( \ l r - l VI ON X5.

• • • H • H O O O I M O KN

ON IM

• *

c a m b0 s Ü3

• ON O rv

ê »

K \ CN-f •

KN

IA

r> I A K \

H O O

3 j J 7i

T ) M)

t /1 3

o o C

<1>

>, U c O N

o r^ r i a\ O . —H

0

S m

P

(K

^ -s „ a.

i s -t-> eu OH O

C3 f-H

(1> x i a> x> ri « co U

U

105

KISII 24

KISII DISTRICT

TABLE 9 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ : LH 1 - 2 Survey Area 01

Assets People on Farm

Hange Land ha

Livestock head

Equipment pieces

Fafflily Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu»

3.7

3.7

3.6

1.3

11.7

13.0

11.0

4.0

0.3

1.2

1.0

0.0

2.7

2.7

3.0

2.0

0.2

1.4

0.0

0.0

3.Ó

4o7

5.0

1.0

Land Ose

Hange Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

1.0 28

1.0 25

1.2 37

0.6 25

30.5

1.0 28

1.0 24

1.2 38

0.5 24

30.4

1.3 35

1.4 35

1.2 33

0.2 14

37.7

0.1 3

0.1

0.1 4

0.4 9

0.4 8

3.9

0.2 5

0.2 5

0.2 10

0.1 2

5.1

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture 1 Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo . Qu .

1.0

1.1

0.9

1.0

1.9

0.6

2.9

2.6

6.0

0.3

17.2

41.7

41.2

Inputs Applied

Range Improved Fertilizer Applied Manure Plant Protection Seed Used % of area

pure nutrient kg/ha Applied t/ha

Seed Used % of area

pure nutrient kg/ha Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

Seed Used % of area

N P2O5 K2O

Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC • AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 46.7 1.2 2.9 8.6 1.1 - 0.4 - - - - - -

Avg o 1 48.4 18.3 7.4 14.2 3.8 1.0 2.2 - - 0.5 0.1 - -

Up. Qu. 100.0 - 4.2 16.4 - - - - - - - - -

Lo. Qu. 33.3 - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms Avg. 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,

50% of all sample cases lie between these points AC, PC = AC - annual crops; PC - perennial crops

106

KISIl DISTRICT

TABLE 9 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: UM 1 Survey Area 02

Assets People on Farm

Range Land ha

Livestock head

equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

.Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

3.0

3.0

3.7

1.6

6.5

6.7

9.0

3.0

0.7

1.4

1.0

2.5

2.8

3.0

2.0

-

1.3

2.9

3.0

Land Use

Hange .Annual Crops ha %

Perm. Crops ha %

Fasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Quo

Total

0.9 32

0.9 28

1.4 43

0.5 23

28.5

.0.6 18

0.6 16

0.7 27

0.2 3

16.6

1.2 40

1.2 35

1.4 45

0.4 20

36.1

0.2 5

0.2

0,2 6

0.4 12

0.3 11

5.0

0.1 4

0.1 4

0.1 7

0.1 2

3.9

Farming Intensity

Hange Cropping Intensity crops/yr.

Stocking Hate Improved Cattle % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg o 1

Up. Qu.

L o o Qu •

1.5

2.0

1.0

0.9

1.1

0.5

2.2

2.2

5.3

1.3

9,7

88.4

Inputs Applied

Hange Improved Seed Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Plant Pro tection Hange Improved Seed Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

Hange Improved Seed Used % of area

N P20 5 K20

Manure Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 51.0 1.8 1.5 7.3 0.2 0.3 - 0.1 - 0.2 0.7 - 1.0

Avg. 1 52.5 11.1 9.4 14.9 3.8 2.0 2.5 0.3 0.4 1.8 1.1 - 1.3

Up. Qu. 100.0 - - 12.8 - - - o.l - - 0.3 - 2.0

Lo. Qu. - - - - - - - - - - - - 0.3

Notes: Avg. 0 = average of all sample farms Avg. 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,

5095 of all sample cases lie between these points AC = Annual Crops PC = Perennial Crops

KISII 2 6

KISII DISTRICT

TABLE 10 a: CROPPING PATTERN

AEZ: LH 1-2 Survey Area 01

First Rains

Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha o' /o

Maize Fingermillet Beans Beans IPC Engl. Potatoes Cabbage Sweet Potatoes Sugarcane Pyrethrum Maize & FMilt Maize & Beans

0.3 0.0 0.G 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.5

0.7 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.7 0.1 1.1

0.60 0.00 0.04 0.00 0.00 0.00 0.00 0.00 1.20 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00

10.2 1.1 1.0 0.2 0.6 0.4 0.2 0.1

19.3 0.2

16.5

20. 4 2.2 2.1 0.4 1.3 0.8 0.4 0.2

38.7 0.5

33.0 Total 50.0 100.0 1

Second Rains

Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Beans Engl. Potatoes Sugarcane Pyrethrum Others

0.1 0.0 0.0 0.6 0.0

0.4 0.2 0.1 0.7 0.3

0.28 0.00 0.00 1.20 0.00

0.00 0.00 0.00 0.20 0.00

3.6 0.2 0.1 19.3 0.3

15.3 0.9 0.5 82.1 1.2

Total 23.5 100.0

Permanent Crops

Crop Average

0. ha

Average 1 ha

Upper Quartile

ha

Lower. Quartile

ha

Total Sample Area Crop

Average 0. ha

Average 1 ha

Upper Quartile

ha

Lower. Quartile

ha ha %

Coffee Tea

0.0 0.3

0.4 0.6

0.00 0.40

0.00 0.00

0.8 9.8

7.5 92.5

Total 10.6 100.0

Avg O = average of all sample farms

Avg 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

108

KISII DISTRICT

TABLE 10 b: CROPPING PATTERN

KISII 27

AEZ: UM 1 Survey Area 02 First Rains

Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Maize Fingermillet Beans 3eans IPC Cabbage Tomatoes Sweet Potatoes Sugarcane Pyrethrum Pineapples Others Maize & Beans Maize & Others

0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.7 0.0

0.8 0.1 1.6 0.2 0.2 0.2 0.1 0.5 0.2 0.1 0.5 0.8 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.04 o.oo • 0.00 1.20 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

vo.oo 0.00 0.40 0.00

3.1 0.6 1.6 0.2 0.2 0.2 0.1 3.8 1.6 0.1 0.5 22.5 0.0

9.0 1.6 4.6 0.6 0.6 0.6 0.2 11.0 4.8 0.2 1.5 65.I 0.1

Total 34.5 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Are a Crop

Average 0

ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha ha io Maize Fingermillet Rice Upland Beans Tomatoes Sugarcane Pyrethrum Pineapples Maize & Beans Maize St Others

0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.4 0.0

0.3 0.2 0.4 0.9 0.1 0.5 0.2 0.1 0.9 0.0

0.00 0.00 0.00 G.4o 0.00 0.08 0.04 0.00 0.80 0.00

COO . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.3 0.4 7.4 0.1 3.8 1.6 0.1

11.9 0.0

3-7 1.2 1.5 27.7 0.4 14.2 6.1 0.3 44.5 0.1

Total 26.7 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Sweet Bananas Cookng Bananas Coffee Tea

0.0 0.1 0.2 0.0

0.2 0.2 0.2 0.2

0.00 o.i6 0.28 0.00

0.00 0.00 0.03 0.00

0.2 3.8 5.8 0.7

1.5 36.5 55*5 '6.5

Total 10.5 100.0

Avg O = average of all sample farms Avg 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

109

K I S I I 28

o

< >*o O (N <\J rH no r - i r H !*>. O rH O 1 1-1 1 - T o 3C V O 1 1 m f f (V - h". IN ?<-N r-A 3 A 0^ O (N C^ CT

• <a » • • t > « • « • « • « • • • • t • « « * D £ P -w O o O r-t 0 0 O o O O O A j O K S f ^ N'* o ( \ l M> irs O r 4 3 • o ,-H C ' rH

en r 3 E H r-i S3 I A

- • J VO

t -H O

o Je!

t . U O O o es m O 4) O

J ï -P P W

S O « a'

c- -4-oo

0O

fVJ H

ON H

c -0 0

0 0

• H

0 ^ rH

o

(0

o o Ü o

r i I-? o O o

o o Ü o

r i I-? Ü Ü Ü

to r> 1N ^ I A M >> vO 1 1 1 O vD 1 1 r>> O •£) 1 1 >, CO « 5

•H u • ro • ^ ru • u « • CH •r i o O • H (S

O • r i CB

T )

O o

TJ TS

•r i CB

T ) 0i tO

S3 < H • H « H ä e) ^ -o o I N (\1

O H 0 0 i - î H

O K>

0 O 41

hOrH o 1 H 1 .*" o C O • - 0 O 1 •sft' J - Tf- (V m > (N m O ON C A •SR. O v O f ^ 0^ } £ a a! • * • • « « • • > e • % • t • • • • t « « «M (M

LH +> o O O H 0 0 o H O O O o a' O O K> K \ o ON K> ;r> H N O «1 frl

H ^0 o -* O 0 0 M r i N O «1 frl •

o • H • 4) 41

C O o- H £ ê 3 • ' 1

C O o- H

« «-IA ta O & H •p II c o r>- II C^ II rH HJ •

« o 1 *> H H .• OJ 1 H "» (M 1 o o • • 3 • O 0 IA o co

41

CM r < H >f\ (0 r i 41

H r A ta r i 41

I A - * U • » CD

co

41

(0 r i 41

ta r i 41 O O 41

o Cri ' M < H >> H p< • H • H • H (0 CO

w >

0 ) 41 o D o 4) O 41 r i r i H w >

1 11 Ä f A H P M VX3 ru KN 1 S3 vu ru K^ 1 S >. >. w > in Ä • > .VO • v û • I H

3 ."£ ta + O i - l (V + (M + CM t\J 4)

Ü

z G

n CO to GO ca H r-\ O Ü

z G

n CO to GO ca H r-\ O Ü

z ^ 41 41 • P 41 • p

N Ü

2 > > • r i i> • H m V ^

< Ü

2 o C^ IN 3 O O r-l a r> H a ï=> G » ai s -d- r\ -3* J - H 1 3 X ru - - 'O C\J H (3 o 0 0 t \ i rA H <d » r l r H r l o > o t H « o t 1A • O vD t o

3 o o O r-4 H .* t \ ! •M I A O O z o

Tfc ".tk o • ;t. U <\J 0J H • t • z

o o o <\J 0J H

• t • z o

cd 10 +* • p O O O H •o h M CD

C/3 a 4) o o- CN o K", . 41 O O r i r i h cd 45 co o « M <\J 1 H 1 H KN 1 ! r> H ^ rH O H 1 > fM -CT CJ 1 t» r i r i h cd 45 co

Pu • H • t H t • ^ t<\ • • H - i - • •H I l O I I

1 fg (U X

o O O o O H H r i

bC

>»>>>» o

r i

bC r H H r H 41 41 e 41 a

§ H H •H H • r i I l I I r i § a • P O K\ • P « K> • P N 41 41 41 W o 1 | 1 1 1 1 1 1 1 1 • P 1 1 1 i O OJ 0 0 ON CJ 1 + J <0 ;X3 O CM 1 • P a) T) TJ T3 S X d * CM • Ö '« ro • cï Ci ö ß a câ o o

rH

3 O U

H H

O Ü

H

O

H

ta o o câ

o

rH "—*

U

H H

Ü

H

O

H ii n u r H cd « !B 05 m W a - p • P • p p •p a, <a - 1 h O O O O 0 U b0

n « 1 1 1 1 1 1 1 1 1 1 - P 1 1 1 i 1 l 1 1 1 1 +J • P t 1 • 1 1 P •p a o -H <: 4) O +» Q, H •P

O O «M

0 C M

0 C H

o O W \

•P P i CO "O ai

41 41 •5R. >ft >ft ^ >Ä

O W \ •P P i CO "O ai

41 41

(0 H

T3 > J 3 41 O C0 > r i ' S ,

(0 H f A t<\ r*- c - o î*^ o • & IA !N o l'A

T3 > J 3 41 O C0 > r i ' S ,

H o 1 o 1 1 1 r\l o 1 1 O H 1 ro H î ^ l _ X ) H 1 • • ^o 3C H 1 • fl 0 P i CO p • t • t • « • rû • o 0 0 OJ • :*\ I A (H E - P

m 3 G o -* O D D o -=!" H O r* H P.-H al e C O -*

M O O

• • « H 3 3 3 ffl

41 O " O <y 4> O * - P

• • 41 & &

3 4) O" 4)

3 3 « O " C O * - P

• • 41 O » &

•3 • p

• • 3 3

4i a f o 1 41 M t û M O 60 • • M bO M O t û •o o bO a « t i «J h ctf U EH ai U U II M «J h (Ö r i a (4 E H Ö U r i Il II 41 EH a) d h n n ^ 4) fc ai U 4) U 41 ai o (H m p. 41 t , 4> h 01 41 > U 41 41 r ^

M 4) P i O ft 41 P i <—• 41 P i S O 41 P i 41 P i 0 P i 01 P i ? O 41 P i 3 Ö

o > ft (> P , > P i T3 > P i O p > P i > p , > P i « - . > P. o t l > P i O r 3

o < B < & < Ö 4i < £0 ,-} 10 < D < D «! & • < » r 3 P i P i < Ö H l p -* • p > 41 P ai B .M 41 (0 • - o 41 > •> E 41 41 • H Ü 41 41 • P

41 m m u H • r i a a -H H Xi C O H JS • H

> u u u P 3 «t s) s

• P i J ot ä Ö §

•p co S3 - P - p t a G H • H

u u u P 3 «t s) s • P ot ä Ö § -P W • P Ö

CJ • J 41 41 41 - H cd •Ö 41 41 O *<M^ a + + \ aj + ( N r»> r»> >» * " o 41 >> >» S CJ ri ü Ä

BA 1 • O H > H ta •a (0 O H 1-1 4) H « 41 O rH d 41 -P 41 bC 41 - P O C/5 X > CM -P 73 ^ N 4J H al t» G H cd +J

5 -1 0 r i M O 73 P i U AJ O n) o O ' H S) o 10 r i 4) fc -P s e 4) ^ -P S O M N s a 41

55 N P i •O 1 41 X> • H •a i O s> P i ni > 55 W E a > 3 » G a > 3 O o E U Ö Co • r i

2 < M Ö r H O W K I S 3 H O M r 3 .-3 M O rH »J r H

1 1 0

KISII 29

= 'S

r-t C

r >rv CV CO • O t > O l

!0 iH O 1 O 1 o; 1 IS cv l i CV CV cv *r\ eo 1 r-H cr\ 0 1 o CO vu CV CT • os « < • • • • » • • a • « • • • « • S -P O c o C - o O O o o r-4 i H CV CA o CO CV t r O • O £S t >

.-3 EH

X U O C^l CA c >. 4> O "* I A C* v r CO UA CA V f co Î T

JG -P • O » H O • r-l +J to P •sf » • > * p

H l to 3

to to

O o O O u O

ia 60 >> | 1 | | | 1 | | > ï 1 1 | | > J

• r l M t l t l d , • r l •I-I

td •H cd

T i t j Ti

a <H <w CM

• 4 0 0 O

tOr-t C (t!

r-l O 1

f -

o 1 r-: cv 1 t >

U-N Ol i i • Ä SI cv

to cv i r \

^£1 CO 1 r H c«A CV O •JÄ CO s V3 cr •SÄ tOr-t

C (t! * 1 • • • • • • • • • • » » • • « •H +» O o O t> o O o o O r-t H cv CA o CO cv f o M O O I> H r- O

a EH • • • u H A i - I c> o CM

II

•sj-

II to 4U

CM

CA O CT\ II ST*

•sj-

II <s cv

• 1 • r-i 81 0

H 1 8i c-•

H l o o to

u 4)

o O o ta u 4>

o 10 M O M .

to u 4) *""

ta u 4>

10 M O

<W <H <H

a • r l o CN CA • H CA •H 0) 01 CA i O O l o CA C-l 1 4) o r-A CV i 0) 4) « • « -* • S -* t K

Ä o i - I H r-t

co + to

+ to ta

•f

CO to + to

+ to ta

•f

CO to O 4) • P 41 - p

3 • -a • i > •3 • CV 1>

-4-IfA

• O l 1 >

H ttf

•rl a 3

H ITA

O C -

• cv H

> H «

•H a

O o o o r H r-\ o r H O O

o o

o o

o o

o o

(0 • p • p

t l 4> c <£> en t > O ca

> ?> (0

o >

t l 4> o 1 1 1 H o i i CA

• 1 vH « H cv"

CO

• i -H !

ca

> CV CO

• r-l 1

(0 o >

• r l o o o O o •H O •r l >-3

C

H !

a o 0)

>-3

C 41

H !

a r-i l - l • H r-l • H

ö o o • P £N sr> E CA • p M CA • P M 4) 1 1 I 1 H ! CA i H i 1 -P o I o • E 0 1 >n CO o; 1 - p d CO o- 01 ! - P cd X o

• O

• O

cd o

H

• o

• o

• O

cv • o

cd u

l-f

'M

H

cv • O

td u

H

ti O

H

cd o

H " * * •

cd u

l-f

'M

H

td u

H

ti O

H cd eti <d cd to

ta • P • P • p •p •P h r CA 0 c<-- O CA O o r^. o 0 4) 1 1 O 1 1 1 . - 1 O i i • p 1 1 O 1 r-i 1 ~ r-i 1 1 • P - p «A ï-i 1 1 • p •P 4) a • • • • m

•P O o < H o o O CH <H o < H <H ca O O O O

"SÄ

O O O O O

"SÄ

O

to C f » - j - t> o o c~- i H f - o •J3 CA

H 1 1 I 1 1 r H o i i • - j r-l r - l î O l 1 r f \ f - r-i 1 t • v j - co r-l t ^ • H t

3 « • • CV • O CO O l • O t ^ -

3 m

o o 3 o O o o v+ o v j "

• • « H • • • • • H • • H • « 3 3 3 (S 3 3 3 3 3 <« ^ 3 cd 3 3

4) O" 4> O" a> cy - P D <y cy « cy 4) cy eu o* -p 4) C O " • p <o cycy bO to bo O to • • t o to hO o SO •ö o b0 si P « M « t i ^ cd l i U li .M U h H d M d En cd u t i :i u 41 EH cd h u II II t< 4> (4 4) h 4) I l « u o k (1 h « d <l U 4) 4) > h t l D

.* <U Pi 0) Oi (1 Pi >-> 4> a 3 o O Pi O Pi I p< O Pi 3 O 4) Pi 'S u > ft > P, > p, -O > a o +> > p, > Pi > p, ^ . > Pi O t i > P l O o < » «3! B < O O <* S> H1 to < Ö < S3 < E> « < » H l ft P i < » Hl Pi •p > 41 & o S X 4) (0 » o 4> > e 4) 4) •H O 4) 4) 0) ~ <a m u H •H tfl O -H H J= c o H -C

> U U U P-(0 cd to B

•P H l U L, U G cd cd co 3

•P CO O -P •P W •r i

U U U P-(0 cd to B +>

U L, U G cd cd co 3 • P CO 4P

H ! 4) 4) 4> - r l <t) n 4) 4) 4) . <^^ 05 + + \ « + > > > » > > ^ O 4) r > >» >» O H l o T ) H & •3 10 -a co 4) H «S 4) o •3 4) <P 41 b£ 4) -P

> <\| -P H t l cv -p H <S > a *3 O 0 »4 (V O aj p. t l CV o td o O -H *3 O h 4) U -P S e 4) (H -P s o p. td X o P, •O 1 4) .O • r l "O 1 4» £> p. td 8 a > 3 & a a > 3 Ö & E U Ö Ö

H Ö H O «> m a S H O W H ! H ! M O Hl Hl

S H l

Ö U-A fl VO

• H O

to n 3t 2 O o O o

^ «• Ö Ï 3 1-4 Hl

I A CO U)

• • O O

to m « t«

cd 41 4)

>« S»>

CV <V

t l u «) 4)

> o o" B

n i n '« UA

» D H Hl Hl • O

I A l f * 4 -

• • S O O 4)

S a ( 4 t i H

>> >. ( 4

<\| CVI CJ

1 H

i H ^

. # • #• Ö t= Ö Hl Hl Hl

mo o <v cv H

c t • o o o <4

cd ä i> 4) 4>

>> >> >» r-i H H

»4 ( 4 t . a; 4) 4) •ö •a •a a a a s o & u u u

M ta O M

^ 0 • r l o • p A4

o w \ . u a« « •o o

4) » •o > X 4> 0 to > r l N O P< to t l B • p P c H td S a o H o O

>> 4)

^

H l

4V> •<-t

a ö

j <

o o • P to 41

> • H H !

111

K I S I I 3 0

KISII DISTRICT

AEZ: LH 1-2 TABLE 12 a: INPUTS AND YIELDS OF MAJOR CROPS

Survey Area Ol

Crop Input s Yield 1 Crop Imp­roved

Nutrients Chemicals Crop

Imp­roved N P2O5 ! K20 Manure Insec. Fung­Seeds icide

% kg/ha kg/ha kg/ha t/ha kg/ha kg/ha kg/ha

First Rains

Avg. 93 3 37 0.01 2,790 Maize Avg. 93 3 37 0.01 2,790 UpQu 100 - 58 - - - - 3,700 LoQu 100 - - - - - 1,500

Beans Avg. - 6 - 1 - - - 1,000 UpQu - - - - - - - 1,500 LcQu - - - - - - 3OO

Engl. Potatoes Avg. - - 2 - - - - 3,571

Maize & Beans Maize Avg. 92 - 26 - 0.01 - - 2,448 Beans Avg. - - 32 - 0.01 - - 521 Maize UpQu 100 - 46 - - - - 2,250 Beans UpQu - - - - - - - 400 Maize LoQu 100 - - - - — ~ 1,350 Beans LoQu _ ,. " - - 113

Second Hains

Maize Avg, 100 - 18 - - - 2,250

Beans Avg. - 3 2 1 - - - 640 UpQu - - - - - - - 700 LoQu - - - - - -

" 250

Maize & Beans Maize ÄV£. 100 - 14 - 0.25 - - 2,250 Beans Avg. - - - - - - - 300

Perennial Crops

Sugarcane Avg. - - - - - - - 4,000

Pyrethrum Avg. - - - - - - - 1,614 UpQu - - - - - - - 1,500 LoQu - - - - - - 500

Tea Avg. - 43 18 6 - - - 5,140 UpQu - 54 - 6 - - - 6,905 LoQu — "~

..-. i

* • — — 1,410

112

KISII 31

KISII DISTRICT

TABLE 12 b : INPUTS AND YIELDS OF MAJOR CROPS AEZ: UM 1 Survey Area 01

j Crop Input s Yield Imp­roved

N u t r i e n t s Chemicals Yield

Imp­roved N p2o5 K20 Manure I n s e c , Fung­

Yield

Seeds *•" S

i c i d e % kg/ha kg/ha kg /ha t / h a kg/ha kg/ha kg /ha

F i r s t R a i n s

Maize Avg. 80 _ 17 _ 0.08 _ _ 2,603 UpQu 100 - - - - - - 4,163 LoQu - - - - - - - 730

F i n g e r m i l l e t Avg. - - - - - - - 1,450

Maize & 5 e a n s Maize Avg. 92 4 . 10 - 0.19 - - 2,445 Beans Avg. 4 - 6 - 0.08 •«• - 759 I Maize UpQu 1 0 0 - 29 - 0.25 - 3,150 1 Beans UpQu - — 12 - - - - 1,000 i Maize LoQu 1 0 0 - — - — - - 1,688 Beans LoQu - - - - - - - 400

Second R a i n s

Maize Avg. 75 — 22 — - — — 3,231 UpQu 100 - - - - - - 4,050 LoQu - - - - - - 1,000

Beans Avg. - - - — - - — 875 UpQu - - - — - - - 1,000 LoQu - - - - - - - 450

Maize & Beans Maize Avg. 93 5 17 - 0.04 - - 2,181 Beans Avg. 7 - 6 - - 1 1 525 Maize UpQu 100 - 39 - - - - 3,308 Beans UpQu - — - — — — - 800 Maize LoQu 1 0 0 - - - - - — 1,125 Beans LoQu - - - - - - - 300

P e r e n n i a l Crops

S u g a r c a n e Avg. - — . — — — — — 3,872 UpQu - - - - - - - 5,000 LoQu - - - - - - - -

P y r e t h r u m Avg. - - 3 — — — 2 1,482 UpQu - . - - - - - - 1,000 LoQu - - - - - - - 1 5 0

Cookng Bananas Avg. - — — - 0.31 — — 14,058 UpQu - - - • - - - - 12,500 LoQu - - - - - - 2 , 0 0 0

Coffee Avg. - 8 - — 0.82 6 14 7,867 UpQu - - - - - 6 21 5,000 LoQu - • - - - - - 4 1,875

Tea Avg. - 26 3 5 — _ _ 1,967 UpQu - - - - - - - 1,667 LoQu

, , 1 — - - — - - - 1,500

113

K I S I I 3 2

<

t 3

CO

C/5 ft. O e* u tl. o -J

t/3

o OM </3

en

W ffl <

•"! ^

h-1

N W <:

d o

•H • & * O O N O v O i A O l ^ O O CO K M A 0 4 - O -P C ^ v O O I N I N i-\ K\ O O ONOO OJ O VO P< . H H r-l H S 3 03 3 03 Ö O o l A l A O I ^ O O O O

CT\ - j - I N CN OJ O.J O U ) O O O O O O O O O CO co O

O

<0 fcC O J - 3 - h r \ - d " C 7 N H H K \ ON O -4" H N s .M ^ •• • » ^ o N^VO •d- rH

53 H OJ

-P Vi O H O K M A O I N O O OJ ( N I A O v£> O O) f ^ V f O OJ OJ ONVO H C - r^\ O)

s H as O O O O O O O O O O O O O O o o irwo - J O c o o 0 0 0 > - 3 - O o M I N C O H l ^ i O (M OJ OJ J -

. - I .M I A rH H

H co a o u

• p T) d h V I O O O H O O O O O O O O O O 0) o * d o O <d H

CQ

© PM ©

PM • r l -P O)

ÀJ hC O O O I N O O O O O O O O O O O Li . Ü O CÖ O

S ' OJ

a o •r l l A l A O O O O O O O O O O O O o +> - J - O I N O J O J Q O M D O CO 0 > OJ CO o o O ÖC O K N f f \ V Û (\1 OJ K \ f ^ 0 \ O ^ O K \ H H o 3 ü • * •* *"> m •• ^ m T3 ONCO rH i-l J - H rH OJ O • H r A tn

PU

(0 to (Q a - P <D © IQ 0) d H - P O O CO C - P O

(0 © -P CO aj - H « - p - p G C - P O (0 © -P

Ö m a H a aJ •r l © H 0j P( • r l pq &q H -P -P 05 PP ü H -P O id •H o o « « • H O fH « c3 df B O. Oi <U oa H S 9 i

o fc M •d SH -t-> © <D O CO O • - P Ö d © © <D CO © • CO H 8 D d M H O X> o M N d d b O H

• H - r l <d O d M fc •H - H - r i tÖ d bO © J3 o M N d d b O H

• H - r l <d O d M flj • r l a J a S a S © - H d S a J « 0) 4 © © -H d « PM Ï Ï S f f l f c W W O C/J s s m eu c«* w * 1

114

c o •H ï& V O ^ O O ~ * ( > O J O J O I A O O O H O N C M o o -P O N [ T \ 0 O tNcO t N - 3 - 0 - * 0 [ > - O N f V H rA Qi 1 H H H r-1 E 3 ra . c ra . c o o O c o r ° i O 1 T \ 0

CN VD C * V O \ O V O O O N O O O O O O O O O O * 0 O H IA O VO

O O O

OJ £? rA ^ r i H • i • ( J ^ rAoo :A CV CTN-3- OJ v\ E ^ » »• • • » • • » *» •» O 00 I N rA IA H OJ H X 1 rA H

-P ^ I A - * O O (M H O O C N O r A O O J C T N r - I c O O O O) VC KN T-1 r-i ri4- J - OU I N OO rN ^ H h cd

H H cd O l A O O l A O o o o o o o o o o O O ü O IA IN OJ H co CT\ V£> O O tA CV O M - * O H OO I N OJ rA O ON J -

*4 JÄ »" »• •k ^ • • • » ^ • * -4- IN H H H ra t A

H OJ H P. o (H O

- p TS c U * R H j - :.o O -d- O O H O O J O O O O O 0) O O cd ^ H ' H H H H c O o Cj H « E

bO

c CD bO

c CD

•H -P O O O O O O O O O O O O O O O O O O .* uo O CO ON tA IA VO O t l J4 IN *x> -3- rA rA -d-CÖ ^ ^ ^ s tv o -3"

Ö o

• H O f M f \ 0 0 0 o ONOO o o b o o o O O -P tA O CNVÛ IAC0 VO rA H O M N I A O ( H O o j o ha I N LA H «-4 ^Q O LA 0"~> O OJ OJ - * OJ - * ON s >* * • »s #>. • * •» 9> * • ^ «* V

T3 00 H ' H -S" tN rA rA H OJ J " O I N rA U

CU

ra ra W C3 ra ra u a> Kl SH CD cd Ö O - P O

ra .c o -p ra Ö d ) - P O § ra

Ö O - P O

ra .c o -p f* CD X CD -P § ö Q) ->-> H (S •r l o - p H as Ö

PH • H a o H -P cd ça o o H -P cd o O •H O « tu -H o ra co t l h-H ca ca S A 08 o2 H S P* CD a> o t , TS . h bû O bO

• P o o o ra o -P Ö O CD CL) CO Q 0) • cd - P c ra tq N N ü &o eu o N N N Ö ß b O r - H ^ J C Ö .M fn •H -H -H CÖ s co ü •H -H -H Cd Cd C bO .Q S cd o

• H Ö cd cd CD -H S CU c d ä c d o c D - H G a i o 0) o fe S 2 S (Q few C/3 s r c s r a m f e w o E - i En o

KISII 34

KISII DISTRICT KISII DISTRICT

TABLE 14 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 b: DISTRIBUTION OF FARMING ACTIVITIES Crop 1 Maize Cases: 15 Crop 2 Maize & Beans Cases: 34

AEZ:LHl-2 Survey Area 01 Sample Size: 30 AEZ: LH 1-2 Survey Area 01 Sample Size: 30

100 "'. ot the cases Land Preparation: Land Preparation:

Lu I • Il

• • ce

s

I... LL nLi Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

ILLIIIL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

IIJLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

I M W_ Lll Li ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

JjiuL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLUÜ11I1I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

s_A W i l l L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

JL I.. I l _ l L

• n Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

jJUil jjjjlill lilUlUL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

116

K I S I I 35

KISII DISTRICT

TABLE 14 c: DISTRIBUTION OF FARMING ACTIVITIES

Crop 10 Beans Cases: 16

KISII DISTRICT

TABLE 14 d: DISTRIBUTION OF FARMING ACTIVITIES

Crop 12 Fingermillet Cases: 5

AEZ: LH 1-2 Survey Area 01

Land Preparation:

Sample Size: 30 AEZ: LH 1-2

100 % of the cases

Survey Area 01 Sample Size: 30

Land Preparation:

L -LUl l l l

S - - S Hi Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

JUL XJllâ. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

lu

x

First Fertilizing:

I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding: First Weeding:

J • • •• ill L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding: Second Weeding:

• •••• • •!•• • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov^ Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

l _ L nl • •• I • JL i± null i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

117

KISII 36

K1SII DISTRICT KISII DISTRICT

TABLE 14 e: DISTRIBUTION OF FARMING ACTIVITIES Crop 50 Tea Cases: 4

TABLE 14 f: DISTRIBUTION OF FARMING ACTIVITIES Crop 52 Pyrethrum Cases: 10

AEZ: LH 1-2 Survey Area 01 Sample Size: 30 AEZ: LH 1-2 Survey Area 01 Sample Size: 30

Weeding:

± U_l

100 s " of the

cases

3

Weeding:

J_ • M i l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

X J I i . L J L

LA X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Lu_J Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

118

KIS I I 37

KISII DISTRICT KISII DISTRICT

TABLE 14 g: DISTRIBUTION OF FARMING ACTIVITIES

Crop 2 Maize & Beans Cases: 60 ')

TABLE 14 h: DISTRIBUTION OF FARMING ACTIVITIES

Crop 50 Tea Cases: 4

AEZ: UM 1 Survey Area 02

Land Preparation:

Sample Size: 30 AEZ: UM 1 100 ". of the cases

Survey Area 02 Sample Size: 30

Weeding:

Jkllli L • • • • • • _Lx. ' Mill Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

jhliL L jlLL 1 i_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: Pruning/Cutting:

I lllll—- o. i 1 J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

1 I ii Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

A iLL. •• lim • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• lllll-l •• •••••••• • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

J • •• • I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

•••III ..III illlillllill !••• • ••! 1

i)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Maximum 30 per crop and season

119

KISII 38

KISII DISTRICT KISII DISTRICT

TABLE 14 i: DISTRIBUTION OF FARMING ACTIVITIES

Crop 51 Coffee Cases: 26 TABLE 14 j : DISTRIBUTION OF FARMING ACTIVITIES

Crop 52 Pyrethrum Cases: 8

AEZ: UM 1 Survey Area 02

Weeding:

Sample Size: 30 AEZ: UM 1

100 ", of the cases

Survey Area 02 Sample Size: 30

Weeding:

. . I I I I I I I . I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

]_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

J • I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

I I • • A j_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

J l_ J •_

_• l_

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Jan. Feb. Mar? Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

I N I I l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 I I I I I 1

120

KISII 3 9

KISII DISTRICT

TABLE 14 k: DISTRIBUTION OF FARMING ACTIVITIES Crop 56 Cooking Bananas Cases: 16

AEZ: UM 1 Survey Area 02 Sample Size: 30

loo ••> 'of the

cases

T

Weeding:

I I • I I I • I I • I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

_1 l_l I I I . I • • • I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

121

K I S I I 4 0

Ui Z O N -1 < U

3 o j o u w ó öS o

CU

o o at w CL.

KI • J

- J

z o o a Û o o.

w « <

2

S

M

M l -H

, H 0> > 0) > 0)

• J

c o H

• H H

< J

u 3

O L i

CU

• H

, U 4> H

+J -rt 3 -H O H

X V +J U • r l C) S UH

0

M O O I A 8 I A r O O VO M3 O CO C^ o LA H

S D

1 M O I A CV 8 I A a O « 3 r A r A O H rvj o O o> S D 0 M J - H o- rvj a O rH K \ o S D m X

m M I A OO O - H ^o

H

X 0

o

> ai

a

H

X 0

o

> ai

a

O I A o IN O LA c . 8 LA f A

H

X co 0

•H

M O 0 0 M r H O 8 J - -* w 1 0

o 0

•H *~* o cO o C-3 m M LA J -

H H *~ Z 3

TJ 0 D

H Z 3 TJ 0 — "~~ a. ~ - s U

Z < U ΠS A l

X

CL, O O o

H < U ΠS A l

X

•H M O O

I A o o

Z W

2

< U ΠS A l

X T * * 0

H CM Z W

2

< U ΠS A l

X T * * 0

t . ' D Z •; n B

0 u +J -H 3 H O -rt

o o

O O

O O

O o

o o

Q Z

tSJ o •H

O

+J -H 3 H O -rt

-3-

I A

C\J

•^Ö cy

cy

< • H O •H 0)

H • * > A l S £x H

i H C M fl r-^ O r H o O I A c\j O O o O O co O O LA OJ C M

• ) L O M o VO r A O O I A O O ^o *o O as vu O t N c». 3 0 * t -H O f\J M o >A r H O r A o r H AJ LA

O Se M CO o

H O

rH LA

CO

O d O I A o- r> O n j - J - 8 0 0 \£> y j o M o co M H O O f A 8 »A r A o • H o O rH H O

'U o EH H P

C I A M U I A o -3-( N rH Z 3 H

O

a.

r —

O

a. O I A ^O ^ 3 o O r A o

M I A l t N

w f r A r H

z o a) r-3 VJ

0 1 r-3 VJ

0 t , X e E « « t N H - i u •4-» -H O O O O O

< 0 3 rH O o O o o a

0 O - r l f A I A I A VaO LA

i

c j

0 LTt

Q j CM

•a

J3 -M +•» L, •H « » tu

rA J - c\J rA f\J i

c j

0 LTt

Q j CM

•a X ' ••s • r l * t to WD to M ïft M to w « t £ GO bO «0

• Ä to bû bO to tfl to to to to

^ Ä bO to to to

*1

CL, OJ «

>>

a * t M ^ .* Jtf ïft

.* ü J<! « J * X ^ ü • Ä . Ü ^ X X tfl X Ü ^ X ^ Ä X X Jd X

" CL, OJ «

>>

a

" CL, OJ «

>> M • + aJ H

U o a a

•H 0 H H ^H rH r-i r^

< : > rH -H CO > Z l A

O o 4) t A

o O O) I A

O o « I A O O

4) I A V LA > Z l A

O o >

t A

o O

> I A

O o :>

I A O O

> O o > O o O Z

AJ •V ,rt * O l C\J V cy C\J 0) A l r\ j V OJ AJ © f\J A)

»-* EH Z CU ui 8 J Z 0 . ^ • J Z . o, i ï r - 1 Z . CU - r-H z CU i Ü -J Z eu *: a h S g M c >* a ( H a tu B tu o O S g V o 4> o 0 ) o « 0 o

•H ta O - H N - r ( rt - H N EH • r t N N +> •H _ +> • H 4-> •H +J • H H +J •H + j • r t U (0 (-t 5 ° m H O O M O CO r H Ö U CO i-t • o co r-i 3 •o •H 5 3 •ö • H 3 • o • H 3 TJ • r l œ 3 TJ • r l 3 TJ • H

TJ r H +» S! •" r H 4 J •ö rH i > X TJ r H t *4 TJ r H ** •o r H -»J !--» H

0 « U « o 4) ^ 1 0 O U ö O V t . O « tu O a> tu !--» H I * •H O

« o • H « h -H V cc ( M • H 4) z t , - H a> tu • H 0 i

iO a« >« u, « o

> i Cv O, > H tv. e-i

CU >-" U . o CU X u. U)

CU > 1 u. CU a ^ ° c S c CO a IS) c

•H Q* -H •< •H S •H t o M •H • < w > i < < z u

EH 10 u «

o« (0 f-. 0)

CU co u 4)

X

à a a. s ó! s i % a cÜ e CU e o u o u o L i o u o u o S « (0 K < ce <9 CH CO CS <6 cc « o Cx O U . o b , U U H o Cx ü u.

122

K I S I I 41

O N

< Ü O .J o u w

s o

<: o. o öS u « O.

- I

S z o p o 3 Q O ai PU

w ca <. H

H

o 2 H c/3

n t—i »-H -

.H 4>

4 )

4>

4 ) • J

o M

-H l -H

-*-> o 3 3

O U

IX

M

u 4) 14

JJ - H 3 H O H

X *> + 1 ÎH •H ©

w' : * t ^ w' 0

03 T

S 1 M o 8 J - 0 0 o ON ru O I S viD O ru U3

D 0 M o 8 K"l ru o y j o O H CO o I A rH

Ctf 0 1—1 t 1 1 H 1 1 i o o (M f A o ru rH o ru r u

X m <H rH f\J o LA o

X

01 > J - I A -* X 0 CO

4) 8 1

"S" g a M I A

-d* o O O o t N v o Q ru M3 o o o J -

H

1 0

ca o M

o - H +•» U

ff

8 \o i r \ 8

rH

o o rH

o o es CO

O

-* I A 8 CO

O N 0 0

H H

*~ 2 -a 0

j - H rH rH

D

H

2 -a 0

p u fH ^ Z < a,

S O o o H KN O ( S VO O t s ^O

H Z

S •H M O o o r\J ru O O H Z s ? J - J - o o o M <M o LA LA

3 3

3 ( »

- H U O

3 3

3 ( »

- H U O tu «

(9

Z 0 « , *J H o 8 o o O O

D t q . O 3 H o 8 o o o O D •H 0 -H ru r\j o J - o O

Z W O -C +>

< H o > I M •H V

Ht U .

ru *H rH KD - J - J -

D PU

3 o S M W

8 CO

ru 0 0

o 8 r H LS r A

O o S M

W o ru r u o I A ru o -3-"

»H 4) >

rA -* »H 4) >

to o o

!-? VO O a

0 M \ *-* t r \ o CO o O J - r A

CO a 0 M o \o -a- o I N CS O CO VO

•0 o O •H o o o C l « e* 4 *

O o I N H M

4 * O I A l Â

X 3 "0 0

J -i

H »H X 3 "0 0 IH

a, M

o o 0 0 t s O

O ru rH

ON

M o o

2 CO VO O

ai u 0

ai u 0

u CK

M «: a

e e t

H U 0

•M -r i 3 rH 8 o

o o o

<

e e t

H U 0 O - H

-a -v I A tM LA

(H 0 m a. <N

•M U •H O 3 t &M

n j o- J -

. H -o . H -o 33 4-1

o -u +» 33 4-1 *4 • • W

t i t i r « Ö _

•H £1

3 >ft

t o t o t o tft S t o >ft X

b0 t e t o » t o A:

t o t o w t o S t o t o A : • A

t » t o to t o

t o

04 ru to

• + y t o

04 ru to

• + y « a H

u t O - M « O d

• H

0 r i H r H rH rH rH

«< > rH - H t o a» I A

O 49 m 0) I A « I A « I A 4) I A

> o O

> o o 6v O o > • o o ï O o > O O 4) -1 z

r u CL. £ 4)

Ä CM ry 0)

h-) •x. IM

a, IM « z : o,

ru « z r u | ru a, | x z

rvj ru a . | * :

Cl u d u G u Ö u a u a u 0 © o 41 O V O 9) 0 « 0 « CO •H ta •r-t N •rt N • H N •H N M

§ •H +* - H -•-> 4J -H 4J - H •H § U (0 rH O m rH O Q t-K U m rH O 0 i-i o a rH

M 3 *Ö •H 3 •v •H 3 -O - H 3 r> •H M 3 •o •H 3 •G -H CQ •a rH •P -o H 4-» « 'S r H W -o M V & •a rH 4J TJ rH -*> o V tn O 4) U M ° « u t o O V t< r H 0 « U O 01 U o3 •<H

t u u (O.

- H 4) S i •H « u o u CU

-H u a.

•H « LV,

M C3

U

a. •H t u «

W S I

ci •H = 5 05 (H a tzi a <

00 c M

ci •H

< • * a -H M •H « •H 9 •H

S S£ §2 O O, t o

u o t o D

9 IL,

ft 1 •• 4» .. » 0> « 4)

i. B l a B O. B ri. B ô. 13 à! s O t , O 14 O t . O U o U o t , ci. « 1 PU < en « cc « « aj œ 4 o U* 1 O PM o («, o u. 1°

t v o C*.

123

K I S I I 4 2

ta

na

2

H

y

S

> « c 0

-H +•> o

0 U

a,

h-t

• H

> « c 0

-H +•> o

0 U

a,

M t-H

> « c 0

-H +•> o

0 U

a,

t-H

u 4> M

*> -H 3 -H O •* J3 -P +» U -H O 3. &M

u 2 O IS]

M U

b. O u

m 1

(N

S D

<

o r-> l

O en OJ

O

1

O

3 O to o M Z

« !> 0)

-1

a o

4->

U

3 X) 0

o.

l -H

M

o o

o rH

o o rH

u 2 O IS]

M U

b. O u

m 1

(N

S D

<

o r-> l

O en OJ

O

1

O

3 O to o M Z

« !> 0)

-1

a o

4->

U

3 X) 0

o.

»~4

•-* o o o

8 O ON

u 2 O IS]

M U

b. O u

m 1

(N

S D

<

•H E C

- 2 - 0 u e ° n

•H 0

3 O to o M Z

« !> 0)

-1

a o

4->

U

3 X) 0

o.

M o o

O O Os

u 2 O IS]

M U

b. O u

m 1

(N

S D

<

•H E C

- 2 - 0 u e ° n

•H 0

3 O to o M Z

« *J ' H 3 rH O -H

J2 *>

•H «

W

o es) <t w

h. O O

i-i

X

tsj

U

• <

£ *° 0 n

TJ 0 C • " (N *~

to

O to o M

z

H •H O

to

r-4 41 > « -3 a o

•H +J O 3 TJ O «H

a,

M M M

8 O H

oo O O O

J -H

IM n j

o o IA

00

O CO co o o r-t

rH

O H H

o o rH

o o o

OJ

OJ

lA O O

m

n j

m rH

rH

W

o es) <t w

h. O O

i-i

X

tsj

U

• <

£ *° 0 n

TJ 0 C • " (N *~

to

O to o M

z

H •H O

to

r-4 41 > « -3 a o

•H +J O 3 TJ O «H

a,

3 O o o m

co H o o

CO

O oo

O ON 8

O

i-i

00

«M

O O m

n j

oo oo

W

o es) <t w

h. O O

i-i

X

tsj

U

• < Vegt. Period

1st + 2nd: p or 1—m

in Days, 1st: 215 or more

to

O to o M

z

H •H O

to

r-4 41 > « -3 a o

•H +J O 3 TJ O «H

a, M

8 o IA

"\ tA O O VO

O o O O m ON

oo rA

W

o es) <t w

h. O O

i-i

X

tsj

U

• < Vegt. Period

1st + 2nd: p or 1—m

in Days, 1st: 215 or more

to

O to o M

z

H •H O

to

t . V N

•*J -H 3 <^ O H .a ** -M U •H 0)

M*\

O O o

O O IA

<\J

O o

O o o ON

W

o es) <t w

h. O O

i-i

X

tsj

U

• < Vegt. Period

1st + 2nd: p or 1—m

in Days, 1st: 215 or more

to

O to o M

z

H •H O

to

•P •H d

3 « to to to

M J? ». to W.

to M bO * bo to IR to JU

to to to • ^

to to to to

W

o es) <t w

h. O O

i-i

X

tsj

U

• < Vegt. Period

1st + 2nd: p or 1—m

in Days, 1st: 215 or more

to

O to o M

z

H •H O

to 4)

10

n

a> •H

2

U V N

•H fH •H +> U ID

lA O n j a . S

rH

> CO - >

-< a œ o O -H

* J «c o SB 3 << X I où o \ t. « a . M M a a. -H <s =5 n

f i .. v o. s o u « g) O I*.

01

•o «

•rt

z :

t) N

•H rH

<J f-. 4)

tA O Ol 0 .

o >-l

c o

•H ^J O 3 •o O u

a. c

•< -rt U M to •• (0 o. e

O IH K «

ID

•o

V •H

55

l< 0> N

•rt 1-4 •H

in O)

IA O o

IM

r-t

>

d <C 0 O -H M *J 03 ü < 3 CC x l t O

a £

fc. -H O O to

h .. « a. B o t , C C CS

o u.

CO T)

V •H

u m t*

• H

^ H • H 4->

u 4)

t A O o j

a.

o CM

rH O) > 4)

a o

B H M *J D o œ 3 fx xt

0 Z b O a. M to a tO -H <•: a< co

CH . . tu a. e o t . a; tu O tv

(0 •o rH « •H

u

•H

•H

41 CM

lA O Ai a*

o 4> > 9 ~1

C 0

•rt *-> Ü 3

•o O

CO u <: a. •z. < c Z -H

< a, B O 1H ex «

CO

rH Ol

•H X

z

1U » N

•H rH

U il

o OJ a.

o « M C •J 0

« • »

ce u :=> 3 CO O •t U a. a.

• 0 E-l H •* ss a

u • • • a. e o u M (8 O Ex

10

n

a> •H

2

U V N

•H fH •H +> U ID

lA O n j a . S

rH

> CO - >

-< a œ o O -H

* J «c o SB 3 << X I où o \ t. « a . M M a a. -H <s =5 n

f i .. v o. s o u « g) O I*.

01

•o «

•rt

z :

t) N

•H rH

<J f-. 4)

tA O Ol 0 .

o >-l

c o

•H ^J O 3 •o O u

a. c

•< -rt U M to •• (0 o. e

O IH K «

ID

•o

V •H

55

l< 0> N

•rt 1-4 •H

in O)

IA O o

IM

r-t

>

d <C 0 O -H M *J 03 ü < 3 CC x l t O

a £

fc. -H O O to

h .. « a. B o t , C C CS

o u.

CO T)

V •H

u m t*

• H

^ H • H 4->

u 4)

t A O o j

a.

o CM

rH O) > 4)

a o

B H M *J D o œ 3 fx xt

0 Z b O a. M to a tO -H <•: a< co

CH . . tu a. e o t . a; tu O tv

(0 •o rH « •H

u

•H

•H

41 CM

lA O Ai a*

o 4> > 9 ~1

C 0

•rt *-> Ü 3

•o O

CO u <: a. •z. < c Z -H

< a, B O 1H ex «

CO

rH Ol

•H X

z

1U » N

•H rH

U il

o OJ a.

o

124

K I S I I 4 3

co W z o N

< o 3 o - j o u tu

s o < o z < o. o j * u ei W o-i/i - i a z o H <J D O O o.

« i j

<

O

2 H co

co

2

4)

> 4> _) C O

•H

U •ö o

a.

PH M rH

...

4)

> 4> _) C O

•H

U •ö o

a.

rH rH

4)

> 4> _) C O

•H

U •ö o

a.

M

u

+ j - H 3 rH O H

-C +•> - p *H - H ©

rH 4) > 4)

r j

a o

o 3

•a 0 U

eu

M M M

H 0 .

Z H Z w

rH 4) > 4)

r j

a o

o 3

•a 0 U

eu

H 0 .

Z H Z w

rH 4) > 4)

r j

a o

o 3

•a 0 U

eu

r H

oi H Z O z < H

& O

u « «J -H 3 H O -H

- H 4>

; oi H Z O z < H

& O

w o

tx

M U Pu b. O o

z

tS]

• <

o S

•o 0 C in

O w o IH M Z

r-t •H O

rH 4) > 4)

d o

•rH

O

3

0

a.

M 1 oo

CO CO

O O

0

J -

-* O

CO CO

0 0

0 0 rvj

ON rv j

O

rvj

O

w o

tx

M U Pu b. O o

z

tS]

• <

o S

•o 0 C in

O w o IH M Z

r-t •H O

rH 4) > 4)

d o

•rH

O

3

0

a.

3 % rA

o j

0 0

0 0

IM

H 0 0 0 0

0 0

O O -3-

w o

tx

M U Pu b. O o

z

tS]

• <

1-1 0

I e

- s o "1 0, IN

•a

.s.. « © a •".

CU AJ (0 >> • + (0

•M Q 60 * *

* o a > r-i - H

O w o IH M Z

r-t •H O

rH 4) > 4)

d o

•rH

O

3

0

a. Ht §

O O

O

lA

f\J

0 0

1A

OO w o

tx

M U Pu b. O o

z

tS]

• <

1-1 0

I e

- s o "1 0, IN

•a

.s.. « © a •".

CU AJ (0 >> • + (0

•M Q 60 * *

* o a > r-i - H

O w o IH M Z

r-t •H O

t« « •U -H 3 H 0 -H

. a +•» ** U •ri 4) * Pu

0 0

IT\

(M

0 O r- l

H

O O

w o

tx

M U Pu b. O o

z

tS]

• <

1-1 0

I e

- s o "1 0, IN

•a

.s.. « © a •".

CU AJ (0 >> • + (0

•M Q 60 * *

* o a > r-i - H

O w o IH M Z

r-t •H O

•H d 3

*ft 5 to to M J? • Ä

tO to J* " Ä

to t « fcû to ?K to S 5 ÏR to M

to Aï y t to te bO te

w o

tx

M U Pu b. O o

z

tS]

• <

1-1 0

I e

- s o "1 0, IN

•a

.s.. « © a •".

CU AJ (0 >> • + (0

•M Q 60 * *

* o a > r-i - H

O w o IH M Z

r-t •H O r H

4)

-s r-4 4)

•H >«

SE

u

« • r i r-t •ri

© 1*.

Q f\J eu tt

r H 4) > 4>

a

s o a eu u

g ° . . 4 , a, e o t. « flj

u u,

rH 4)

•H X

z

V

« •H H •H t. «

O Ol a.

o «M

r H 0)

« r j

a

s ° 11 0 8 lu

CU w

= «J Li .. «

CU B O L, K « U (M

rH V

•H

3 t

4)

•H rH •H

In 4)

IT* O

CU

0

r H V t> 4) .-» d O

•ri *> O

s 1 3 £

•fl ai

. . Q) CU B 0 U a: A

•a

V •H

a>

•S

t : u.

m r H 4> > 4)

r-1

a 0

co £

s .s 0 H w 0

u .. u cu e 0 t. es a U Pu

(0 •a rH « •ri

u 0 N

•H rH •H

k. 41

l A

0*1 0 AJ

r H V t* 4>

C O

U 3

O U

a,

c •rt

CO IU

• • 4> CU S O U (X ai u u.

(0 T3 rH 4)

z »4 S)

n •r-l i-t -H

t . 41

U,

lA O ru cu

O «

C o

•H • * o 3

T) O U

a. si a

s: a u .. «

a B O U an « Ü u,

-s r-4 4)

•H >«

SE

u

« • r i r-t •ri

© 1*.

Q f\J eu tt

r H 4) > 4>

a

s o a eu u

g ° . . 4 , a, e o t. « flj

u u,

rH 4)

•H X

z

V

« •H H •H t. «

O Ol a.

o «M

r H 0)

« r j

a

s ° 11 0 8 lu

CU w

= «J Li .. «

CU B O L, K « U (M

rH V

•H

3 t

4)

•H rH •H

In 4)

IT* O

CU

0

r H V t> 4) .-» d O

•ri *> O

s 1 3 £

•fl ai

. . Q) CU B 0 U a: A

•a

V •H

a>

•S

t : u.

0 ru 0. 1 ä

r H 4> > 4)

r-1

a 0

co £

s .s 0 H w 0

u .. u cu e 0 t. es a U Pu

(0 •a rH « •ri

u 0 N

•H rH •H

k. 41

l A

0*1 0 AJ

r H V t* 4>

C O

U 3

O U

a,

c •rt

CO IU

• • 4> CU S O U (X ai u u.

(0 T3 rH 4)

z »4 S)

n •r-l i-t -H

t . 41

U,

lA O ru cu

O

125

K I S I I 44

tt> 1> V

r j

c o

•H +J o

• o o t-.

CU

r tt> 1> V

r j

c o

•H +J o

• o o t-.

CU

M

tt> 1> V

r j

c o

•H +J o

• o o t-.

CU

u 4>

o -^

•H O

>

a 0

• H

4-» u 3

- ö O f-,

CU

h-t h-t H

>

a 0

• H

4-» u 3

- ö O f-,

CU

(-«

>

a 0

• H

4-» u 3

- ö O f-,

CU

M

o

3 r H 0 - H

J C + *

• H V

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

o *° ü C

T3 0 Cm

< N r -

W

O C/J o M

z

•H O

w

a>

> a o

• H -4-> O 3

T3 0

CU

O O O L A

o j

I A

-s-O

V U H

o o o i r \

r A

0 0 O OJ

I A r H

o o o m

oo o o o o"

CTv

r H

I A I A

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

o *° ü C

T3 0 Cm

< N r -

W

O C/J o M

z

•H O

w

a>

> a o

• H -4-> O 3

T3 0

CU

s O

8 ru

0 0 f A - 3 "

o o O

v o r-i

VO I A

o o o o* H

R I A O O

o o"

I A f A

I A

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

0)

0

a E

H 0

u

ft(N

. 2 ..* ^ -o « « a r"

CU f U ttf

• + <Ö V Q

« o a > r H - H

W

O C/J o M

z

•H O

w

a>

> a o

• H -4-> O 3

T3 0

CU

M

o o o

0 0

VO C S O O O

o o

o o o

o o o LA

V f I A

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

0)

0

a E

H 0

u

ft(N

. 2 ..* ^ -o « « a r"

CU f U ttf

• + <Ö V Q

« o a > r H - H

W

O C/J o M

z

•H O

w

« •4-» - H 3 r H 0 - H

*> u • H 0 ) 1 * UL,

o o o j

O

O o O N

o o i r \

j -

O O LA

-3-

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

0)

0

a E

H 0

u

ft(N

. 2 ..* ^ -o « « a r"

CU f U ttf

• + <Ö V Q

« o a > r H - H

W

O C/J o M

z

•H O

w

• H

a • Ä CO

J i

to M tt t o to X « X 5 CO îft X

bO

X JC t e » to

J. to to

X to >: « to to

X

w z o

< Cd E H

C d Cd fc, Cv, O

u r H

S

KJ

M

<

0)

0

a E

H 0

u

ft(N

. 2 ..* ^ -o « « a r"

CU f U ttf

• + <Ö V Q

« o a > r H - H

W

O C/J o M

z

•H O

w Of

( 0 • o r H «> •H X

z I H

V

• H

• H

4 * I I

C*

o o j a.

o H 0 >

.-) a

CO o

C d - H

O - u E H O

< 3 E H " Ö

O o eu u

a. EH

H a Cd - H

O? 10 u

.. v 0 . B

O u

os a O h i

•a r-t 0

• r i >«

z

« N

•H H •H +J

«

LP»

O O l

0 H

O o j 0

l-H

C

o • r i * J U 3

• Ö O

C d U O 0 H < a B

C0 -H

O CO u

. . o O H a O h a, a

m

• H

X

3 5

J H

V

41 C v

1A o rv j

0 ,

o AJ

r H

> OJ

• - )

C o

- H

U M 3 M - 0 M O

< a. => o « . H

c o ta

h

. . g j

a. s O IH

œ «

•a r-i o;

• r i > H

Z

« • H r H - H 4 J I H

V C -

I A O

o j 0 H

O

<\J

r H OJ > 0)

a 0

• H *> o 3

T3 0 |H

O .

Ci • H

03 t<

.. « O H e O u K ai O b .

T 3 r H 0

• H > H

z u

N - r t

- H

V

u.

I A O A I

a,

o o j

r H

9 J

a o

-H

O 3 -c O I H

0 H

C - r t

a) u

.. « 0 H S O h x a U h .

03

-o r H 0

• r i > H

z

0 M

• H r H • H HJ U 0

U ,

I A O OJ

a.-

o o j «

(3 0

• H •«•» U 3

T î CO o

W ( 4

o eu

E H - H

o 0 . o

U

• • 0 O , s o u on 0J O h .

( 0 • o r H «> •H X

z I H

V

• H

• H

4 * I I

C*

o o j a.

o H 0 >

.-) a

CO o

C d - H

O - u E H O

< 3 E H " Ö

O o eu u

a. EH

H a Cd - H

O? 10 u

.. v 0 . B

O u

os a O h i

•a r-t 0

• r i >«

z

« N

•H H •H +J

«

LP»

O O l

0 H

O o j 0

l-H

C

o • r i * J U 3

• Ö O

C d U O 0 H < a B

C0 -H

O CO u

. . o O H a O h a, a

m

• H

X

3 5

J H

V

41 C v

1A o rv j

0 ,

o AJ

r H

> OJ

• - )

C o

- H

U M 3 M - 0 M O

< a. => o « . H

c o ta

h

. . g j

a. s O IH

œ «

•a r-i o;

• r i > H

Z

« • H r H - H 4 J I H

V C -

I A O

o j 0 H

O

<\J

r H OJ > 0)

a 0

• H *> o 3

T3 0 |H

O .

Ci • H

03 t<

.. « O H e O u K ai O b .

T 3 r H 0

• H > H

z u

N - r t

- H

V

u.

I A O A I

a,

o o j

r H

9 J

a o

-H

O 3 -c O I H

0 H

C - r t

a) u

.. « 0 H S O h x a U h .

03

-o r H 0

• r i > H

z

0 M

• H r H • H HJ U 0

U ,

I A O OJ

a.-

o o j

126

S. NYANZA 1

S O U T H N Y A N Z A D I S T R I C T

C o n t e n t s District page

Natural Potential 2

Introduction 2

Climate Tables 3

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map • 16

Soil Distribution, Fertility and Major Characteristics 17

Population and Land 21

Population per Location and Division 21

Household Composition per Location and Division 22

AEZ — Land Area Available per Location, Division, and per Household and Person 24

Agricultural Statistics (Area, Production, Yields and Number of Growers of Major Cash Crops) 25

Coffee - Area - Production - Yields 1974/75-1979/80 25

Cotton - Production 1975/76 - 1979/80 25

Small Farm Survey 26

Farm Organisation According to Farm Size Groups 28

Assets, Land Use, Farming Intensity, Inputs 30

Cropping Pattern 32

Herd Composition •. . 34

Inputs and Yields of Major Crops 36

Disposal of Crops 38

Distribution of Farming Activities per Month 39

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 44

127

S. NYANZA 2

N A T U R A L P O T E N T I A L

INTRODUCTION

Formerly the South Nyanza District was named Homa Bay after the District Capital. Population density is about 150 people per sqkm (1981), population pressure is starting in some locations already. The contrasts of the agro-ecological zones range from dry ones with only one cropping season near the lake Victoria to wet ones with permanent cultivation possibilities in the eastern parts. Thus sugar cane cultivation as one of the main development aims becomes marginal westward, although also in the Mar­ginal Sugar Cane Zone there are areas for fair cultivation chances on very suitable soils with a good water holding capacity and without water logging.

The contrasts in rainfall due to the local circulation (see page81) are tremendous: Annual averages between 700 and 1 800 mm, 60 % reliability of first rains 250—1 000 mm, second rains 50—700 mm. First rains start undistinctly in beginning March. Plan­ting may be done earlier although in the northern part the probability of February rains is very low (see Diagram Marinde). The second rains are feeble near the lake. They start in November and are too short for growing crops. Eastward they start earlier (see Diagram Macalder), and „middle rains" around August—September are finally connecting both rainy periods, making a good cropping season.

The Marginal Sugar Cane Zone (LM 2) has a growing period of 180 or more days followed by a second one of 115—130 days. Rainfall reliability during these periods is high, expecting at least 700—950 mm or more in the first period, and at least 400— 650 mm in the following one, in 6 out of 10 years. According to the declining 60 % reliability of seasonal rainfall there are 3 different subzones in the Cotton Zone (see Climate Tables). West of the Cotton Zone there is a Marginal Cotton Zone (LM4). As in the Cotton Zone, also here rainfall declines further to the West, so that 2 subzones exist there: a 135—145 day growing period followed by a 65—75 day period and further to the West a 115—135 day growing period followed by a 55—65 day period. Rainfall reliability during these periods is much lower than in the East of the district, expecting 350—500 mm in the first period, and 150-250 mm in the following one. Still further to the West the 60 % reliability of rainfall is 250-350 mm du­ring 1st rains and 50—150 mm during 2nd rains.

In the East of the district temperatures are about 1.5° C (near the lake even about 3° C) higher than those normally at this altitude. Therefore the cultivation of Arabica coffee starts above 1 400 m. Only the climate is relatively wet so that a lot of diseases occur. Due to the fact that the soils are also inadequate, the Coffee Zone tends to be marginal (UM 2—3) or even may be classified as a Coffee to Maize-Sunflower Zone (UM 3-4).

Relative humidity is high. Evaporation is about 2 000—2 200 mm per year, which is high too because of local winds.

128

s

SOUTH NYANZA DISTRICT

TABLE 1 : RAINFALL FIGURES FROM VARIOUS STATIONS

having at least 10 years of records up to 1976

No. and

altidude Name of Station

Years

of rec.

Kind of

rec.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Monthly rainfall in mm

May June July Aug. Sept. Oct. Nov. Dec.

9034005 Kamagambo 36 Average 1 600 57 101 148 236 206 123 82 113 128 126 165 115

1523 m 60% prob.1 1 350 46 64 131 197 124 85 56 75 105 109 135 90

9034006 Asumbi 37 Average 1 629 58 106 161 217 214 96 74 118 147 141 183 114

1422 m 60% 1460 50 55 145 198 186 80 50 100 102 126 138 89

9034041 Marinde 30 Average 1 776 59 56 149 288 266 117 77 124 140 191 172 137

1 370 m 60% 1481 24 31 100 235 229 82 52 64 139 130 94 67

9034045 Kosele 29 Average 1 133 43 68 112 192 181 81 58 . 88 94 71 62 84

1 370 m 60% 1 020 14 74 99 160 121 42 53 65 62 70 50 39

9034047 Uriri 24 Average 1 367 66 73 192 217 179 90 52 81 97 127 141 111

1493 m 60% 1 228 40 62 131 214 111 71 25 56 77 99 120 74

9034049 Mbeta Agr. Holding 23 Average 931 28 57 113 167 123 53 39 43 35 68 112 94

1 309 m 60% 841 10 50 69 142 102 32 24 42 22 41 56 33

9034059 Macalder-Nyanza 14 Average 1 116 39 92 122 201 142 64 37 42 56 89 148 84

1 218m Mines .60% 1 000 21 51 98 165 123 50 31 35 43 63 109 67

9034063 Lambwe Valley 23 Average 1 327 59 65 141 238 185 69 67 61 101 129 143 71

1 218 m 60% 1 201 34 50 116 179 140 50 51 38 62 108 102 50

9034073 Chief's Camp 17 Average 1 653 37 89 163 277 187 85 43 80 152 197 243 100

1 309 m 60% 1 223 5 19 79 187 126 54 23 57 76 98 169 61

9134009 Hydromet. Station 22 Average 813 48 59 104 142 121 47 20 28 22 56 92 74

1 218 m 60% 709 24 33 90 128 92 39 13 17 15 47 61 53

9134010 Migori, Agr. Office 28 Average 1 371 55 87 122 245 195 89 35 59 93 125 148 119

1 370 m 60% 1 228 40 64 85 169 132 60 17 61 93 91 109 89

9134012 Tarananya School 12 Average 1 414 78 92 188 187 181 88 43 64 97 116 143 138

1 523 m

These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

SOUTH NYANZA DISTRICT

TABLE 2: TEMPERATURE DATA

No. and Name of ,<, AEZ '

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May J un. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y.of

rec.

9034059 Macakler Nyarca LM

1218 m Mines 3

9034084 HomaBay.D.C. LM

1 218m 3

Mean max. 30.0 30.3 30.2 29.4 29.1 29.3 29.0 29.1 29.7 30.0 30.0 29.3 29.6

Mean temp. 23.5 24.0 23.9 23.4 23.2 23.1 22.1 22.7 23.0 23.2 23.2 22.9 23.2

Mean min. 16.9 17.6 17.6 17.3 17.2 16.8 16.1 16.2 16.3 16.4 16.4 16.5 16.8

Absol. min. 11.7 12.8 13.9 13.9 12.2 12.8 12.2 11.1 13.3 9.4 12.8 12.8 9.4

Mean max. 34.7 34.8 34.6 33.1 33.2 32.8 32.4 33.4 33.7 32.9 (33.2) (33.9) 33.6

Mean temp. 26.3 26.4 26.4 25.5 25.2 25.2 25.1 26.0 25.7 26.0 25.4 25.7 25.8 4

Mean min. 17.9 18.0 18.2 17.9 17.1 17.5 17.8 18.6 17.6 19.1 17.6 17.5 17.9

Absol. min. 10.0 13.9 12.2 15.6 11.1 15.6 15.6 13.9 14.4 15.6 11.1 15.6 10.0

AEZ = Agro-ecological zone

129

S. NYANZA4

SOUTH NYANZA DISTRICT

TABLE 3: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological Subzone Altitude Annual mean Annual av. 60 % reliability 60 % reliability

Zone in m temperature rainfall of rainfall *' of growing period

in°C in mm 1st rains 2nd rains 1st rains2) 2nd rains Total3)

in mm in mm in days in days in days

UM 1

Coffee-Tea Zone ? o r

l ~ m 1 500-1 6004> 20.5°-19.9° 1 600-1 800 850-1 000 500-700 215 or more about 150 365

UM 2 - 3 vli or two 190 or more 120-140 310-330

Coffee Zone vli or 1 4 5 0 - 1 700 21.1°-19.3° 1 400-1 600 800-900 450-500 Coffee Zone vli or 1 4 5 0 - 1 700 21.1°-19.3° 1 400-1 600 800-900 450-500

l/m — (m)i 180 or more 115-130 295-310

UM 3

(Marginal Coffee Steep slopes, unsuitable for cu Itivation

Zone)

UM 3 -4 vli or two 1 200-1 400 800-850 450-500 170 or more 110-120 280-290

Coffee to Sun­

flower-Maize Z.

1 4 5 0 - 1 700 20.5°-19.3° Coffee to Sun­

flower-Maize Z. mi(s)

1 4 5 0 - 1 700 20.5°-19.3°

> 1 4 0 0 600-700 300-400 135-155 85-105 220-260

UM 4

Sunflower Maize Very s mall, i inimportant

Zone

LM 1 p or 1 -. m/1 200 or more about 165 365

L. Midland 1 300-1 500 21.7°-20.5° 1 600-1 800 900-1 000 500-700 L. Midland 1 300-1 500 21.7°-20.5° 1 600-1 800 900-1 000 500-700

Sugar Cane Zone r-i m i 190 or more 140-165 330-355

LM 2 l / m ~

Marginal Sugar (m/s)i or 1 300-1 500 21.7°-20.5° 1 300-1 700 700-950 400-650 180 or more 115-140 295-320

Cane Zone (m)i

LM 3

L. Midland

Cotton Zone

l/m -* (s/m)

m/1 i (s)

mi (s/vs)

1 140-1450 22.7°-20.8°

1 000-1 500 600-900 350-450 175 or more 105-115 280-290 LM 3

L. Midland

Cotton Zone

l/m -* (s/m)

m/1 i (s)

mi (s/vs)

1 140-1450 22.7°-20.8° 1 000-1 400 500-800 230-400 155-175 85-105 240-280

LM 3

L. Midland

Cotton Zone

l/m -* (s/m)

m/1 i (s)

mi (s/vs)

1 140-1450 22.7°-20.8°

900-1 200 430-700 200-350 145-155 7 5 r 85 220-240

LM 4 (m)i (vs/s) 900-1 300 400-500 150-250 135-145 6 5 - 75 200-220

Marginal Cotton 1 140-1 350 22.7°-21.4° Marginal Cotton 1 140-1 350 22.7°-21.4°

Zone (m/s)i (vs) 800-1 000 350-450 150-200 115-135 4 5 - 65 170-200

LM5 (s/m)+i 7 5 0 - 900 300-360 80-150 105-115 < 4 5

1 135-1 300 22.7°-21.7°

Livestock- (s)+i 700- 800 250-300 50-100 85-105 < 4 5

Millet Zone

) Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants.

' More if growing cycle of cultivated plants continues into the period of second rains

3> Only added if rainfall continues at least for survival (> 0.2 EQ) of most long term crops

'*) In 1980 the economic altitudinal limit between coffee and tea was about 1 700 m (± 100 m).

Therefore the district was out of competitive tea cultivation.

130

60% RELIABILITY OF RAINFALL IN AGROHUMID PERIOD

OF FIRST RAINS + SOILS (end Feb mid Aug or less)

Amounts in mm, surpassed norm, in 6 out of 10 years

^ X 800 > r ^ * ' \ yy^ 600/790',

H1 ^ 1

?5 Km

Mm ol A 'i

34 E 341" E

SOUTH NYANZA (HOMA BAY)

60% RELIABILITY OF RAINFALL IN AGROHUMID PERIOD

OF SECOND RAINS + SOILS (end Febr. - beg Aug.or less)

Amounts in mm. surpassed norm, in 6 out of 10 years

Broken boundaries are ura because ot lack ol rainfall records

Min of Agr. German Agr Team, R Jaetzold Soils KSS

SOUTH NYANZA (HOMA BAY) / "

\ LM 4

/'

RUSINGA ISl

MFANGANO ISL

LM 5 ; (s/m)*i

/ /

/ /'

/ ' ;';v LM 3 \ : "m I

/

S . I ^ ^ — HOMA

\ J A BAY

\ \<IIILLS-' • - — . ff X \ V ' V*\ -^ ; '

/ • • • /

LM3 i LM4

S<<m/li(s) ,

KARUNGU BAY

\ \ L / M r r Oane \\P °'

' * Minore/ /

^ « 7 / /mi(slvs)

Belt of A. E. Zones

A. E. Zones

Subzones

NORTH-EAST PART

4G/?0-EC0L0G/C>U ZONES + SOILS

Forest Reserve, Came Reserve (Nat. Park)

| Steep slopes, unsuitable for cultivation 2d (only marked outside

Nat. Parks or Forest Res.)

• — — — Broken zonal boundaries are uncertain or mean transitional strips

Climatic data tor AEZ formulas see table I and H

Mm ol Agr. German Agr Team AEZ R Jaizold H1

AGRO-ECOLOGICAL ZONES

UM = UPPER MIDLAND ZONES

UM 1 = Coffee-Tea Zone

UM 1 = Coffee-Tea Zone with permanent cropping possibilities, p or dividable in a long cropping season followed by a medium one l^m

Very small, potential see Kisii District

UM2 = Coffee Zone1)

UM 2 = Coffee Zone with a very long cropping season and intermediate rains, vi i or dividable in a long to medium cropping season l/m ^m i followed by a medium one and i.r.

G o o d y i e l d p o t e n t i a l (av. 60—80 % of the optimum) 1st rains, start norm. e.F.: Maize H 612-14 (higher places), H 622 & 633 (e.F. - b.S.) or H 511-513 (e.F. -

e. Au.), (lower places), finger millet; m. mat. beans (lower places)2);sweet potatoes; late mat. sunflower like Kenya White (Apr. — S.), m. mat. soya beans, onions, spinach, tomatoes, cabbages and kales

2nd rains, start norm. b. Aug.: E. mat. beans ('v 60 %, S. - D.), onions (on light soils) Whole year: Bananas (in valleys), Macadamia nuts, passion fruit , avocadoes, perennial castor like C—15, moun­

tain pawpaws, guavas

F a i r y i e l d p o t e n t i a l (av. 40—60 % of the optimum) 1st rains: Pigeon peas (to 2nd r.) 2nd rains: Maize H 511-513 (50-60 %), 622 & 632 (^ 50 %); sweet potatoes; cabbages, kales, tomatoes Whole year: Arabica Coffee U, Bananas (outside valleys), Virginia tobacco, citrus, taro (in valleys), yams, pine­

apples (on pediments)

P a s t u r e a n d f o r a g e 0.6—1.1 ha/LU on sec. pasture of high grass savanna; around 0.5 ha/LU on art. pasture of Rhodes grass; down to about 0.15 ha/LU feeding Napier or Bana grass and Silver leaf (Desmodium uncinatum, best fodder legume for rotation)

UM 3 = M a rg i n a I Coffee Zone, here (Coffee-) Maize Zone D

UM 3 = Marginal Coffee Zone with a very long cropping season vi i and intermediate rains, or two dividable in two variable cropping seasons and i.r.

G o o d y i e l d p o t e n t i a l 1st rains, start norm, begin of March: Maize H 612-614 (higher places), H 511—513, 622, 632 (lower places),

finger millet, high alt. sorghum; m. mat. beans-), sweet potatoes; m. mat. sunflower like HS 301 A, late mat. sfl. like Kenya White ( ^ 60 %), soya beans; cabbages, kales, onions (on light soils), tomatoes, spinach

2nd rains, start norm. Au./S.: V.e. mat. beans (^ 60 %); onions ('v 60 % on light soils) Whole year: Macadamia nuts, mountain pawpaws, sisal, black wattle (higher places), castor

F a i r y i e l d p o t e n t i a l 1st rains: Chick peas (on heavy black soils); potatoes (higher places) 2nd rains: Finger millet; potatoes (higher places), sweet pot.; tomatoes Whole year: Bananas (on deep soils), avocadoes, citrus^-*, pineapples (lower places)

P o o r y i e l d p o t e n t i a l (av. 20-40 % of the optimum) Whole year: Arabica coffee, pyrethrum (higher places)

1) Unimodal rainfall distribution and poor soils are not very suitable for coffee although it is wet enough, sometimes even too wet (leaf rust)

135

S. NYANZA 10

P a s t u r e a n d f o r a g e 1 — 1.2 ha/LU on sec. pasture, around 0.6 ha/LU on art. pasture of Rhodes grass; down to 0.25 ha/LU feeding Bana and Napier grass and planting Silverleaf (Desmodium uncinatum) or Siratro (Macroptilium atropurpureum) as fodder legumes

UM 4 = Sunflower-Maize Zone

UM 4 = Sunflower-Maize Zone with a medium cropping season, mi(s) intermediate rains, and a (weak) short cropping season

G o o d y i e l d p o t e n t i a l 1st rains, start norm. F./Mch.: M. mat. maize like H 512—514, 622, 633 (y 60 %), m. mat. high alt. sorghum,

finger millet ('v 60 %); beans, chick peas (on heavy black soils, 'v 60 %); sweet potatoes; m. mat. sunflower, m. mat. soya beans (A/ 60 %); onions (y 60 %, on light soils)

Whole year: Sisal, castor

F a i r y i e l d p o t e n t i a l 1st rains: Potatoes (higher places); tomatoes, cabbages, kales, spinach 2nd rains; start norm. Nov.: E. mat. sorghum, finger millet ("v 40 %); v.e. and e. mat. beans, chick peas (on

heavy black soils); kales Whole year: Pineapples, mountain pawpaws (y 40 %), Macadamia nuts

P a s t u r e a n d f o r a g e 1 — 1.5 ha/LU on mixed savanna pasture, around 1 ha on vlei soils; down to about 0.3 ha/LU feeding Bana grass and planting horse tamarind (Leucaena leucocephala) and saltbush (Atriplex nummularia) as best suitable fod­der shrubs on free draining soils, Siratro and moth bean vines as fodder legumes

LM = LOWER MIDLAND ZONES

LM 1 = L o w e r Midland Sugar Cane Zone

LM 1 = Lower Midland Sugar Cane Zone with permanent cropping possibilities, p or dividable in a long cropping season I <-\ m/l followed by a medium to long one

V e r y g o o d y i e l d p o t e n t i a l (av. > 80 % of the optimum) 1st rains, start norm, e.of F.: Late mat. sorghum; m. mat. sunflower like Hybrid S 301 A, late mat soya beans Whole year, best planting b. March: Pawpaws, yam beans, guavas

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622 and 632 (60—70 %), finger millet; late mat. beans-); yellow yams (end F.—b.N.), sweet

potatoes, sweet pepper, kales, Chinese cabbage, spinach, cabbage, chillies, egg plants (to 2nd r.) pumpkins 2nd rains, start undistinctly around Aug.: Maize H 622 and 632 (y 60 %, Aug.—e.Jan.), H 511 (b.S.—e.Jan.),

finger millet, m. mat. sorghum;beans^);sweet potatoes;m.mat. soya beans, m. mat. sunflower like H S 301 A; cabbage, kales, Chinese cabbage, spinach, onions

Whole year: Sugar cane, bananas (nematodes danger), Robusta coffee (y 60 %), cassava (on sandy soils), pigeon peas, avocadoes, tea (upper places, nearly 80 % but medium to low quality)

F a i r y i e l d p o t e n t i a l 2nd rains: Late mat. groundnuts and late mat. bambarra groundnuts (both in light soils), cowpeas Whole year: Taro, mangoes^), citrus^)

P a s t u r e a n d f o r a g e Around 0.5 ha/LU on secondary pasture where originally there has been a moist submontane forest; down to 0.13 ha/LU feeding Napier and Bana grass, banana leaves and fodder legumes

' Sometimes rotting because of too wet conditions •>) With add. irr. (D. - F.) well growing

136

S. NYAN2A 11

LM 1 = Lower Midland Sugar Cane Zone with a long cropping season I/-^m i followed by a medium one and intermediate rains

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, mid F.: M. mat. sorghum; sweet potatoes; m. mat. sunflower like H S 301 A, m. mat. soya

beans Whole year, best planting time b. March: Pawpaws, yam beans, guavas

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622 and 632 (60-70 %); late mat. beans, pigeon peas (March-F.); yellow yams (F.-O./N.);

sweet pepper, kales, Chinese cabbage, spinach, cabbage, chillies, egg plants (to 2nd r.), pumpkins 2nd rains, start norm. e. of Aug.: Maize H 511, m. mat. sorghum; beans (% 60 %),cowpeas; sweet potatoes; m.

mat. soya beans, e. mat. sunflower like 252; kales, Chinese cabbage, spinach, onions Whole year: Sugar cane, bananas (nematodes danger), cassava, tea in upper places (70-80 %, but medium to

low quality), Robusta coffee ('v 60 %)'), avocadoes

F a i r y i e l d p o t e n t i a l 2nd rains: Maize H 622, 632, finger millet; late mat. groundnuts and late mat. bambarra groundnuts (both in

light soils); cabbage Whole year: Mangoes^), taro, citrus v

P a s t u r e a n d f o r a g e Around 0.6 ha/LU on sec. pasture (where orig. there has been a moist submontane forest); down to 0.14 ha/LU feeding Napier and Bana grass, banana leaves & stems and fodder legumes

4) Danger of fungus diseases

100-

50

• I

LM2 l /m- (m) i

Nr: 9034041 Marinde, Tr.Centre

0"39 S 34°31E 1350m 30y. up lo 1976

-L

100

50

F M M J J O N 570"

D

i— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx pot évapotranspiration of a permanent crop (bananas)

Approx pot. évapotranspiration of m. mat maize like H 511

Approx pot évapotranspiration of m. mat maize like H62?

Approx. pot évapotranspiration of m. mat. sorghum

' 815 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

137

S. NYANZA 12

LM 2 = Marginal Sugar Cane Zone

LM 2 = Marginal Sugar Cane Zone with a long cropping season l/m ^-i (m) i followed by a (weak) medium or medium to short one or (m/s) i and intermediate rains

(see Diagram Marinde)

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, e, of Febr.: M. mat. sorghum, e. mat. bulrush millet (awned var.);sweet potatoes;m. mat.

soya beans, e. mat. sunflower like 252; sweet pepper, chillies, pumpkins

G o o d y i e l d p o t e n t i a l 1st rains: M. mat. maize like H 511-513 (60-70%) and H 622 ("v 60 %), late mat. sorghum, finger millet; beans,

pigeon peas; late mat. groundnuts (rosette resistant); late mat. soya beans, m. mat. sunflower like H S 301 A; tomatoes, onions, roselle

2nd rains, start norm. e.ofAug.: Green grams (up to 1 250 m);e. mat. sunflower (y 60 %) Whole year, best pi. time e.of F.: Cassava, pawpaws (70—80 %), bananas ('v 60 %) on deep soils, yam beans,

sisal, guavas

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 1st rains: Rice in mbugas; cowpeas; tobacco (on sandy soils), cotton (50—60 %, low quality, danger of rain in

open bolls); cabbages, kales, egg plants (to 2nd r.) 2nd rains: M. mat. sorghum, m. mat. maize (40—50 %), bulrush millet (awned var.); beans (higher places), cow-

peas (lower places), bambarra groundnuts (in light soils); sweet potatoes ('v 40 %); cotton (Jy.—F., relay planted in maize of first rains)

Whole year: Sugar cane, pineapples, sisal, citrus (low quality), mangoes'*-'

P a s t u r e a n d f o r a g e 0.6—1.0 ha/LU on sec. high grass savanna with Zebra grass (Hyparrhenia rufa) and Guinea grass (Panicum max.) down to about 0.15 ha/LU feeding Napier and Bana grass, Banana leaves & stems and fodder legumes

LM 3 = Lower M id land Cotton Zone

LM 3 = Lower Midland Cotton Zone l/m /-v with a long to medium cropping season, (s/m) followed by a (weak) short to medium one

G o o d y i e l d p o t e n t i a l 1st rain, start norm. F./March: M. mat. maize H 511—513 and 622 (^60%), late mat. sorghum, finger millet;

late mat. groundnuts, m. mat. beans like Cuarentino, m. mat. cowpeas; sweet potatoes; cotton, m. mat. soya beans, m. mat. sunflower like H S 301 A, tomatoes, onions

2nd rains, start norm. Sept.: E. mat. bulrush millet; e. mat. beans, green grams; simsim Whole year, best planting time March: Cassava (% 60 %), sisal, Mexican yam beans

F a i r y i e l d p o t e n t i a l 1st rains: Pigeon peas (March—F.); tobacco 2nd rains: Maize H 511 (y 40 %), e. mat. sorghum (50—60 %); tepary beans, v. e. mat. beans like mwezi moja

(y 40 %); sweet potatoes; m. mat. soya beans, e. mat. bambarra groundnuts (in light soils); dwarf sunflower Whole year: Bananas, pawpaws, mangoes, citrus

P a s t u r e a n d f o r a g e 0.7—1.1 ha/LU on mixed savanna, down to 0.18 LU/ha feeding Bana or Napier grass and fodder legumes like Townsville lucerne (Stylosanthes humilis) and Centro (Centrosema pubescens)

LM 3 = Lower Midland Cotton Zone with a medium to long cropping season, m /I i (s) intermediate rains, and a (weak) short one

G o o d y i e l d p o t e n t i a l 1st rains, start norm. b. of March: E. mat. maize like Taboran or Katumani (60—70 %), m. mat. sorghum (70—

80 %), e. mat. millets (70-80 %); m. mat. beans, green grams^), cowpeas; groundnuts and bambarra gr. (both in light soils), simsim^); sweet pot.; cotton (y 60 %), m. mat. soya beans, m. mat. sunflower like Vympel or H S 301 A; tomatoes, onion; chick peas (on heavy black soils); dwarf castor")

2nd rains, start norm. Sept.: Ratoon of sorghum; simsim, green grams; sweet potatoes in swampy places Whole year, best pi. time March: Cassava ('v 60 %), sisal, Mexican yam beans Near swamps with water regulation resp. additional irrigation: Rice, bananas (on dams), Chinese cabbage (on

ridges) and other vegetables

138

S. NYANZA 13

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 511-513 (50-60 %)7), H 622, finger millet (50-60 %); pigeon peas (March-F.); tobacco

(higher places); 2nd rains: Early mat. proso or foxtail millet (O.-N., 50-60 %), dwarf sorghum (40-50 %), e. mat. bulrush

millet (bird rejecting awned var. best);mwezi moja beans, e. mat. bambarra groundnuts (in light soils); dwarf sunflower

Whole year: Pawpaws, mangoes, citrus ('v- 40 %)

P o o r y i e l d p o t e n t i a l 2nd rains: E. mat. maize

P a s t u r e a n d f o r a g e 0.7-1.1 ha/LU on mixed savanna with star grass (Cynodon dactylon); down to about 0.2 ha/LU feeding Bana and Napier grass and planting legumes like Stylosanthes or Centro for pasture and soil improvement

LM 3 = Lower Midland Cotton Zone with a medium cropping season, m i intermediate rains, and a (weak) short to very short one (s/vs) (see Diagram Macalder Ny. M.)

G o o d y i e l d p o t e n t i a l 1st rains like LM 3 m/1 — (s) less 5-10 % (cotton then fair, sunflower Hybrid S 345 better than H S 301 A 2nd rains like LM 3 m/1 - (s) less 10 % Whole year: Sisal

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 511 -513, finger millet; cotton, pigeon peas (March-F.) 2nd rains, start norm. S./Oct.: E. mat. proso or other minor millet, dwarf sorghum (^ 40 %); green grams, sim-

sim; sweet pot. near water Whole year: Cassava

P a s t u r e a n d f o r a g e 0.9-1.2 ha/LU, down to 0.25 ha/LU feeding Bana grass and Stylosanthes

5 ) Planting towards the end of the first rains 6 ) Good for rotation because of its resistance againstStriga 7 ) Yield in kg/ha is higher than that of Katumani

ion -

so

LM 3 m i (s/vs) - LM4 (m) i (vs/s)

Nr.: 9034059 Macalder-Nyanza Mines Ltd.

0''58 S 34" 18'E 1200m 15y. up to 1968

.••••;ry

, r~

I I , I , 1,1 U L J

mo

50

M A - 4 5 4

M J ' O N

271 1— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

-— Approx pol évapotranspiration of a permanent crop (bananas)

— Approx pot évapotranspiration of e. mat. maize like Katumani

•••• Approx pot évapotranspiration of dwar! sorghum

— Approx pot évapotranspiration ol earlymat. mil lets

- 4 5 4 - Rainfall per indicated growing period, surpassed in 6 out of 10 years

139

4

LM 4 = Marginal Cotton Zone

LM 4 = Marginal Cotton Zone with a (weak) medium cropping season, (m) i intermediate rains, and a (weak) very short to short one (vs/s)

(see Diagram Macalder Ny. M.)

G o o d y i e l d p o t e n t i a l 1st rains, start norm. March: M. mat. sorghum (60-70 %) and bulrush millet (y 60 %), e. mat. sorghum (70-

80%) and millets (y 70 %);tepary beans, green grams, m. mat. cowpeas(60—70%), chick peas (on heavy soils); e. mat. sunflower like 252 (60-70 %)

Whole year: Chinese cabbage and other vegetables near swamps; sisal

F a i r y i e l d p o t e n t i a l 1st rains: M. mat. maize like H 511 (40— 50%);m.mat.beans,pigeonpeas(to 2ndr.);sweetpot.;m.mat.ground­

nuts (50—60 %), simsim (50—60 %); cotton on very suitable heavy soils; rice in seasonal flooded and irrigable areas

2nd rains, start norm. O.: E. mat. proso or foxtail millet; tepary beans; sweet potatoes (near water) Whole year: Bananas on dams in swampy areas

P o o r y i e l d p o t e n t i a l 1st rains (to 2nd r.): Cotton on less suitable light soils 2nd rains: E. mat. bulrush millet; green grams, cowpeas for leaves, chick peas

P a s t u r e a n d f o r a g e 1.3—2.0 ha/LU; down to 0.3 ha/LU feeding Bana grass, siratro, moth bean vines, centra, and horse tamarind (Leucaena leucocephala)

LM 4 = Marginal Cotton Zone (m/s) i with a (weak) medium to short cropping season, (vs) intermediate rains, and a (weak) very short one

The same like LM 4 (m) i (vs/s) less about 10 % of yield expectations; stocking rates about 20 % lower

LM 5 = Lower Midland Livestock-Millet Zone

LM 5 = Lower Midland Livestock-Millet Zone (s/m) + i with a (weak) short to medium cropping season and intermediate rains

G o o d y i e l d p o t e n t i a l 1st rains, start e. March: E. mat. sorghum (60—70 %), e. mat. bulrush millet (awned variety, ^ 60%),e. mat.

proso or foxtail millet; tepary beans, green grams, chickpeas (on h. bl. soils); e. mat. soya beans (60—70 %), v. e. mat. sunflower like Russian dwarf

Whole year: Jojoba, buffalo gourds and Marama beans (on sandy soils)

F a i r y i e l d p o t e n t i a l 1st rains: M. mat. sorghum; cowpeas (50—60 %), pigeon peas (40—50 %), groundnuts; sweet potatoes; e. mat.

sunflower like Issanka, m. mat. soya beans; tomatoes, onions (on light soils) Whole year: Cassava (on sandy soils)

P o o r y i e l d p o t e n t i a l 1st rains: Maize H 511 (end Mch.—Au.), Katumani maize (end Mch.—July, 30—40 %)

P a s t u r e a n d f o r a g e 2.5—4 ha/LU; for dry season browsing Mesquite (Prosopis chilensis) and saltbush (Atriplex nummularia) to be planted on red loams, gao tree (Acacia albida) on black clays, then down to 1.5 ha/LU

S. NYANZA 15

LM 5 = Lower Midland Livestock-Millet Zone (s) + i with a (weak) short cropping season and intermediate rains

G o o d y i e l d p o t e n t i a l 1st rains, start e. March: E. mat. sorghum {y 60 | , e . mat. prosoor foxtail millet;v.e.mat. tepary beans(60—70%),

green grams ( ^ 60 %), chick peas (on h. bl. soils); v. e. mat. sunflower (60 70 ' • ) Whole year: Jojoba, buffalo gourds and Marama beans (on sandy soils); vegetables on lakeshore with add. irri­

gation

F a i r y i e l d p o t e n t i a l 1st rains: M. mat. sorghum, e. mat. bulrush millet (50 60 %); e. mat. cowpeas like Katuli; sweet pot. (on valley

doors); e. mat. soya beans, e. mat. suullower (40 50 ! ) Whole year: Cassava (on sandy soils, 40—50%)

P o o r y i e l d p o t e n t i a l 1st rains: Taboran maize (30 407')

P a s t u r e a n d f o r a g e More than 4 ha/LU in uplands, less in floodplains; trees and shrubs for browsing see LM 5(s/m) + i

Sol III NYANZA DISTRICT

TABLE 4: RISK OF TOTAL CROP FAILURE IN THE LIVESTOCK MILLET ZONE LM 5 (s)+i Calculated foa No 9i 14.009, Hydromel. Station ai Lake Victoria

l he figures mean number of seasons « nli no yield oui of 100

Crop I Lrst Rains Second Rains

variety Plain population derasil y Plant population density 100' 50 Mill 507r'

I lghl soils Medium soils Heavy soils i s \IS IIS 1 s MS IIS 1 S MS IIS

I arlj maturing maize 1100 di.)

33 33 30 30 I7 13 47 47 47 43 43 43

Early mal uring mille! (75 J.)

7 4 4 4 i 2 47 47 47 4>» 4l) 44

The risk for mai/e is too high, because the first rains allow only a weak short growing period, Ihereloiv it is a millet /one (hulrush ami proso

millet). Dwarf sorghum will also he fairly reliable I or maize the reliabilit) improves remarkably with hall" population density on medium and

heavy soils. In the second rains each erop IS verj risk y. I he re to re they are only called intermediate rains.

141

34ulE 34-30 E

SOUTH NYANZA (HOMA BAY)

SOILS

GENERAL FERTILITY GROUPS (according to soil list) subject to local differences

high

moderate to high

moderate

• moderate to low . very low

low 5 S ^ 3 l variable

low to very low

^4- L

20 25 krT1

-Soils KSS

S. NYANZA 17

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

The topography of this district is varied, ranging from uplands of various levels to plains and alluvial valleys in the central and western part. Steep topography is found along the shores of Lake Victoria, as the Gwasi and Gembe Hills and various other mountains (viz Mt. Homa). The majority of the district is underlain by relatively „acid" parent rock and only small areas with basaltic rock types occur.

Mountain soils (M) have little profile development, arid vary greatly in texture. They often occur together with rock outcrops and stones (units 7 M, 8 M).

Hill soils of unit 14 H are similar, but topography is more subdued. On some of the hills soils of varying depth and stoniness (20 H) are found.

On the associated footslopes sous have moderate fertility (87 F). On similar topography soils of sandier texture (98 F) occur. The sloping piedmont plains (106 Y) carry soils similar to those of unit 87 F.

On the uplands, a variety of soils occur. Soils of units 169 U, 171 U, 180 U are found in large areas. They have a deep topsoil rich in organic matter. Some of these soils may be shallow (180 U) or also moderately deep (189 U). They occur additionally with soils of unit 176 U. The latter has moderately high natural fertility.

Less suitable soils of unit 150 U are extensive in the southern part. On the eastern and southern district boundary soils of units 142 U, 152 U occur. Unit 142 U has moderately high natural fertility, 152 a lower one. In the southern and northern part of the district, there are soils of low fertility (179 U). In some cases these soils are moderately deep.

SOILS ON MOUNTAINS AND MAJOR SCARPS

Soils developed on olivine basalts and ashes of major older volcanoes 7 M = well drained, shallow to moderately deep, dark reddish brown to dark brown,.rocky and bouldery, clay loam to clay; in places

x, m-h 1 ' wi th humic topsoil (nito-chromic CAMBISOLS; wi th haplic PHAEOZEMS, l ithic phase, LITHOSOLS, eutric REGOSOLS and

Rock Outcrops)

8 M = well drained, shallow, dark brown, f i rm, rocky and stony, clay loam

x,m (eutric REGOSOLS; with Rock Outcrops)

SOILS ON HILLS AND MINOR SCARPS

Soils developed on undifferentiated Tertiary volcanic rocks (olivine basalts, rhyolites, andesites) 14 H = complex of well drained to moderately well drained, shallow to moderately deep, dark brown, f i rm, stony, clay loam to clay;

x, m-h in places wi th humic topsoil (eutric REGOSOLS; wi th verto-luvic PHAEOZEMS, partly l i thic phase)

Soils developed on basic igneous rocks (serpentinites, basalts, nepheline phonolites; older basic tuffs included) 20 H = somewhat excessively drained, shallow to moderately deep, dark reddish brown, friable, gravelly clay, wi th acid humic topsoil

x, h (humic CAMBISOLS, partly paralithic phase)

Soils developed on granites 23 H = complex of somewhat excessively drained, shallow, stony and rocky soils of varying colour, consistence and texture (dystric

x, v REGOSOLS; wi th ferralic CAMBISOLS, lithic phase and Rock Outcrops)

Soils developed on quartzites 24 H = somewhat excessively drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places wi th acid

x, m humic topsoil (RANKERS; wi th LITHOSOLS and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses 27 H = complex of excessively drained to well drained, shallow, dark red to brown, friable, sandy clay loam to clay; in many places

x, m-h rocky, bouldery and stony and in places with acid humic topsoil (dystric REGOSOLS; wi th LITHOSOLS, humic CAMBISOLS

lithic phase and Rock Outcrops)

SOILS ON FOOTSLOPES

Soils developed on colluvium from various volcanic rocks (mainly basalts) 87 F = complex of well drained to moderately well drained, deep, reddish brown to very dark greyish brown, f i rm , sandy clay loam to

m-h clay; partly wi th humic topsoil and/or cracking; often moderately calcareous (LUVISOLS, undifferentiated, luvic PHAEOZEMS

and chromic VERTISOLS)

Soils developed on colluvium from undifferentiated Basement System rocks 98 F = complex of well drained, deep to very deep, dark reddish brown to dark yellowish brown soils of varying consistence and tex-

v ture, in places gravelly and stratified (ferralic ARENOSOLS; with ferralo-chromic, orthic LUVISOLS)

143

S. NYANZA 18

SOILS ON PIEDMONT PLAINS

Soils developed on alluvium from Tertiary/Quaternary volcanic rocks (mainly basalts) 106 Y = well drained, deep to very deep, dark brown, f i rm clay; in places cracking and/or calcareous and sodic (vertic LUVISOLS;

h wi th calcic LUVISOLS, sodic phase and chromic VERTISOLS, sodic phase)

Soils developed on alluvium from volcanic ashes and other pyroclastic rocks of recent volcanoes 114 Y = imperfectly drained, very deep, very dark grey to black, very f i rm, cracking, gravely clay t o clay, wi th calcareous deeper subsoil;

x, h in places gravelly (verto-eutric PLANOSOLS)

116 Y = complex of moderately well drained to poorly drained, very deep, dark brown to dark grey, f i rm to very f i rm, sandy clay to

h clay, in places stratified, sodic and/or cracking (PLANOSOLS, GLEYSOLS, SOLONETZ, VERTISOLS and FLUVISOLS)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 142 U = well drained, deep to extremely deep, dark red, friable clay, with thick humic topsoil (mollic NITOSOLS; with nito-luvic

h PHAEOZEMS)

Soils developed on intermediate igneous rocks (andesites, etc.) 146 U = well drained, shallow to moderately deep, reddish brown to yellowish red, friable, gravelly sandy clay loam to clay loam, over

x, m soft rock (ferralic CAMBISOLS, paralithic phase)

Soils developed on acid igneous rocks (rhyolites, etc.) 147 U = well drained, deep to extremely deep, reddish brown, friable clay, wi th humic topsoil (chromo-luvic PHAEOZEMS; with mollic

h NITOSOLS)

148 U = well drained, moderately deep to deep, reddish brown to brown, friable, gravelly clay loam to clay; in many places wi th a humic

x, m-h topsoil (chromo-luvic PHAEOZEMS and orthic LUVISOLS)

Soils developed on granites 150 U = imperfectly drained, moderately deep, brown to dark yellowish brown, mott led, friable, gravelly sandy clay loam, in places

x, m rocky and shallow (gleyic ACRISOLS, partly paralithic and rocky phase)

Soils developed on biotite/hornblende granites 152 U = well drained, very deep, reddish brown to red, friable clay, wi th thick acid humic topsoil (nito-humic

h FERRALSOLS)

153 U = well drained, moderately deep to deep, yellowish red to red, friable to f i rm, clay, partly wi th acid humic topsoil ; in places

x, h shallow and rocky (humic to chromic ACRISOLS; with LITHOSOLS and Rock Outcrops)

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 169 U = moderately well drained, shallow to moderately deep, dark brown,

h f i rm clay (verto-luvic PHAEOZEMS, lithic phase)

171 U = well drained, moderately deep, red, f i rm clay, with humic topsoil; with inclusions of imperfectly drained, deep, dark grey,

h mott led, very f i rm clay (chromo-luvic PHAEOZEMS; wi th gleyic LUVISOLS)

Soils developed on acid igneous rocks 175 U = well drained to moderately well drained, moderately deep to deep, reddish brown to dark grey, friable clay, wi th humic topsoil

h (gleyic and haplic PHAEOZEMS)

176 U = complex of predominantly well drained, moderately deep to deep, reddish brown to brown, friable, gravelly clay loam to clay,

x, m-h often with a humic topsoil; in many places shallow over petroplinthite (chromo-luvic PHAEOZEMS and orthic and chromic

LUVISOLS; wi th „murram cuirass" soils)

Soils developed on granites 179 U = complex of: — well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petro-

h pl inthite (orthic FERRALSOLS, partly petroferric phase; wi th orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30 %) („murram

cuirass" soils)

180 U = complex of : — well drained, deep, reddish brown, friable, sandy clay loam, with acid humic topsoil (humic ACRISOLS)

m — moderately well drained, shallow, dark reddisch brown soils over petroplinthite (about 20 %) („murram

cuirass" soils)

Soils developed on various rocks (Kavirondian sediments, often mudstones) 189 U = moderately well drained, moderately deep, dark brown to dark greyish brown, friable gravelly clay, over petroplinthite, wi th

x, h humic topsoil ; in places shallow over petroplinthite (haplic PHAEOZEMS, petro-ferric phase; wi th murram cuirass soils (10—40%)).

144

S. NYANZA 19

SOILS ON UPLAND-PLAIN TRANSITIONAL LANDS

Soils developed on basic igneous rocks (basalts, etc.) 211 U = moderately well drained to imperfectly drained, moderately deep to very deep, very dark grey to dark greyish brown, f i rm clay

h (verto-eutric PLANOSOLS and chromic VERTISOLS)

SOILS ON NON-DISSECTED EROSIONAL PLAINS

Soils developed on various rocks (Kavirondian sediments, often mudstones) 243 Pn = imperfectly drained to poorly drained, deep, dark grey, f i rm clay, abruptly underlying a topsoil of friable silt loam; in many

m, h places with a sodic deeper subsoil (eutric and solodic PLANOSOLS)

244 Pn = imperfectly drained, very deep, very dark brown to black, f i rm, moderately sodic clay

h (luvo-orthic SOLONETZ)

245 Pn = complex of : — poorly drained, deep, dark grey, mott led, f i rm clay, abruptly underlying a topsoil of friable silt loam (eutric

m, h PLANOSOLS)

— moderately well drained to imperfectly drained, shallow soils over petroplinthite („murram cuirass" soils)

SOILS ON DISSECTED EROSIONAL PLAINS

Soils developed on undifferentiated Basement System rocks 255 Pd = well drained, shallow, dark red to yellowish red, stony loamy sand to clay (chromic CAMBISOLS, paralithic and stony phase;

x, l-h wi th ferralic ARENOSOLS, lithic phase)

SOILS ON LACUSTRINE PLAINS

Soils developed on sediments from volcanic ashes and other sources 321 PI = imperfectly drained to poorly drained, very deep, dark grey to dark greyish brown, very f i rm, slightly calcareous, non to slightly

h saline but moderately sodic, cracking clay (upper level of Lambwe valley) (chromic VERTISOLS, sodic phase)

322 PI = very poorly drained, very deep, very dark grey, very f i rm, slightly to moderately calcareous, gypsiferous, slightly saline but

h strongly sodic clay, wi th humic topsoil (lower level of Lambwe valleyKmollic SOLONETZ)

Soils developed on sediments from lacustrine mudstones 325 PI = poorly drained, very deep, very dark grey to black, very f i rm, slightly sodic, cracking clay, with calcareous deeper subsoil

h (lower level of Kano plains) (pellic VERTISOLS, sodic phase)

SOILS ON BOTTOMLANDS

Soils developed on infill mainly from undifferentiated Basement System rocks 345 B = complex of imperfectly drained to poorly drained, very deep, very dark grey to brown, mott led, friable to f i rm, sandy clay

m, h to clay, often abruptly underlying a topsoil of friable, sandy clay loam; in places saline and sodic (dystric PLANOSOLS; wi th

pellic VERTISOLS, vertic and humic GLEYSOLS and plinthic ACRISOLS)

SOILS ON FLOODPLAINS

Soils developed on sediments from various sources (recent floodplains) 367 A = poorly drained, deep, dark greyish brown, mott led, f i rm clay, wi th acid humic topsoil

h (humic GLEYSOLS)

368 A = complex of well drained to imperfectly drained, very deep, dark greyish brown to dark reddish brown, stratified soils of vary-

v ing consistence and texture (eutric FLUVISOLS)

SOILS ON SWAMPS

371 S = very poorly drained, very deep, dark grey to black, f i rm clay, with acid humic topsoil ; in many places peaty (permanent swamps)

h (humic GLEYSOLS and dystric HISTOSOLS)

SOILS ON BADLANDS

Badlands developed on various older lacustrine and volcanic rocks 378 W = excessively drained, reddish brown, strongly calcareous, slightly to moderately saline and strongly sodic, silt loam to clay loam

x, m of varying depht; strongly eroding and often wi th gravel or stone surface (SOLONETZ, undifferentiated; wi th calcic XERO-

SOLS, LITHOSOLS, acid; stone-mantle phase)

145

S. NYANZA 20

SOILS ON COASTAL OR LAKE-SIDE BEACH RIDGES

Soils developed on beach ridges along Lake Victoria 381 Z = imperfectly drained, very deep, dark brown to greyish brown, friable, sandy loam to sandy clay of varying salinity and sodici-

m-h, I t y ; wi th inclusions of loose sand to loamy sand soils (SOLONCHAKS, undifferentiated; wi th ARENOSOLS undifferentiated)

' Soil texture-classes

h = heavy

I = light

m = medium

x = stony or bouldery

v = varying texture

m-h = medium to heavy

m, h = medium and heavy (e. g. abruptly underlaying a topsoil of different texture)

Soil description f rom Kenya Soil Survey: Exploraty Soil Map and Agro-climatic Zones Map of Kenya, scale 1:1 000 000.

Rep. E1 , Nairobi 1982. See this map also for colours; symbols simplified here.

146

S. NYANZA 21

P O P U L A T I O N A N D L A N D

According to the results of the Census in September 1979, more than 817 000 people lived in the South Nyanza District. A little over 10 000 people were registered in the three townships of the district. For the rural population of about 807 000, there were altogether only 453 300 ha of agricultural land available (Table 7). That is to say, an average household of 6 people (Table 6) had not more than 3.38 ha of agricultural land, and 0.56 ha were available per person (Table 7). This is not much, but still sufficient to do fairly well on a small farm. The figure of the lower quartile of the Small Farm Survey 1977 was here 4.0 per farm (Table 9a) in the Lower Midland Sugar Cane Zone and Marginal Sugar Cane Zone (LM 1-2), but in the Lower Midland Cotton Zone and Marginal Cotton Zone (LM 3-4) an increasing need of pasture to support the small farms is obvious. In this Zone, West Karachuonjo with 1.98 ha per household is the most striking negative example of all the locations.

Regarding the population growth since 1977, it becomes clear that the shortage of agricultural land is becoming worse, and that means, agricultural intensification is now and for the future a matter of growing importance.

SOUTH NYANZA DISTRICT

TABLE 5: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

Kanyanda 19 532 20 251 39 783 7 160 182 217

North Nyokal 14 840 15 824 30 664 5911 142 215

Gem 10 380 11 498 21 878 4 606 125 174

North Sakwa 14 150 15 325 29 475 4 366 158 185

South Sakwa 7 662 8013 15 675 2 670 100 156

Kamagambo 19 560 21 403 40 963 7 036 211 193

Central Division 86 124 92 314 178 438 31 749 921 193

Kaksingri 5 917 6 424 12 341 1 876 183 67

Rusinga 4 805 5 100 9 905 1 303 43 229

Mgangano 3 246 3 630 6 876 1 350 66 103

Gembe 8 755 8 950 17 705 2 569 158 111

Gwassi 11 008 12 394 23 402 3 225 253 92

Lambwe 7 049 7410 14 459 2 405 334 43

Mbita Division 40 780 43 908 84 688 12 728 1039 81

Kabuoch 14 217 15 393 29 610 5 406 225 131

Kanymwa 12 364 13521 25 885 4 667 234 110

Karungu 6 927 7 702 14 629 2 315 156 93

West Nyokal 12 299 13 344 25 643 4 680 231 110

Ndhiwa Division 45 807 49 960 95767 17 068 848 112

Kanyamkago 22 214 23 855 46 069 7 008 373 123

Suna East 19 030 20 255 39 285 6 765 199 197

Migori Division 41 244 44 110 85 354 13 773 572 149

Suna West 12 872 14 507 27 379 4 804 256 106

South Kadern 15 686 17531 33 217 6 054 360 92

North Kadem 7 041 7 732 14 773 2 723 205 71

Macalder Division 35 599 39 770 75 369 . 13581 822 91

Nyabasi 11 656 10 847 22 503 2 499 134 167

Bukira 12 384 12 276 24 660 2 924 201 122 Bwiregi 6 229 6 309 12 538 1 738 53 233 Bugumbe 12 948 12433 25 381 3 457 185 137

Kihancha Division 43 217 41 865 85 082 10618 574 148

Kabondo 14 550 16 558 31 108 5 830 140 . 222 West Kasipul 11 508 12910 24418 4 968 123 198 Central Kasipul 12 739 14 059 26 798 4 730 133 200 East Kasipul 11 800 12 871 24 671 3 961 107 228

Oyugis Division 50 597 56 398 106 995 19 489 504 212

Central Karachuonyo 11 136 12317 23 453 3 870 96 242 Kanyaluo 6 653 7 227 13 880 1 457 60 230 Wang Chieng 9711 10 242 19 953 3 291 92 216 West Karachuonyo 24 254 24 368 48 622 6 777 180 269

Kendu Division 51 754 54 154 105 908 15 395 429 246

South Nyanza District 395 122 422 479 817 601 134 401 5 714 143

147

S. NYANZA 22

SOUTH NYANZA DISTRICT

TABLE 6: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION^

LOCATION/DIVISION

No. of Households total

Fa rmers Family ' Non-Relatives Persons per

Household . , total b'

LOCATION/DIVISION

No. of Households total Adults

> 15 years Children < 15 years

Other Relatives

Non-Relatives Persons per Household . , total b'

Location: Kanyanda 7131 3.24 1.16 0.68 0.37 5.45

North Nyokal 5908 3.30 1.34 0.26 0.28 5.19

Gem 4687 2.96 1.06 0.33 0.30 4.65

North Sakwa 4344 3.53 1.35 1.14 0.72 6.74

South Sakwa 2670 3.38 1.30 0.63 0.56 5.87

Kamagambo 7030 3.36 1.43 0.63 0.37 5.79

Division Central 31770 3.29 1.28 0.60 0.41 5.57

Location: Kaksingri 1872 3.51 1.54 0.69 0.85 6.59

Rusinga 1296 3.89 1.78 1.01 0.96 5.29

Mjangano 1343 3.17 1.06 0.79 0.40 5.05

Gembe 2564 3.77 1.41 0.64 1.08 6.90

Gwassi 3210 4.04 1.86 0.76 0.61 7.27'

Lambwe 2400 3.46 1.52 0.41 0.59 5.99

Division Mbita 12685 3.65 1.57 0.59 0.75 6.65

Location: Kabuoch 5400 3.26 1.19 0.62 0.40 5.48

Kanyamwa 4660 3.33 1.26 0.58 0.38 5.54

Karungu 2314 3.60 1.56 0.58 0.59 6.32

West Nyokal 4681 3.41 1.38 0.37 0.31 5.47

Division Ndhiwa 17055 3.37 1.31 0.53 0.39 5.61

Location:

Kanyamkago 7016 3.59 1.53 0.78 0.66 6.56

Suna East 6765 3.19 1.33 0.72 0.52 5.77

Division Migori 13781 3.41 1.42 0.75 0.59 1.99

Location:

Suna West 4798 3.30 1.29 0.52 0.59 5.70

South Kadern 6044 3.31 1.28 0.34 0.55 5.47

North Kadem 2720 3.34 1.25 0.28 0.54 5.41

Division Macalder 13562 3.31 1.23 0.39 0.56 5.54

Location:

Nyabasi 2483 4.84 3.03 0.60 0.58 9.04

Bukira 2908 4.24 2.41 1.14 0.67 8.46

Bwiregi 1733 3.65 2.04 1.13 0.42 7.23

Bugumbe 3453 3.85 2.02 0.68 0.80 7.35

Division Kihancha 10577 4.15 2.38 0.86 0.65 8.03

Location:

Kabondo 5815 2.94 1.35 0.56 0.49 5.35

West Kasipul 4961 2.91 1.25 0.47 0.28 4.91

Central Kasipul 4730 3.32 1.50 0.54 0.20 5.66

East Kasipul 3956 3.23 1.51 1.08 0.39 6.21

Division Oyugi's

-

19462 3.09 1 .39 0.66 0.35 5.49

148

S. NYANZA23

SOUTH NYANZA DISTRICT

TABLE 6: (continued)

LOCATION/DIVISION No. of Households total

Fa rmers Family ' Non-Relatives Persons per

Households h< total °'

LOCATION/DIVISION No. of Households total Adults

>15 years Children < 15 years

Other Relatives

Non-Relatives Persons per Households h< total °'

Location:

Central Karachuonyo 3863 3.11 1.42 0.98 0.42 6.01

Kanyaluo 1451 4.41 2.15 2.61 0.37 9.54

Wang-Chieng 3283 3.29 1.35 1.03 0.40 6.07

West Karachuonyo 6752 3.80 1.81 0.98 0.59 7.18

Division Kendu 15349 3.60 1.65 1.14 0.49 6.87

DISTRICT: SOUTH NYANZA 134241 3.43 1.46 0.69 0.49 6.07

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two person households as well.

149

S. NYANZA 24

SOUTH NYANZA DISTRICT

TABLE 7: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in ' 00 ha = sqkm in 00ha = iqkm in ha

Area

total

Non-agricultural land Agri­

cultu­

A r e a i n a g r o - e c o o g i c a z o n e s Agric . land Area

total Unsuit. Forest Others

Agri­

cultu­

A r e a i n a g r o - e c o o g i c a z o n e s Agric . land

Location/Division steep Res., (roads, ral A E Z per

without townships Census slopes lakes, home­ land house­

79 swamps steads, UM 1 UM 2 UM 3 UM 4 LM 1 LM 2 LM 3 LM 4 LM 5 hold person

rivers...)

Kanyarida 170 20 150 51 91 8 2.11 0.38

North Nyokal 142 24 118 18 97 3 1.99 0.38

Gem 125 21 104 3 36 65 2.26 0.48

North Sakwa 158 24 134 3 52 79 3.07 0.45

South Sakwa 100 15 85 5 36 8 36 3.18 0.54

Kamagambo 211 32 179 48 124 7 2.54 0.44

. Central Division

Kaksingri

907 136 771 59 36 220 256 189 11 2.50 0.45 . Central Division

Kaksingri 183 20 38 18 107 16 59 32 5.70 0.87

Rusinga 43 12 7 24 24 • 1.84 0.24

Mfangano 66 18 10 38 38 2.81 0.55

Gembe 158 16 20 19 103 81 22 4.00 0.58

Gwassi 253 12 83 30 128 • 61 67 3.97 0.55

Lambwe 334 29 160 15 130 40 90 5.40 0.90

Mbita Division

Kabuoch

1039 107 301 530 16 40 291 183 4.16 0.63 Mbita Division

Kabuoch 225 30 195 24 171 3.53 0.65

Kanyamwa 234 4 26 204 12 59 133 4.43 0.80

Karungu 156 8 16 132 73 59 5.70 0.90

West Nyokal 231 25 206 34 12 143 17 4.34 0.79

Ndhiwa Division

Kanyamkago

846 12 97 737 46 24 242 276 90 59 4.50 0.79 Ndhiwa Division

Kanyamkago 373 37 336 86 136 114 4.79 0.73

Suna East 199 32 167 51 56 60 2.47 0.43

Migori Division

Suna West

572 69 503 137 192 174 3.65 0.59 Migori Division

Suna West 256 26 230 230 4.79 0.84

South Kadem 360 36 324 169 69 86 5.35 0.98

North Kadem 205 21 184 29 108 47 6.76 1.25

Macalder Division

Nyabassi

822 83 738 428 177 133 5.63 1.02 Macalder Division

Nyabassi 134 13 121 52 45 24 4.84 0.54

Bukira 201 20 181 11 85 85 6.19 0.73

Bwiregi 53 8 45 37 1 7 2.59 0.36

Bugumbe 185 19 166 29 103 34 4.80 0.65

Kihancha Division

Kabondo

573 60 513 100 160 212 34 4.61 0.57 Kihancha Division

Kabondo 140 24 116 1 47 46 22 1.99 0.37

West Kasipul 123 5 21 97 71 26 2.00 0.40

Central Kasipul 133 23 110 11 44 55 2.33 0.41

East Kasipul 106 21 85 35 39 11 2.15 0.34

Oyugis Division

Central Karachuonyo

502 5 89 408 47 47 156 103 55 2.12 0.38 Oyugis Division

Central Karachuonyo 96 16 80 80 2.07 0.34

Kanyaluo 60 8 52 52 3.56 0.37

Wang-Chieng 92 9 16 67 66 1 2.04 0.34

West Karachuonyo 180 3 12 31 134 107 27 2.00 0.40

Kendu Division 429 12 12 71 333 305 28 2.42 0.36

Total rural area 5 693 131 318 715 4 533 106 320 206 23 1058 1 549 652 375 3.38 0.56

For official land statistics see supplementary publication to FM-Handbook, Vol. Ill A: Agriculture Land Statistics.

150

S. NYANZA 25

A G R I C U L T U R A L S T A T I S T I C S 1 )

Approximately 1,500 ha of coffee are cultivated in one region bordering the Kisii district, yielding roughly 220 kg of clean coffee per ha only. The ginneries in Kendu and Homa Bay have an intake of roughly 4,000 t of seed cotton most of which is grown in the district. Although exact figures are not available, it is estimated that roughly 8—10,000 ha of cotton are planted within the district p.a., of which 80—90 % is intersown into maize during August, yielding approximately 200 kg/ha. Commercial sugar cane planting is expanding in AEZ LM 1 and there is much scope for soya bean production, but previous attempts failed because of marketing difficulties.

SOUTH NYANZA DISTRICT

TABLE 8 a:

Co-operatives

COFFEE AREA - PRODUCTION - YIELDS3)

Item Unit Year Item Unit

74/75 75/76 76/77 77/78 79/80

Area

Production

Yield

ha

t

kg/ha

7 7

213

285

74?

114

153

747

201

269

74?

137

183

1473

176

119

TABLE 8 b: COTTON PRODUCTION1*)

Ginnery Zone Year Ginnery Zone

1975/76 1976/77 1977/78 1978/79' 1979/80

Kendu

Seed Cotton in t 2476 878 2204 2563 1961

Bales 4344 1542 3868 4498 3441

Homa Bay

Seed Cotton in t 598

incl­uded l4l5 2095 1976

Bales IO5O above 2484 3676 3468

a) Source: C.B.K. b) Source: C.L. & S.M.B., does not refer to district area only

1) Fairly reliable statistics exist for the so-called industrial crops only; for more detailed information see FMHB Vol. Ill A

151

S M A L L F A R M S U R V E Y ( S F S ) 1 )

The natural conditions within the district are much less favourable than within neighbouring Kisii. The SFS was carried out mainly in the somewhat more productive regions of AEZ LM 2 and LM 3 and thus reflects above average conditions, especial­ly as regards the investigations carried out in AEZ LM 2. A productivity level similar to the results shown for AEZ LM 3 farms and lower is typical for the less productive areas of the district (LM 3,4, 5).

The farms are quite large - half of their area is planted with annual crops and the other half used for grazing. The high stock­ing rate of 2.4 LU/ha is also a result of the availability of off-farm grazing. A number of cattle diseases have so far prevented the introduction of improved breeds, the use of fertilizer is practically unknown and plant protection is applied to early plant­ed cotton only (table 9 and 10). Maize, sorghum and cotton are the major crops. Most farmer grow one crop p.a. only, but in AEZ LM 1, 2 planting for the second rains is common (table 11).

Table 13 — Inputs & Yields — give some information on the farmer's opinion of his crop husbandry.2) Apart from improved seeds for maize and plant protection in cotton, no purchased inputs are used. About 10 % of the grazing livestock are sheep or goats, the rest are cattle, half of which are male. There were no improved cattle on the farms investigated (table 12). Practic­ally all food crops produced are consumed in the district itself. Most farmers still practise a kind of subsistence agriculture (Table 14). Intensifying livestock production and introduction a suitable animal-draught mechanisation will help to improve the standard of living of the farmers. The largely unfavourable natural conditions will continue to limit agricultural output and slow rural development.

1' October 1977, sample size 30. For more detailed and up to date information see FMBH Vol. Ill B 2) See also notes on farm management information, output and nutrient input, page 51

152

34 E 34130 E

SOUTH NYANZA (HOMA BAY) JJ 325 P'

WINAM GULF ^ L L 368 A V

A _, ^K/TKKenua ttay ..•• *t nvjt-^-^

SMALL FARM SURVEY AREAS (1977^

and AGRO- ECOLOGICAL

+ SOILS

Forest Reserve. Game Reserve (Nat. Park)

Steep slopes, unsuitable for cultivation ^J (only marked outside

Nat. Parks or Forest Res.)

• Taranganya

^ ^ x W ' or two\ '52 U

h

Belt o l A E. Zones

A E Zones

Subzones

- — — — Broken zonal boundaries are uncertain or

— mean transitional strips 3—B—Ö"

National Number of Survey Area

Survey Area, sample size 30 per number

/152 U \ \

v. I

Climatic data for AEZ tormulas see table I and E 25 km = i

Mm ol Agr, German Agr Team AE l H Jaunir) 8'

S. NYANZA 28

a •*-• 0 J u u E

- 9 0)

4J C N •H O •H Cl o c 01 01

*J E C O d M — h.

M

5

kC r\) c c a

rvj O OJ 1 • a a, o

B

h • » «1 r-t B -rt

-» a o> r^ IT. V\

a> K\ 1*\

U r-1

a o

>> v *

\F\ IA O O^ f\J KA «fl ft| N (M ni

tu. **. m u u u u to i * i i i J :

•d Ç|

S - H u . 0

c-o OrH

O U..C c • •H O > 3 • H O r H - d

10 I I C M o a M M . • -

<£&

A v

t£ M ~< B e fa

a 'O 0 a 'O X .-c !•. CQ

c o x u.

B a) — q x-o

B h - U a a ^ i

u N •H ... •rH

M u. m 0 r

fa > S u, -; u.

i r , M rvj œ J )

r-l 1-4 O O O

" \ K\ 'M

O O O

IA rH

o o M MA Ä

• rvj

x: x : — .C js x; x: — *» U 3 V

•8 5 a H 3 •« O B 1- 3

B 3

M h 0

U5

o3

a ai

*» •H *» d s B D « es

154

S. NYANZA 29

Q < N Z

< z X H D O

S D N W

a.

s c o o a

O -H 3 o *> o

E Ü - 3

>) ra » *> C N •H O 'H O O CO C V U E •P E t i e o «s

10 s

E •O I* c a p . a fa, 3 j o

c t. o3 o o o i . u a > W O M

•H O 'H CO -P tO

10 E o> e u > u ni -H a b, J fa.

o o

VO « 1 *

• VO O o cv-

tv

o

« «

•p > u •H 0 ai O t . g £ C o. ti te oi E « 3

44 •H u. 0 c *> l-t

H •M P. <** c 0 V o tu X a c e c • H O «1 o to CU •ri H •H c a. +J * * .P o L .P t . d t . o e O 3 o a, o u. 0

I A IA CA C~ • • t •

Al O O s

VO O rH • • » IA IA J -

IA rA * • »A O

I N M Al O

• • • • H O O »A

H n * rA oo • • • .

O O O O

IM ru IA <\1 H

« • • • • o O O O rH

•ri a a 01 m 0 O 10 C £ £ X £ £ X £ s

r^ c H a

D C 0) o o (Q o 10 U

U a s

3 o!)

:0 01 £ 0) rH H M H a •p •H t , •H

•i 3 P a o a 5

C C a £ co z

0 < fa. Ei

H O

+> a « a

H o a> o u u i o a o. o z

IA i-l

• t

U r» CN OO I A O H IA Al IA B -n • * • AS Al IA - *

h EH

U c 0 u : s u a 0!

a

i l A V

10

3

O O O

IA H VO • • I •

O O o

5 -r.

a 0 o E-i m oX a

s» to

« a t. M ta o> •rf 10 £ a a +j s u o

t. IA Cv. IA CA J - 00 vo - * r\i AI VO A I IA CA

•o rH IA IA

O VO on ru O O tN O r>. o IM -* I A AI VO o Al H AI

t û t o t o t û t o b o t o t i o

a E E

4J TJ a. a> E o 3 3 « T! C O

o u u c 0) -o E O O O

X u.

O

o

e o 5 s a « x m

a •H *» H O 60 U c >

a a e to > 3 *» a a £ ai J3 IB tC rH X> D t i rH a a o -H u u U} z

o vi • rH

00 J -

• oo IA J -

IA AI

a o a a £ £ .C £ »

]

tN Tfc

O Al

O •*-> fa.

IA rH CA

rH O A)

IA AI

IA Al IA » • • IA O O

IA

•a 01 ai t. t i 3 ai lil T) •M •ri (M <0 c m 0 3 O tr.

c

>> ai rH O c o (IV

r*-to (Jv U r - I o L. c O o t. •0 0 ai

• n tn n cl l£ to

- O O & B a v a> ai m ai * »co

e rH » o< co a - p e s

S€ •H a a. 3

O - (4

ti CT 01 ï r O o H a <M 01 e o. 3 *

o o

to

r î

a -p fa. -w

a 01 01

£ to

ai „ N V

•H to W » E •o t . c a a

fa. r j |

3 -P t i <D *> rH

O £ tC O a s XI b XI H CS 3

u ta

.0 . o

155

S. NYANZA 30

SOUTH NYANZA DISTRICT

TABLE 10 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS AEZ: LM 3-4 Survey Area 03

Hange

Assets People on Farm

Hange Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > Ik No.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

6.7

6.7

10.0

3.2

19.6

20.3

26.0

7.0

1.2

2.0

1.0

3.0

3.0

4.o

2.0

0.3

1.3

1.0

2.7

3.2

4.0

1.0

Land Use

Range Annual Crops ha %

Pern;. Crops ha fi

Pasture ha %

Forage ha %

Fallow ha %

Other Dee ha c,i

Avg. 0

Avg. 1

Up. Qu.

Lo. auo

Total

• 3.0 45

3.0 39

4.0 53

1.4 34

39.7

0.1 1

0.5 6

1.9

2.8 4l

2.8 36

4.4 50

1.6 25

83.2

-

0.6 9

1.1 15

1.0 16

18.0

0.3 4

0.3 4

0.2 5

0.1 2

8.C

Farming Intensity

Hange Cropping Intensity crops/yr.

Stocking Hate Improved Cattle % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo o Su.

0.9

1.0

0.7

1.0

1.4

C.4

2.'t

2.if

4.'t

1.4

0.1

25.0

Inputs Applied

Hange Improved Fertilizer Applied Manure Plant Protection Seed Used % of area

pure nutrient kg/ha applied t/ha

Seed Used % of area

pure nutrient kg/ha applied t/ha

Insecticide kg/ha

Fungicide kg/ha

Seed Used % of area

: ?2o5 K20

applied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 32.8 - - 0.3 - - - - - 1.0 - - -

Avg. 1 45.2 - - 7.5 - - - 0.1 - 2.2 - - -

Up. Qu. 42.9 - - - - - - - - 1.6 - - -

Lo. Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms Avg. 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops PC = Perennial Crops

156

SOUTH NYANZA DISTRICT

TABLE 10 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: UM 1 - LM 1-2 Survey Area 04

Range

Assets People on Farm

Range Land ha

Livestock head

Squipment pieces

Family Adults

Pera.Krd. Labourers

Children > 14 Ko.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

9.0

9.0

10.4

4.0

24.5

29.4

27.0

4.0

1.7

2.6

3-0

3.1

3.2

4.0

2.0

1.1

3.0

1.0

4.2

4.8

4.0

2.0

Land Use

Range Annual Crops ha %

Perm. Crops ha f>

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

2.3 27

2.3 24

2.8 35

0.8 20

69.5

1.2 14

1.8 18

1.0 20

35.6

3-9 44

4.0 41

5.2 56

0.6 19

115.5

-

1.0 12

1.4 14

2.0 17

0.2 5

31.4

0.3 3

0.3 3

0.4 6

0.1 1

8.7

Farming Intensity

Hange Cropping Intensity crops/yr.

Stocking Rate Improved Cattl9 % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture it Forage LU/ha

Improved Cattl9 % of total

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

1.1

1.5

1.0

0.9

1.1

0.2

2.2

2.2

3.2

0.3

1-5

13.2

Inputs Applied

Range Improved Seed Used % of area

AC

Fer tilizer Applied Manure Applied t/ha

AC PC

Plant Protection Range Improved Seed Used % of area

AC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Range Improved Seed Used % of area

AC ÏI

AC PC P2C5

AC PC K2O

AC PC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Avg. 0 56.1 3.7 2.Ü 9.2 0.1 - - 0.1 - 0.4 - - - .

Avg. 1 63.2 3.9 3.7 16.3 0.4 - 0.1 0.3 0.1 1.1 C.l - C.2

Up. Qu. - 2.2 - 15.7 - - - - - 0.1 - - -

Lo. Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

S. NYANZA 32

SOUTH NYANZA DISTRICT

TABLE 11 a: CROPPING PATTERN AEZ: LM 3-4 Survey Area 03

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

average 1 ha

Upper ' u art il e

ha

Lower ^uartile

ha

Total Sample Area Crop

Average 0 ha

average 1 ha

Upper ' u art il e

ha

Lower ^uartile

ha ha %

Maize Sorghum Fingermillet 3ulrushmillet Pigeonpeas Groundnuts Sunflower Cotton Sugarcane Others Maize & Sorgm Maize & 3eans Maize & Others Maize int.oth.

1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.1 0.3 0.1 0.1

1.5 1.3 0.6 0.1 0.6 0.3 0.3 0.8 0.2 OA O.S 1.3 0.8 2.0

1.60 • 1.60 .0.00 0.00-0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 O.CO

0.00 0.00 0.00 0.00 0.00 0.00 O.öC 0.00 0.00 0.00 0.00 0.00 O.CO 0.00

29.^ 25.7 1.2 0.1 0.6 0.5 1.0

15.7 0.2 o.k

8.0 1.6 2.0

32.5 28.k 1.3 0.1 0.7 0.6 l.l

17.^ 0.2 O.k hA 8.8 1.8 2.2

Total 90.5 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper •^uartile

ha

Lower Ouartile

ha

Total Sample Area Crop

Average 0 ha

Average 1

ha

Upper •^uartile

ha

Lower Ouartile

ha ha %

Maize Sugarcane Maize & Beans

0.2 0.0 0.1

1.3 0.2 1.6

0.00 0.00 0.00

0.00 0.00 0.00

5-2 0.2 1.6

7^.3 2.9

22.9 Total 7.0 100.0

Permanent Crops

Crop Average

0 ha

Average 1

ha

Upper ^uartile

ha

Lower Wuartile

ha

Total Sample Area Crop

Average 0 ha

Average 1

ha

Upper ^uartile

ha

Lower Wuartile

ha ha /0

Sisal 0.0 0.6 0.00 0.00 1.1 100.0 Total 1.1 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up.Qu./Lo.Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

158

S. NYANZA 33

SOUTH NYANZA DISTRICT

TABLE l i b : CROPPING PATTERN AEZ: UM 1 - LM 1-2 Survey Area 04

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper ^uartile

ha

Lower ^uartile

ha

Total Sample Area Crop

Average 0

ha

Average 1

ha

Upper ^uartile

ha

Lower ^uartile

ha ha %

Maize Sorghum Bulrushmillet Beans Cowpeas Groundnuts Sunflower Engl. Potatoes Cabbage Tobacco Cassava Sweet Potatoes Sugarcane Pineapples Maize & Sorgm Maize & 3eans

0.7 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.9 0.0 0.0 0.8

2.7 0.5 0.8 1.0 1.4 0.1 0.4 0.4

0.7 0.7 0.2 0.3 2.3 0.3 0.3

1.3

1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 1.20 0.00 0.00 1.20

0.00 0.00 0.00 0.00 0.00 0.00 O.CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21.2 3.0 0.8 4.0 1.4 0.1 0.4 0.4 2.0 6.6 0.9 0.6

27.2 0.8 o.S

24.6

2ZA 3*2 0.8 4.2 1.5 0.1 QA oA 2.1 7.0 0.9 0.6

28.7 0.9 0.8

25.9 Total 9^.8 100.0

Second Rains Annual & Semipermanent Crops

Average Average Upper Lower Total Sample Crop 0

ha 1

ha ^uartile

ha ^uartile

ha Area Crop 0

ha 1

ha ^uartile

ha ^uartile

ha ha % Maize 0.6 1.8 0.80 0.00 18. t 25.1 Beans 0.1 1.1 0.00 0.00 3.2 4.4 Cabbage 0.0 0.8 0.00 0.00 0.3 1.1 Cassava 0.0 0.2 0.00 0.00 0.9 1.2 Sugarcane 0.9 2.3 1.20 0.00 27.2 37.1 Pineapples 0.0 0.3 O.CO 0.00 0.3 1.1 Maize & Beans 0.7 1.3 1.20 0.00 22.0 30.0 Total ! 73.3 100.0 1

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper ^uartile

ha

Lov/er ^uartiie

ha

Total Sample .nrea Crop

Average 0

ha

Average 1 ha

Upper ^uartile

ha

Lov/er ^uartiie

ha ha % Sweet Bananas Cookng Bananas Coffee Citrus

0.0 0.1 0.1 0.0

QA QA 0.3 0.0

0.00 0.12 0.12 0.00

0.00 COO 0.00 0.00

0.4 3.6 2.6 0.0

6.0 5^.2 39.3 0.6

Total 6.7 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up.Qu./Lo.Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

159

S. N Y A N Z A 3 4

U O H W

> Ü

z N < Ou O z o

i l 8 ' Q a: u se

tü CQ

< H

H U

OS H C/3

O < N Z < 1

>- f >

z S s »1 H

n N

o U en <

H r> m O CM m """

a H O 1 1 1 1 1 C \ O 1 I r> CM en en v O r- r~- r- CM to O r- CM to • e • • • • • • • • • • • • • • • • • • o

O O O o H H CM - * • o Ö o O r- l s -JD o r- l

r H

J H (M CM

X u o en en m « o r> CO S t^ v C to CM r- vu to •C +» • S • CM S • CM •P CQ fv v O Ri S iv

-3 0 m a

o o " o u o 0 «0 >» i 1 t 1 | 1 | 1 >! | i | | >> i - i u

i 1 U h

CU • H

o • r i 0

• H 0

*o

• r i 0

•o s « 4 < H < H

• J r H r - l

O r- » O o Pi •

0 en O

ïfl O

• 1 1 1 1 1 en

• O

• 1 1 * • CM

• en •

en

• • • • Pi

• CM

• to

• •îft O

• • CM

• to

• >ft ïfl O O O o H H CM -* o i - i vu O H CM sO O H

• H , 4 * o H »r> O r- l >o N O o CM • CM • « frt • O s k o l - l s O

II

H

II

H

n a

4J II t - O t>-

H

II r-

H

n 0

II v û en CM vo v O to t - 1

H

II >o co t»- 1

H

n

o o u 0

• • H

• en ri •

ta

0)

3 •

0

o u 0

ta

0) 0 « H <M < H

o, • H <*> & o • r i o • H

e 0 C» H & CM S to -* 1 0 -* CO - ï | « « X • • S • SS to • S3 •e O CM CM CM CQ +

(0

+ B a

+ (0 a

+ (0

+ B a

+ (0 a

0) 0 • P « • P

> r> f - > • H r«- t» •i 0 9

1 1 1 1 1 1 r H

• l /> r- l • »T» r - l 1 e

S3 • V> H •3" S O Ü en en O en o

u ! !

a j j • p

e • 1 1 1 H • 1 1 • cv O

• en S

o •

>> 1 a > O

en VA «r H 0

> « o o i H CM H en 3 • H en 3 S

ï S a> 0 ï 0 S H t-\ • H H • r i

e • p m r> o *> N o 4> t ) e I 1 1 1 1 1 1 1 1 1 *> 1 1 CM i o -* > D CM * • P 0 \ D CM » 1 • P S K

O 8 U

H

• o • v O • CM a

o H

v O • CM

a o

H H

8 U

H

a o H

a o

H H 0 0 0 0 0

a *> •V • p J J • P

u 0

t 1 1 , 1 1 1 1 1 1 0

4-> 1 1 1 t 2 1 ^ s 1 1 o •P

O 4 * •>* » 1 , O

p O

« • • • +» < H o o < H <M o < M * 4

ca 0 O O O O 0 O O O O

o O <n o en CM -4 en H • « *

! 1 1 1 1 1 1 1 1 1 • CM H r> CM o CM « 0 o -* 1 • • to o ~ i 1 • _• H o • • • to • m i-H to • >T\ r - l 3

CO H o H CM >4

H CM -* H

3. 3 3 'S » <y « O" e o* -p

• • 3, 3 3 «

» o* « cy « cy -p

• • r- l • • 3. 3 3 'S

» <y « O" e o* -p « 5* & 3, 3 3 « » o* « cy « cy -p

3 3 0 « && to «o te o ta • • t o to U) o bo t J O to a h C ti 0 h H 0 U JH II X 0 h 0 h 0 U H 0 U U n n 0 E-l 0 h U Il II h « h «) h « h 11 I I o ki 0 ki 0 ki 0 (4 0 4) > U O 0

Jd 4> a W a 0 ft^-N » a » o si a m o, a> p< a> P. S O V P . * O > O, > a > a TJ • a o • p > a > O , > O i » - * > &. O U > P. o O < S < » < » « < S3 r 3 <a < S3 < S3 < S3 • < S3 i J & Q, < S3 KH ft

• P > ai a « B X 0 10 o e t» E 0 0 • H U 0 «

« « a a u i - i » H » ce a T* H JS B O H X

> kl h h O

« e S B *> 1-3 t, t* »H e •P CQ S3 - P 4-> CQ

• H k l h h O

« e S B •u 0 0 0 3 • P CQ • p • J • O « ' H a 73 V 0) q} s ^ 0 + + N. 0 +

> » > » > » w o a t»» >» >t Ü J Ü

•o 3 > H CD 73 C0

c 3 <D o r-l 0 0 * » 4) H 0 - P

> CM - P H h (M *> H 0 > S H «

o ki CM O 0 P. In (M O 0 O O <rl a o u O h *> S B 0) h - P X O a. 3 z o O, •O 1 4) , C • H TJ 1 0 , 0 a. 3 B Ç > 3 S3 O a > 3 S3 S3 B «4 S3 S3

M & H O CQ J S3 S3 r-l O CQ .-3 -a fi a • J r i

S3 H )

S3 «T» r 3 VO

H O

O 0

» » O o o o , »

S3 S3 r 4 J

m ao vo

• • O o Q Q

Ö 0 o 0 t>> >»

CM CM

h kl 0 0

5$ D r 4

» •• I T l S3 S3 H •J J • O

m • • ä

O o 0

a a r i u r H

>> >» h CM CM 0

1 H

1 r - l £

» » » S3 S3 S3 I H I H I H

i r \ o o CM CM H • • • O O O

(4 0

hi 0 S

0 0 0

>» t » >» H H H

u h kl 0 0 0

•a TJ •O e C C

S3 D S3

u I I R

X 0 O to

X o • H

o *> a O C Q \

*> a CQ •8 o

0 0

•o > JS 0 O CQ

> !" ^ o a O

u B • P

a.-n 0 E Q o M S3 O

•« 1» 0

Jri

S3

• P • H

a S3

« o 0

• p

a 0

>

160

S. N Y A N Z A 3 5

a H 1 i S 1 r-l i-l 1 r- 3 1 1 RI DN CM o

t o 1 vD

t o - * vO

iH

mKo «•# vO

• a • • • • • . • • • • . • . . . • • 3 -P o O m O H D r-l o m "•s" to O O t on» O O • O VT\ r-l »A H

J H CM CM

.M h O o O o a> o r-l o «n I-I O o m r-l O ON

j e *> . t o . m t o • m *i 03 \0 t - NO r- NO

o \ CM CM CM - 3 (0

> o (0

> o

o o u (0 «0

i-t !» U

CM

• 1

O r-l

• 1 r-l • 1 1 S»)

u 3 • 1 I >> rt

eu 1-t as

r-l O r-i 1-1 r-l iH 01

s « H

1-1 iH 01

• J 0 o 0

tCr-H 1 i s 1 rH r-l 1 r- Si 1 1 Vi O O S o 1 - *

t o CM - t NO * •H

O - s v j N O >ft tCr-H

• • • • • • • » • • . • • • • • •H 4* o O en o H o H o V \ «0 t o O o vD CM to* O O

85 o • et r-l •

r<\. «A CM

iH en • u o r- V f

o

11 ii m

4^ 11 r~ £ - c\ ii en ai o

O

11 t o H P \ CM r^ CM ^* 1 t - CM ~4 1 ai

o O

• • 0^ • O • ai o

O «0 H H <n o m (0 u ai

u 0)

u ai

u 0)

< H < H •H P. •ri t » E>- c°v •H 55 •H ai a> CM CM N Û ^ t o o C^ 1 01 t o 55 C- 1 0)

J = s • • r t •>? B r t • S

CO + (B

+ O

+ ca D

+ (B

+ O

+ ca D

0) « • P « •u > O O > •H o > iH

S) 9

1 1 1 1 1 1 3 t o •

- 4

ri t o

• - * 1 3 a

3 3 t o - 4 1 r4 a

a 3 O O ~4 ri • > * CJ 3 •«5 o

o X o 0 O

X o 0 O

a • P *> tu 1 i s 1 H • 1 1

O CM

• CM

en en

Oi S en

• - * 1 01 > & 1A

• - 4 1

10 01 >

• H

ce o o r-l CM r-l m i-i

B

H m •H

te a 0) 0)

i-i

B o>

•H

te a H r-l •H H •ri

B O 1 i 1 1 & 1 CM o 1 1 *> 1 l 3 1 Ö «3 <£

O ~ t 1

•U • P (S H cn ~4 1

•P • P a

X • • al • • \0 • 0) h C~- • <8 î* o o o u

H

O CM CM

H H

CM O

H •3 u

H H H

O

H •3 a 0) « al •3 a P •p +J P j j

u 0 P c \ t - o 0 r- o o a 1 i 1 1 1 1 | r ! I •p 1 1 P I S 1 O t o 1 1 *> • P vO t o 1 ! p *> « • a CM • CM . *> <H o O o <w <M o < M • H

ca 0

V I

0

Vi

O O O 0

V I

0

Vi

O O O

a H H

& & «A C'­ c- O rn o 0> o I > > a H H

1 i ! ! & 1 CM & 1 ! • en r-l c<j 1 c- H O O CM 1 • • S "4 CM 1 • « a

H H • • N O » • « O • o o> S . i-H o-9 o o «0 CM o o r-l m -st H r> • < *

• • • r-l 3 3 3 «

• . • • « H

o Of ei O* o O" +»

• • H • • • • • r-l 3 3 3 «

41 §• Qf

• • « H

o Of ei O* o O" +» 3 3 (8 3 5,

«J of a «0 bo tC O fcO . . t 0 60 60 O hO •a o te 0) b a U « fci EH « ri U II .M e u <B u a u Ê-> S! r i t< II II o> H tt U h u n u o u <D u v u a » u u ai u <s u a> u 0> 0> > U ai o»

.* a> p< a> o , « a , *~* o> & * o « Pi 0) P> a> Pi 01 Pi > O 01 Pi ï O > a> > d > Ci -e > Pi O +> > &i > O, > Bi »-» > P< O u > Pi O o < 3 < B < B O «* 3 hî m < p < s < 3 • < S> r4 p Pi < 3 r3 p *» t» 01 p 01 e a » to o « !> B 0> 0} •H C 01 4) D • m B u H -H - B ffl -H H J= B O rH JB > h «H U P •P -5 U u u tt *> ai 3 *> •P 03

•H « (0 <8 B • P (8 <s cö 3 *> W *> •4 4> «1 « lH «S "O 01 0) 0) N ^ a + + \ a) + > > > » > » • - ' a a> & " » ! » > > CJ r3 u •O •a > H a •O (0

• •a o o H a) 01 *> 01 6C « 4 i > CVJ - P r-l u ru - P H (8 > a H es 0 U <\t o a a t , AJ o a o 0 iH a o u «1 h *> s B 0 t l 4J z o U N s es e* •O 1 « J3 • H •o i a> j a Pi a) B C > 3 3 d B > 3 s s E t l 3 s

H S H O W 1-3 s 3 iH O w rH 1-3 M a , J -5

B

3 m r ) NO

H O co o X » o o o u

• 4 »4

m CO V D

• • o o (S a o ä 0) c >> >»

ru evt h h a> u

èè 8 r-3

» » I A 3 3 H »3 •

O

I A J - ä O O e 1»

a <0 (H h H >> >» h

OJ CM e i

H 1

r-l è . , »

3 3 B .4 •J • J

I A O O eg rsi H • « • o O O

h u h a a a o 9 e !» >> H

i-i H r-l

U h d 0) a> « •o •o •O B B a

3 3 B

II U u X n o «o X o •H

o p h 0 M V

4J P. 03 •o a>

ai o •O > xt 0) o n > b V , 0 P. CO « 1 B -P P.1H al S S o H B o .. t» 01

X

161

S. NYAN2A 36

SOUTH NYANZA DISTRICT

TABLE 13 a: INPUTS AND YIELDS OF MAJOR CROPS AEZ: LM 3-4 Survey Area 03

Crop Input s cals Fung­icide ks/ha

Yield

kg/ha

Crop Imp­roved Seeds

0<

fiutv Lents K2O

Ci 10 mi cals Fung­icide ks/ha

Yield

kg/ha

Crop Imp­roved Seeds

0<

N

kg/ha

P 20 5

kg/ha

Lents K2O Manure

t/ha

Inaec.

kß/ha

cals Fung­icide ks/ha

Yield

kg/ha

First Rains

Maize Avg. UpQu LoQu

45 100 -

1 -

0.02 1 — 2,269 2,025 1,183

Sorghum Avg. UpQu LoQu

•M> "" *" -

• "

; -1,336 1,350

630

Fingermillet Avg. - - - - • - - -• 525

Groundnuts Avg. - - - - - - - 1,129

Sunflower Avg. UpQu LoQu

100 100 100

-"* *• ** "* "" 5V?

733 205

Cotton Avg. UpQu LoQu

58 100 - -

*"* -

15 17

** 589 750 306

Maize & Sorgm Maize Sorgm

Avg. Avg.

- - - - - - - 900

769

Maize & Beans Maize Beans Maize Beans Maize Beans

Avg. Avg. UpQu UpQu LoQu LoQu

»to

100

12

-

0.10

- -

3,825 467

6,750 600

1,125 133

Second Rains

Avg. UpQu LoQu

50 100 - - - - - -

1,240 833 450

Maize Avg. UpQu LoQu

50 100 - - - - - -

1,240 833 450

Perennial Crops

Avg. - - - - - - - 3,533 Sisal Avg. - - - - - - - 3,533

162

S. NYANZA 37

SOUTH NYANZA DISTRICT

TABLE 13 b: INPUTS AND YIELDS OF MAJOR CROPS AEZ: UM 1 -LM 1-2 Survey Area 04

Crop I n p u t '3 Y i e l d Crop Imp­ i iu t r i e n t s Cher: i c a l s

Y i e l d

r o v e d »I it ? 2 o 5 ] K2° Manure I n s e c . , Fung­

S e e d s ? 2 o 5 1 i c i d e

/o k g / h a k?;/ha k g / i i a t / h a k g / h a kr</ha k g / h a

F i r s t R a i n s

Avg. 100 Ik 23 0.33 1 2,790 Maize Avg. 100 Ik 23 0.33 1 2,790 UpQu 100 16 58 - - - -- 3,375 LoQu 100 - - - - - - 1,575

Sorghum Avg. - - 1 0 . - _ - - 1,9^7 UpQu - - - - - - - 2,500 LoQu - - - - - - ~ 333

Tobacco Avg, 100 33 37 _ _ i - 1 , 2 1 1 UpQu 100 65 58 - - 1

1,6'tf LoQu 100 - - - - - - 625

Maize & Beans Maize Avg. 69 126 l ' a - 0 . 1 3 1 - 2,756 Beans Avg. 6 - - - - - - 638 Maize UpQu 100 - ko - 0 . 2 0 - - 3,750 Beans UpQu - - - - - - - 650 Maiz~ LoQu - - - - - - - 1,350 Beans LoQu - - - - - - - 200

Second R a i n s

Maize Avg. 90 T_ 18 ~ • C 3 3 1 1 2,579 UpQu 100 - 29 - - 3_ 1 3,375 LoQu 100 - - - - - - 1,350

Beans Avg. - - - - - - - 792

Maize & Beans Maize Avg. 75 10 Ik - 0.1'+ 1 • 1 2,563 Beans Avg. 5 - - - -. - - '>87 Maize UpQu 100 - 30 - 0 . 2 0 - - 3.375 Beans UpQu - - - - - - - 800 Maize LoQu - - - - - - - 1,575 Beans LoQu - - - - - - - 2^0

P e r e n n i a l Crops

S u g a r c a n e Avg. - 't _ _ _ _ - 15,691 UpQu - - - - - - - 7,^17 LoQu - - - - - - - —

Cookng Bananas Avg. - - - _ 0 . 2 ^ _ - l ' ) ,595 UpQu - - - - - - - 2 2 , 5 0 0 LoQu - - - - - - - 1 ,250

Coffee Avg. -. 1 1 2 1 _ O.kk 1 9 'S 619 UpQu - - - - - - 10 5,833 LoQu •"

-— — — **• 2 , 5 0 0

163

SOUTH NYANZA DISTRICT

AEZ: LM 3 -4

TABLE 14 a: DISPOSAL OF CROPS

Survey Area 03

Crop Production Marketing Board Local Market Hone Con sumption Crop Production

kR % kK 0/ /J k« a)

First Rains

Maize 46,458 3,o6o 7 11,535 25 31,363 69 Maize &.- Beans 40,330 0 0 5,970 15 34,410 85 Maize St Sorgra 7,885 0 0 970 12 6,915 88 Maize & Others 5,34? 1,500 26 610 10 3,737 64 Maize int.oth. 3,350 1,600 42 1,120 29 1,130 29 Beans 10,134 0 0 0 0 10,134 100 Fingermillet 6oo 0 0 80 13 520 37 Fl-Ilt & Sorghum 3,840 0 0 0 0 3,840 100 Bulrushmillet 200 0 0 0 0 200 100 Sorghum 28,280 0 0 9,800 35 18,480 65 Groundnuts 670 0 0 460 69 210 31 Sunflower 432 432 100 0 0 0 0 Cotton 9,757 9,517 98 0 0 240 2

Second Rain3

Maize 4,150 1,170 28 900 22 2,o8o 50 Maize & Beans 3,260 0 0 0 0 3,260 100

Permanent Crops

Mil

SOUTH NYANZA DISTRICT

TABLE 14 b: DISPOSAL OF CROPS

AEZ: UM 1 - LM 1-2 Survey Area 04

Crop Production

kg

Marketir g Board Local Market Home Consumption Crop Production

kg kR % k* % kK % First Rains

Maize 59,531 97,010 163 7,290 12 -44,769 -75 Maize & Beans 86,770 36,405 42 25,460 29 24,905 29 Maize & Sorgm 2,760 0 0 0 0 2,760 100 Beans 3,910 540 14 2,340 60 1,030 26 Bulrushmillet 1,800 0 0 0 0 1,8C0 100 Sorghum 6,960 0 0 700 10 6,260 90 Engl. Potatoes 1,440 0 0 1,200 83 240 17 Sweet Potatoes 4,540 0 0 880 19 3,660 81 Sunflower 400 400 100 0 0 0 0 Tobacco 7,379 7,379 100 0 0 0 0 Cabbage 22,800 0 0 21,800 96 1,000 4

Second Rains

Maize 38,100 13,530 36 4,610 12 19,960 52 Maize & Beans 78,590 15,440 20 19,675 25 43,475 55 Beans 2,620 320 12 1,530 58 770 29 Tobacco 500 500 100 0 0 0 0 Cabbage 900 0

F

0

ermanent

700

Srops

78 200 22

Cassava 1,500 0 0 0 0 1,500 100 Citrus 500 0 0 475 95 25 5

S. NYANZA 39

SOUTH NYANZA DISTRICT SOUTH NYANZA DISTRICT

TABLE 15 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 b: DISTRIBUTION OF FARMING ACTIVITIES Crop 1 Maize Cases: 24 Crop 18 Sorghum Cases: 20

AEZ: LM 3-4 Survey Area 03 Sample Size: 30 AEZ: LM 3-4 Survey Area 03 Sample Size: 30

Land Preparation:

II. • i ±jl

100 % of the cases

S - - S

Land Preparation:

U1_L u Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

••III I • J_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

h Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

_1 L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

I U 11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

J_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

J_iLUl. - U I OU Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• • -I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

J I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

•_*!_ JUL lllllllll • • • UdL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

165

S. NYANZA 40

SOUTH NYANZA DISTRICT SOUTH NYANZA DISTRICT

TABLE 15 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 d: DISTRIBUTION OF FARMING ACTIVITIES Crop 35 Cotton Cases: 19 Crop 1 Maize Cases: 18

AEZ: LM 3-4 Survey Area 03 Sample Size: 30 AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30

100 % of the cases Land Preparation: Land Preparation:

I I nil ll • ± L* I I HI II ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

J ••• !!••••• JLJLL J_ll l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

i l _ L A Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

_II_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

_L_1_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

-IB- IJl I l l -Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLJ 1_L j i l l L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

-U • ill • LLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

ll II 111! 11 H HI

Jll I l_ l_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

IIJLI- • I i-l» ••••• Î 111 Inn i I l l I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

166

S. NYANZA 41

SOUTH NYANZA DISTRICT SOUTH NYANZA DISTRICT

TABLE 15 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 f: DISTRIBUTION OF FARMING ACTIVITIES

Crop 2 Maize & Beans Cases: 6 0 " Crop 18 Sorghum Cases: 6

AEZ: UM 1 - LM 1-2 Suvey Area 04 Sample Size: 30 AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30

100 \ ^ — — — — — • — — — — — — — ^ — — — _ _ ^ ^ ^ _ o ( t h e

Land Preparation: cases Land Preparation:

,_L • ."II. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

as - CD

S - - S

ILL

•Im. I • aJ

Ï

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

111 I II Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

i i l l I I •_ -III •

T i î i

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding: First Weeding:

jJiLiiu. uk uw. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

j j •••••I •• •illllli Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

1 JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

[ilk •••i...lililllli ' • • • • JL JUL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

' Maximum 30 per crop and season 167

S. NYAN2A 42

SOUTH NYANZA DISTRICT SOUTH NYANZA DISTRICT

TABLE 15 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 h: DISTRIBUTION OF FARMING ACTIVITIES Crop 63 Sugarcane Cases: 18 Crop 39 Tobacco Cases: 11

AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30 AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30 100 '. _

• of the Weeding: cases Land Preparation:

J_IL • • ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. J a n - F e b - M a r - A P r - M a v J u n - J u L A u 8 - SeP- 0 c t - N o v - D e c

Dusting and Spraying: Seeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

- U - U J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

-U ' I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

JjJU. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Dusting and Spraying:

I I 1 • I Li Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

I J L J_t. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

• • llil Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLUII! J - L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

I U I U Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

•I I I III I • I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

168

S. NYANZA43

SOUTH NYANZA DISTRICT SOUTH NYANZA DISTRICT

TABLE 15 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 k: DISTRIBUTION OF FARMING ACTIVITIES Crop 57 Pineapples Cases: 3 Crop 64 Cassava Cases: 4

AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30 AEZ: UM 1 - LM 1-2 Survey Area 04 Sample Size: 30 100 ':

Weeding:

I I I I I I I

' of the cases T

I I I

Weeding:

t I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

Ï t -r

I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Fertilizing: T t 4-

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

-I

i j -4-

_ ± _ LL LL I I I I U Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

169

S. N Y A N Z A 4 4

CO W

z o N) -J < u 3 o - i o u u 6 o < a.

§ W a. co

W

> J

z o D Q O Bi 0 .

W - I sa <

H

y 2 H CO

3 < N Z < Z

r H

CU > • J

C 0

• r l

•»->

U

3

• o

o L,

( X

r H

CU > • J

C 0

• r l

•»->

U

3

• o

o L,

( X

H

r H

CU > • J

C 0

• r l

•»->

U

3

• o

o L,

( X

«

u. V

f j * > - H

O - H

- C •*->

• H 4 )

1 * h«

. H

> - J

• O

• r l

* J

Ü 3

•c O t .

Cu

M M M

. H

> - J

• O

• r l

* J

Ü 3

•c O t .

Cu

r H

. H

> - J

• O

• r l

* J

Ü 3

•c O t .

Cu

-

u o M

* J - H

3 r - ( 0 - H

* * U • H «

u z o S I

M M h , [ * O

u

1

5

si

u <

r H 0

o L 4 J I T )

( N

0 m

c "ï ( N • -

to s: CO

o

sa tu a,

r H - H O

CO

> « o 0

• H *•> U

3 1 3 0 U

Q .

M M

M

o o co

* A VJ3 O O J -

6

H r H

r A

I A I A r H

O o

O vu

o CT* §

rA 0 0 o o o o*

ru f \ J

fNJ

u z o S I

M M h , [ * O

u

1

5

si

u <

r H 0

o L 4 J I T )

( N

0 m

c "ï ( N • -

to s: CO

o

sa tu a,

r H - H O

CO

> « o 0

• H *•> U

3 1 3 0 U

Q .

3

O O

O O

CT- § co r H

f A

r H

oo O O o

r H

O A J r H

O

u z o S I

M M h , [ * O

u

1

5

si

u <

• H

1 ( u e o

^ 6 - H

U

u o 0

0 • H C O

° --n u -a © d -

D , ( M ( 0 > • »

• + aj • M Q bO « J 9 03 d

> > r H - r i

to s: CO

o

sa tu a,

r H - H O

CO

> « o 0

• H *•> U

3 1 3 0 U

Q .

M

o o

o O CT-

v O

u z o S I

M M h , [ * O

u

1

5

si

u <

• H

1 ( u e o

^ 6 - H

U

u o 0

0 • H C O

° --n u -a © d -

D , ( M ( 0 > • »

• + aj • M Q bO « J 9 03 d

> > r H - r i

to s: CO

o

sa tu a,

r H - H O

CO

t .

< P - H 3 H 0 - H

J 3 - M • P U - H «

! » C M

O o

O O

0 0 1 C O

O O

J -

u z o S I

M M h , [ * O

u

1

5

si

u <

• H

1 ( u e o

^ 6 - H

U

u o 0

0 • H C O

° --n u -a © d -

D , ( M ( 0 > • »

• + aj • M Q bO « J 9 03 d

> > r H - r i

to s: CO

o

sa tu a,

r H - H O

CO

• P •H d *ft to to U ) ïA bO bC « to b 0 to

JU to ya. bO M

ü

te » J? to bO to >* to tu

u z o S I

M M h , [ * O

u

1

5

si

u <

• H

1 ( u e o

^ 6 - H

U

u o 0

0 • H C O

° --n u -a © d -

D , ( M ( 0 > • »

• + aj • M Q bO « J 9 03 d

> > r H - r i

to s: CO

o

sa tu a,

r H - H O

CO 0)

( 0

r-i ft)

• H

X

Z

u V M

• H r H

• r l

U V

u.

i A O n j

a. o

0 )

> J

a o

•Si « j

V ) O

«C 3

n: -a o O

L i nu e u

n O a - H

^ m

a . R O t . a ; « C_) u «

m • o r H a>

• r l

N • H r-i

• H

0 )

I A

O o <"VJ

r H

> ^

C O

• H

CJ

3 1 3 O (-. a, c

- H

( 0

. . D

a, e O t , c c a j

( 0 T l

V • r l

7Z

U

a> N

•rl M

•H

I*

u,

I A O <\J

CU

o r H V > 0)

0 - H

O

3 T 3 O (,

M O . M

fc C ^ - H O O io

. . (y

n. B O u cc m o u.

( 0

-o I t

u 4> N

• H r H

* J

I A O

r \ j

O >

a o

• H

U

• a

3 ° < a.

< t

CQ a j

U

. . 4 )

C U 6

O U

cc m

5 r H cc

• r l

u •D N

• H r H

U

0 )

u.

l A O

CL,

O A l

0) t» a> ~l

d

^ .2 M „

S u

2 i-<

u •• a> o. e « a

( 0 -o r H

C U

>-

u V N

- H r H • H

U

U ,

l A O rv j a

o r y 0>

CO - 1

M C - 3 O \ - H W 4-1

ex O => 3 f-, -o co O <t u. --X, o,

- o e-, -n ' t Z 0 )

• • » a. H o u cc a u u.

( 0

r-i ft)

• H

X

Z

u V M

• H r H

• r l

U V

u.

i A O n j

a. o

0 )

> J

a o

•Si « j

V ) O

«C 3

n: -a o O

L i nu e u

n O a - H

^ m

a . R O t . a ; « C_) u «

m • o r H a>

• r l

N • H r-i

• H

0 )

I A

O o <"VJ

r H

> ^

C O

• H

CJ

3 1 3 O (-. a, c

- H

( 0

. . D

a, e O t , c c a j

( 0 T l

V • r l

7Z

U

a> N

•rl M

•H

I*

u,

I A O <\J

CU

o r H V > 0)

0 - H

O

3 T 3 O (,

M O . M

fc C ^ - H O O io

. . (y

n. B O u cc m o u.

( 0

-o I t

u 4> N

• H r H

* J

I A O

r \ j

O >

a o

• H

U

• a

3 ° < a.

< t

CQ a j

U

. . 4 )

C U 6

O U

cc m

5 r H cc

• r l

u •D N

• H r H

U

0 )

u.

l A O

CL,

O A l

0) t» a> ~l

d

^ .2 M „

S u

2 i-<

u •• a> o. e « a

( 0 -o r H

C U

>-

u V N

- H r H • H

U

U ,

l A O rv j a

o r y

170

S. NYANZA 45

«3 u z o N < u Ü o -1 o u UÜ

6 Bi O <: EU

O oä u Bi W EU «3 -J U > J

z o 3 Q O oi eu

ü

B3 <C H

H

y

s -S < N Z < >• z

r4 4) > V

- 1

G 0

•<-4

4-1 u d •o o u a.

H r-H • H

r4 4) > V

- 1

G 0

•<-4

4-1 u d •o o u a.

1-4

r4 4) > V

- 1

G 0

•<-4

4-1 u d •o o u a.

«

u

3 rH O -rt

_C 4-> +J U •H O

r-H

> 4)

a o

•H *-» U 3

t J O U

0*

M • H

r-H

> 4)

a o

•H *-» U 3

t J O U

0*

-

r-H

> 4)

a o

•H *-» U 3

t J O U

0*

M

O

+J -H 3 H O H

JS +* ±J U •H V S [»H

u O S)

M M b . t . O Ü

1 CN

s

<

•• 0 r H t ~ (0 n-i

U 1 0 i n AJ en

( N I

0 m

" 1 •O m c -

en X

o Ul < PU

î - * •H O

t o

rH 41 > O

a o

•H -4J U 3

O U

OH

M

o

8 i n

I A 0 0 I A

o o

o I A

O rH

o VJ3

O O co H

I T r H H

o o c o

H

r g CT1

H ? M

co H

u O S)

M M b . t . O Ü

1 CN

s

<

•• 0 r H t ~ (0 n-i

U 1 0 i n AJ en

( N I

0 m

" 1 •O m c -

en X

o Ul < PU

î - * •H O

t o

rH 41 > O

a o

•H -4J U 3

O U

OH

»-t M

o o m

r A r-l

O O

o I A

O o 0 0

O O

c o

rH

u O S)

M M b . t . O Ü

1 CN

s

<

•H

C

T <" ^ î

o o

•H 0 CO

•o >

© a ^ CU f\J 10 >>

• 4 - 1 0 •M Q

» ni a > rH -H

en X

o Ul < PU

î - * •H O

t o

rH 41 > O

a o

•H -4J U 3

O U

OH

M

o o m

b o

§ O o

O O -4 -

O O I u

O S)

M M b . t . O Ü

1 CN

s

<

•H

C

T <" ^ î

o o

•H 0 CO

•o >

© a ^ CU f\J 10 >>

• 4 - 1 0 •M Q

» ni a > rH -H

en X

o Ul < PU

î - * •H O

t o

t , V

*> -H 3 --4 O -rt

-Ci +J

• H a> : * t u

o o l £

O O

o o i r

r -

O O

rH

rH rH

u O S)

M M b . t . O Ü

1 CN

s

<

•H

C

T <" ^ î

o o

•H 0 CO

•o >

© a ^ CU f\J 10 >>

• 4 - 1 0 •M Q

» ni a > rH -H

en X

o Ul < PU

î - * •H O

t o

' H d TA J? * tO

A: u

X ^R 60 bO Ä

to -M

to if « 5 to M

b0 to tfi. to to to t o

u O S)

M M b . t . O Ü

1 CN

s

<

•H

C

T <" ^ î

o o

•H 0 CO

•o >

© a ^ CU f\J 10 >>

• 4 - 1 0 •M Q

» ni a > rH -H

en X

o Ul < PU

î - * •H O

t o rH 4)

ia •o r4 4)

•H >*

z: u V N

•H r * •H *J u f

I A

o n j a. S

4) > V

a

«.s < O W 3

o °s u

CL W es ö

t l .. « a, a o u K a O &M

0) T3

4» • r l SM

V N

•H H

m o Ol

CU

o rH « >

G O

•H * J

-o O M

o, co

CO (Q

M

.. « PH B O L,

az ta

(0 •ö rH V

- H

z »H 4> PJ

• H r H

* J

»4

4)

I A O «M

DH

O CU

« > 9)

C O

•H

« -3 M 0

ï ^ 3 °-ë 5 tO (0

. . 0) CU s O U

cc m

-ö rH V

•H

O t4

rH •H

>-< 0)

I A O o

4) > 4>

a o

u W 3

< 0

s >« m a, 5 o

s -tn o

u .. « cu e O J-i x « U fcv,

3 rH

2 :

t> 4) N

•H rH •rt

u O)

I A O (M

CU

o r4 4)

9

a 0

•H

t> 3

T3 0

CU

e •H

CO f-.

. . ai eu a O M

Q T3 rH 4>

• r t

z

©

M •H rH -H 4-» U 4>

t - 1

I A O r g

O « C 0

•H 4-» O 3

• ö 0 u a.

UP

« a M . H

z ; co

• • • CU s o t. a « o u«

ia •o r4 4)

•H >*

z: u V N

•H r * •H *J u f

I A

o n j a. S

4) > V

a

«.s < O W 3

o °s u

CL W es ö

t l .. « a, a o u K a O &M

0) T3

4» • r l SM

V N

•H H

m o Ol

CU

o rH « >

G O

•H * J

-o O M

o, co

CO (Q

M

.. « PH B O L,

az ta

(0 •ö rH V

- H

z »H 4> PJ

• H r H

* J

»4

4)

I A O «M

DH

O CU

« > 9)

C O

•H

« -3 M 0

ï ^ 3 °-ë 5 tO (0

. . 0) CU s O U

cc m

-ö rH V

•H

O t4

rH •H

>-< 0)

I A O o

4) > 4>

a o

u W 3

< 0

s >« m a, 5 o

s -tn o

u .. « cu e O J-i x « U fcv,

3 rH

2 :

t> 4) N

•H rH •rt

u O)

I A O (M

CU

o r4 4)

9

a 0

•H

t> 3

T3 0

CU

e •H

CO f-.

. . ai eu a O M

Q T3 rH 4>

• r t

z

©

M •H rH -H 4-» U 4>

t - 1

I A O r g

O

171

S. N Y A N 2 A 4 6

S z o N

< U

3 3 o u w à oi o <

a. O ai u u 0. !» - 1

> a z o 3 Q O s *

w 09

H

H

y 2 H

Q

N

Z < z

©

c o

•u U 3

"O O L.

a ,

M

©

c o

•u U 3

"O O L.

a ,

©

c o

•u U 3

"O O L.

a ,

t -H

u © M

*-• H 3 -H O -H -G V •U tn • H a» ; * fa.

> ©

a 0

*-> o 3

13 0 U

eu

M M l-H

> ©

a 0

*-> o 3

13 0 U

eu

2

> ©

a 0

*-> o 3

13 0 U

eu

M

©

*-> M 3 rH O -H

-M IH •H © * U.

o

fal

CO

fa, o o

I

<N

D

ta

CO

«:

. . 0 . H «~ (TJ ^

o ^ j j O l

CM

0 m

•• 1 'O in C * -

( N « -

T. W S I O w <

a,

o

4) > ©

a o

-H -M O 3

TJ O U

M t-H

8 O

AJ A l

CO O

J " l A

o o o

r\j Aï

m

rH

rH O O O

O n j

r4 rA vu

o

fal

CO

fa, o o

I

<N

D

ta

CO

«:

. . 0 . H «~ (TJ ^

o ^ j j O l

CM

0 m

•• 1 'O in C * -

( N « -

T. W S I O w <

a,

o

4) > ©

a o

-H -M O 3

TJ O U

3 O O O

oo

O O o

VO r A O O m

f A IM

rA

o

fal

CO

fa, o o

I

<N

D

ta

CO

«: Veg

t.

Per

iod

le

t +

2n

d:

vi

i or

l/

m-(

m)i

in

D

ay

s,1

st:

i 8o

or

m

ore

T. W S I O w <

a,

o

4) > ©

a o

-H -M O 3

TJ O U

M

O O o

O O

o rA

o o

o

fal

CO

fa, o o

I

<N

D

ta

CO

«: Veg

t.

Per

iod

le

t +

2n

d:

vi

i or

l/

m-(

m)i

in

D

ay

s,1

st:

i 8o

or

m

ore

T. W S I O w <

a,

o

•*-» -H 3 H O H

•H « * fa<

o o l A

0 0

O O r\J

-3-

O o

o

fal

CO

fa, o o

I

<N

D

ta

CO

«: Veg

t.

Per

iod

le

t +

2n

d:

vi

i or

l/

m-(

m)i

in

D

ay

s,1

st:

i 8o

or

m

ore

T. W S I O w <

a,

o

•H d

3 * to

X U

J4 bO

X bû * bû bû

X *fc bû b0 X

bO aft bO b0 A ;

b0 b0 « 5 bO bû bo «. bû X

bû X

bO bû X

o

fal

CO

fa, o o

I

<N

D

ta

CO

«: Veg

t.

Per

iod

le

t +

2n

d:

vi

i or

l/

m-(

m)i

in

D

ay

s,1

st:

i 8o

or

m

ore

T. W S I O w <

a,

o

41

(0 TJ rH 4)

Z

V

•H rH -.H •M

© fa.

o

a,

O

r-4 © >

a o

* j o 3 •a o

o eu < 0Q -H < U (0

u .. v eu s o u ce « O fa.

n TJ rH V

•H >->

© N

•H H •H •«->

U ©

fa.

l A O oi a,

o ry

rH © > ©

C O

-H 4-> U

Ht 3 * TJ H o -» t , <« a

O C ^ -H

en Q r4

. . a) CU B

o u K a) O Cm

(0 TJ

© •H ><

t . © M

•H rH •H

•H © fa.

l A O AJ

©

©

o •H

u 3

TJ O l<

ru

C •H

. . (y eu B O U œ « U fa.

(D TJ rH ©

•H

z

© N

•H r~S

-M

© fa.

l A O AJ eu

o ru

r-A V > ©

a o

•<H

O 3

- d 0

eu

c •H

10 (H

. . 4, CU E O U CK «J O fa.

5 rH ©

Z

r,

« N

•H rH •H -M U © fa.

iA O A I eu

o <M

rH © > » C

o

o

3 TJ O r.

eu

c •H n .. «

eu B o t. ce a U fa.

TJ

© •H

z

©

N -H rH •H *J U ©

l A O ry a

O A I

- 1

e c/3 O U H O -u EH O -* 3 EH TJ O o a. t.

a. EH M â J -H :* Si 03

U •* V a. B o u « a

(0 TJ rH 4)

Z

V

•H rH -.H •M

© fa.

o

a,

O

r-4 © >

a o

* j o 3 •a o

o eu < 0Q -H < U (0

u .. v eu s o u ce « O fa.

n TJ rH V

•H >->

© N

•H H •H •«->

U ©

fa.

l A O oi a,

o ry

rH © > ©

C O

-H 4-> U

Ht 3 * TJ H o -» t , <« a

O C ^ -H

en Q r4

. . a) CU B

o u K a) O Cm

(0 TJ

© •H ><

t . © M

•H rH •H

•H © fa.

l A O AJ

©

©

o •H

u 3

TJ O l<

ru

C •H

. . (y eu B O U œ « U fa.

(D TJ rH ©

•H

z

© N

•H r~S

-M

© fa.

l A O AJ eu

o ru

r-A V > ©

a o

•<H

O 3

- d 0

eu

c •H

10 (H

. . 4, CU E O U CK «J O fa.

5 rH ©

Z

r,

« N

•H rH •H -M U © fa.

iA O A I eu

o <M

rH © > » C

o

o

3 TJ O r.

eu

c •H n .. «

eu B o t. ce a U fa.

TJ

© •H

z

©

N -H rH •H *J U ©

l A O ry a

O A I

172

S. N Y A N Z A 4 7

z o N

6 3 o - j o u ÜJ

Ó « o <

CL,

O O Bi

S W > U -1 Z O

3 O O Bi o.

w -J ca <

H

5

3 <! si z < r~

z

w Z O S I

z o en E-i o o rA

S J

S)

w <

0 cc <N

1 0

T CN

u t 0

l i n co

CO

O '-Ti O z «< -4 a

4)

1) . J

a O

• H * J U 3

TJ O U

O*

>—t

o o

KO O O i r ,

m H

CO

1 1 O

o f A rH

O O

w Z O S I

z o en E-i o o rA

S J

S)

w <

0 cc <N

1 0

T CN

u t 0

l i n co

CO

O '-Ti O z «< -4 a

4)

1) . J

a O

• H * J U 3

TJ O U

O*

t -H w Z O S I

z o en E-i o o rA

S J

S)

w <

3^ • H * "~

r H I \ i n E i n

CO

O '-Ti O z «< -4 a

4)

1) . J

a O

• H * J U 3

TJ O U

O* O

rH

w Z O S I

z o en E-i o o rA

S J

S)

w <

3^ • H * "~

r H I \ i n E i n

CO

O '-Ti O z «< -4 a

u V

•M -rH 3 rH O -rt

• r l o S fr«

8 o o O

z o

S3

O

os < '-0

< z o CS <

~)

SI

'•À

0

1 i n ON fM

C

7 i n

w S I >> cc o

> _) a 0

- r l » J O

0 u

Cu

I-H f - 1

O O <\J

CO CO -3-

O O

o co

LTN m <\J H

o o o

0 0

r- l l\J

- 3 " CO

z o

S3

O

os < '-0

< z o CS <

~)

SI

'•À

0

1 i n ON fM

C

7 i n

w S I >> cc o

> _) a 0

- r l » J O

0 u

Cu

r - f

o o o o"

CO

z o

S3

O

os < '-0

< z o CS <

~)

SI

'•À

1

U 0 O

r j

— 0 •5 E

e n - 0

53

w S I >> cc o

> _) a 0

- r l » J O

0 u

Cu

r H

o o o

z o

S3

O

os < '-0

< z o CS <

~)

SI

'•À

1

U 0 O

r j

— 0 •5 E

e n - 0

53

w S I >> cc o

« M

4-> - H

3 r H 0 • *

. f i *>

• H 4» Ü* Cm

O O

o o

o o o

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

- H .—*

(0 o

u

T3 O C NO

.-M H

co J o •o

« cc

Cu

H • H

o

eu > o

a o

• H

- P Ü 3 -a o )H

CU

r H M

o o MD

o o

O O

8 co

rH

O O O

O co « o

o o o AJ

O m O H

O O O

o NO

•4-o r H

N O r-N,

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

- H .—*

(0 o

u

T3 O C NO

.-M H

co J o •o

« cc

Cu

H • H

o

eu > o

a o

• H

- P Ü 3 -a o )H

CU

O o o I A

O OJ ro

o o o o" H

o ON

LA * A

o o o o* - d -

-3 -NO

J " OJ (M

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

»H « V . h

E 2 ( a

u ° 0 o

o

•o o -u

• H • • y) i , - O r ­n a _

CU f\J 10

• + si « Q to M » m a

> rH -H

co J o •o

« cc

Cu

H • H

o

eu > o

a o

• H

- P Ü 3 -a o )H

CU

M

o

8 l A

O r H

o rH

o o o

oo H

t N o o o

CO H

I A NO

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

»H « V . h

E 2 ( a

u ° 0 o

o

•o o -u

• H • • y) i , - O r ­n a _

CU f\J 10

• + si « Q to M » m a

> rH -H

co J o •o

« cc

Cu

H • H

o

U V N

+» -H 3 rH O H

J3 *J +* t -H V

> fa.

o o co

O o MD

f A

O O

r-t

o o o I A

o o o

CO

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

»H « V . h

E 2 ( a

u ° 0 o

o

•o o -u

• H • • y) i , - O r ­n a _

CU f\J 10

• + si « Q to M » m a

> rH -H

co J o •o

« cc

Cu

H • H

o

-P •rl a •* te bO tft to b0 bO

^R. to bû 1? ÖR

to i j " Ä

to bO 5ft bO to bO bû

§ ESI

w z. <c o

0 ! <c o :=> ^ 1

. H

2 ; - H

CS]

»H « V . h

E 2 ( a

u ° 0 o

o

•o o -u

• H • • y) i , - O r ­n a _

CU f\J 10

• + si « Q to M » m a

> rH -H

co J o •o

« cc

Cu

H • H

o rH 1>

10

>4

z l ^ 0) N

- H r H • r * 4-> ( H

o O >

a o

V ) O . < 3 as -o O o

œ a.

a, - t < Ä (0

(H . . a

a , E O t« cc a o u.

aï T) r H 41

•(H >-<

z

V

N • H r H • H

t . a»

Cm

O

a. o co

r H

> - J

C O

• H

U

3 X» O

a.

c * < - H W H o

u .. <o

a, H O u ce, ai O Cm

z 1-.

0) M

• H rH • H * J I H

Ut

m o

S rH

>

c o

• H

* J

u 3

w ?. < n. z < c Z r l

CÛ io

.. o) o. a O l< cc « o u.

ai •r l

z

14

N • H r i

• r l

V.

0 ;

L T \ O O J

!X

O

rH 0) >

a o *->

s = < o O !.

Cu cc

*; ° O r ( tO o

U . . 4)

a. e O 1 . CC 4

11 CU a> >>

1

•a rH « >H

z

« N

- H

• H

U

01 u,

I A O ro

0.

O >

c o

•r l

O 3 -o O u

s *• S -O o,

M . . tv

a. e o u\ os « O t m |

CO TJ r H

O) • H

• r l

r i

m 0)

O (\J

O 4>

W - J >-< -J c J o \ H

X (J ~=> 3 H T3 J Î O < u i* a,

• a

H -H

z : ffl

•• « a. s o t-en m O t u

10

>4

z l ^ 0) N

- H r H • r * 4-> ( H

o O >

a o

V ) O . < 3 as -o O o

œ a.

a, - t < Ä (0

(H . . a

a , E O t« cc a o u.

aï T) r H 41

•(H >-<

z

V

N • H r H • H

t . a»

Cm

O

a. o co

r H

> - J

C O

• H

U

3 X» O

a.

c * < - H W H o

u .. <o

a, H O u ce, ai O Cm

z 1-.

0) M

• H rH • H * J I H

Ut

m o

S rH

>

c o

• H

* J

u 3

w ?. < n. z < c Z r l

CÛ io

.. o) o. a O l< cc « o u.

ai •r l

z

14

N • H r i

• r l

V.

0 ;

L T \ O O J

!X

O

rH 0) >

a o *->

s = < o O !.

Cu cc

*; ° O r ( tO o

U . . 4)

a. e O 1 . CC 4

11 CU a> >>

1

•a rH « >H

z

« N

- H

• H

U

01 u,

I A O ro

0.

O >

c o

•r l

O 3 -o O u

s *• S -O o,

M . . tv

a. e o u\ os « O t m |

CO TJ r H

O) • H

• r l

r i

m 0)

O (\J

O

173

S. NYANZA 48

CO Ui Z O N J < y 3 S o

<*! a. § U ai u CL.

z o D Q

§

H

2 H S < N Z < z

o S ]

Z

O EH

O p o

f A

3 : - j

S ]

0 C O

C U

1

0

O J

i D

O u-) co

o t o O z <t . J a«

r-i 0 ) >

- J

c o *-» o

T J O U

1-4

r-4

O

o O CO O

O c û

L A r A

o o L A

o

l A c o f A

O O r A

i -H

0 0 r H

r-i

...-

o S ]

Z

O EH

O p o

f A

3 : - j

S ]

0 C O

C U

1

0

O J

i D

O u-) co

o t o O z <t . J a«

r-i 0 ) >

- J

c o *-» o

T J O U

KH

o o o

f \ J . H

i-H r-i

O

o

ru

O O

\ o o o

ru O o c o

o S ]

Z

O EH

O p o

f A

3 : - j

S ]

to i n —' r-

H 7

C1 m

o t o O z <t . J a«

r-i 0 ) >

- J

c o *-» o

T J O U

« O

o O O

o o I M \ O

o

- H

O O J -

o S ]

Z

O EH

O p o

f A

3 : - j

S ]

to i n —' r-

H 7

C1 m

o t o O z <t . J a«

a> N

*•> - H

o •** x : + j

• r i <J)

o o

O

o

ru

O

o

H

o o o

2 : O S J

o

< C3

en

< z

O Π<

r u

- 3

M

<

0 I N r o 1

i r i

I T *

CM

0 * r

1

CO

>< a o

ta > o>

_J

a 0

•ri

U

3 * U O

u eu

r-*

H-H

o o o - 3 -

O vO

O O o

O l A

0 0

O O

m

o o

r A O

o f A r A r u

o o

r H

l A

ru ON

2 : O S J

o

< C3

en

< z

O Π<

r u

- 3

M

<

0 I N r o 1

i r i

I T *

CM

0 * r

1

CO

>< a o

ta > o>

_J

a 0

•ri

U

3 * U O

u eu

o o

C O

O o o o

eu

O o m

O o

C O

ru O O O O

r H

f A r u o o

2 : O S J

o

< C3

en

< z

O Π<

r u

- 3

M

<

0 a)

•H 0

t o Ê 0 O

CO

>< a o

ta > o>

_J

a 0

•ri

U

3 * U O

u eu

"

8 o o

o o «•\ \ o o I M

O

o o o

2 : O S J

o

< C3

en

< z

O Π<

r u

- 3

M

<

0 a)

•H 0

t o Ê 0 O

CO

>< a o

u

t i + J •<-) 3 -H 0 r (

-C +* +•> fc. • H «

O O

O

o

Ol

o o

•^>

r H

O l A

o o r-i

r-i

Z O O ]

M

< O

ce < o

t o

to.

U

<

•o o

I N W

: 0

o t o

05 CS w

r - ( • H O

CO

4 )

> O

- 1 a o

- H j - > U

3

0 i<

P*

M M • H

O O

o

- 3 -

C O C O o

o c o

f A

O L A

o o m

o o o

l A O r-i

f A O O r u

r H

r H L A

ru O

o ru t A I M

Z O O ]

M

< O

ce < o

t o

to.

U

<

•o o

I N W

: 0

o t o

05 CS w

r - ( • H O

CO

4 )

> O

- 1 a o

- H j - > U

3

0 i<

P*

M

8 o ( M

O O

r y

ru ru

>~o

o o \ o o o

ru

O f A

f A O O

o o

-d- - J "

Z O O ]

M

< O

ce < o

t o

to.

U

<

t B

H t 0

u o o

o a < \ i

"O

.2 .. 2 h - o i n «> a »-:

• + « *•» Q

9 o a > r H - H

: 0

o t o

05 CS w

r - ( • H O

CO

4 )

> O

- 1 a o

- H j - > U

3

0 i<

P* M

O

O

l - t

H

O O ro

fi

o o rvj

O r-t

rH

o o

Z O O ]

M

< O

ce < o

t o

to.

U

<

t B

H t 0

u o o

o a < \ i

"O

.2 .. 2 h - o i n «> a »-:

• + « *•» Q

9 o a > r H - H

: 0

o t o

05 CS w

r - ( • H O

CO

u 0)

N + > - H

3 rH 0 H

•H o>

O o r \ j

r-H

O O O

O

o ru

H

8 o o

c o

Z O O ]

M

< O

ce < o

t o

to.

U

<

t B

H t 0

u o o

o a < \ i

"O

.2 .. 2 h - o i n «> a »-:

• + « *•» Q

9 o a > r H - H

: 0

o t o

05 CS w

r - ( • H O

CO

• r i a

=3

« t o t o to M

bû 5ft w J *

bO tfî bû bû bO bO î f t

bO bO X

bû X

bo X ï f t

bO X

bo bû X

bO ïR bO X

bû Jf

Z O O ]

M

< O

ce < o

t o

to.

U

<

t B

H t 0

u o o

o a < \ i

"O

.2 .. 2 h - o i n «> a »-:

• + « *•» Q

9 o a > r H - H

: 0

o t o

05 CS w

r - ( • H O

CO

to T) . H 4)

•H

2

U a i

N • H

i H • H * • >

t ,

bu

l A O a.

O

r-i

a* > a> ^ a o

• » - *

* J

o 3

•o O

SC L.

a: o a CC - H

o CO 05

U .. ai

0 , H O U K 0) O [*,

CO

-o r - l

> H

t )

• H

r H - H

* J U

l A O n i

O ru

r-i 0 ) > ID

_ ]

C

0 t 0 H Z * J

< o W 3 fO T l

0 Û 3 t ,

a, M IS) C • H - H *>: a: »

u .. a> a. e o u PC «

(0

•o V

•H

U

• H

M • H V J H

LA O ru

O r u

rH 4)

0 • r<

* J

O 3

T 3 O

co z c • * - H u CO 0 ]

. . 0 )

0* s O L. CK «

CD

T) r H 1>

• r i

4 ) N

• H H • r i

U Ol

U ,

LA O ru a,

O r u

xi

r H 4> >

a o

• H

3 CC ~rj rd o > u O a,

Z -H

co Q u

.. 0) eu e o u ce a} o U>

-a r-i 4>

•H >•

z

0 ) M

• H r H • H 4-»

U

0 )

u.

l A O r u

PU

O

ru

r H 0> > « C O

• r t *J U

CO 3

z -o < O M (-.

ca a, < c S « - H O " 5 (0

Û. H O U CX (0 U fa-

co -a

4 )

Z

L. © M

• H r-i • r * * J

0> u .

f o 4> ~* a 0

-*» o 3

•o 0

a.

tQ a H - H < •s. o

•• €>

a. s O ( . K « U Ex

to T) . H 4)

•H

2

U a i

N • H

i H • H * • >

t ,

bu

l A O a.

O

r-i

a* > a> ^ a o

• » - *

* J

o 3

•o O

SC L.

a: o a CC - H

o CO 05

U .. ai

0 , H O U K 0) O [*,

CO

-o r - l

> H

t )

• H

r H - H

* J U

l A O n i

O ru

r-i 0 ) > ID

_ ]

C

0 t 0 H Z * J

< o W 3 fO T l

0 Û 3 t ,

a, M IS) C • H - H *>: a: »

u .. a> a. e o u PC «

(0

•o V

•H

U

• H

M • H V J H

LA O ru

O r u

rH 4)

0 • r<

* J

O 3

T 3 O

co z c • * - H u CO 0 ]

. . 0 )

0* s O L. CK «

CD

T) r H 1>

• r i

4 ) N

• H H • r i

U Ol

U ,

LA O ru a,

O r u

xi

r H 4> >

a o

• H

3 CC ~rj rd o > u O a,

Z -H

co Q u

.. 0) eu e o u ce a} o U>

-a r-i 4>

•H >•

z

0 ) M

• H r H • H 4-»

U

0 )

u.

l A O r u

PU

O

ru

r H 0> > « C O

• r t *J U

CO 3

z -o < O M (-.

ca a, < c S « - H O " 5 (0

Û. H O U CX (0 U fa-

co -a

4 )

Z

L. © M

• H r-i • r * * J

0> u .

f o

174

S. N Y A N 2 A 4 9 '

ce U Z O N -J < u Ü

o J o u ui Ó as o < a, O ai u OS

S? a. ui -1

- j Z O

3 a o ai a,

H

y 2 H

S < N Z <: z

o es

2 O

O O

K \

V *

r-J

S 3

M

0 CO

CM

0

i n

0

1 m co

CO

-1 0 -.0 0

a.

r H 4 ) > a i

- j

0 - H

+ j

0

- 0

0

a .

t -4

r - t

0 0

M O r H

O r H

O 0 eu

r H

0 A J

r H

0 0 O

^0 H

O

r H

0 O 0

C\J

r H

- d -

rvl eu - 3 -

o es

2 O

O O

K \

V *

r-J

S 3

M

0 CO

CM

0

i n

0

1 m co

CO

-1 0 -.0 0

a.

r H 4 ) > a i

- j

0 - H

+ j

0

- 0

0

a .

r H

0 0 co

8 0

0 0

O 0 O O O O

C O

co r H

o es

2 O

O O

K \

V *

r-J

S 3

M

U) I T )

w r -

• H 1

CO

-1 0 -.0 0

a.

r H 4 ) > a i

- j

0 - H

+ j

0

- 0

0

a .

r H

O O

0 0 0

O O O

o es

2 O

O O

K \

V *

r-J

S 3

M

U) I T )

w r -

• H 1

CO

-1 0 -.0 0

a.

u a>

±> H

3 . H

0 H JZ +•> -t-> r4 • H û)

0 0 r H

H

O co

0 0 0

O O O

vu

O N )

O

œ < - 0

- S 1

Z M

cc

2 :

ru

S 3

0 C N

1

un <T\

CN

0

1

• i n

co s M

S 3

0

4 ) > a»

a 0

• H

4->

u 3

• a 0 u

I X

M

O

O

r-i

0 > co r H

O O O

O

O C O V U r H

O O O

<\J r-i

O r \ j

O N )

O

œ < - 0

- S 1

Z M

cc

2 :

ru

S 3

0 C N

1

un <T\

CN

0

1

• i n

co s M

S 3

0

4 ) > a»

a 0

• H

4->

u 3

• a 0 u

I X

r H r H

O O

C O

O O O

O

O co f \ J

O O O

O N )

O

œ < - 0

- S 1

Z M

cc

2 :

ru

S 3

- H

»H

0 0

UT G

5 O

S C O

co s M

S 3

0

4 ) > a»

a 0

• H

4->

u 3

• a 0 u

I X

>-i

0 0

O O O

0 0 0

J -

O N )

O

œ < - 0

- S 1

Z M

cc

2 :

ru

S 3

- H

»H

0 0

UT G

5 O

S C O

co s M

S 3

0

•D

PJ 4-> H

3 >-* 0 - H

. C 4->

• H a ;

0 0 0

r-t

O O O

8 0 Cv.

O

S 3

U 3

< U

t O

H

S )

<

<xi 0

0 *"N

TJ O C -£)

CM H

• 0

0 ••n - 3 < ce w

at > a>

- 3

a 0

• w

- M

O

3 " O O L<

a.

y~4

M r H

O O m H

C O r H

C O H

O O O

ru

0

r H

0 0 0

(NJ

a j cv)

O 0 O

0 0

co 0 S

O

S 3

U 3

< U

t O

H

S )

<

<xi 0

0 *"N

TJ O C -£)

CM H

• 0

0 ••n - 3 < ce w

at > a>

- 3

a 0

• w

- M

O

3 " O O L<

a.

• H

0 0 0

N ^ N * \ 0 0 0

0 " r H

O I A f A

O O O

0 0 0

- 3 - -

r H

O

S 3

U 3

< U

t O

H

S )

<

^ U

E 0 ( e —<

u

°o

s..*» u T3 in « q « - .

eu (\j w >-> • + «

± > Q t O 4 J « a a

> H -H

• 0

0 ••n - 3 < ce w

at > a>

- 3

a 0

• w

- M

O

3 " O O L<

a. Y~4

O O

O O O

Vu

O

- H

C-- O O O

f A

0 0 0

O

S 3

U 3

< U

t O

H

S )

<

^ U

E 0 ( e —<

u

°o

s..*» u T3 in « q « - .

eu (\j w >-> • + «

± > Q t O 4 J « a a

> H -H

• 0

0 ••n - 3 < ce w

u 0> M

-4-» - H 3 r-* O H

J 3 4 J + * U

H a>

O O O ^

O O O

I A

O O m

O 0 0

J -

O

S 3

U 3

< U

t O

H

S )

<

^ U

E 0 ( e —<

u

°o

s..*» u T3 in « q « - .

eu (\j w >-> • + «

± > Q t O 4 J « a a

> H -H

• 0

0 ••n - 3 < ce w

• H

a 3

* t ta U ) *ft U) ft te îR te 1R to Jf Ift U ) Jf 6 0

O

S 3

U 3

< U

t O

H

S )

<

^ U

E 0 ( e —<

u

°o

s..*» u T3 in « q « - .

eu (\j w >-> • + «

± > Q t O 4 J « a a

> H -H

• H O

CO r H 0 )

• a

r H 0)

2

U

V N

• H r H • H • M

O a.

0 ru

a*

cO v

2 - H

O 0 « 3

O T 3

O < ^ < CO Ö 3 C - H <

t . . . a i

eu e 0 u 0Ü ffl 0 u .

03 T 3 r H 4>

• H

2

V N

• H r H

* J

U ,

O n i

0 ru

> « r-J

G O

• H 4-» O

3 T 5 O k.

r H

CO C X - H r H

CO ( 0

a, s 0 u a «

10

r H

a> • H > 4

2

(^ a>

r H

0 )

I A O

eu

0 r H

a> > 0 )

-1

„ C co 0 W -H 0 V H 0

s -0 9 0

w c W - H :* CO [Q

t4 . . a) a. B O u\ ce m l Ü u.

10

-a V

• H

z

0> N

• H

• H

<V

h.

m 0 AI a.

0 ru

r H

>

a 0

• H • M O 3

T 3

<£ to ci

< Ü ©

U . . ft)

a. e 0 t. « 0 0 u .

u

« >. 1

ta •o r H « •H > H

2

( H

a> N

• H r-i • H

.M

a» u .

m O rvj (X

O ry

• H a i >

c 0

• H 4-> Ü

3

•a

« s

9 -0 ta

u . . 4 ,

eu a O u ex ta 0 u

( 0 T î r H a i

• H

2

r4 O

N • H r H • H -*-> U

a>

f O ru

r j

C 0

• H 4-* O

- 0 3

- 4 t a

^ 0

=1 a

3 -H X 0 <0

r . • • «

Û H B

0 fc ce « 0 c*<

• a

r H 0)

2

U

V N

• H r H • H • M

O a.

0 ru

a*

cO v

2 - H

O 0 « 3

O T 3

O < ^ < CO Ö 3 C - H <

t . . . a i

eu e 0 u 0Ü ffl 0 u .

03 T 3 r H 4>

• H

2

V N

• H r H

* J

U ,

O n i

0 ru

> « r-J

G O

• H 4-» O

3 T 5 O k.

r H

CO C X - H r H

CO ( 0

a, s 0 u a «

10

r H

a> • H > 4

2

(^ a>

r H

0 )

I A O

eu

0 r H

a> > 0 )

-1

„ C co 0 W -H 0 V H 0

s -0 9 0

w c W - H :* CO [Q

t4 . . a) a. B O u\ ce m l Ü u.

10

-a V

• H

z

0> N

• H

• H

<V

h.

m 0 AI a.

0 ru

r H

>

a 0

• H • M O 3

T 3

<£ to ci

< Ü ©

U . . ft)

a. e 0 t. « 0 0 u .

u

« >. 1

ta •o r H « •H > H

2

( H

a> N

• H r-i • H

.M

a» u .

m O rvj (X

O ry

• H a i >

c 0

• H 4-> Ü

3

•a

« s

9 -0 ta

u . . 4 ,

eu a O u ex ta 0 u

( 0 T î r H a i

• H

2

r4 O

N • H r H • H -*-> U

a>

f O ru

175

S. NYANZA 50

ÜJ Z O N -J

3 o o o

6 Bi O <

o. O C *

« o.

J

> UJ -J z o 3 Q O o: 0-

U

» H

H y 2 H Ui

5 z > z

- H

>

c 0

+ J

u 3

T ) O

O.

t -4

• H

- H

>

c 0

+ J

u 3

T ) O

O.

M

- H

>

c 0

+ J

u 3

T ) O

O.

y-I

U

M 4-» -i-4 3 ^H O ^

XL +> * J ^

0)

> - a

a 0 *-> u 3

T 3 O

a,

1-4 1-4

0)

> - a

a 0 *-> u 3

T 3 O

a,

«

0)

> - a

a 0 *-> u 3

T 3 O

a,

t -H

u

* J - H 3 rH O - ^

*-» U H 4>

O

Z o

O o

n O £X --Ï >-J -

3

S?

-S o v j O

r j CC

•H 0

tO

• H

> «

a 0

• H -*-> O 3

T )

O

M • H

o o J " O AJ

O o -3"

o o

I T \

A J

\Xl rA

o m co

O I A

O

Z o

O o

n O £X --Ï >-J -

3

S?

-S o v j O

r j CC

•H 0

tO

• H

> «

a 0

• H -*-> O 3

T )

O

M M

O o

O .H

O

Z o

O o

n O £X --Ï >-J -

3

Veg

t.

Per

iod

lat

+

2n

d:

(œ)i

(v

s/

s)

in

Day

s, 1

st:

13

5-1

45

o v j O

r j CC

•H 0

tO

• H

> «

a 0

• H -*-> O 3

T )

O

M

o o

C O

O I A

O

Z o

O o

n O £X --Ï >-J -

3

Veg

t.

Per

iod

lat

+

2n

d:

(œ)i

(v

s/

s)

in

Day

s, 1

st:

13

5-1

45

o v j O

r j CC

•H 0

tO

u 4>

N 4-> - H 3 rH 0 -H

J3 -u 4-» U • H 4) * En

O i A O-

O o

r H

O o

o O rA

O

Z o

O o

n O £X --Ï >-J -

3

Veg

t.

Per

iod

lat

+

2n

d:

(œ)i

(v

s/

s)

in

Day

s, 1

st:

13

5-1

45

o v j O

r j CC

•H 0

tO

•r i C

3 * t

Ù0 bO b0 <* bD • *

bO b0 bO b0 Ä

bO bO bO X

bO y t b0 to bO b0

Hft bO bO te

O

Z o

O o

n O £X --Ï >-J -

3

Veg

t.

Per

iod

lat

+

2n

d:

(œ)i

(v

s/

s)

in

Day

s, 1

st:

13

5-1

45

o v j O

r j CC

•H 0

tO 0 )

ta •t) i H 41

• H >-<

Z

V N

• H f H • H * J U 4)

I A O A J

O ,

O AJ

4> > V

'-0 ^ ' 0 t a CÜ o o • *

• J < u Z 3 < X) CO 0 \ w-« CL, UT M a a, .^ < z m . . a)

CL. fi O (H « « o en

CO • ö

r-4 0>

• H X

z

t> N

•H M

*-> t , 4)

U ,

i n o O l

a,

o > 0 )

c o

• H

+->

o 3

T l 0

s a, ac o d œ .^ O co «

.. a) a, a o u œ a

(0 •o 4 )

z

0 )

• H

- H

(-. 4>

i r \ O f \ J a.

o A J

4> > 4 )

C O

• H * J Ü

3 T3 O t .

E^ O, W ^ d J -H M X CO

. . (J) CL, S O U CC ffi

co

0)

•«-4

>* 1

Z

1 H

4 )

• H 4->

0 )

I A O AJ a.

o A J

4) > 4 '

a o

• H

O 3

XJ 0 u

CL,

d • H

CO

. . 4 )

a. e o u cc aj

(0 •o r - ( «1

• H

z

*-. 4 )

N

• H

f - 4

U 0)

u.

l A O AJ a.

o A J

rH 4) > O

C o

• H *-> 3

- o o u

Z a , O H d H - H O t î to

u .- a) a, e O 14 ce «

(0 T3 «H 4)

• H >-<

Z

© N

• H - H • H 4-> U,

4 )

l A O A J

a,

o A J *: 0)

w c a: o ZD -H H *J

< 3 O, T3

0 yA U •< O, rc => d

E-. - ^

Z «

.. « eu a o t . CC 40

ta •t) i H 41

• H >-<

Z

V N

• H f H • H * J U 4)

I A O A J

O ,

O AJ

4> > V

'-0 ^ ' 0 t a CÜ o o • *

• J < u Z 3 < X) CO 0 \ w-« CL, UT M a a, .^ < z m . . a)

CL. fi O (H « « o en

CO • ö

r-4 0>

• H X

z

t> N

•H M

*-> t , 4)

U ,

i n o O l

a,

o > 0 )

c o

• H

+->

o 3

T l 0

s a, ac o d œ .^ O co «

.. a) a, a o u œ a

(0 •o 4 )

z

0 )

• H

- H

(-. 4>

i r \ O f \ J a.

o A J

4> > 4 )

C O

• H * J Ü

3 T3 O t .

E^ O, W ^ d J -H M X CO

. . (J) CL, S O U CC ffi

co

0)

•«-4

>* 1

Z

1 H

4 )

• H 4->

0 )

I A O AJ a.

o A J

4) > 4 '

a o

• H

O 3

XJ 0 u

CL,

d • H

CO

. . 4 )

a. e o u cc aj

(0 •o r - ( «1

• H

z

*-. 4 )

N

• H

f - 4

U 0)

u.

l A O AJ a.

o A J

rH 4) > O

C o

• H *-> 3

- o o u

Z a , O H d H - H O t î to

u .- a) a, e O 14 ce «

(0 T3 «H 4)

• H >-<

Z

© N

• H - H • H 4-> U,

4 )

l A O A J

a,

o A J *:

176

s. NYANZA 51

4> > «y

_ ]

c o * J

u 3

- Ö

0 u

a .

s

4> > «y

_ ]

c o * J

u 3

- Ö

0 u

a .

M

4> > «y

_ ]

c o * J

u 3

- Ö

0 u

a .

«

u V M

4 J ' H 3 rH o ^ x: *> + J ^

> • J

c o

u

- o 0

eu

h H

> • J

c o

u

- o 0

eu

»

> • J

c o

u

- o 0

eu

M

<D

• J - H

3 rH O H

X I *>

- H 0)

I !

3

5

<

. H 0 «J <N

m *• r*.

X I I C m

t N »x>

o t o o o UI ai

H •H O

t o

.-H

> « d 0

• H 4->

O

3 T) O

0 m

O^ L A O O

c o rH

O (M

I !

3

5

<

. H 0 «J <N

m *• r*.

X I I C m

t N »x>

o t o o o UI ai

H •H O

t o

.-H

> « d 0

• H 4->

O

3 T) O

r -4

M

0 0 I T \

O O

t X 0

1

I !

3

5

< Veg

t,

Per

iod

1st

+

2n

d:

(m)i

(v

s/

s)

in

Day

s (1

st:

13

5-1

45

o t o o o UI ai

H •H O

t o

.-H

> « d 0

• H 4->

O

3 T) O

M

O O

O IT\ I

!

3

5

< Veg

t,

Per

iod

1st

+

2n

d:

(m)i

(v

s/

s)

in

Day

s (1

st:

13

5-1

45

o t o o o UI ai

H •H O

t o

U 4 ) N

*-> - H

O H

X J 4 J

H 4 )

3 h

O O

m

O O -3-

I !

3

5

< Veg

t,

Per

iod

1st

+

2n

d:

(m)i

(v

s/

s)

in

Day

s (1

st:

13

5-1

45

o t o o o UI ai

H •H O

t o

*> • H

a • Ä U)

A i bû

A i t o

A ï b0

A i *». 60 t o bO A i ^ R

bû t o X S ho

A ; ï f t b0

A Ï bO te Jf ^ t o b0

A i bO

A l bO

>f t if J? bO A i 3

I !

3

5

< Veg

t,

Per

iod

1st

+

2n

d:

(m)i

(v

s/

s)

in

Day

s (1

st:

13

5-1

45

o t o o o UI ai

H •H O

t o 1 )

10 T >

r H

•ri

Z

U V

• M H • H *-> «

U «

m O a.

O

rH 4) > 11

r j

a 0

•rt

O t o 3 C- T) => O 3 U a a •z =» 0 O -H ce

L i

. . v CU B O t* ce ta O u«

0 )

T J

V • H ><

M •H rH • - 4

4->

U Ü

m O O l

CU

0

*:

r H

> to

*A

C O

• H

4->

O

3

W 0 :* ^ O a ,

&* C Z - H

t o a u

.. « PU B 0 U ce a) 0 fe.

(0

• a

a> • r t

><

Z

u a> (

• H

r H - H 4->

a» u .

î 0

i d

r H

> - }

c: 0

-» j 0 3

- d 0 t . a,

c • H

m u

. . a> a , s 0 u os ta 0 u .

TJ

a> • r t

4 )

H

• H 4-*

I A

O <M

a.

0

r H 4)

> a 0

•rH

U

3 T) O U.

Û . G

• H

(D

a, e 0 t . ce ai 0 ( ^

(0 - 0 rH » • H

« N

• H

• H

- M

a i u .

O

eu

O

r H

> O

- 3

C O

O

3 -a 0 u a. c

- r t

(0 . . a»

CU B O t* ce a u u.

5 r H 4>

.s r H

U

l A

O

a. S V ^ C 0

• H

o 3

•o o k l

eu

5 .S to «3 CO

U •• €>

a . B

O u 0Ü «

0 u*

10 T >

r H

•ri

Z

U V

• M H • H *-> «

U «

m O a.

O

rH 4) > 11

r j

a 0

•rt

O t o 3 C- T) => O 3 U a a •z =» 0 O -H ce

L i

. . v CU B O t* ce ta O u«

0 )

T J

V • H ><

M •H rH • - 4

4->

U Ü

m O O l

CU

0

*:

r H

> to

*A

C O

• H

4->

O

3

W 0 :* ^ O a ,

&* C Z - H

t o a u

.. « PU B 0 U ce a) 0 fe.

(0

• a

a> • r t

><

Z

u a> (

• H

r H - H 4->

a» u .

î 0

i d

r H

> - }

c: 0

-» j 0 3

- d 0 t . a,

c • H

m u

. . a> a , s 0 u os ta 0 u .

TJ

a> • r t

4 )

H

• H 4-*

I A

O <M

a.

0

r H 4)

> a 0

•rH

U

3 T) O U.

Û . G

• H

(D

a, e 0 t . ce ai 0 ( ^

(0 - 0 rH » • H

« N

• H

• H

- M

a i u .

O

eu

O

r H

> O

- 3

C O

O

3 -a 0 u a. c

- r t

(0 . . a»

CU B O t* ce a u u.

5 r H 4>

.s r H

U

l A

O

a. S

177

K I S U M U D I S T R I C T

C o n t e n t s District page

Natural Potential 2

Introduction 2

Climate Tables 2

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map 14

Soil Distribution, Fertility and Major Characteristics 15

Population and Land 18

Population per Location and Division 18

Household Composition per Location and Division 19

AEZ — Land Area Available per Location, Division, and per Household and Person 20

Agricultural Statistics (Area, Production and Yields of Major Cash Crops) 21

/ K

Coffee - Area - Production - Yields 1974/75 - 1979/80 21

Small Farm Survey 23

Farm Organisation according to Farm Size Groups 24

Assets, Land Use, Farming Intensity, Inputs 26

Cropping Pattern 28

Herd Composition 30

Inputs and Yields of Major Crops 32

Disposal of Crops . ., 34

Distribution of Farming Activities per Month 35

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 41

KISUMU 2

N A T U R A L P O T E N T I A L

INTRODUCTION

The district is well known for its long-established sugar industry, but development proposals must recognise the fact, that the area is not so good for sugar cane because of relatively low rainfall. At Kisumu Bay, the shore of Lake Victoria curves nearly 100 km eastward and for that reason the zone of low rainfall near the lake - the belt of falling winds of the local circulation (see p. 81 ) - makes a huge eastward bend over the Kano Plains. There, the average annual rainfall is only 1 100-1 500 mm, while 1 500 mm are considered as the lower limit for sugar cane cultivation in the Tropics^). Here, we can start slightly lower (about 1 350 m) because of the lower evaporation compared to tropical lowlands (2 000 mm annual average in LM 2, in L 2 of the lowlands 2 150 mm). Neverless, the sugar area had to be classified mainly as "Marginal Sugar Cane Zone" (LM 2). That means, on good soils the average yields are fair, otherwise they are poor.

Water stress occurs especially after the second rains which are feeble and not very reliable (450—600 mm). Therefore, there is only little storable surplus for the real dry season with its peak being in January (see Diagram Miwani).

Further towards the plains, the reliability of the second rains becomes so low and they are so scattered, that even with a figure of 300—500 mm in the Cotton Zone, cultivation of a second annual crop is very difficult (see Diagram Kisumu). It is also difficult to define clearly the second growing period.

This is an area for additional irrigation (see AEZ map) giving possibilities of very good cotton crops even in the Marginal Cotton Zone. Thus, and rice is also a possibility. Its cultivation in the swamps (marked as "Rice or Swamp Zone" in the AEZ map) is risky due to irregular flooding.

The Coffee-Tea Zone (UM 1) and the Main Coffee Zone (UM 2) are very small and therefore relatively unimportant for this district. In its two subzones, the Marginal Coffee Zone (UM 3) has two growing periods: A growing period of 180 days or more days followed by a 120—130 day period, and a growing period of 180 days or more, followed by a 80—90 day period. The annual average rainfall is about 1 000-1 600 mm, with 700 mm expected during the 1st. rains and about 500 mm during the 2nd. rains in at least 6 out of 10 years. Because of the altitude (1 500-1 600 m), the annual mean temperature in the Marginal Coffee Zone is about 20° to 21° C, slightly lower than in the other zones of the district.

^ REHM, S. and G. ESPIG: Die Kulturpflanzen der Tropen und Subtropen. Stuttgart 1976, p. 74.

KISUMU DISTRICT

TABLE 1 : TEMPERATURE DATA

No. and Name of i-, AEZU

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y. of

rec.

9034025 Kisumu Met. LM

1 145 m Station 3

9034081 Kibos Cotton LM

1 1 7 1 m Research Stat. 2 - 3

9034086 Kano Irrigation LM

1218 m Station 3

9035230 Koru Coffee UM

1 559 m Research 3

Station lp

Mean max. 30,2 30,1 29,7 28,3 27,9 27,5 27,3 27,9 28,9 29,9 29,7 29,4 28,9

Mean temp. 23,9 23,9 23,9 23,2 22,8 22,2 22,0 22,2 22,8 23,7 23,7 23,4 23,1

Mean min. 17,5 17,7 18,1 18,1 17,6 16,9 16,6 16,5 16,7 17,4 17,6 17,4 17,3

Abs. min. 11,0 11,7 11,1 11,7 13,9 12,7 11,9 12,1 12,2 11,1 12,8 12,0 11,0

Mean max. 31,0' 30,9 29,5 27,8 27,6 27,8 27,7 28,2 28,7 29,3 29,0 29,4 28,9 "

Mean temp. 23,1 23,2 22,8 22,2 22,0 21,4 21,3 21,5 21,8 22,4 22,4 22,3 22,2 9

Mean min. 15,1 15,5 16,1 16,6 16,3 15,0 14,9 14,7 14,8 15,4 15,8 15,1 15,4

Abs. min. 10,0 11,1 13,3 13,3 11,7 11,1 10,0 11,1 11,1 11,1 11,1 11,1 10,0

Mean max. 31,6 31,7 30,6 28,8 28,8 28,9 28,8 29,2 30,6 30,5 30,4 30,2 30,0

Mean temp. 23,4 23,7 23,7 22,8 22,7 22,2 23,3 22,3 22,8 23,1 23,1 22,9 22,9 7

Mean min. 15,1 15,7 16,8 16,7 16,6 15,5 17,7 15,4 15,0 15,7 15,7 15,6 15,8

Abs.min. 10,0 10,0 12,2 12,8 12,8 11,7 10,6 10,0 10,0 11,1 11,1 11,1 10,0

Mean max. 29,8 29,9 29,0 26,9 26,9 26,8 27,0 27,0 27,9 28,1 28,1 28,6 28,0

Mean temp. 21,5 22,0 21,5 20,8 20,5 20,2 20,2 20,0 20,5 20,8 20,9 20,9 20,8

Mean min. 13,2 14,0 13,9 14,6 14,0 13,5 13,3 13,0 13,0 13,4 13,6 13,1 13,5

Abs.min. 9,7 11,0 10,3 10,1 6,9 10,0 10,1 10,0 10,0 11,1 10,0 10,0 6,9

AEZ = Agro-ecological zone; lp = lower places, hp = higher places within the zone

180

KISUMU 3

KISUMU DISTRICT

TABLE 2: RAINFALL FIGURES FROM VARIOUS STATIONS

having at least 10 years of records up to 1976

No. and

altidude Name of Station

Years

of ree.

Kind of

ree.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Monthly rainfall in mm

May June July Aug. Sept. Oct. Nov. Dec.

9034004 Kisumu, P.C's Office 72 Average 1041 43 71 127 184 140 72 53 70 59 55 86 82

1 135 m 60% prob.1 } 931 18 44 115 156 111 50 43 45 44 38 31 56

9034008 Miwani, The Mill 52 Av. 1 341 63 85 137 216 164 100 83 104 86 90 116 98

1 206 m 60% 1 202 39 62 119 195 128 80 64 92 74 77 62 69

9034011 Maseno, Vet. Farm 42 Av. 1 678 64 81 142 262 211 98 87 131 159 173 160 110

1463 m 60% 1510 40 42 132 240 186 84 67 116 128 146 120 76

9034012 Miwani, Sugar Section I 40 Av. 1 381 57 88 141 228 166 103 77 111 92 97 126 103

1 219 m 60% 1 242 46 57 120 185 141 88 68 97 74 80 85 60

9034025 Kisumu, Met. Station 37 Av. 1 353 56 99 148 236 174 73 64 88 87 88 143 98

1 148 m 60% 1 212 32 67 133 200 148 46 52 72 76 72 104 73

9034060 Kisumu, New Prison 23 Av. 1 343 41 86 140 247 192 63 62 82 96 91 146 97

1 219 m 60% 1 161 26 45 108 217 108 34 40 60 70 83 118 44

9034078 Maseno, Gov. Training 16 Av. 1 853 71 105 157 298 216 111 80 134 161 191 180 151

1515 m Institute --

9034081 Kibos Cotton Exp.St. 24 Av. 1 320 46 91 156 223 164 67 66 102 91 84 137 94

1 172 m 60% 1 181 20 62 139 200 123 52 43 71 86 67 100 52

9034085 Kisumu Town Hall 14 Av. 1 588 78 116 160 243 168 92 43 68 81 89 121 93

1 180 m

9034086 Ahero, Kano Irr. Stat. 14 Av. 1 219 82 98 152 204 124 82 72 57 60 81 111 94

1 219 m

9035046 Chemeül Plantations 44 Av. 1 396 76 98 124 192 155 106 82 97 97 105 173 92

1229 m 60% 1 253 64 65 109 161 134 91 . 72 83 78 92 87 45

9035148 Koru Mission 13 Av. 1 650 115 99 183 208 159 146 134 126 62 105 176 116

1 706 m

9035220 Koru Homa Lime Co. 15 Av. 1 0592 ) 63 72 129 151 123 94 82 92 71 58 84 71

1493 m

9035230 Koru, Coffee Board 16 Av. 1 7423> 111 91 199 270 150 143 133 134 96 103 137 125

1574 m Substat.

These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

Extraordinary low values, probably record errors

Extraordinary high value, due to very wet years in short observation period

181

KISUMU 4

KISUMU DISTRICT

TABLE 3: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological Subzone

Zone

Altitudes

in m

Annual mean

temperature

in°C .

Annual av.

rainfall

in mm

60 % re

of rair

1st rains

in mm

iability

fall1)

2nd rains

in mm

60 % reliability

of growing period

1st rains^) 2nd rains Tota le

in days in days in days

UM 1

Coffee-Tea Very

Zone small, unimportant

UM 2

Main Coffee Very

Zone small, unimportant

UM 3 vli or two

1 500-1 600 20.8°-20.2°

1 400-1 600 > 7 0 0 450-550 1 80 or more 120-130 300-310

Coffee Zone 1 i s

1 500-1 600 20.8°-20.2°

1 000-1 400 600-700 350-450 180 or more 8 0 - 90 260-270

LM 1

L. Midland S e e S i a y a D i s t r i c t

Sugar Cane Zone

LM 2 1 - (m/s)i

1 200-1 500 22.3°-20.9°

1 400-1 600 600-700 450-600 180 or more 110-120 290-300

Marginal Sugar 1/m — (m/s

Cane Zone or s/m) 1 200-1 500 22.3°-20.9° 1 200-1 580 550-700 450-600 170 or more 105-120 275-290

1/m r~ (s/m)i

1 200-1 500 22.3°-20.9°

1 200-1 400 600-700 450-500 170 or more 100-110 270-280

LM 3 m/li(sor

L. Midland s/vs)

1 140-1 450 22.7°-21.0°

1 000-1 400 450-650 330-500 155-175 75-105 230-280

Cotton Zone m/1 ^~ (s or

s/vs) 1 140-1 450 22.7°-21.0° 1 100-1 350 500-650 330-450 155-165 75-100 230-265

m+f(vs)

1 140-1 450 22.7°-21.0°

1 000-1 200 380-550 200-400 135-155 4 5 - 75

LM4

Marginal Cotton (m/s)+i

Zone

1 135-1 200 32.1°-22.3° 1 000-1 100 350-500 <150-250 115-135 < 4 5

1) Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants

2) More if growing cycle of cultivated plants continues into the period of second rains

3) Only added if rainfall continues at least for survival (> 0.2 EQ) of most long term crops

182

D

LU

Ol

SI m

d O (7)

+

< 3

LL

01 c

O o

i "5 (A

: CÖ c QJ O >• S

O "D S

Oi

c "C o g

Û5

1 O) ç >

O l C

E -c

D _ E

s n; c 3 £' x: O c c T3 03 5 rc C Œ m Ü) CS

co O O

+ ID CT)

< LL

< LU

< <

e r * LU > <

2? to

fi II ia

h - O

©

D C/)

<*

O ^»«» o o co - J _1

o O Ü co LU +

• co o LU 0: 2 O O «s N

KISUMU 9

UM

UM 1

UM 1 p or

AGRO-ECOLOGICAL ZONES

= UPPER MIDLAND ZONES

= Coffee-Tea Zone

= Coffee-Tea Zone with permanent cropping possibilities, dividable in a long cropping season followed by a medium one

Very small area near Maseno. Land use potential see Kakamega District

UM2=CoffeeZone

Small and transitional because soils and unimodal distribution of rainfall do not promote high yields, see South Nyanza District

UM 3

UM 3 m/l i s/m

= Marginal Coffee Zone

= Marginal Coffee Zone with a medium to long cropping season, intermediate rains, and a short to medium one

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains, start norm, mid Febr.: M. mat. maize like H 622 & 632 (higher places), H 511 & 512 (lower places),

finger millet; beans;sweet potatoes;e. mat. sunflower like 252;onions, cabbages and other vegetables 2nd rains, start norm, end July (planting up to S.): E. mat. sorghum; beans and potatoes in higher places Whole year, best planting time end F.: Pineapples like Smooth Cayenne, avocadoes, passion fruits (higher places)

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 1st rains: Pigeon peas and cowpeas in lower places; potatoes (higher places); tobacco; tomatoes 2nd rains: Beans (lower places); sweet potatoes; cowpeas for leaves Whole year: Arabica coffee (on bad soils marginal), citrus, bananas, pawpaws, mangoes; cassava in lower places

P a s t u r e a n d f o r a g e 0.7-1.2 ha/LU on high grass sec. savanna, down to 0.15 ha/LU feeding Napier or Bana grass, maize stalks, and banana leaves, and planting fodder legumes

100

50

UM 3vl/lior two

Nr.: 9035007 Fort Ternan .Tunnel St.

0 '10 'S 35 23'E 1740m 44y up to 1964

n_ . . - j

_ _ > >

ix

-100

50

•772 U _j— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

— Approx pot évapotranspiration ol a permanent crop (bananas)

Approx pot évapotranspiration of I. mat. maize like H 612

Approx pot évapotranspiration of m, mat. wheat like Kenya Tembo (upper areas) 772 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

187

KISUMU 10

UM 3 = Marginal Coffee Zone with a very long to long cropping season and intermediate rains, vl/l i dividable in two variable cropping seasons and i.r. or two (see Diagram Ft. Ternan)

Small, potential 1st rains nearly like above except prefering maize H 612, but second rains start undistinctly around July with fair chances for m. mat. maize like H 511 —12. Marginal for coffee also on good soils

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone

LM 1 = Lower Midland Sugar Cane Zone with a long cropping season followed by a medium one I <-^m i and intermediate rains

Very small, land use potential see Siaya District

100-

LM2l /m- (m/s )

Nr.: 9034008 Miwani , the Mill

0°03S 34°59'E 1190m 5 2 y . u p t o l 9 7 6

100

_,— Average rainfall per decade I rainlall surpassed in 6 out ol 10 years

Approx. pot. évapotranspiration of a permanent crop (sugarcane)

Approx. pot.évapotranspiration of m. mal. maize like H511

Approx. pot. évapotranspiration of m. mat, maize like H622

Approx. pot. évapotranspiration of m mat sorghum

661 ' Rainfall per indicated growing period.surpassed in 6 out of 10 years

LM2 = Marginal Sugar Cane Zone

LM 2 = Marginal Sugar Cane Zone l/m — with a long to medium cropping season (m/s or followed by a (weak) medium to short or short to medium one s/m) (see Diagram Miwani)

V e r y g o o d y i e l d p o t e n t i a l (av. more than 80 % of the optimum) 1st rains, start norm, end Febr.: M.mat.sorghum;sweet potatoes;m. mat. soya beans, e. mat. sunflower like 252

or Hybrid S 345; sweet pepper, chillies, pumpkins

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: M. mat. maize like H 511-513 and 622 (^ 60%), late mat. sorghum, finger millet; beans, pigeon peas,

late mat. groundnuts (rosette resistant); late mat. soya beans, roselle;egg plants, tomatoes, onions 2nd rains, start undistinctly towards end Aug.: Green grams (up to 1 250 m), e. mat. sunflower ('v 60 %) Whole year, best planting time end F.: Cassava, pawpaws (70-80 %), bananas (y 60 % on deep soils), yam beans (best near rivers)

188

F a i r y i e l d p o t e n t i a l (av. 40—60 % of the optimum) 1st rains: Rice in mbugas; cowpeas; tobacco (on sandy soils), cotton (50—60 %, low quality -> danger of rain in

open bolls); cabbages, kales, egg plants 2nd rains: M. mat. sorghum (50—60 %)^\ m. mat. maize (40—50 %), bulrush millet (awned var.); beans (higher

places), cowpeas (lower places),bambarra groundnuts (light soils); sweet potatoes {y 40 %); cotton (July—F., relayplanted in maize of first rains)

Whole year: Sugar cane, pineapples, sisal, citrus (low qual.), mangoes (endangered by fungus diseases)

P a s t u r e a n d f o r a g e 0.6-1.2 ha/LU on sec. high grass savanna with Hyparrhenia and Panicum dominating; down to 0.15 ha/LU feeding Napier or Bana grass, maize stalks, and Banana leaves, and planting fodder legumes

LM 2 = Marginal Sugar Cane Zone with a long cropping season I — (m/s) followed by a (weak) medium to short one i and intermediate rains

Small, potential see Siaya District

LM 2 = Marginal Sugar Cane Zone with a long to medium cropping season l/m — followed by a (weak) short to medium one (s/m) i and intermediate rains

Very small, potential see Siaya District

100

50

LM3 m/l i (s/vs)

Nr.:9034004 Kisumu, Prov. Off.

0°06'S 34°45'E 1130m 72y. up to 1976

U I I I I I I I I i 1 I . - I . I I t . .

-100

- 5 0

M M •506

O. N •152-

D

i— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx. pot évapotranspiration of a permanent crop (bananas)

Approx pot. évapotranspiration of e. mat. maize like Katumani comp. B

Approx pot. évapotranspiration of m.mat .maize like H511

Approx. pot. évapotranspiration of m. mat. sorghum

Approx. pot. évapotranspiration of early mat. mil let like proso millet 1 506 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

LM3 = Lower Midland Cotton Zone

LM 3 = Lower Midland Cotton Zone with a medium to long cropping season, m/l i (s intermediate rains, then followed by a (weak) short or short to very short one or s/vs) (see Diagram Kisumu)

189

G o o d y i e l d p o t e n t i a l 1st rains, start norm, begin March: E. mat. maize like Taboran or Katumani (60—70 %)2), m. mat. sorghum

(70—80 %), e. mat. bulrush millet (70—80 %); m. mat. beans, green grams, cowpeas; groundnuts and bam-barra gr. (both in light soils), simsirrr); sweet potatoes; cotton ('v 60 %), m. mat. soya beans, e. mat. sun­flower like 52; tomatoes, onions; chick peas (on heavy bl. soils), dwarf castor^), kales, muskmelons

2nd rains, start undistinctly after middle rains of Jy.—S. in Oct.: Ratoon of sorghum; simsim (plant Aug.), green grams; sweet potatoes in swampy places

Whole year, best pi. time March: Cassava ( ^ 60 %), sisal, Mexican yam beans Near swamps with water regulation resp. add. irrigation: Rice, bananas (on dams), Chinese cabbage (on ridges)

and other vegetables

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 511-12 (50-60 %),H 622, finger millet (50-60 %); pigeon peas (March-F.); tobacco (on

well drained soils in higher places) 2nd rains: Early mat. proso millet (O.-N.), dwarf sorghum (40-50 %), e. mat. bulrush millet (birdrrejecting

awned var. best); mwezi moja beans, e. mat. bambarra groundnuts (in light soils); dwarf sunflower Whole year: Pawpaws, mangoes, citrus

P o o r y i e l d p o t e n t i a l (av. 20-40 % of the optimum) 2nd rains: E. mat. maize

P a s t u r e a n d f o r a g e 0.7—1.0 ha/LU on mixed savanna with star grass (Cynodon dactylon); down to 0.2 ha/LU feeding Bana and Napier grass; fodder legumes like Townsville lucerne (Stylosanthes humilis) for pasture and soil improvement

LM 3 = Lower Midland Cotton Zone m/l — with a medium to long cropping season, (s or s/vs) followed by a (weak) short or short to very short one

Small, land use potential nearly like above. Unimportant differences see Siaya District

LM 3 = Lower Midland Cotton Zone m i with a medium cropping season, (s/vs) intermediate rains, and a (weak) short to very short one

Very small, land use potential see South Nyanza District

LM 3 = Lower Midland Cotton Zone m + f (vs) with a medium and a fully (weak) very short cropping season

G o o d y i e l d p o t e n t i a l 1 st rains like LM 3 m/l — (s) less 10 % (cotton then fair) 2nd rains nothing Whole year: Sisal

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 511-13 (40-50%), finger millet; pigeon peas (March-F.); cotton 2nd rains, start norm. Oct.: E. mat. foxtail and proso millet, dwarf sorghum ('v 40 %); green grams, simsim;

sweet potatoes near water Whole year: Cassava

P a s t u r e a n d f o r a g e 0.9—1.2 ha/LU, down to 0.25 ha/LU feeding Bana grass, Townsville lucerne (Stylosanthes) and others

LM4 = Marginal Cotton Zone

LM 4 = Marginal Cotton Zone with a (weak) medium to short cropping season (m/s) + i and intermediate rains

G o o d y i e l d p o t e n t i a l 1st rains, start norm, mid March: E. mat. sorghum {y 60 %), e. mat. foxtail or proso millet (60-70 %); e. mat.

beans (^-60 %), tepary beans (70-80 %), green grams, cowpeas, chick peas (on h. black soils); e. mat. sun­flower like Issanka {y 60 %), simsim

Whole year : Sisal Near swamps: Like LM 3

KISUMU 13

F a i r y i e l d p o t e n t i a l Ist rains: E. mat. maize (40-50 fa) and bulrush millet (50-60 %); pigeon peas {y 40 %), soya beans (40-50 %),

e. mat. groundnuts and e. mat. bambarra gr. (both in light soils); onions

P o o r y i e l d p o t e n t i a l 1st rains: Cotton

P a s t u r e a n d f o r a g e I 2 LU/ha; horse tamarind ( Leucaena) and other palatable shrubs to plant in order to improve fodder situation during dry season

' Best planting time mid of August

2) Plant only small pan for safety, yield in kg is less than ihai of M 511-13 whose percentage of the optimum puis these varieties only in Un­

fair class.

3) Planting end of May

"*' Good for rotation because of its resistance against Striga

191

D if)

KISUMU 15

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

Due to the fact that there is a rift valley stretching west-east, the physiography of the district is varied; it ranges from pro­nounced scarps in the North, East and South and from associated footslopes and piedmont plains to the Kano plains, which occupy the major part of the district.

Here, plain soils on former lake sediments occur (units 324 PI and 325 PI) having a high to moderate fertility, but subject to waterlogging. In the western part of the plain, these soils are associated with swampy areas where soils are mottled (370 S, 371 S). They have a variable fertility and also show waterlogging. On the slightly higher topography, on piedmont plains, alluvial soils of units 114 Y, 115 Y, 116 Y of moderate to low fertility with some drainage problems are dominant.

Above the plains, upland soils with variable topsoil and moderate to low fertility are found (172 U, 173 U). In the far north­western area are the soils of the rocky Southern Kakamega Uplands (unit 179 U) which are soils of low fertility underlain by murram or rock within 80 cm of the surface (cf. to W. SIDERIUS: Simplified Soil Maps of Kenya. KSS, 2nded. Nairobi 1979).

Along the Winam Gulf, soils on lake-side beach ridges can be found (unit 381 Z) which are variable fertile and partly water­logging.

SOILS ON MOUNTAINS AND MAJOR SCARPS

Soils developed on olivine basalts and ashes of major older volcanoes 4 M = well drained, shallow to moderately deep, dark reddish brown, friable, humic, rocky and stony clay loam (nito-humic CAMBI-

x, m 1 ' SOLS, rocky phase)

SOILS ON HILLS AND MINOR SCARPS

Soils developed on intermediate igneous rocks (syenites, trachytes, etc.) = well drained to moderately well drained, shallow to moderately deep, dark reddish brown to dark brown, f i rm , bouldery or

stony clay, w i th humic topsoil (verto-luvic PHAEOZEMS, l ithic and bouldery phase)

Soils developed on basic igneous rocks (serpentinites, basalts, nepheline phonolites; older basic tuffs included) = somewhat excessively drained, shallow to moderately deep, dark reddish brown, friable, gravely clay, wi th acid humic topsoil

(humic CA M BISO LS, partly paralithic phase)

Soils developed on granites = complex of somewhat excessively drained, shallow, stony and rocky soils of varying colour, consistence and texture (dystric

REGOSOLS; wi th ferralic CAMBISOLS, lithic phase and Rock Outcrops)

Soils developed on quartzites = somewhat excessively drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places wi th acid

humic topsoil (RANKERS; with LITHOSOLS and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses = complex of excessively drained to well drained, shallow, dark red to brown, friable sandy clay loam to clay; in many places

rocky, bouldery and stony and in places with acid humic topsoil (dystric REGOSOLS; wi th LITHOSOLS, humic CAMBISOLS

l ithic phase and Rock Outcrops)

Soils developed on Jurassic sandstones, grits and conglomerates 30 H = well drained, shallow, brown, fraible, rocky and stony, sandy clay loam (on hills and plateau rests)

m (eutric REGOSOLS)

SOILS ON PLATEAUS AND HIGH-LEVEL STRUCTURAL PLAINS

Soils developed on intermediate igneous rocks (syenites, trachytes, phonolites, etc.) 61 L = well drained, moderately deep to deep, dark red, friable clay, over petroplinthite; with inclusions of small bottomlands of mollic

h GLEYSOLS, partly petro-ferric phase (rhodic FERRALSOLS, petroferric phase)

62 L = well drained, very deep, dark reddish brown to dark red, friable clay

h (nito-rhodic FERRALSOLS)

U Soil texture-classes

h = heavy

1 = light

m = medium

x = stony or bouldery

v = varying texture

m-h = medium to heavy

m, h = medium and heavy (e. g. abruptly underlaying a topsoil of different texture)

18 H

x,h

20 H

X , V

23 H X , V

24 H

x, m

27 H

x, m-h

193

KISUMU 16

SOILS ON FOOTSLOPES

Soils developed on colluvium from basic igneous rocks (serpentinites, basalts, etc.) 91 F = well drained, deep to very deep, dusky red to dark reddish brown, friable clay, often wi th humic topsoil (nito-rhodic FERRAL-

h SOLS, wi th verti-mollic NITOSOLS)

Soils developed on colluvium from undifferentiated Basement System rocks 98 F = complex of well drained, deep to very deep, dark reddish brown to dark yellowish brown soils of varying consistence and tex-

v ture, in places gravelly and stratified (ferralic ARENOSOLS; wi th ferralo-chromic, orthic LUVISOLS)

SOILS ON PIEDMONT PLAINS

Soils developed on alluvium from undifferentiated Basement System rocks 114 Y = imperfectly drained, very deep, very dark grey to black, very f i rm, cracking, gravelly clay to clay, with calcareous deeper subsoil;

x , h in places gravelly (verto-eutric PLANOSOLS)

115 Y = poorly drained, very déep,dark greyish brown to very dark grey, mott led, f i rm to very f i rm , clay, abruptly underlying a topsoil

m, h of friable, sandy clay loam; in places with a sodic deeper subsoil (eutric PLANOSOLS; wi th solodic PLANOSOLS)

116 Y = complex of moderately well drained to poorly drained, very deep, dark brown to dark grey, f i rm to very f i rm , sandy clay to

h clay, in places stratif ied, sodic and/or cracking (PLANOSOLS, GLEYSOLS, SOLONETZ, VERTISOLS and FLUVISOLS)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 142 U = well drained, deep to extremely deep, dark red, friable clay, with thick humic topsoil (mollic NITOSOLS; wi th nito-luvic

h PHAEOZEMS)

143 U = well drained, extremely deep, dark reddish brown, friable clay

h (dystric NITOSOLS)

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 171 (J = well drained, moderately deep, red, f i rm clay, with humic topsoil; with inclusions of imperfectly drained, deep, dark grey,

h mott led, very f i rm clay (chromo-luvic PHAEOZEMS; with gleyic LUVISOLS)

Soils developed on intermediate igneous rocks (andesites, etc.) 172 U = well drained, moderately deep to deep, dark reddish brown, friable clay; in many places over petro-plinthite (chromic LUVI -

h SOLS, partly petroferric phase; with „murram cuirass" soils)

173 U = well drained, shallow, dark reddish brown to brown, sandy clay loam to gravelly clay, partly over petroplinthite („murram

x, m-h cuirass" soils soils (50-75%) and eutric CAMBISOLS, lithic or petroferric phase; wi th orthic LUVISOLS)

Soils developed on acid igneous rocks 1 76 U = complex of predominantly well drained, moderately deep to deep, reddish brown to brown, friable, gravelly clay loam to clay,

x, m-h often with a humic topsoil; in many places shallow over petroplinthite (chromo-luvic PHAEOZEMS and orthic and chromic

LUVISOLS; with „murram cuirass" soils)

Soils developed on granites 179 U = complex of: — well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petro-plinthite

h (orthic FERRALSOLS, partly petroferric phase; with orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30%) („murram cuirass"

soils)

SOILS ON LACUSTRINE PLAINS

Soils developed on sediments from lacustrine mudstones 324 PI = poorly drained, shallow to deep, very dark brown to very dark grey, f i rm to very f i rm, slightly sodic, cracking clay (upper level

h of Kano plains) (chromic VERTISOLS, sodic and partly lithic phase)

325 PI = poorly drained, very deep, very dark grey to black, very f i rm, slightly sodic, cracking clay, wi th calcareous deeper subsoil (lower

h level of Kano plains) (pellic VERTISOLS, sodic phase)

SOILS ON FLOODPLAINS

Soils deve loped o n sediments f r o m var ious sources ( recent f l oodp la i ns )

368 A = complex of well drained to imperfectly drained, very deep, dark greyish brown to dark reddish brown, stratified soils of varying

v consistence and texture (eutric FLUVISOLS)

194

SOILS ON SWAMPS

370 S = very poorly drained, very deep, very dark grey to black, f i rm, cracking clay, w i th acid humic topsoil (seasonal swamps) (humic

h GLEYSOLS)

371 S = very poorly drained, very deep.darkgrey to black, f i rm clay, wi th acid humic topsoil ; in many places peaty (permanent swamps)

h (humic GLEYSOLS and dystric HISTOSOLS)

SOILS ON COASTAL OR LAKE-SIDE BEACH RIDGES

Soils developed on beach ridges along Lake Victoria 381 Z = imperfectly drained, very deep, dark brown to greyish brown, friable, sandy loam to sandy clay of varying salinity and sodicity;

I, m-h wi th inclusions of loose sand to loamy sand soils (SOLONCHAKS, undifferentiated; wi th ARENOSOLS undifferentiated)

SOILS IN MINOR VALLEYS

383 V = complex of well drained to poorly drained, deep, dark reddish brown to black, f i rm, silty clay to clay; in places calcareous

h and/or cracking)

Soil description from Kenya Soil Survey:

Exploratory Soil Map and Agro-climatic Zone Map of Kenya, scale 1:1 000 000.Rep. E1 , Nairobi 1982. See this map also for colours; symbols

simplified here.

195

KISUMU 18

P O P U L A T I O N AND L A N D

The population of the Kisumu District was more than 482 000 at the time of the Census September 1979 (Table 4). About 152 000 people lived in the Kisumu Municipality. Rural population outside the municipality would then be about 330 000 including 7 000 living in trading centers (possible not dependant on farming). The available agricultural land per average household of 5 people (Table 5) is 2.42 ha, per rural person 0.48 ha (Table 6). In the AEZ UM 1-3 and LM 1-3 this si still adequte, but in LM 4 too small. In view of the fact that a large part of the population of the municipality also depend partly or mainly on rural earnings, and considering the population increase, agricultural intensification is necessary. Most critical is South Nyakach Location with 0.25 ha per person (Table 6).

KISUMU DISTRICT

TABLE 4: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

Kisumu East/West 15 897 17 724 33 621 6 623 118 284

Seme East 14 841 17 239 32 080 6 072 139 229

Seme West 12 603 14 884 27 487 5 546 122 224

Maseno Division 43 341 49 847 93 188 18 241 380 245

North East Kano 20 042 21 651 41 693 8 421 202 205

South East Kano 17 645 19 208 36 853 6 646 296 124

North Nyakach 15 959 18 170 34 129 6 489 183 186

South Nyakach 11 092 12 847 23 939 4 233 79 301

'West Nyakach 8 995 10 062 19 057 4 025 97 195

Nyando Div. 73 733 81938 155 671 29814 859 181

West Kano 15 608 16 697 32 305 5 173 144 223

Winam Div. 15 608 16 697 32 305 5 173 144 223

Muhoroni 6 043 4 250 10 293 2818 76 134

Koru 3 994 3 571 7 565 1 687 78 96

Miwani 6 068 3 432 9 500 2 603 102 92

Chemelil 11 533 9 629 21 162 4817 182 116

Muhoroni Div. 27 638 20 882 48 520 11 925 439 110

Kisumu Municipality 77 722 74 921 152 643 32 458 270 565

Kisumu District 238 042 244 285 482 327 97 611 2 093 230

196

KISUMU 19

KISUMU DISTRICT

TABLE 5: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3)

LOCATION/DIVISION

No. of Households total

Fa rmers Family ' Non-Relatives Persons per

Household .. total b) LOCATION/DIVISION

No. of Households total Adults

>15 years Children < 15 years

Other Relatives

Non-Relatives Persons per Household .. total b)

Location:

Kisumu East/West 6609 2.83 1.25 0.80 0.16 5.03

Seme East 6041 3.01 1.20 0.89 0.17 5.27

Seme West 5478 2.85 1.07 0.87 0.22 5.01

Division Maseno 18128 3.63 0.44 0.85 0.18 5.11

Location:

N.E. Kano 8410 2.99 1.03 0.67 0.27 4.96

S.E. Kano 6604 3.12 1.24 0.80 0.24 5.40

North Nyakach 6514 2.95 1.22 0.87 0.20 5.24

South Nyakach 4222 3.04 1.48 0.87 0.21 5.60

West Nyakach 4026 2.89 1.26 0.40 0.18 4.73

Division Nyando 29776 3.00 1.22 0.76 0.23 5.18

Location:

West Kano 5171 3.26 1.36 1.34 0.27 6.23

Division Winam 5171 3.26 1.36 1.34 0.27 6.23

Location:

Muhoroni 2820 2.34 0.59 0.62 0.09 3.64

Koru 1682 2.68 0.87 0.59 0.24 4.39

Miwani 2594 2.27 0.37 0.43 0.34 3.38

Chemelil 4842 2.69 0.84 0.54 0.29 4.37

Division Muhoroni 11938 2.52 0.67 0.54 0.25 3.98

Location:

Kisumu Municipality 32426 2.67 0.86 0.74 0.28 4.55

DISTRICT: KISUMU 97439 2.83 1.02 0.77 0.24 4.87

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two persons per household as well

197

KISUMU 20

KISUMU DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqkm in '00 ha = sqkm in ha

Location/Division

without townships

Area

total

Census

79

Non-agricultural land Agri­

cultu­

ral

land

A r e a i n a g r o - e c o l o g i c a l z o n e s

A E Z

UM 1 UM 2 UM 3 LM 1 LM 2 LM 3 LM 4

Agric. land

per

house­

hold person

Location/Division

without townships

Area

total

Census

79

Unsuit.

steep

slopes

Forest

Res.,

lakes,

swamps

Others

(roads,

home­

steads,

rivers...)

Agri­

cultu­

ral

land

A r e a i n a g r o - e c o l o g i c a l z o n e s

A E Z

UM 1 UM 2 UM 3 LM 1 LM 2 LM 3 LM 4

Agric. land

per

house­

hold person

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

226 7 22 197

139 13 126

122 sw.2 12 108

487 7 sw. 2 47 431

13 24 63 97

2 67 57

19 82 7

13 26 149 236 7

2.97 0.59

2.08 0.39

1.95 0.39

2.02 0.39

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

202 sw. 15 20 167

296 sw. 29 30 237

183 sw.37 18 128

79 10 8 61

97 10 F. 2 .10 72 sw. 3

859 20 86 86 667

17 150

6 • 143 88

88 40

8 31 20 2

16 7 48 1

8 47 52 431 129

2.27 0.46

3.81 0.68

1.97 0.38

1.44 0.25

1.79 0.38

2.23 0.42

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

144 sw. 36 14 94

144 36 14 94

38 56

38 56

1.82 0.29

1.82 0.29

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

76 2 8 66

78 9 8 61

102 10 10 82

182 6 18 164

438 27 44 356

10 56

11 50

6 76

3 155

24 6 33

1.99 0.54

3.62 0.80

3.65 1.01

3.30 0.73

3.15 0.77

Total rural area 1926 38 124 191 1573 13 8 71 32 552 729 192 2.42 0.48

For official land statistics see supplementary publication to FM-Handbook, Vol. Ill A: Agriculture Land Statistics.

198

KISUMU 21

A G R I C U L T U R A L S T A T I S T I C S

Approximately 1,000 t of seed cotton are ginned at the ginnery of Kibos annually, but this cotton is not grown exclusively within the district. It is estimated that roughly 2,000 ha of cotton are planted annually producing on average yields of 200 kg of seed cotton per ha. Much of it is interplanted during August/September, ) a method which requires little or no cash and little labour because weed growth or pest infestation is negligible during the second half of the year.

Sugar cane is the most important cash crop of the area, although the natural conditions are not very suitable for this crop within the district. )

KISUMU DISTRICT

TABLE 7 a: COFFEE AREA - PRODUCTION - YIELDSa)

Co-operatives

Item Unit Year Item Unit

7V75 75/76 76/77 77/78 79/80

Area

Production

Yield

ha

t

kg/ha

117

19

162

117

11

94

117

17

3A5

117

7

60

117

8

68

TABLE 7 b: COTTON PRODUCTION13)

Ginnery Zone Year Ginnery Zone

1975/76 1976/77 1977/78 1978/79 1979/80

Kibos

Seed Cotton in t 285 669 842 759 1346

3 ale s 500 II74 1478 1333 2362

a) Source: C.B.K.

b) Source: C.L. & S.M.B., does not refer to district area only

1) Investigations of Cotton Research Station, Kibos; the labour profile does take late planted cotton into consideration

2) Fairly exact data exist for industrial crops only; for more detailed information see FMHB Vol. Ill A

199

KISUMU 22

S M A L L F A R M S U R V E Y ( S F S ) 1 )

A glance at the soil and the AEZ maps of the district makes it clear that more than 75 % of the district is unsuitable for econo­mically successful small-scale farming. Extremely heavy soils combined with a warm climate, relatively low annual rainfall and repeated flooding makes farming a heavy burden. The SFS was carried out in AEZ LM 1-3 and LM 3-4.

The farms investigated are relatively small in size: 2.2 to 4.4 ha; half of the land is used for crops and half for grazing. There are however still comparatively large areas of commonly owned grazing grounds available. Therefore the stocking rates given of 3.8-5.4 LU/ha do not reflect the carrying capacity of the pasture. Most of the fertilizer used is applied to sugar cane (tables 9 a and 12 a). A very wide range of crops is grown, which is partly a result of the farmers' desire to spread the risk and also re­flects the marketing possibilities in nearby Kisumu town (table 10).

Table 12 indicates that the farmers harvest very small yields and consider purchased inputs an uneconomic investment. Almost no farmers keep improved cattle and 10 % of the grazing livestock are sheep and goats (table 11). Fifty percent of the maize harvested in AEZ LM 1-3 is sold to the Marketing Board, while in LM 3-4 all food produced in consumed locally (table 13). Graph 14 - Distribution of Farming Activities - reflects in part the difficulties farmers face when working the heavy black cotton soils. The yields indicated for Level II and III in table 15 can only be achieved if the field preparation is mechanised.2)

Lasting improvement of the socio-economic situation of most small-scale farmers of the district can only be achieved through large investment in drainage and irrigation by the Government. The sugar belt yields returns mostly to larger farms only.

1) November 1977, sample size 30. For more detailed and up to date information see FMHB Vol. Ill B *' See also notes on farm management information, output and nutrient input, page 51

200

Ol

KISUMU 24

O

O ÜJ

N

< O H O

z 3 o u <J •< z o p

O

Di

u.

w -1 oa < H

H U 05 «J H &o 1 O ^H D S S - J

D c«

Uä <

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

S. H

00 « • 1 O

O H H

CM t> ftl

IA O t\J •a o

EH

o j J - J -C- IA IM • • • IM tM J -

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

S

I 00 Ift

• 1 O O IA

fA C- IA * • . IA O IA

TS o *> O a a

H o e a h t l i « a o. o z

0.16

0.16

cal. person

day

2000

113

395

23

35

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

I . 1 O O rA

tN H -3" • . • ( M O M

o "h (•» O H B -H

t o 3 n IA IA O

• • • l\J IM J -

•o u I - I • .

® -g J - r> lA H IM

5! H .* o

x

1 1 « îft

to C 0 13 r r

01 P.

13 C O u : o ki CO 01 a

b C t O b o b O b O b C f a O U

I

Farming Intensity:

Cropping Intensity

Portion of improved

cattle kept

Portion of Farmers

owning a Plough

Labour on Farm:

Family Adults

Perm. Hired Labour

Children ;>.

lb years 2

) Persons living on Farm

- average household size -

Adults

>•

lb years

Children <"

Ik years

Subsistence Units

Home Consumption of Major

Food produced on Farm

Maize

Beans

Cabbage

Sorghum

Cowpeas

Groundnuts

Farm Size & Land Use

Livestock on Farm

Farm Size Group

vo I-* co • * i c fti r > c o • . . . | . . . . r - O I - I O o o o I A

O <\i <\joO <M • • * • • H O O O M

IA JR. • t s

O IM IM

H » i-i

r-l J - IA • 1 • •

I A r-l VO

Farm Size & Land Use

Livestock on Farm

Farm Size Group

3 1

O r v j l S . f A f M l A i - l t M ' M

- r O O O O O O O C M

VO f t (VI ON • t . . .

O o o o

I A » • 00

O

J - « • LA

r-l IA

H • O

0 0 00 VO « 1 • •

IA O • *

Farm Size & Land Use

Livestock on Farm

Farm Size Group

1 0 \ H K\ AI H K> H H f t l

H O O O O O O O H 0.2

0.1

0.1*

• IA O

rA * • VO

O H

IA

• O

0> IA IM # 1 • •

i-l O Al

* >

I co tö o) io tö ifl to

X X X X X X X to tu a to x x x x

fö Co tö r3 X X X X <£

tö X »

tö X

o s a = j _i j >j

Farm Size Total

Land Use:

Annual Crops

First Season

Maize

Sorghum

Maize & Sorghum

Cotton

Cassava

Others

Total

Second Season*'

Maize

Maize & Beans

Cassava

Others

Total H

to a o t .

o

+> c Ol e a E t , 0>

B .

Sugarcane

portion of total

1

Grazing & Forage

portion of total

Ol 10

•o c fö

Li 01

X

o

Livestock on Farm:

Cattle: loc8l

improved

Sheep & Goats

Total

202

KISUMU 25

H U (A H co •a-

Q m P S S -J

co

2 3

kl 3 C O O P .

£> 'H 3 fO HJ O

r i b k E Ü

- 3 >» O O

*> q N •H O 'H O O tO C ci « S

U E I I

c o e M S fc,

c a ta u.

« o « •H O -H tO +> t/3

to E Cl E U > kl ta -H o

o OO

8

o §

« >fc

10 k, P. •c c o. k l to Cl E tt 3

4J •H u. o c •P H M v. a < H -O Cl O 1.1 .* a C c c

•H 0 Cl 0 te P. •H rH *H c P. •kl 4J +» O ki -k> k l c k l O 10 0 3 u a. o a. 0

(\J H VO 00 • • t •

o o o o

K> IM m (VI K\ • • • • • o o o o o

lf\ IT\ 00 » • » M O H

ir\ ru oo • • • c\j O w

e

O

P ji

H VO J -

m o K\

CO vO H H O O

E •

tx. B

c-o O H

O bùJ3 c a

•H a > S

•H O rH.f i to O c to o m to kl ki o Ci r»

A v

o o o o o

te ta S JS

o o ü3 (O

to te

% S o h •M O) * > JS O *> o o

o

a. ta XI

ta o ci x >> v

M 3 a. o .c

S3

b3 fcû bo bû to W x x x. x. a x.

s E t.

•n ta O U.

c c O 0 •H 4J TJ C Cl Ë O 3 3 I to -c C 0 O ki

U Ü 3 a I

Cl T> E 0 1 «

00. â

o o •x. Wi

oo « O l ^

• ON O OJ

a a a x.

u c

3 O O J r5 iJ r ]

U E

O O

ta 4J

•Ö C

U

o

s «

O C c 3

CO

Û. ., u O

• H l/l W ED

£ "U U C (Ö Ö

U, •-t

.*: o c

* J

w rH <u as >

* J

•H 0 r J (H

u

203

KISUMU DISTRICT

TABLE 9 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS AEZ: UM 1 - LM 1-3 Survey Area 05

3ange

Assets Peoole on Farr. 1

3ange Land ha

Livestock head

Equipment pieces

Family Adults

Perrn.Hrd. Labourers

Children > i^ No.

Avg. 0

Avg. 1

Up. Qu.

Lo. ;.u.

4.4

4.4

6.0

2.4

15.2

16.3

24.0

6.0

1.1

2.0

2.0

3.1

3.3

2.0

0.5

1.4

1.0

2.7

3.5

4.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha •/>

Avg. 0

Av g. 1

Up. Ou.

L O . q',U«

Total

2.3 5<*

2.3 hS

2.3 67

1.2 40

59.3

0.3 7

0.? 13

0.5 11

3.5

1.2 27

1.2 24

1.8 35

0.4- 17

35.1 i i

i i

i

i i

i i

0.3 7

0.6 12

0.4 13

8.7

0.2 6

0.3 5

0.3 7

0.1 2

7-2

I'arming Intensity

Hange Cropping Intensity crops/yr.

Stocking Hate Improved Cattle % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. -cu.

Lo. Ou.

1.3

1.4

1.1

1.0

1.3

0.6

3.3

3.8

6.5

1.6

-

Inputs Applied

Range Improved Seeds Used 'i of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Plant Pro tection Range Improved Seeds Used 'i of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

Range Improved Seeds Used 'i of area

N P 20 5 K20

Manure Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 56.2 2.7 - 20.9 - - 0.2 - 2.2 - - -

Avg. 1 61.7 • 16.2 - 33.6 - - - 1.1 - 2.9 - 0.1 -

Up. ;U. 33.3 - - 15.0 - - - 0.1 - 3=0 - - -

Lo. ,':U. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms Avg. 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops PC = Perennial Crops

KISUMU DISTRICT

TABLE 9 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ : LM 3 - 4 Survey Area 06

Range

Assets People on Faro

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > Ik No.

Arg. 0

Avg. 1

Op. Qu.

Lo. Qu.

2.2

2.2

3.0

1.6

17.9

2^.5

10.0

0.5

2.3

2.6

2.6

3.0

2.0

0.1

1.0

1.6

2.5

3.0

Land Use

Range Annual Crops ha *

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

1.2 56

1.2 k5

1.6 71

0.8 1*5

37.5

1

0.1 5

0.1*

0.7 32

0.8 27

1.0 k8

0.3 17

21.3

-

0.1 7

0.5 18

0.3 8

<*.5

o.l 5

0.1 k

0.2 7

2

3.2

Farming Intensity

Range Cropping Intensity crope/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crope/yr. Farm Land

LU/ha Pasture & Forage

LU/ha

Improved Cattle % of total

Arg. 0

Avg. 1

Up. Qu.

Lo. Qu.

1.1

1.0

1.0

1.8

1.8

5.5

5-<*

6.7 -

Inputs Applied

Range Improved Fertilizer Applied Manure Plant Protection Seed Used % of area

pure nutrient kg/ha Applied t/ha

Seed Used % of area

pure nutrient kg/ha Applied t/ha Insecticide

kg/ha Fungicide

kg/ha

Seed Used % of area

N P2O5 K20

Applied t/ha Insecticide

kg/ha Fungicide

kg/ha AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 50.3 - - 3.0 - - - - - 2.0 - - -

Avg. 1 53.6 - - 25.8 - - - - 0.2 *.3 - - -

Up. Qu. 100.0 - - - - - - - - 2.5 - - -

Lo. Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

KISUMU 28

KISUMU DISTRICT

TABLE 10 a: CROPPING PATTERN AEZ: UM 1 - LM 1-3 Survey Area 05

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper ^uartile

ha

Lower ^uartile

ha

Total Sample Area Crop

Average 0

ha

Average 1

ha

Upper ^uartile

ha

Lower ^uartile

ha ha % Maize Sorghum Beans Cowpeas Groundnuts Sunflower Cabbage Onions Tomatoes Cotton Cassava Sweet Potatoes Sugarcane Pineapples Others Maize & Sorgm Maize & Beans Maize 8c Others

1.0 0.3 0.0 0.0 0.1 0.2 0.0 0.0 0.0

0.5 0.2 0.0 0.1 0.0 0.0 0.1 0.0 0.0

1.3 0.7 0.3 o.J* 0.4

0.7 C.l 0.2 0.2 0.6

0.5 0.2

0.7 0.0 o.4 0.9 0.3 0.3

1.20 0.80 0.00 0.00 o.4o o.4c 0.00 o.oo • 0.00 0.60 o.4o 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.C0 0.00 ; 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29.0 9.4 1.2 0.4 4.2 5.6 0.1 0.2 0.2

14.5 5-2 0.7 2.6 0.0 0.4 2.7 1.0 0.6

37.1 12.0 1.5 0.5 5.^ 7.2 0.2 0.3 0.3

18.5 6.7 0.9 3.3 0.1 0.5 3.5 1.3. 0.8

Total 7Ö.1 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower v^uartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower v^uartile

ha ha ci

Maize Beans Cowpeas Sunflower Cotton Cassava Sugarcane Pineapples Others Maize & Beans Maize 8c Others

0.7 0.1 0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.1 0.0

1.0 4.0 0.4 1.0 0.6 0.5 0.7 0.0 0.3 0.7 0.5

1.20 0.00 0.C0 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.co 0.00

19.6 4.0 0.4 4.8 0.6 5.2 2.6 0. 1.0 2.0 1.0

47.5 9.7 1.0

11.6 1.5

12.7 6.3 0.1 2.4 4.8 2.4

Total 41.3 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper '^uartile

ha

Lower . u art il e

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper '^uartile

ha

Lower . u art il e

ha ha 0/ /0

Coffee 0.0, 0.2 0.00 0.00 0.2 100.0 Total 0.2 1C0.0

Avg. 0 = average of all sample farms Avg. 1 = average of all farms excluding zero entries Up.Qu./Lo. Qu. = Upper/Lower Quartile, SO % of all sample cases are in between these points % columns = % of total farm land

206

KISUMU 13

F a i r y i e l d p o t e n t i a l Ist rains: E. mat. maize (40-50 %) and bulrush millet (50-60 %); pigeon peas (% 40 %), soya beans (40-50 %),

e. mat. groundnuts and e. mat. bambarra gr. (both in ligbt soils); onions

P o o r y i e l d p o t e n t i a l 1st rains: Cotton

P a s t u r e a n d f o r a g e 1 2 LU/ha; horse tamarind ( Leucaena) and other palatable shiubs to plant in order to improve fodder situation during dry season

' Best planting time mid of August

2) Plant only small part for safety, yield in kg is less than that of H 5 11 - 13 whose percentage of the optimum puts these varieties only in the

fair class.

3 ' Planting end of May

•*) Good for rotation because of its resistance against Striga

191

D

Lu

to

3 -; C' O

CK o PI a c ! ! : 03

> ,—. H « <D

_ i

^ • o h I et I ca LU o u. o o - 1 CT o

< i a cr UJ

S o

o

z LU

u o

3

a a co

11 .

3

V-ÄFX .-'.ft

Hi |h r i , ' ; : : : ,^-

< i m

cr ( i 1 CO

z ^ m

g aiÇiô

! s <ƒ> 5S2* 1 h- C S-£ë 1 — o «™° 1 5 z. «I ! n a «I 1 1 o * -£ — 1 1 H Q . c ni o 1 1 (D 2 o „ m

1 c TD w 5 £ i

'i ce 0) Si1 o UJ m

c/) 2^5 i

m m c/) 10 un- 10

KISUMU 15

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

Due to the fact that there is a rift valley stretching west-east, the physiography of the district is varied; it ranges from pro­nounced scarps in the North, East and South and from associated footslopes and piedmont plains to the Kano plains, which occupy the major part of the district.

Here, plain soils on former lake sediments occur (units 324 PI and 325 PI) having a high to moderate fertility, but subject to waterlogging. In the western part of the plain, these soils are associated with swampy areas where soils are mottled (370 S, 371 S). They have a variable fertility and also show waterlogging. On the slightly higher topography, on piedmont plains, alluvial soils of units 114 Y, 115 Y, 116 Y of moderate to low fertility with some drainage problems are dominant.

Above the plains, upland soils with variable topsoil and moderate to low fertility are found (172 U, 173 U). In the far north­western area are the soils of the rocky Southern Kakamega Uplands (unit 179 U) which are soils of low fertility underlain by murram or rock within 80 cm of the surface (cf. to W. SIDERIUS: Simplified Soil Maps of Kenya. KSS, 2nd ed. Nairobi 1979).

Along the Winam Gulf, soils on lake-side beach ridges can be found (unit 381 Z) which are variable fertile and partly water­logging.

SOILS ON MOUNTAINS AND MAJOR SCARPS

Soils developed on olivine basalts and ashes of major older volcanoes 4 M = well drained, shallow to moderately deep, dark reddish brown, friable, humic, rocky and stony clay loam (nito-humic CAMBI-

x, m 1 ' SOLS, rocky phase)

SOILS ON HILLS AND MINOR SCARPS

Soils developed on intermediate igneous rocks (syenites, trachytes, etc.) = well drained to moderately well drained, shallow to moderately deep, dark reddish brown to dark brown, f i rm, bouldery or

stony clay, w i th humic topsoil (verto-luvic PHAEOZEMS, l ithic and bouldery phase)

Soils developed on basic igneous rocks (serpentinites, basalts, nepheline phonolites; older basic tuffs included) = somewhat excessively drained, shallow to moderately deep, dark reddish brown, friable, gravely clay, wi th acid humic topsoil

(humic CAMBISOLS, partly paralithic phase)

Soils developed on granites = complex of somewhat excessively drained, shallow, stony and rocky soils of varying colour, consistence and texture (dystric

REGOSOLS; wi th ferralic CAMBISOLS, l ithic phase and Rock Outcrops)

Soils developed on quartzites = somewhat excessively drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places wi th acid

humic topsoil (RANKERS; wi th LITHOSOLS and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses = complex of excessively drained to well drained, shallow, dark red to brown, friable sandy clay loam to clay; in many places

rocky, bouldery and stony and in places with acid humic topsoil (dystric REGOSOLS; wi th LITHOSOLS, humic CAMBISOLS

lithic phase and Rock Outcrops)

Soils developed on Jurassic sandstones, grits and conglomerates 30 H = well drained, shallow, brown, fraible, rocky and stony, sandy clay loam (on hills and plateau rests)

m (eutric REGOSOLS)

SOILS ON PLATEAUS AND HIGH-LEVEL STRUCTURAL PLAINS

Soils developed on intermediate igneous rocks (syenites, trachytes, phonolites, etc.) 61 L = well drained, moderately deep to deep, dark red, friable clay, over petroplinthite; with inclusions of small bottomlands of mollic

h GLEYSOLS, partly petro-ferric phase (rhodic FERRALSOLS, petroferric phase)

62 L = well drained, very deep, dark reddish brown to dark red, friable clay

h (nito-rhodic FERRALSOLS)

"•' Soil texture-classes

h = heavy

1 = light

m = medium

x = stony or bouldery

v = varying texture

m-h = medium to heavy

m,h = medium and heavy (e. g. abruptly underlaying a topsoil of different texture)

18H

x ,h

20 H

X , V

23 H

X , V

24 H

x, m

27 H

x, m-h

193

KISUMU 16

SOILS ON FOOTSLOPES

Soils developed on colluvium from basic igneous rocks (serpentinites, basalts, etc.) 91 F = well drained, deep to very deep, dusky red to dark reddish brown, friable clay, often wi th humic topsoil (nito-rhodic FERRAL-

h SOLS, wi th verti-mollic NITOSOLS)

Soils developed on colluvium from undifferentiated Basement System rocks 98 F = complex of well drained, deep to very deep, dark reddish brown to dark yellowish brown soils of varying consistence and tex-

v ture, in places gravelly and stratified (ferralic ARENOSOLS; wi th ferralo-chromic, orthic LUVISOLS)

SOILS ON PIEDMONT PLAINS

Soils developed on alluvium from undifferentiated Basement System rocks 114 Y = imperfectly drained, very deep, very dark grey to black, very f i rm , cracking, gravelly clay to clay, wi th calcareous deeper subsoil;

x , h in places gravelly (verto-eutric PLANOSOLS)

115 Y = poorly drained, very deep,dark greyish brown to very dark grey, mott led, f i rm to very f i rm, clay, abruptly underlying a topsoil

m, h of friable, sandy clay loam; in places with a sodic deeper subsoil (eutric PLANOSOLS; wi th solodic PLANOSOLS)

116 Y = complex of moderately well drained to poorly drained, very deep, dark brown to dark grey, f i rm to very f i rm , sandy clay to

h clay, in places stratif ied, sodic and/or cracking (PLANOSOLS, GLEYSOLS, SOLONETZ, VERTISOLS and FLUVISOLS)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 142 U = well drained, deep to extremely deep, dark red, friable clay, with thick humic topsoil (mollic NITOSOLS; with nito-luvic

h PHAEOZEMS)

143 U = well drained, extremely deep, dark reddish brown, friable clay

h (dystric NITOSOLS) ,

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) = well drained, moderately deep, red, f i rm clay, with humic topsoil; with inclusions of imperfectly drained, deep, dark grey,

mott led, very f i rm clay (chromo-luvic PHAEOZEMS; with gleyic LUVISOLS)

Soils developed on intermediate igneous rocks (andesites, etc.) = well drained, moderately deep to deep, dark reddish brown, friable clay; in many places over petro-plinthite (chromic LUVI ­

SOLS, partly petroferric phase; with „murram cuirass" soils)

= well drained, shallow, dark reddish brown to brown, sandy clay loam to gravelly clay, partly over petroplinthite („murram

cuirass" soils soils (50—75%) and eutric CAMBISOLS, lithic or petroferric phase; wi th orthic LUVISOLS)

Soils developed on acid igneous rocks = complex of predominantly well drained, moderately deep to deep, reddish brown to brown, friable, gravelly clay loam to clay,

often with a humic topsoil; in many places shallow over petroplinthite (chromo-luvic PHAEOZEMS and orthic and chromic

LUVISOLS; wi th „murram cuirass" soils)

Soils developed on granites 179 U = complex of: — well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petro-plinthite

h (orthic FERRALSOLS, partly petroferric phase; wi th orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30%) („murram cuirass"

soils)

SOILS ON LACUSTRINE PLAINS

Soils developed on sediments from lacustrine mudstones 324 PI = poorly drained, shallow to deep, very dark brown to very dark grey, f i rm to very f i rm, slightly sodic, cracking clay (upper level

h of Kano plains) (chromic VERTISOLS, sodic and partly l i thic phase)

325 PI = poorly drained, very deep, very dark grey to black, very f i rm, slightly sodic, cracking clay, wi th calcareous deeper subsoil (lower

h level of Kano plains) (pellic VERTISOLS, sodic phase)

SOILS ON FLOODPLAINS

Soils developed on sediments from various sources (recent floodplains) 368 A = complex of well drained to imperfectly drained, very deep, dark greyish brown to dark reddish brown, stratified soils of varying

v consistence and texture (eutric FLUVISOLS)

171 U

h

1 7 2 U

h

173 U

x, m-h

176 U

x, m-h

194

SOILS ON SWAMPS

370 S = very poorly drained, very deep, very dark grey to black, f i rm, cracking clay, w i th acid humic topsoil (seasonal swamps) (humic

h GLEYSOLS)

371 S = very poorly drained, very deep, dark grey to black, f i rm clay, wi th acid humic topsoil ; in many places peaty (permanent swamps)

h (humic GLEYSOLS and dystric HISTOSOLS)

SOILS ON COASTAL OR LAKE-SIDE BEACH RIDGES

Soils developed on beach ridges along Lake Victoria 381 Z = imperfectly drained, very deep, dark brown to greyish brown, friable, sandy loam to sandy clay of varying salinity and sodicity;

l ,m-h wi th inclusions of loose sand to loamy sand soils (SOLONCHAKS, undifferentiated; wi th ARENOSOLS undifferentiated)

SOILS IN MINOR VALLEYS

383 V = complex of well drained to poorly drained, deep, dark reddish brown to black, f i rm, silty clay to clay; in places calcareous

h and/or cracking)

Soil description from Kenya Soil Survey:

Exploratory Soil Map and Agro-climatic Zone Map of Kenya, scale 1:1 000 000.Rep. E1 , Nairobi 1982. See this map also for colours; Symbols

simplified here.

195

KISUMU 18

P O P U L A T I O N A N D L A N D

The population of the Kisumu District was more than 482 000 at the time of the Census September 1979 (Table 4). About 152 000 people lived in the Kisumu Municipality. Rural population outside the municipality would then be about 330 000 including 7 000 living in trading centers (possible not dependant on farming). The available agricultural land per average household of 5 people (Table 5) is 2.42 ha, per rural person 0.48 ha (Table 6). In the AEZ UM 1-3 and LM 1-3 this si still adequte, but in LM 4 too small. In view of the fact that a large part of the population of the municipality also depend partly or mainly on rural earnings, and considering the population increase, agricultural intensification is necessary. Most critical is South Nyakach Location with 0.25 ha per person (Table 6).

KISUMU DISTRICT

TABLE 4: POPULATION PER LOCATION AND DIVISION CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

Kisumu East/West 15 897 17 724 33 621 6 623 118 284

Seme East 14 841 17 239 32 080 6 072 139 229

Seme West 12 603 14 884 27 487 5 546 122 224

Maseno Division 43 341 49 847 93 188 18 241 380 245

North East Kano 20 042 21 651 41 693 8 421 202 205

South East Kano 17 645 19 208 36 853 6 646 296 124

North Nyakach 15 959 18 170 34 129 6 489 183 186

South Nyakach 11092 12 847 23 939 4 233 79 301

West Nyakach 8 995 10 062 19 057 4 025 97 195

Nyando Div. 73 733 81938 155 671 29 814 859 181

West Kano 15 608 16 697 32 305 5 173 144 223

Winam Div. 15 608 16 697 32 305 5 173 144 223

Muhoroni 6 043 4 250 10 293 2818 76 134

Koru 3 994 3571 7 565 1 687 78 96

Miwani 6 068 3 432 9 500 2 603 102 92

Chemelil 11 533 9 629 21 162 4817 182 116

Muhoroni Div. 27 638 20 882 48 520 11 925 439 110

Kisumu Municipality 77 722 74 921 152 643 32 458 270 565

Kisumu District 238 042 244 285 482 327 97 611 2 093 230

196

KISUMU 19

KISUMU DISTRICT

TABLE 5: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3*

LOCATION/DIVISION

No. of Households total

Fa rmers Family ' Non-Relatives Persons per

Household .. total b) LOCATION/DIVISION

No. of Households total

Adults >15 years

Children < 15 years

Other Relatives

Non-Relatives Persons per Household .. total b)

Location:

Kisumu East/West 6609 2.83 1.25 0.80 0.16 5.03

Seme East 6041 3.01 1.20 0.89 0.17 5.27

Seme West 5478 2.85 1.07 0.87 0.22 5.01

Division Maseno 18128 3.63 0.44 0.85 0.18 5.11

Location:

N.E. Kano 8410 2.99 1.03 0.67 0.27 4.96

S.E. Kano 6604 3.12 1.24 0.80 0.24 5.40

North Nyakach 6514 2.95 1.22 0.87 0.20 5.24

South Nyakach 4222 3.04 1.48 0.87 0.21 5.60

West Nyakach 4026 2.89 1.26 0.40 0.18 4.73

Division Nyando 29776 3.00 1.22 0.76 0.23 5.18

Location:

West Kano 5171 3.26 1.36 1.34 0.27 6.23

Division Winam 5171 3.26 1.36 1.34 0.27 6.23

Location:

Muhoroni 2820 2.34 0.59 0.62 . 0.09 3.64

Koru 1682 2.68 0.87 0.59 0.24 4.39

Mi'wani 2594 2.27 0.37 0.43 0.34 3.38

Chemelil 4842 2.69 0.84 0.54 0.29 4.37

Division Muhoroni 11938 2.52 0.67 0.54 0.25 3.98

Location:

Kisumu Municipality 32426 2.67 0.86 0.74 0.28 4.55

DISTRICT: KISUMU 97439 2.83 1.02 0.77 0.24 4.87

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two persons per household as well

197

KISUMU DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqkm in '00 ha = sqkm in ha

Location/Division

without townships

Area

total

Census

79

Non-agricultural land Agri­

cultu­

ral

land

A r e a i n a g r o - e c o l o g i c a l z o n e s

A E Z

UM 1 UM 2 UM 3 LM 1 LM 2 LM 3 LM 4

Agric. land

per

house­

hold person

Location/Division

without townships

Area

total

Census

79

Unsuit.

steep

slopes

Forest

Res.,

lakes,

swamps

Others

(roads,

home­

steads,

rivers...)

Agri­

cultu­

ral

land

A r e a i n a g r o - e c o l o g i c a l z o n e s

A E Z

UM 1 UM 2 UM 3 LM 1 LM 2 LM 3 LM 4

Agric. land

per

house­

hold person

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

226 7 22 197

139 13 126

122 sw.2 12 108

487 7 sw.2 47 431

13 24 63 97

2 67 57

19 82 7

13 26 149 236 7

2.97 0.59

2.08 0.39

1.95 0.39

2.02 0.39

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

202 sw. 15 20 167

296 sw. 29 30 237

183 SW.37 18 128

79 10 8 61

97 10 F .2 10 72 sw. 3

859 20 86 86 667

17 150

6 143 88

88 40

8 31 20 2

16 7 48 1

8 47 52 431 129

2.27 0.46

3.81 0.68

1.97 0.38

1.44 0.25

1.79 0.38

2.23 0.42

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

144 sw.36 14 94

144 36 14 94

38 56

38 56

1.82 0.29

1.82 0.29

Kisumu East

Kisumu West

Seme East

Seme West

Maseno Division

North East Kano

South East Kano

North Nyakach

South Nyakach

West Nyakach

Nyando Division

West Kano

Winam Division

Muhoroni

Koru

Miwani

Chemelil

Muhoroni Division

76 2 8 66

78 9 8 61

102 10 ' 10 82

182 6 18 164

438 27 44 356

10 56

11 50

6 76

3 155

24 6 33

1.99 0.54

3.62 0.80

3.65 1.01

3.30 0.73

3.15 0.77

Total rural area 1926 38 124 191 1573 13 8 71 32 552 729 192 2.42 0.48

For official land statistics see supplementary publication to FM-Handbook, Vol. Ill A: Agriculture Land Statistics.

198

KISUMU 21

A G R I C U L T U R A L S T A T I S T I C S

Approximately 1,000 t of seed cotton are ginned at the ginnery of Kibos annually, but this cotton is not grown exclusively within the district. It is estimated that roughly 2,000 ha of cotton are planted annually producing on average yields of 200 kg of seed cotton per ha. Much of it is interplanted during August/September, *) a method which requires little or no cash and little labour because weed growth or pest infestation is negligible during the second half of the year.

Sugar cane is the most important cash crop of the area, although the natural conditions are not very suitable for this crop within the district. )

KISUMU DISTRICT

TABLE 7 a: COFFEE AREA - PRODUCTION - YIELDS2)

Co-operatives

Item Unit Year Item Unit

7V75 75/76 76/77 77/78 79/80

Area

Production

Yield

ha

t

kg/ha

117

19

162

117

11

94

117

17

1*5

117

7

60

117

8

68

TABLE 7 b: COTTON PRODUCTION13)

Ginnery Zone Year Ginnery Zone

1975/76 1976/77 1977/78 1978/79 1979/80

Kibos

Seed Cotton in t 285 669 8*2 759 13*6

Bales 500 117* 1*78 1333 2362

a) Source: C.B.K.

b) Source: C.L. & S.M.B., does not refer to district area only

!) Investigations of Cotton Research Station, Kibosjthe labour profile does take late planted cotton into consideration

2) Fairly exact data exist for industrial crops only; for more detailed information see FMHB Vol. Ill A

199

KISUMU 22

S M A L L F A R M S U R V E Y ( S F S ) 1 )

A glance at the soil and the AEZ maps of the district makes it clear that more than 75 % of the district is unsuitable for econo­mically successful small-scale farming. Extremely heavy soils combined with a warm climate, relatively low annual rainfall and repeated flooding makes farming a heavy burden. The SFS was carried out in AEZ LM 1-3 and LM 3-4.

The farms investigated are relatively small in size: 2.2 to 4.4 ha; half of the land is used for crops and half for grazing. There are however still comparatively large areas of commonly owned grazing grounds available. Therefore the stocking rates given of 3.8—5.4 LU/ha do not reflect the carrying capacity of the pasture. Most of the fertilizer used is applied to sugar cane (tables 9 a and 12 a). A very wide range of crops is grown, which is partly a result of the farmers' desire to spread the risk and also re­flects the marketing possibilities in nearby Kisumu town (table 10).

Table 12 indicates that the farmers harvest very small yields and consider purchased inputs an uneconomic investment. Almost no farmers keep improved cattle and 10 % of the grazing livestock are sheep and goats (table 11). Fifty percent of the maize harvested in AEZ LM 1-3 is sold to the Marketing Board, while in LM 3-4 all food produced in consumed locally (table 13). Graph 14 — Distribution of Farming Activities — reflects in part the difficulties farmers face when working the heavy black cotton soils. The yields indicated for Level II and III in table 15 can only be achieved if the field preparation is mechanised.2)

Lasting improvement of the socio-economic situation of most small-scale farmers of the district can only be achieved through large investment in drainage and irrigation by the Government. The sugar belt yields returns mostly to larger farms only.

' November 1977, sample size 30. For more detailed and up to date information see FMHB Vol. Ill B ' See also notes on farm management information, output and nutrient input, page 51

200

U I

o E œ 3 -m < w u

KISUMU 24

< -

z

i o o

z o p — z <

O

-

.D -H 3 <a -JJ o

• J C l . E c

- 3 >> W Ol *• c S •rt O -r l n o n c o> ai E • w E L , c o a

M SE [m.

*

w\ r> *N

»H - H C

R Û- B

• i*.

J c d L.

«Js o 0) .-: a> « O N

.,- 0 • H M ; • . '

H h L. L,

a •rt (T.

u. -J u.

O O O r<\

i H r\j f \ j

O O (M

H I f \ M r - t K ^ i H i H I M

O O O O O O O ^ H

nj co M

O O rvj

•J3 H f \ j ON i | • . •

O o o o

o -o

ä 9 U. I».

i r . r\j

f \ j -3-

SP -3- cc

i r \ -" I A l - l ON <\J »\ 0 rH K>

> . o> \ o tO 3

c -o

5 8 ,-t.e to • c to o « L. •

*5

A V

S

*

{£ C- fC (t

w fJ bû H

c c o o •J T ) PL 4.

E u a a I'. X C 0 c u o c

• o to tt

e 3 .c

1 4,

a a I'. X C 0 c u o c M q x>

a a I'. X C 0 c u o c • H

Ol "O o O Ol "O X X 0 }

cv <\j

. * • »

.H * «

œ ai 10 s.

o o

> o a L, IC O) a> js tt w o o

« vo o H

>. o ç » z h« y 7

S — : a ü c — — B i

— s PO

a 9 o

202

KISUMU 25

o

o. 3 O

Ü LÜ

N

U.

O H Ü z i o u u < z o p < co Ü

O s as <: CL.

w I - ) «

U 2 H

5 3

I m S • J

si w <

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

CO * ' • 1 O

O CO

lA ITi 00

• • • IM O H

I EH

H VO -3-ITi O K\

• • t IV P^ 4

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

! 1 O IM

ITv CVJ 00

• » • IM O <\l ]i IA l*\

• 1 • O o

C O 10 i< M CO • * V if o r>- -a->* « • rt H IM

H a o

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

I O H • 1 •

M H 11 00 vO H H O O • • • f\l K\ J -

kg/year

household

130't

112

156

•t>

1 I I K «

0 C O ta r r t. V a.

£ : S t o t o t o t o t o u u u X X X X X X X . X

!

Farming Intensity:

Cropping Intensity

Portion of improved

cattle kept

Portion of Farmers

owning a Plough

Labour on Farm:

Family Adults

Perm. Hired Labour

Children ;>.

Ik years

Persons living on Farm

- average household size -

Adults >

\k

years

Children <

Ik

years

Subsistence Units

Home Consumption of Major

Food produced on Farm

Maize

Beans

Sorghum

Farm Size fc Land Use

Livestock on Farm

Farm Size Group

1 H

<\J l\J H \ o CO u \ <\i

J - O O O O O c\l

Vf) t^- K\

• « • O O M

IT! « • VO

IA • o

vo J - O • 1 • •

<?• M f\J

Farm Size fc Land Use

Livestock on Farm

Farm Size Group

1 1

• • # • • • • « IM O O O O O O H

H H • 1 •

O O

CO V I • M

O K\ •

O

J f IA ON • 1 • •

Farm Size fc Land Use

Livestock on Farm

Farm Size Group

1 J - IM H IM H <M CO

H O O O O O O

i\] I M • 1 •

O o

J - « • 0"v

O IM O

O -a- j -• 1 • •

r-l O r *

•H c

a a a a a a a X X X X X £ x

a a a a X X X X

a a a cd x x x ja «

a x %%

a X

» s o a J I J I J J

E V

l-l

H a & o ti (.-> a

iH 3 B C

•I-1 C 0 •«

û)

•H 10 W 3

E T> t. C a o

t . j

First Season

Maize

Sorghum

Maize & Sorghum

Maize & Beans

Cotton

Others

Total

Second Season-1-''

Cotton

Maize & Beans

Total

(0 & o t. <_>

+ J

c c:

a C: t. Cl

a.

H a 0

»~. 0

c 0

•H +J u V p. G

razing fc Forage

portion of total

10

•o c a

t i o X

o

Livestock on Farm:

Cattle:

local

improved

Sheep & Goats

Total

c. 3 o

>. U c <7\ o T~~ t/1 o\ a o c CJ o M •a

u

o C c

s

203

KISUMU 26

KISUMU DISTRICT

TABLE 9 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: UM 1 - LM 1-3 Survey Area 05

2ange

Assets People on Farm 1 2ange Land Livestock Equipment Family Ferrn.Krd. Children > 14

ha head pieces Adults Labourers No.

Avg. 0 4.4 15.2 1.1 3.1 0.5 2.7

Avg. 1 4.4 16.3 2.0 3.3 1.4 3.S

Up. Qu. 6.0 24.0 2.0 4.0 1.0 4.0

Lo. lu . 2.4 6.0 - 2.0 - -

Land Use

Hange Annual ha

Crops %

Perm, ha

Crops Pasture ha %

Forage ha % •

Fallow ha %

Other ha

Use fl ; i

Avg„ 0 2.3 54 0.3 7 1.2 27 - 0.3 7 0.2 6

Avg. 1 2.3 46 0.7 13 1.2 24 - 0.5 12 0.3 5

Up. Ou. 2.3 67 0.5 11 1.8 35 - 0.4 13 0.3 •7

ij 0 • C.-.U a 1.2 40 - - 0.4- 17 - - 0.1 2

Total 69.3 3.5 35.1 8.7 7.2

Farming Intensity

Hange Cropping Intensity crops/yr.

Stocking Sate Improved Cattle % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. -;u.

Lo. Qu.

1.3

1.4

1.1

1.0

1.3

0.6

3.3

3.8

6.5

1.6

-

Inputs Applied

Range Improved oeeds Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Plant Pro tection Range Improved oeeds Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha Insecticide

kg/ha Fungicide ' g/ha

Range Improved oeeds Used % of area

:i P205 K20

Manure Applied t/ha Insecticide

kg/ha Fungicide ' g/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 56.2 5 = 7 - 20.9 - - - 0.2 - 2.2 - - -

Avg. 1 61.7 16.2 - 33.6 - - - 1.1 - 2.9 - 0.1 -

Up. *u. 33.3 - - 15.0 - - - 0.1 - 3=0 - - -

LO. -;U. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartale, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

204

KISUMU DISTRICT

TABLE 9 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: LM 3-4 Survey Area 06

Range

Assets People on Farm

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

Op. Qu.

Lo. Qu.

2.2

2.2

3.0

1.6

17.9

24.5

10.0

0.5

2.3

2.6

2.6

3.0

2.0

0.1

1.0

1.6

2.5

3.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Arg. 0

Avg. 1

Up. Qu.

Lo. 'Qu.

Total

1.2 56

1.2 45

1.6 71

0.8 45

37.5

1

0.1 5

0.4

0.7 32

0.8 27

1.0 48

0.3 17

21.3 • i

• i

i

i i

i i

0.1 7

0.5 18

0.3 8

4.5

0.1 5

0.1 4

0.2 7

2

3-2

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

up. qu.

Lo. Qu.

1.1

1.0

1.0

1.8

1.8

5.5

5.4

6.7 -

Inputs Applied

Range Improved Seed Used % of area

AC

Fertilizer Applied Manure Applied t/ha

AC PC

Plant Protection Range Improved Seed Used % of area

AC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Range Improved Seed Used % of area

AC N

AC PC P2O5

AC PC Kao

AC PC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Avg. 0 50.3 - - 3.0 - - - - - 2.0 - - -

Avg. 1 53.6 - - 25.8 - - - - 0.2 4.3 - - -

Up« Qu. 100.0 - - - - - - - - 2.5 - - -

Loo Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

KISUMU 28

KISUMU DISTRICT

TABLE 10 a: CROPPING PATTERN AEZ: UM 1 - LM 1-3 Survey Area 05

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha ha % Maize Sorghum Beans Cowpeas Groundnuts Sunflower Cabbage Onions Tomatoes Cotton Cassava Sweet Potatoes Sugarcane Pineapples Others Maize & Sorgm Maize & Beans Maize Sc Others

1.0 0.3 0.0 0.0 0.1 0.2 0.0 0.0 0.0

0.5 0.2 0.0 0.1 0.0 0.0 0.1 0.0 0.0

1.3 0.7 0.3 0.4 0.4 0.7 C.l 0.2 0.2 0.6 0.5 0.2 0.7 0.0 o.4 0.9 0.3 0.3 1

1.20 o.So 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.Ó0 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo • 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29.0 9.4 1.2 0.4 4.2 5.6 0.1 0.2 0.2

14.5

0.7 2.6 0.0 0.4 2.7 1.0 0.6

37.1 12.0 1.5 0.5 5.4 7.2 0.2 0.3 0.3

18.5 6.7 0.9 3.3 0.1 0.5 3.5 1.3 0.8

Total 78.1 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha Maize Beans Cowpeas Sunflower Cotton Cassava Sugarcane Pineapples Others Maize & Beans Maize Sc Others

0.7 0.1 0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.1 0.0

1.0 4.0 0.4 1.0 0.6 0.5 0.7 0.0 0.3 0.7 0.5

1.20 0.00 O.CO 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

19.6 4.0 0.4 4.8 0.6

2.6 0. 1.0 2.0 1.0

47.5 9.7 1.0

11.6 1.5

12.7 6.3 0.1 2.4 '4.8 2.4

Total I 41.3 1C0.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

liower . u art il e

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

liower . u art il e

ha ha 0/ /0

Coffee 0.0 0.2 0.00 0.00 0.2 100.0 Total 0.2 1C0.0

Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

206

KISUMU 29

KISUMU DISTRICT

TABLE 10 b: CROPPING PATTERN AEZ: LM 3-4 Survey Area 06

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha ha %

Maize Maize IPC Sorghum Beans . . Sunflower Cotton Cassava Others Maize & Sorgm Maize & Beans Maize & Others

0.2 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.3 0.2 0.1

0.5 0.2 O.k 0.2 O.'t 0.6 0.2 OA 1.0 0.8 0.6

0.40 0.00 0.12 0.00 0.00 GAO 0.00 0.00 0.^0 OAO OAO

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.7 0.2 3.1 .0.2 oA 8.3 0.2 oA 8.6 6.6 k.o

15.1 0.5 8.3 0.5 1.1

22.0 0.5 1.1

22.8 17.5 10.6

Total 37.7 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Cotton Cassava Maize & Beans

0.2 0.0 0.1

1.0 0.2 2.6

0.00 0.00 0.00

0.00 0.00 0.00

6.0 0.2 2.6

68.2 2.3

29-5 Total 8.8 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample" Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Sweet Bananas 0.0 0.1 0.00 0.0C 0.2 100.0

Total 0.2 100.0

Avg 0 = average of all sample farms

Avg 1 = average of all farms excluding zero entries

Up.Qu./Lo.Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

207

KISUMU 30

o.

e

o

u o H C/3

OS S ü >

° s E n -O

O x ft- ~

s .s o | u X

w CQ

<:

H U

2 s H <z> i

O ^H

P s S P 3 t/3 9

o CT PS a> O CB H 1 1 1 1 | | 1 1 l 1 m o \ f> **."* PS £-- t o <r\ NO i n 0 0 f \ vD i r • ' as • « • • • • • * • • • • t « Ö - P O o O i H c^ O r-^ •^t vO Ci <-l V f vO cv • o o"\ f i

r 3 t n r- l l-i

o> o r H o V f P O O £ » O O JC * > • l-i s u • r^ rH £ • f H -p co SI vO o.'

CV vO 8

• J 05

5 to

O O u o Ü

a • H U 1 1 1 1 1 1 1 1 >> 1 t 1 1

eu • H td

• H

•o

•ri • H

•o T i

ta <H «1-1 <H J O o O

fl si 1 1 t 1 , 1 1 1 l 1 >ft m o ^ 3 r- « 0 c«\ vO i n •» t o f \ vr I T V i fl si

• • • • • • • • • • • • * « •H +» o O o o l - l C^\ o r-< •sf vO CM c^ r H V f v£ CV f i t9 O OS EH •

o P • S •

fc te CO O

it II (1 (0

43 it t » t > c^\ II f l (1 Si o o

O - H r \ cv O <r\ OfN 1 o f \ f 1 Si o o • • o • o • Si o o ta o CV H 0>l

10 H f i

ta

u U

<u u u U

<u u

<H <H <M P i •r i f \ £ > O •H O •r i <D 4> vO ( M CM i n O O c- 1 4) t > O C* 1 41 O)

J3 S •

H • PH" • X 3 •

V f S

K> + ta

+ ta to

+ 10 !0

+ ta

+ ta to

+ 10 !0

<u <u - P 4) •P

> c s <*> > • H f l > • H

3 1 1 1 1 1 1 •3 « c v CA • o r H H

(S a : = > P V f

• f r H H a

O o OJ CV O CV O CJ

o o o o o o

(0 • P +> u o

«M 1 1 1 1 1 1 1 1 • CV • CV <r>

o i-H • f l 1

to 4) > S

o m

f 1 o o

• H « H rH CV •rt •-H

CV •H

33 bC bC

u 41 C 4) a H H • H H • H

« -P e> O p> •P N ( A •P t<i

« 1 1 1 ! 1 1 1 1 ! 1 •P 1 1 H 1 o cv V f t-l CV | -P Ul vf- r-l cv +> <3 X (fl • • r ° l • Ö !H f i • (t! U O O

H

O i-H .-H U

H

O

H

H t )

•3

O

H

O

H

U

H

O

H

t )

•3

O

H (3 B) cfl

t )

•3 cd O -P •P •p p •p U O & O r^. O O T^, o 0

« 1 1 1 1 1 1 1 « 1 1 •P & | 1 1 r H 1 VPv r H 1 1 •P •p i n r-l 1 1 • p p

« • • • m - p <H O o C <w <M O (M «M CQ O O C 0 0 O O C 0 0

es H

o O o C N E> •4 t > v - V f t > es H 1 1 1 1 1 i 1 1 | 1 • Vf H c> H ^? 1 u> <-> rH 1 < • i n r H r^ 1 • 0 r H o • • • c^ m v l M f i • O t n 3 o o O H O H r-l CA r H

• • » H t • • • • r-j 3 3 3 10

4> Cf 0) O * 0> O * - P

• • H • • 3 3 3 01 3 3

• • • r-j 3 3 3 10

4> Cf 0) O * 0> O * - P 3 3 a) 3 3

O o* « <y <o o* •*-> 4> O " O

• • • r-j 3 3 3 10

4> Cf 0) O * 0> O * - P « ffcy •p 4) o c y to M tD O fco • • M U M O b0 •a o M <d U fff U 10 $H En <a u u II .* « SH M h <Ö U E-i a u u Il II 4) E H (S h fH Il II

u ( 1 I I (1 I I o U a a> o (-. 0) u a u o U O 4) > u a a X <u p< t l p< i l P . . - N o P . S o o P< o £ H o P< » ft ï O 4) P i 3 o t> p . > P . t> P , T3 > p, o •p J> P , > P , > P | ^ - s > P . O h > A O

o < O < i Ö « ; O u < S=> M CQ <; ö << o <; s • <S P M a P< O ^ P-+> > 01 a eu E . * 4) 10 O 4> > B 4) 41 • H O CÜ 4) IV • ta m u H •r i - CO M -H H - C C O H J3

> • H ä 3 S s •P

•P *H

flJ 3 aj 3 •P W •P

S - P • P W •P

•H - 4) « 0) - H <a • o (U (y cl) v ^ c» + + \ a) + f>> f>> ! > > • - ' o O >> >» !>i O ^ O

•d H > •s m •o O

« H <d O) O •s 4) - P 41 bC (0 -P

> CJ -P H u (\J - p H a) > a d o o M c\j o cd p U (M O SJ 0 O - H d o h V h - p s B (U h - P s a h t3 S o P i •Ö 1 4> fi •H • o i ai . o P. ri G U > " 3 t J C a > 3 » a B t i Ö Ö

M » H O W rH a S H O W rH KH M O rH r J

tu ai

i-l

c 3

208

KISUMU 31

o. E

N w

ffl H 1 I 1 1 1 1 1 1 i O

o G-vj l l 2 1 I A

O ! * + »A CM en v t 1

• ta • • « • • • • n> +» i H o d Oi O • < OA O -4 c\ • o Cl o;

M EH r H r H

J* u o o o o o o £ > CO H ~ i r \ t » r H r- v\ to

£ - P • i n • O i V \ • Ol •P C/3 H V Û H v D H

o \ M 01 CM

• 4 ta 3

C0 CO

0 0

CO

0

u o u CQ t > t > O to >> v û 1 | 1 O vO 1 1 >! O vO 1 1 >) • H U • co • u to • u h • H rv C\' •ri

a •a

O l •ri cd

«H » < H

•ri a

•a

•ri cd

«H J O o O

a 'S 1 1 1 1 1 1 1 1 1 1 * o r-< en l » , I T \

O! -* 1 • < & » A

O l >* ! •<£ a 'S • • « • • • • • • • •rt 4» r H o O CM t > en en o t>- en en o 9 Ei o i-i • r-^ • 9 Ei • H o r-i o ( 4 o o o O

il

r H

U

r-t

i ; (0 •P

a) il C- en o

r H

U o

r-t

i ; (0 •P

a) il r H l t > r H t>- o H f

r H

U t > CA H 1 I I

(0 •P

a) • • r-\ • r H • o CM rH H en rH en o ta

4)

a u

CO

U 41

ta

4)

a u

CO

U 41

< H <M < H

A • H t > en o • r i o • H Cl eu O H Ol en 8 en v f 1 4! O en V f 1 41 41 K • « 8 • ce O » K

J3 H o; en en W + + +

C0 co co CO co 4) 4) p 41 + j

> c^ en > •H en > • H

a 1 1 | 1 1 1 H vtf Cv! o vO C\J 1 >-i a O •JT; O l 1 •3 a » cd • --t • cri D ^* • •3 a o o H H ü r-i o o X

o O

o o

X o O

o o

(0 p •p h t > r> en co en CO ci 1 1 1 1 1 1 1 1 \ D r H Ü V l o- vO r-^ 1 41 o vu H 1 41 ci

• « ^ t • > »J- • > • H O C ; r-t • H rH • H O ,J ••H

s K bC K bC 4) 41 a î l a

H H • H H • H ci • p O CT1 - p iSl C'A P tQ eu 1 1 1 1 1 1 1 1 1 1 •P 1 1 1 I i .~" 1 Si r> ! 1 P CÖ cv t > 1 1 P cd X « • Si • CC t-i CM • d «* o U

H

• CJ

H H

CJ

H

U

H

CJ

H H

CJ

H ed (B c« co cfl

w p P • u p p

u o o- e n O 0 ;n o 0 e 1 | 1 1 1 1 1 1 1 1 • p 1 1 o t 1 -s}- r-^ i 1 • P •P v i ­ r H 1 1 • p • P

a> • • • • • u ' M o o o < H <H U V l «p

w 0

S i

O 0 o

•5R o 0

S i

O 0 o

•5R o

«0 o o r~^ m m O -4- en o -^t r H 1 1 | 1 I | 1 | 1 1 • O l 1 es I Ol 1 • 0 o r H 1 • • no G*1 H 1 • • r-l o • • • ~4 • O CO H • o t o 3 en o Cl M CA •< H r H en » - » • r H

m

• • « H • • • • • rH 3 3 3 cd

4) O " 4) O " 4> O " P

# • H • • 3 3 3 «

4) O " 4> O * « O " P 3 3 ,

4) O " Ö

• • • rH 3 3 3 cd

4) O " 4) O " 4> O " P 3

4) C 3 cd

• p 3 3

4i o > c y bO t o bO O ho . . 6 0 60 U) O ta 73 O M n) h <8 *•« ca u e-i a u u I I X <B u a u a M H <9 r i u I l I I 01 EH A u u I l II t l r-; t , « h D t l Cl i l C' u o u o u o S* 1) t - > Cl C! o

X S) p , « P , tJ P i .--* 4) Ci S o O C i «l P i O P i <0 P i s 0 u n » o •» p . > e< > P < "O > A i O P > P | > Ol > P t «"N > ft o C-l > P- o 0 < O <H Ö • < P 41 <: P .-3 ca «Ü p < p << D « < » r 3 p P i < l » h l p

•p > 4) P 4) B X 4)

u o 41 > S 4) O •ri CJ 41 41 41 o o u H •H • CD CD -ri H J3 c o H Ä

> fc u u P • P i-3 u h ^ c cd cd 41 3

•P CO 3 -P •P W • H o a « B • P

u h ^ c cd cd 41 3 • p W •P

f 4 « 41 4) - H a) • ö 4) 4} 4) v-s cd + + \ 4J + >t t>> >» ^ o 1) >» >> >> o ^ O

•o H > 3 (0 • 3 C0 4> H m 4) 0 3 4) - P 41 ht CD - P

> (M P H t l rvj - P 'S 0 >• C H cd

d o O »i (VI O cd f i l fcl CM O 'S 0 O - H H cd

d o t i 4) t l P 2£ E 41 U P S u p. cri S t?

O, T ) 1 4> X> • r i •O 1 4) .O p. cri B a > 3 !=> C a > 3 & Ö E U t > Ï 3

M S H O W • 4 S S H O W (J J H Ü t J 1 ^

r-J ^o —* o

cyi t / î

# # o o u o

•p D • J y

»n 0 0 VD

o O

s « 11

>> >< ( N ( N

11

> O

> O

y y vO

- i *J ^

>, >. ~* I

CN

I > O

D D LJ y H-l HH

VO O O f N ( N •—1

O O o

a a a

eu Q> a>

O O O

o> S s

c o 3 Ü

3 y

209

KISUMU DISTRICT

TABLE 12 a: INPUTS AND YIELDS OF MAJOR CROPS

AEZ: UM 1 - L M 1-3 Survey Area 05

Crop Input 3 Yield

kg/ha

Crop Imp­roved Seeds

Kutr lents Chei'ii -.als Yield

kg/ha

Crop Imp­roved Seeds

M

kg/ha

iJ2°5

kg/h a

K20

kK/h;'.

Manure

t/ha

fung­icide kfï;/ha

Yield

kg/ha

First Rains

Avg. UpQu LoQu

87 100 ICO

9 26 60 -

1.07 5 -

1,850 2,025 1,125

Maize Avg. UpQu LoQu

87 100 ICO

9 26 60 -

1.07 5 -

1,850 2,025 1,125

Sorghum Avg. UpQu LoQu

- - -"" 0.21 *~

";

861 900 400

Groundnuts Avg. UpQu LoQu

20 -

"" — 0.15 - -

8^0 900 300

Sunflower Avg. UpQu LoQu

100 100 100

-33 60

~" 0.31 - -

917 1,050 533

Cotton Avg. UpQu LoQu

68 100 -

8 - -

11 8 -

67^ 1,000 300

Sweet Potatoes Avg. 33 - - - - - - 8,333

Second Rains

Maize Avg. UpQu LoQu

75 100

7 15 30 -

0.23 h 10

'+ 10

1,607 1,969 788

Sunflower Avg. UpQu LoQu

100 100 100

mm 38 60

™* **" - -

782 1,050 533

Cotton Avg. 50 - - - 1.38 7 7 375

Perennial Crops

Cassava Avg. UpQu LoQu ;

*" ~ - -

: -

3,639 2,000 533

Sugarcane Avg. UpQu

- - - - - -:

5,500 7,500

LoQu *" — "

— "~ *~ "" *""

KISUMU DISTRICT

KISUMU 33

TABLE 12 b: INPUTS AND YIELDS OF MAJOR CROPS

AEZ: LM 3-4 Survey Area 06

Crop Input j Yield Crop

Imp­roved

i'Jutr Lents Che mi cals

Yield Crop

Imp­roved u P 20 5 K20 Ha.au re Insec Fung­

Yield

Seeds icide

>i k.Vha kg/h a kg/ha t/ha kg/h a kg/ha kg/ha

First Rains

Maize Avg. 82 _ 13 - - ]_ - 1,701

UpQu 100 - - - - - - 2,250

LoQu - - - - - - - 675 Sorghum Avg. - - - _ - - - 1,1^9

UpQu - - - - - - - 1. '+00

LoQu - - - - - - - '125

Cotton Avg. 68 _ 2 - _ 7 - 838 UpQu 100 - - - - 5 - 85O LoQu - - - - - - - »+63

Maize & Sorgm

Maize Avg. 50 - - - . - - - 998 Sorgm Avg. - - - - - - - 1,030

Maize UpQu 100 - - - - - - 1,350

Sorgm UpQu - - - - - - - 1,250

Maize LoQu - - - - - - - 675 Sorgm LoQu - - - - - - - 150

Maize & Beans

Maize Avg. 86 - 7 - - 3 - 2,'l02

Beans Avg. - - - - - - - 650 Maize UpQu 100 - - - - 10 - 3,150 Beans UpQu - - - - ~ - - 1,'|00

Maize LoQu 100 - - ~ ~ - - 1,667 Beans LoQu - - - - - - - 200

Second Rains

Nil

Perennial Crops

Sweet Bananas Avg. - - - - I.25 - - V+58 _

211

KISUMU 34

KISUMU DISTRICT

AEZ: UM 1 - L M 1-3

TABLE 13 a: DISPOSAL OF CROPS

Survey Area 05

Crop

First Rains

Maize Maize St Beans Maize & Sorgra Maize St Others Beans Sorghum Cowpeas Groundnuts Sweet Potatoes Sunflower Cotton Cabbage Onions Tomatoes

Second Rains

Maize Maize & Maize & Beans Sorghum Cowpeas Sunflower Cotton

Nil

Beans Others

Production

72,180 2,620 3,864

777 640

6,960 180

4,505 3,900 6,135 9,^37 120

2,400 8 oo

42,020 5,355 835

8,000 450 240

4,250 375

Marketing Board

kg

38,070 0 90 0 0 0 0

2,950 0

6,135 9,037

0 0 0

21,330 0 0

6,800 0 0

'+,250 375

53 0 2 0 0 0 0 65 0

100 96 0 0 0

51 0 0

85 0 0

100 100

Local Market

_k£_

5,900 8 0 0

560 14 0 0 75 12 500 7 0 0

900 20 2,100 54

0 0 0 0 0 0

2,400 100 800 100

1,560 2 ,080

90 800

0 0

Permanent Crops

4 39 11 10

0 0 0 0

Home ConsumDtion

Ji£L

28 ,210 2 ,620 3 ,214

777 565

6 ,460 130 655

1,800 0

400 120

0 0

19,150 46 3,275 61

745 89 400 5 450 100 240 100 -6 -0 0 0

39 100

83 100

88 93

100 15 46

0 4

100 0 0

KISUMU DISTRICT

AEZ: LM 3 -4 TABLE 13 b: DISPOSAL OF CROPS

Survey Area 06

Crop Production

kg

Marketing Board Local larket lloae Consumption Crop Production

kg kg .3 kg /" ':M iO

First Hains

Maize Maize & Beans Maize & Sorgm Maize St Others Maize IPC 3eans Sorghum Sunflower Cotton

10,l80 20,180 17,365 7,567

60 200

2,235 1,200

13,796

750 800

0 1,895

•0

0 0

1,200 12,156

7 4 0

25 0 0 0

100 88

1,600 2,746 4,365 217

0 I60 244 0

370

16 14 24 3 0 80 11 0 3

7,830 16,634 13,^00 5,455

So 40

1,991 0

1,270

77 82 76 72 100 20 89 0 9

Second Rains

Maize & Beans 3,445 0

P

0

ermanent

0

Srops

0 3,445 100

Nil

212

KISUMU 35

KISUMU DISTRICT KISUMU DISTRICT

TABLE 14 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 b: DISTRIBUTION OF FARMING ACTIVITIES

Crop 1 Maize Cases: 431) Crop 2 Maize & Beans Cases: 14

AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30 AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30

100 %

Land Preparation:

ill». I • jiLL

of the cases

S - - S i _ - - CO

Land Preparation:

• • I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

I I • • II •• • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

hi l_JL J. Jll_ JIL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

• • • • • • _• •_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

J_L_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

jllJLb L. • • » ! • • • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

I I I 1 Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

- • • l a l l l l « ! - • • II I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

I 1 I Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

i l U • • - U -Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

lLi_^ ^A i l l • I II X II ill I U Ill-Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

*' Maximum 30 per crop and season

2 1 3

KISUMU 36

KISUMU DISTRICT KISUMU DISTRICT

TABLE 14 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 d: DISTRIBUTION OF FARMING ACTIVITIES

Crop 18 Sorghum Cases: 13 Crop 24 Groundnuts Cases: 10

AEZ: UM 1 - LM 1-3 ' Survey Area 05 Sample Size: 30 AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30

100 %

Land Preparation: of the cases Land Preparation:

UlilL J l_L il Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

Jl il JIIUU Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

U_l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

JL

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

JlllJlL J_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLULL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

••••• • • J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding: Third Weeding:

I I Jani Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

minim i ill ill LLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

214

KISUMU 37

KISUMU DISTRICT KISUMU DISTRICT

TABLE 14 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 f: DISTRIBUTION OF FARMING ACTIVITIES

Crop 34 Sunflower Cases: 13 Crop 35 Cotton Cases: 24

AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30 AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30

100 ". of the

Land Preparation: cases Land Preparation:

I L i _ l S--S

± IlL iLjili J L X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

H I !• I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

il I »III • I JLI L

JL JL J]

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

_UL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I I I I I I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

ill I i Jl L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

jjJJ l_l L L _L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

J l_L Jl I l-ll-ll- • I» . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding: Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

J L-lillLl ill I I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

jiuliLii 11 Hi i I l L ^ Harvest:

I ..I I. Il .1. .I...I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

215

KISUMU 38

KISUMU DISTRICT KISUMU DISTRICT

TABLE 14 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 h: DISTRIBUTION OF FARMING ACTIVITIES

Crop 63 Sugarcane Cases: 5 Crop 64 Cassava Cases: 10

AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30 AEZ: UM 1 - LM 1-3 Survey Area 05 Sample Size: 30

100 %

Weeding:

I I I M I I I Li

" of the ' cases

.e -• *a S " 5

Weeding:

i I i LLJ Li Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting: Pruning/Cutting:

J II • • I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

216

KISUMU 39

KISUMU DISTRICT KISUMU DISTRICT

TABLE 14 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 j : DISTRIBUTION OF FARMING ACTIVITIES

Crop 2 Maize & Beans Cases: 18 Crop 5 Maize & Sorghum Cases: 18

AEZ: LM 3 -4 Survey Area 06 Sample Size: 30 AEZ: LM 3 -4 Survey Area 06 Sample Size 30

100 ". of the

Land Preparation: Land Preparation:

ill J LIL lULL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

LULL 1 •111 • I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

1

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

ll III • 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jllll l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JL ILL 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Ü1U1 II: Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

- IL •I • I ' ! " - " •• • • 11 •! Ml» I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

217

KISUMU 40

KISUMU DISTRICT

TABLE 14 k: DISTRIBUTION OF FARMING ACTIVITIES Crop 35 Cotton Cases: 22

AEZ: LM 3-4 Survey Area 06 Sample Size: 30 100%

. of the Land Preparation: cases

• • ••• • •••III! L. ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

I I I -H » I -Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying;

I » I I I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

I...I •!•••••• Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• I • • Il LI • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

• li •• JUL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

II I l I ULI H i l l I ULI ••••••• I I I H i l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

218

KISUMU 41

H Z O N

Z O H en o u

J «t z M O OS « X -a-

X

• •

H

i n

V

2 o M 6H 05 H >

~4 o> > e

o 0

• H * J U 3

•o O u

a.

M

• • H

o o M

H

VO • H

o o

VO

CVI

^

H Z O N

Z O H en o u

J «t z M O OS « X -a-

X

• •

H

i n

V

2 o M 6H 05 H >

~4 o> > e

o 0

• H * J U 3

•o O u

a.

-• "-1

H Z O N

Z O H en o u

J «t z M O OS « X -a-

X

• •

H

• H i r i + m "0)7

2 o M 6H 05 H >

~4 o> > e

o 0

• H * J U 3

•o O u

a.

M

H Z O N

Z O H en o u

J «t z M O OS « X -a-

X

• •

H

• H i r i + m "0)7

2 o M 6H 05 H >

u o Kl

* > - r i 3 i-t O rt

£ - P * » SH • H O 3 b .

§ O O rvl * i - t

U Z o (4

Z O

S u

X - J

N

U

<s

i n

<N 1

O

I N

1

i n r -

O w M EH CE U >

- H

a 0

• H 4-> U 3

•C O kl

a § o

*>

CO H §

O

CVI M 3

U Z o (4

Z O

S u

X - J

N

U

<s

i n

<N 1

O

I N

1

i n r -

O w M EH CE U >

- H

a 0

• H 4-> U 3

•C O kl

M

U Z o (4

Z O

S u

X - J

N

U

<s

> a

u 0 '

U) o

T T M m "•». u-i E ' r

O w M EH CE U >

- H

a 0

• H 4-> U 3

•C O kl

M

U Z o (4

Z O

S u

X - J

N

U

<s

> a

u 0 '

U) o

T T M m "•». u-i E ' r

O w M EH CE U >

k> « * » * r l 3 H 0 - H

X +» * * k l • H OJ 3 U .

o o t-H

8 o

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

•• O r~i CA

• U 1 0 LH

•M r-( N

O IN

« 1 •O m C C

I N <—

3 o 8 z <e a .

r i • H O

CO

H O >

a 0

• H 4J Ü 3

O

à!

M 8 VC

O O 1-4

O o o

0 0

vo

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

•• O r~i CA

• U 1 0 LH

•M r-( N

O IN

« 1 •O m C C

I N <—

3 o 8 z <e a .

r i • H O

CO

H O >

a 0

• H 4J Ü 3

O

à!

3

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

œ

u o C >-i

o m g

E M ~ C t E O

•o "~ T.

kj -O M e a «-_ a. ru u • + a

^ o t O - M « o a

> M T*

3 o 8 z <e a .

r i • H O

CO

H O >

a 0

• H 4J Ü 3

O

à! M

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

œ

u o C >-i

o m g

E M ~ C t E O

•o "~ T.

kj -O M e a «-_ a. ru u • + a

^ o t O - M « o a

> M T*

3 o 8 z <e a .

r i • H O

CO

h t> N

* > - r i 3 i H 0 - H

£ * > * > t . • r i Q) 3 b .

o o

CO

r i

o o vo

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

œ

u o C >-i

o m g

E M ~ C t E O

•o "~ T.

kj -O M e a «-_ a. ru u • + a

^ o t O - M « o a

> M T*

3 o 8 z <e a .

r i • H O

CO

• U •rt

Q Tft te

JE no

JE te

JE JE « to 2? w. U ) JC

Kl JE

te JC

te JE

ÎA te JE

te JE

te JE

te JE T* te

JE J? te X

te JE

T*. te JE

te JE

to JE

te JE

u z o « u z < u

ce < o s w

J < z M

os < X

IM

X

• •

u

œ

u o C >-i

o m g

E M ~ C t E O

•o "~ T.

kj -O M e a «-_ a. ru u • + a

^ o t O - M « o a

> M T*

3 o 8 z <e a .

r i • H O

CO

(0

•o «

• r i

z

h

• H r H • H +» 1» »

O rvj

O IM *E

H a> >

C0 J C0

< a CE O O * H

« t o Z 3 < TJ C0 O V . k, CE a. u M a a. -H < z o

h .. u a. e O k, a <g u u.

m •o r H V

• H X

z

U C

• H r H • H

b .

g O

r H

> O .-) C

o * » u 3

•O o kl

a. B

- H

a .. o a. B O h cc e o u.

• o

O •iH X

Z

«i tg

•H r H • r i 4-> k i a>

bu

irv O I\J

a.

O I M

r H

> a;

e 0

•ri

o 3

•o o kl

a. B

• H

O k i

. . 0) 3 . B O k, CE (0 O b .

a •o r i ai

• H »

Z

U

a> H

• H r H • H 4* U 0)

U .

irv O I M

a.

o

r H 0) > O

J

a o

• H •A» U 3

•O O kl

CM

B • r i

O k l

.. u o. e O h es a U b .

•o r H O

• r i X

Z

kl

e N

• H r H • H •«•* kl V

U ,

O o,

o rvj

r H

» e

B 0

• r i

U 3

•O 0 k i

0 H

B • H

O k l

.. o 0, s O k, ce • U b .

O

•o r i 8)

• H X

Z

ki O N

• r i r i T l -** ki «

b .

O rvi 0,

o ru

3E W O i j J X . U s CS O S5 - H M * » CO u « t 3 0 . TJ

O • J U < a. CE B a E- - H «< z a

h .. « a, e O k> CE a U 1»

(0

•o «

• r i

z

h

• H r H • H +» 1» »

O rvj

O IM *E

H a> >

C0 J C0

< a CE O O * H

« t o Z 3 < TJ C0 O V . k, CE a. u M a a. -H < z o

h .. u a. e O k, a <g u u.

m •o r H V

• H X

z

U C

• H r H • H

b .

g O

r H

> O .-) C

o * » u 3

•O o kl

a. B

- H

a .. o a. B O h cc e o u.

• o

O •iH X

Z

«i tg

•H r H • r i 4-> k i a>

bu

irv O I\J

a.

O I M

r H

> a;

e 0

•ri

o 3

•o o kl

a. B

• H

O k i

. . 0) 3 . B O k, CE (0 O b .

a •o r i ai

• H »

Z

U

a> H

• H r H • H 4* U 0)

U .

irv O I M

a.

o

r H 0) > O

J

a o

• H •A» U 3

•O O kl

CM

B • r i

O k l

.. u o. e O h es a U b .

•o r H O

• r i X

Z

kl

e N

• H r H • H •«•* kl V

U ,

O o,

o rvj

r H

» e

B 0

• r i

U 3

•O 0 k i

0 H

B • H

O k l

.. o 0, s O k, ce • U b .

O

•o r i 8)

• H X

Z

ki O N

• r i r i T l -** ki «

b .

O rvi 0,

o ru

3E

219

KISUMU 42

M Z O ft

s F i

8 o -) «s z M CS 03 <t X -a-z J

• •

U t

<

0 ]

ä co M 6-1 OS U

>

r * ai

e -1

C 0

• H +> U 3 •o o u a.

1-4

»-I

o o

CM

O •H

0 0

M Z O ft

s F i

8 o -) «s z M CS 03 <t X -a-z J

• •

U t

<

0 ]

ä co M 6-1 OS U

>

r * ai

e -1

C 0

• H +> U 3 •o o u a.

M • H

O O cr\ H

M Z O ft

s F i

8 o -) «s z M CS 03 <t X -a-z J

• •

U t

<

• H i n

+ o

\ i n

S.

0 ]

ä co M 6-1 OS U

>

r * ai

e -1

C 0

• H +> U 3 •o o u a.

M

o rv.

M Z O ft

s F i

8 o -) «s z M CS 03 <t X -a-z J

• •

U t

<

• H i n

+ o

\ i n

S.

0 ]

ä co M 6-1 OS U

>

V t )

* > - r t 3 r- l O - H

* > U - r i O 3 b.

o

8 CM

H S O ta z o

( H

Ü

Z

• ù •

<

LD VO CM

1

O n ( N

O O

1 i n r-

2 o co t - t H CE U >

r-t

> 01 J a 0

• r i -M O 3 •0 0 k l a,

3 H

ON R O O

I T l

CM

CM H CM

O O VO »

S VO

H S O ta z o

( H

Ü

Z

• ù •

<

LD VO CM

1

O n ( N

O O

1 i n r-

2 o co t - t H CE U >

r-t

> 01 J a 0

• r i -M O 3 •0 0 k l a,

t - t 1-4

1

O O O

CM

CM r- l

O i-l

O O O

CM H S O ta z o

( H

Ü

Z

• ù •

<

œ > V.

k 0

m K va

C T —i i n

2 o co t - t H CE U >

r-t

> 01 J a 0

• r i -M O 3 •0 0 k l a,

M 1 8 CM

O O CM

i H

H S O ta z o

( H

Ü

Z

• ù •

<

œ > V.

k 0

m K va

C T —i i n

2 o co t - t H CE U >

u e

V >H 3 H 0 - H

£ *> •W kl • H u

3 u.

O O

VO

i - l

O O

J -

CM

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

•• O H en (0 rv] 4J 1 0 m 4J r~

{ N

O ( N

• • 1 " 0 L I

c o ( N r -

2 o CO o z < a.

i - i • H 0

CO

O > o

-J a o

• H 4 * U 3

0 M

M M M

8 o

0 0 . - 1

CM

i - l ON

O

8 o I A

ov «M »A

O

8 O

VO VO O

8 O I T l

O I T l

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

•• O H en (0 rv] 4J 1 0 m 4J r~

{ N

O ( N

• • 1 " 0 L I

c o ( N r -

2 o CO o z < a.

i - i • H 0

CO

O > o

-J a o

• H 4 * U 3

0 M

3 o

8 o l - l

O ON

IA IA 8

o o

-s-I A

VO 0 O i - l

o o

0 0

CM

o o o o (M

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

1 —

l-l 0 c u

0 K E E u

— 0 t E O

• o ^

-r,..i. ki "0 II) a a «-.

0< CM (0

• + * •» a to-w c s a

> r-l - H

2 o CO o z < a.

i - i • H 0

CO

O > o

-J a o

• H 4 * U 3

0 M

M

o

8 V C

CO H

C«- O

8 oo

O i H 8

CM

i-l

O

o

l - l

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

1 —

l-l 0 c u

0 K E E u

— 0 t E O

• o ^

-r,..i. ki "0 II) a a «-.

0< CM (0

• + * •» a to-w c s a

> r-l - H

2 o CO o z < a.

i - i • H 0

CO

Ci

* • - r i 3 . H 0 - H

• S * * •w h • H 0

S b,

o o o »

I A

O o o

O O

VO

i-H

o o

CM

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

1 —

l-l 0 c u

0 K E E u

— 0 t E O

• o ^

-r,..i. ki "0 II) a a «-.

0< CM (0

• + * •» a to-w c s a

> r-l - H

2 o CO o z < a.

i - i • H 0

CO

• p • r i C

3

» to X X

to ta X

tfc 00 X

00 X

bO « 51 te iï to * 00 to X

to X

to AS

« to X

0 0 X

to X

to X

« to X

to X

10 X

00 X

H Z O

u z «s u

os < o s CO

z M C3 as «« X

CM

Z - 3

• •

U

<

1 —

l-l 0 c u

0 K E E u

— 0 t E O

• o ^

-r,..i. ki "0 II) a a «-.

0< CM (0

• + * •» a to-w c s a

> r-l - H

2 o CO o z < a.

i - i • H 0

CO ( H 01

a •o r i e

• H s»

Z

kl ai

• r i r-l • H +» k l a i u,

I A O a.

o CM

H 01 > 01

»3 a o

• H +> U

U 3

s s « * s ° O - H 3 co a

ki . . ai a. e o u\ CE O U b j

t. ce a r »

B •O i H 01

• H >«

z ki ai

• H r- l • H +» k l a>

u .

I A

o O l a.

o rvi

us

> •J

c o

• r i *> O 3

• 0 O ki

g ^ o U B

k i .. ai a. s O h es a u u.

•ë

« • H

4» N

• H

• H

« o

r * ai !> 01 -) c o •rt •»> U 3

• o O ki 0*

us M c l - l - H < Z B

k i . . ai a. B o u œ a U b.

B

•o i H 0)

• r i > i

Z

ki 01 H

• H r H • H

k* 0)

U .

I A O

a. o ry a;

r - l 01 > 0>

a o

• H * 4 U 3 •d

2 ° s -m B

h .. ai a. 6 O ki CE a U b.

m •a H « - H X

Z

ki 0) N

• H i - l T l

U a> b.1

I A O CM

a.

o CM a:

ai > » J

B 0

• r i ** V 3 •O 0

s-i i u

d c

• J - H I H X o

k l

. . o S; B

CE al o b.

B •a • H ai

• r i

z k l ai N

• r i r- l • r i *> U ai

b .

IA O CM

a .

o CM

ar: o

c o

• H

3 •O O

CO h < a, z < a Z - H < CO B

h •• e a. B O b as a U b.

a •o r i e

• H s»

Z

kl ai

• r i r-l • H +» k l a i u,

I A O a.

o CM

H 01 > 01

»3 a o

• H +> U

U 3

s s « * s ° O - H 3 co a

ki . . ai a. e o u\ CE O U b j

t. ce a r »

B •O i H 01

• H >«

z ki ai

• H r- l • H +» k l a>

u .

I A

o O l a.

o rvi

us

> •J

c o

• r i *> O 3

• 0 O ki

g ^ o U B

k i .. ai a. s O h es a u u.

•ë

« • H

4» N

• H

• H

« o

r * ai !> 01 -) c o •rt •»> U 3

• o O ki 0*

us M c l - l - H < Z B

k i . . ai a. B o u œ a U b.

B

•o i H 0)

• r i > i

Z

ki 01 H

• H r H • H

k* 0)

U .

I A O

a. o ry a;

r - l 01 > 0>

a o

• H * 4 U 3 •d

2 ° s -m B

h .. ai a. 6 O ki CE a U b.

m •a H « - H X

Z

ki 0) N

• H i - l T l

U a> b.1

I A O CM

a.

o CM a:

ai > » J

B 0

• r i ** V 3 •O 0

s-i i u

d c

• J - H I H X o

k l

. . o S; B

CE al o b.

B •a • H ai

• r i

z k l ai N

• r i r- l • r i *> U ai

b .

IA O CM

a .

o CM

ar:

220

KISUMU 43

H

§ ta s o 6-1

S w

as M O « « X

.» X

• •

ta •

<

i n

V

0 }

CO H I

OS u >

rH

«

e 0

•ri

3 •o O La

a.

H

§ ta s o 6-1

S w

as M O « « X

.» X

• •

ta •

<

i n

V

0 }

CO H I

OS u >

rH

«

e 0

•ri

3 •o O La

a.

HI HI

H

§ ta s o 6-1

S w

as M O « « X

.» X

• •

ta •

<

• n ' A

0 }

CO H I

OS u >

rH

«

e 0

•ri

3 •o O La

a. M

-

H

§ ta s o 6-1

S w

as M O « « X

.» X

• •

ta •

<

• n ' A

0 }

CO H I

OS u >

» *> -H 3 H O -H

£ +• *» kl •ri O 3 b.

H Z O N

g g U

I A

X

»

U

<

i n VD ru

1 O c i fN

O O 1

i n r-

3 co M

CE U >

O

ai J

a o

- H

U 3

0

l-t

o o

ITl

(M

I T l o o

r- l

co H

O H

O o o H

1 1

O O 00 1 1

H Z O N

g g U

I A

X

»

U

<

i n VD ru

1 O c i fN

O O 1

i n r-

3 co M

CE U >

O

ai J

a o

- H

U 3

0

t-«

8 - 3 -

O O

CM

r- l r- l

O 8 '

H Z O N

g g U

I A

X

»

U

<

IB

> U)

1-1 0

i n m vo

T V E r-

3 co M

CE U >

O

ai J

a o

- H

U 3

0

M

o

! rH

o o Jt

o o ITl

H Z O N

g g U

I A

X

»

U

<

IB

> U)

1-1 0

i n m vo

T V E r-

3 co M

CE U >

U

o 4* -H 3 H 0 -H

£ *» •M h •H t l 3 tv

8 VC

l - l

8 o r *

o o o l - l

O I A OO

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

•• O f H CA (3 ru

• u 1 0 m. •P p-

(N

C ru

• • 1 •S ""> C O

(N T-

1 8 z < â

r - l • H 0

co

O

«

a 0

• H •k» U 3

0 kl

a .

5 o o J -

o o

- 3 -

Ov vO R o

o 10

rH

O N 8 VC |H

ITl rvi

o o

r - l

vo H

ITS H

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

•• O f H CA (3 ru

• u 1 0 m. •P p-

(N

C ru

• • 1 •S ""> C O

(N T-

1 8 z < â

r - l • H 0

co

O

«

a 0

• H •k» U 3

0 kl

a .

3

o o d -

o

CM

ON *> o o o r- l

W \ ru 8 Ov

O o co

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

en

c M 0

in E

3g E O

h -o in » ts • - . o. m o • + 0

4» Q t e - u C O C

> r- l - H

1 8 z < â

r - l • H 0

co

O

«

a 0

• H •k» U 3

0 kl

a .

H

O O

o (M

r-l

8 8 I A

8

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

en

c M 0

in E

3g E O

h -o in » ts • - . o. m o • + 0

4» Q t e - u C O C

> r- l - H

1 8 z < â

r - l • H 0

co

u a> M

*> -H 3 H 0 -ri JS +• *» U •H O 3 b .

O O VO

r-l

o 8 r* r-l

8 o r- l

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

en

c M 0

in E

3g E O

h -o in » ts • - . o. m o • + 0

4» Q t e - u C O C

> r- l - H

1 8 z < â

r - l • H 0

co

4> •ri C * te

JE te

JE if te JE •on. 60 te

JE V I ce ,

te • # .

DO bO JE , te

JE « te

JE te

JE te

JE J? >R te JE

te JE

te JE

te JE

U z o

U

s 4 U

os < o 9 M

• J

Z M O CS «E X

5 • •

u

en

c M 0

in E

3g E O

h -o in » ts • - . o. m o • + 0

4» Q t e - u C O C

> r- l - H

1 8 z < â

r - l • H 0

co H «

a •a

ai

( H

Z

h 0) M

•ri r-l •H •** k. e

Cv

f o ru

ai > «1

a o

•M

o 3

T3 O ki a,

03 z a < -n M m a .. « a B O U oc ai U h.

D •o r-l a>

- H

Z

« N

•H (H

—«

U .

lA O nj a,

o ru

r- l

>

C o

T l

U

CB -O

u o O a. J u. c Z -H s C0 C4

u .. a> 0 . G O h CE a u u.

o TJ •H

• H >4

u a,

•S r-l • H

« h.

l A O

ru o.

ä

r- l a> > Cl

c o

•ri

O C0 3 z -o 4 O Cd t-CO Q. < a x -n O co m .. a> a. B O u CE O! O b.

D

01 •M X

z kl o>

•r* r-l •ri • * >

ki V

h.

f o rvt

aE

01 > 0>

fi o

• H •»J U

C0 3 H TJ S O Z U a o» z g ° O -H K O O

h . . ai a. e O (H CE œ U b.

O •o rH e

• H >1

z h 0> N

• H r- l • H •V

0> b .

ir\ O ru u. 1

r- l

> O

J

a o

• H

U s

• a o

x a. M C0 C X -H M co a

k. .. o a. B o h CE « U b.

o •o r-l ai

•H X

z

« r)

• H r- l • H ** kl

a> b .

IA O rvi a.

o ru 0)

s 0

CO - H z *• < o H 3 CO T)

O t * kl

a. K H a M -H

x a t . •• •

û. B O b es a U b.

a •a

ai

( H

Z

h 0) M

•ri r-l •H •** k. e

Cv

f o ru

ai > «1

a o

•M

o 3

T3 O ki a,

03 z a < -n M m a .. « a B O U oc ai U h.

D •o r-l a>

- H

Z

« N

•H (H

—«

U .

lA O nj a,

o ru

r- l

>

C o

T l

U

CB -O

u o O a. J u. c Z -H s C0 C4

u .. a> 0 . G O h CE a u u.

o TJ •H

• H >4

u a,

•S r-l • H

« h.

l A O

ru o.

ä

r- l a> > Cl

c o

•ri

O C0 3 z -o 4 O Cd t-CO Q. < a x -n O co m .. a> a. B O u CE O! O b.

D

01 •M X

z kl o>

•r* r-l •ri • * >

ki V

h.

f o rvt

aE

01 > 0>

fi o

• H •»J U

C0 3 H TJ S O Z U a o» z g ° O -H K O O

h . . ai a. e O (H CE œ U b.

O •o rH e

• H >1

z h 0> N

• H r- l • H •V

0> b .

ir\ O ru u. 1

r- l

> O

J

a o

• H

U s

• a o

x a. M C0 C X -H M co a

k. .. o a. B o h CE « U b.

o •o r-l ai

•H X

z

« r)

• H r- l • H ** kl

a> b .

IA O rvi a.

o ru

221

KISUMU 44

H Z O ta

S en

S

z H O « <

5 # • •

<

m i 03 l - l

r H ai > ai

- 1

C

o • H • P U 3

•o O u

a .

l-H • H

• H

H Z O ta

S en

S

z H O « <

5 # • •

<

m i 03 l - l

r H ai > ai

- 1

C

o • H • P U 3

•o O u

a .

l - l

H Z O ta

S en

S

z H O « <

5 # • •

<

• H L O

+ ' f l

"üi" 1 \ i n

i 03 l - l

r H ai > ai

- 1

C

o • H • P U 3

•o O u

a . «

H Z O ta

S en

S

z H O « <

5 # • •

<

• H L O

+ ' f l

"üi" 1 \ i n

i 03 l - l

u a>

* > - H 3 r H 0 H

£ - P • P k l • H 4) 3 h .

5

§ H

S O

l * \

X •4

• •

H

<

i n o ( N

1 O ro f M

O

c 1

i n r~

03

3 w M E l

ce

>

O

~) a o

•M • P O 3

O

a.

( -1 M

VO H

O H rH

vo VO

O

8 v O

1 1

5

§ H

S O

l * \

X •4

• •

H

<

i n o ( N

1 O ro f M

O

c 1

i n r~

03

3 w M E l

ce

>

O

~) a o

•M • P O 3

O

a.

O O o

0 0

O I A

oo r- l

O O O

J -

5

§ H

S O

l * \

X •4

• •

H

<

> 01

u c

i n B) o

r 7 ~4 m - v m E -

03

3 w M E l

ce

>

O

~) a o

•M • P O 3

O

a. M

o 8 I A

o 8 rA

5

§ H

S O

l * \

X •4

• •

H

<

> 01

u c

i n B) o

r 7 ~4 m - v m E -

03

3 w M E l

ce

>

e P * H 3 H 0 - H

X 4-> • P kl • H ai 3 [v,

8 o I A

8 o

v O

§ ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

«3 rvl

£ ' 0 LT

• U r -f N

O I N

• • 1 "0 m C O

( N r -

03

ë 03 O Z <s • 4 a ,

r H • H 0

03

O

O

a o

• H • p O 3

O i<

CM

O O O

O* KV

o I M

oo VO • H

KN H

VO rvj

vO

§ ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

«3 rvl

£ ' 0 LT

• U r -f N

O I N

• • 1 "0 m C O

( N r -

03

ë 03 O Z <s • 4 a ,

r H • H 0

03

O

O

a o

• H • p O 3

O i<

CM

3 8 o r\l i H

O <M

8 rvl J -§

ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

Veg

t.

Per

iod

1s

t +

2n

d:

l/m

-(m

/s

or

s/m

) in

D

ays/

lst:

1

70

or

mo

re

03

ë 03 O Z <s • 4 a ,

r H • H 0

03

O

O

a o

• H • p O 3

O i<

CM

M

O

8 < A

8 o

§ ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

Veg

t.

Per

iod

1s

t +

2n

d:

l/m

-(m

/s

or

s/m

) in

D

ays/

lst:

1

70

or

mo

re

03

ë 03 O Z <s • 4 a ,

r H • H 0

03

U t )

P - r t 3 r H 0 - H

X i - P • P b • H C 3 b.

8. vO

8 I A

VO

§ ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

Veg

t.

Per

iod

1s

t +

2n

d:

l/m

-(m

/s

or

s/m

) in

D

ays/

lst:

1

70

or

mo

re

03

ë 03 O Z <s • 4 a ,

r H • H 0

03

• P • H S

S

• * to

je to

J< OO

J 4 « bO j e

to Je

tO j e «. to

j e BO

j e to

je 60

j e * J? to j e

ao j e

to Je TA to

j e i? J? to je « to

je to

je to

je to

je

§ ta

w z < o OS

< o 0 5

« * Z H

a « •* X

( M

X

• s: •

u <

Veg

t.

Per

iod

1s

t +

2n

d:

l/m

-(m

/s

or

s/m

) in

D

ays/

lst:

1

70

or

mo

re

03

ë 03 O Z <s • 4 a ,

r H • H 0

03 r H

a •o r H « •W x

z k,

H • H H •r t 4« k l a

u.

I A O I V a.

o ru

. H u > a»

a o

• H • P O 3

•o

5 ° os a 03 - H

< ki .. «

0 . B O ki 05 B U Ix l

ki a e> • »

•v. m •o i - i a»

• H

z

bi « M

• H r H • H

ki a>

h .

m o O l a.

o <M

i H ai > o

C o

• H P U 3 •o o kl a, c

- H

O U .. c

o. a ce S

m • o • H 8>

- H X

z k a>

• H l - l • H

k i

o a.

o a<

> - 1

B O

• H • P O 3

•O O ki

0 ,

B • H

(0 k i

. . a> a. B O k. « «

5 • H 0)

• H X

z

M <• H

- H r H •r t

k i 0)

l>4

l A o ru a.

o rvl

i H O) >

B O

• H p

3 • O 0 U

o. B

• H

B k i

. . t> 0 , B O k, ce « U (a.

m •a

•«H X

z kl « •S

s

I A O OJ

o.

o rvl

r H 01 O e J

B O

• H P O 3

•o O k i

O .

s • H

O ki

. . o 0 . B

CE a

o •o ri 01

• H X

z kl o N

• H r H • H • P ki 0>

U .

I A O OJ

a.

o rvi 0>

03 o

S **

9 ° 0« k,

s : W - H 3 03 O

k, •• « a. e o u ce e o u.

a •o r H « •W x

z k,

H • H H •r t 4« k l a

u.

I A O I V a.

o ru

. H u > a»

a o

• H • P O 3

•o

5 ° os a 03 - H

< ki .. «

0 . B O ki 05 B U Ix l

ki a e> • »

•v. m •o i - i a»

• H

z

bi « M

• H r H • H

ki a>

h .

m o O l a.

o <M

i H ai > o

C o

• H P U 3 •o o kl a, c

- H

O U .. c

o. a ce S

m • o • H 8>

- H X

z k a>

• H l - l • H

k i

o a.

o a<

> - 1

B O

• H • P O 3

•O O ki

0 ,

B • H

(0 k i

. . a> a. B O k. « «

5 • H 0)

• H X

z

M <• H

- H r H •r t

k i 0)

l>4

l A o ru a.

o rvl

i H O) >

B O

• H p

3 • O 0 U

o. B

• H

B k i

. . t> 0 , B O k, ce « U (a.

m •a

•«H X

z kl « •S

s

I A O OJ

o.

o rvl

r H 01 O e J

B O

• H P O 3

•o O k i

O .

s • H

O ki

. . o 0 . B

CE a

o •o ri 01

• H X

z kl o N

• H r H • H • P ki 0>

U .

I A O OJ

a.

o rvi

2 2 2

S I A Y A D I S T R I C T

C o n t e n t s District page

Natural Potential 3

Introduction 3

Climate Tables 4

Rainfall Maps : 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map 13

Soil Distribution, Fertility and Major Characteristics . 14

Population and Land 17

Population per Location and Division 17

Household Composition per Location and Division 18

AEZ — Land Area Available per Location, Division, and per Household and Person 19

Agricultural Statistics (Production of Major Cash Crops) 20

Cotton - Production 1975/76 - 1979/80 , , 20

Small Farm Survey 20

Farm Organisation According to Farm Size Groups 22

Assets, Land Use, Farming Intensity, Inputs 24

Cropping Pattern 26

Herd Composition 28

Inputs and Yields of Major Crops 30

Disposal of Crops 32

Distribution of Farming Activities per Month . 33

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 40

223

SIAYA 3

N A T U R A L P O T E N T I A L

INTRODUCTION

The area systematically shows the typical zoning of West Kenya: It is dry near Lake Victoria, and wet about 50 km away from there, with many transitions in between. The reason is the increase of rainfall due to local convergence of the daily lake winds with the South-east passât being in a generally low pressure area over the heated uplands (see p.81). Thus, annual average rain­fall increases from 800 mm at the lake shore to 2 000 mm near the border of Kakamega. Therefore, it is understandable that the agro-ecological zones extend from a poor Livestock-Millet Zone to a good Sugar cane Zone. The contrasts in the zones of 60 % rainfall probability^) for the cropping seasons are even higher, in first rains from 350 mm to 900 mm, and in second rains from 50 mm to 800 mm!

For this reason, maize cultivation is very risky near the lake during the first rains and impossible during the second ones. Both rains are well distinguishable up to 25 km away from the lake (see Diagram Usigu Disp.), although the peaks are not very well pronounced. Therefore, Katumani maize is not advisable in the dry zones, because it needs a pronounced peak of water supply to yield well. Sorghum and millets do better there (possibilities for sorghum are included, of course, in the Livestock-Millet Zone). In the better Cotton Zone, two maize crops of H 511 are possible (see Diagram in Busia Distr.). In the more unreliable second rains, some fields should be planted with less demanding local maize varieties and with sorghum to bring down the risk. The start of the second rains is somehow difficult to define the more we approach the northeastern part of the district. This is because of the middle rains becoming bigger as a result of the convergence mentioned above. The advantage is that planting and growing may continue there from one season to the other.

In the Cotton Zone there are still chances for development with additional irrigation and swamp cultivation in the bottomlands, apart from the difficulties which the Yala Irrigation Scheme has faced.

There are no long-term temperature records, but we can be sure — by geographical extrapolation — that temperatures are simi­lar to those in the South Nyanza district.

Serious problems are caused by leached soils of low fertility if humus is lost. Soil conservation must start early and compost is essential especially in the wet areas and on soils with murrain cuirass in shallow depths. Nematodes are another reason why cli­matically possible yields are not yet reached here.

The great contrasts in the annual average rainfall and in the 60 % reliability of rainfall can also be seen in the 60 % reliability of the duration of the growing period (see Climate Tables). The Marginal Cotton Zone (LM 4) only has a growing period of 130 days followed by a less than 45 day period; the Sugar Cane Zone (LM 1), however, has 200 or more days during 1st rains and 120—130 days during 2nd rains.

Near Lake Victoria the annual average temperature is about 22.5° C — in the northeastern part of the district it is 21° C. Hu­midity of the air is relatively high. For the entire district, evaporation is 1 800—2 000 mm per year.

' 60 % means that the amounts will be reached or surpassed norm, in 6 out of 10 years

225

SIAYA DISTRICT

TABLE 1 : RAINFALL FIGURES FROM VARIOUS STATIONS

having at least 10 years of records up to 1976

No. and

altidude Name of Station

Years

of rec.

Kind of

rec.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Monthly rainfall in mm

May June July Aug. Sept. Oct. Nov. Dec.

8934031 Yala, St. Mary's 34 Average 1 832 73 89 145 277 264 150 118 165 154 136 145 116

1 465 m. School 60% prob.1) 1 500 37 81 135 251 261 125 96 158 131 110 115 77

8934059 Buholo, Chief's Camp 32 Av. 1 858 66 87 158 306 289 113 109 147 150 164 157 115

1219 m 60% 1 673 51 69 126 288 212 100 103 126 127 135 120 79

8934127 Ukwala, Distr. Office 17 Av. 1 618 56 117 156 264 191 89 61 120 141 171 158 94

1 256 m

9034021 Maseno, Usigu Disp. 32 Av. 864 38 58 105 164 137 41 35 41 33 48 86 76

1 234 m 60% 727 3 16 66 136 88 14 12 24 18 23 47 53

9034036 Bondo Water Supply 28 Av. 1 106 40 57 107 182 135 67 51 83 88 104 108 86

1219 m 60% 996 13 46 85 174 133 49 39 55 68 96 89 63

9034037 Akala Health Centre 23 Av. 1 615 72 62 169 328 243 87 64 106 127 129 152 77

1 220 m 60% 1 454 32 31 115 259 165 63 46 61 85 81 107 54

!) These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

SIAYA DISTRICT

TABLE 2: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological

Zone

Subzone Altitudes

in m

Annual mean

temperature

in°C

Annual av.

rainfall

in mm

60 % reliability

of rainfall '

1st rains 2nd rains

in mm in mm

60 % reliability

of growing period

1st rains ' 2nd rains Total3 )

in days in days in days

UM 1

Coffee-Tea Zone Very small, see Kakamega

p or two LM 1

L. Midland 1 — m i

Sugar Cane Zone

very small, Kakamega

1 3 0 0 - 1 5 0 0 21.7-20.5 1 500-1 900 750-950 600-800 200 or more 120-130 320-330

LM 2 1 - (m/s)i

Marginal Sugar

Cane Zone 1/m — (s/m)i

1 4 5 0 - 1 6 0 0 700-800 500-680 190 or more 110-120 300-310

1 200-1 350 22.3-21.4

1 4 0 0 - 1 5 0 0 650-700 450-550 170 or more 105-120 275-290

LM3

L. Midland

Cotton Zone

m / l ~ (s or s/vs)

1 1 0 0 - 1 4 5 0 480-650 300-550 155-165 8 0 - 90 235-255

1 140-1 250 22.7-22.0

m+f(vs) 1 000 -1 100 450-550 200-300 135-155 4 5 - 75

LM4

Marginal Cotton (m/s)+i

Zone

1 135-1 200 22.7-22.3 800-1 000 350-480 50-250 125-135 <45

LM5

L. Midland Live = Very small, see South Nyanza

stock-Millet Zone

!) Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants

2) More if growing cycle of cultivated plants continues into the period of second rains

3) Only added if rainfall continues at least for survival (> 0.2 E0) of most long term crops

226

AVERAGE ANNUAL RAINFALL

in mm

SI AY A

+ SOILS 345 B

8934

1800

9034

+ Rainfall recording station, operating 1976 and having at least 10 years of records

127 Station number in grid

9034 Grid number

. 5 •

Min of Agr.. German Agr Team. R Jaetzold

34 E

Broken boundaries are uncertain because ol lack ot rainfall records

" i 34 •*' E

60% RELIABILITY OF RAINFALL IN FIRST RAINS

(Feb.-July or less ) Amounts in mm. surpassed n o r m , in 6 out of 10 years

SI AY A

+ SOILS 345 B I B 8 U

371 S

0 15

Mm ol Agr. German Agr Team. R Jaeizoici •

34 E M I

60% RELIABILITY OF RAINFALL IN SECOND RAINS

(Aug. Jan or less ) Amounts in mm, surpassed norm, in 6 out of 10 years

SI AY A

+ SOILS 345 B

188 U

24 H x m-h

700

«0 15 20

Min ot Agr. German Agr Team R Jaetzolcl Soils ><SS

34" E

Broken boundaries are uncertain because ol lack ol rainfall records

34"30'E

or»

AGRO-ECOLOGICAL

ZONES

+

SIAYA

Bell ! A E Zones

A E Znnes

ones

Chni niiii iiiii i lm AEZ lonnuUu I M i Mi i nrull n

1 'iji Qtinmnn i

SIAYA9

AGRO-ECOLOGICAL ZONES

UM = UPPER MIDLAND ZONES

UM 1 = Coffee-Tea Zone

Very small, see Kakamega

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone

LM 1 p - Lower Midland Sugar Cane Zone with permanent cropping possibilities, or two dividable in two variable cropping seasons

Very small, see Kakamega District

-100

_ . j — Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx. pot. évapotranspiration of a permanent crop (bananas)

Approx pot évapotranspiration of m./l. mat. maize like H 622

Approx pot évapotranspiration of m. mat. maize like H 511 1 983 ' Rainfall per indicated growing period,surpassed in 6 out of 10 years

LM 1 = Lower Midland Sugar Cane Zone with a long cropping season Ir^m i followed by a medium one and intermediate rains

(see Diagram Buholo)

V e r y g o o d y i e l d p o t e n t i a l (av. > 80 % of the optimum) 1st rains, start norm, mid F.: M. mat. (120 days) sorghum; sweet potatoes; m. mat. (115 days) sunflower like

Vympel or Hybrid S 301 A, m. mat. (120 days) soya beans Whole year, best planting time b. March: Yam beans, pawpaws, guavas

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: Maize H 622 and 632 (60-70 %), late mat. (150 days) sorghum (70-80 %), finger millet; late mat

beans, pigeon peas (March—F.); sweet pepper, kales, Chinese cabbage, spinach, cabbage, chillies, yellow yams (F.—O./N.), egg plants (to 2nd r.), pumpkins

2nd rains, start undistinctly b. S.: Maize H 511, m. mat. sorghum; beans ('v 60 %), cowpeas; sweet potatoes;m. mat. soya beans, e. mat. sunflower like 252; kales, Chinese cabbage, spinach, onions

Whole year: Sugar cane, bananas (nematodes danger)!), cassava, tea in upper places (70—80 %, but medium to low quality), Robusta coffee (y 60 %)*), avocadoes

231

SIAYA 10

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 2nd rains: Maize H 622 and 632, finger millet; late mat. groundnuts and late mat. bambarra groundnuts (both in

light soils), cabbage Whole year: Mangoes, taro, citrus

P a s t u r e a n d f o r a g e Around 0.5 ha/LU on sec. pasture where orig. there has been a moist submontane forest; down to 0.13 ha/LU feeding Napier or Bana grass and banana leaves and others

LM 2 = Marginal Sugar Cane Zone i

LM 2 = Marginal Sugar Cane Zone with a long cropping season l<-~(m/s) i followed by a (weak) medium to short one and intermediate rains

Ve r y g o o d y ie 1 d p o t e n t i al 1st rains, start norm, mid F.: M. mat. sorghum; sweet potatoes; m. mat. sunflower like Vympel or Hybrid S

301 A, m. mat. soya beans;onions, chillies, pumpkins, sweet pepper Whole year, best planting time mid F.: Cassava, pawpaws, yam beans (best near rivers)

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622 and 632 (higher parts), H 511—513 (lower parts), late mat. sorghum, finger millet;

beans^), pigeon peas (March-F.); late mat. rosette resistant groundnuts (in light soils); roselle, cotton (60-70 %, but low qual.); tomatoes, cabbages, kales, egg plants

2nd rains, start undistinctly towards S.: Bulrush millet, m. mat. sorghum, ratooning sorghum (S— Au.); beans, green grams; onions, kales

Whole year: Bananas (nematodes danger)^), sisal

F a i r y i e l d p o t e n t i a l 1st rains: Bambarra groundnuts, cowpeas; tobacco 2nd rains: Maize H 511 (^ 40 %); pigeon peas (O.-S., ^ 60 %), cowpeas; sweet potatoes; simsim; cabbages;

cotton (^ 40-50 %, July-F.)3) Whole year: Sugar cane (on less suitable soils marginal), Robusta coffee^, citrus, mangoes, pineapples

P a s t u r e a n d f o r a g e 0.6-0.8 ha/LU on high grass savanna with Hyparrhenia & Panicum dominating; down to 0.15 LU/ha feeding Napier or Bana grass and banana leaves, maize stalks and fodder legumes (also for soil and pasture improvement)

LM 2 = Marginal Sugar Cane Zone l/m^ with a long to medium cropping season (s/m) i followed by a (weak) short to medium one and intermediate rains

Small and transitional. Crop potential like LM 2 l—m/s but m. mat. sorghum in 2nd rains and bananas only fair, maize H 511 — 12 in 2nd rains and sugar cane (also on good soils) only marginal. Ratooning sorghum 1st to 2nd rains good. Stocking rates ^ 1 0 % less

LM3 = Lower Midland Cotton. Zone

LM 3 = Lower Midland Cotton Zone m/l^(s with a medium to long cropping season or s/vs) followed by a (weak) short or short to very short one

G o o d y i e l d p o t e n t i a l 1st rains, start norm. b. to mid March: E. mat. maize like Taboran orKatumani,m.mat.likeH 511 —13(^60 %),

m. mat. sorghum (70—80 %), ratooning sorghum 1st to 2nd rains, e. mat. millets (70—80 %); m. mat. beans, green grams v, cowpeas; groundnuts and bambarra gr. (both in light soils), simsim^); sweet pot.; cotton {y 60 %), m. mat. soya beans, m. mat. sunflower like Vympel; tomatoes, onions; chick peas (on h. bl. soils), dwarf castor^), muskmelons

2nd rains, start norm. Sept.: Simsim, green grams; sweet potatoes in swampy places Whole year, best planting time March: Cassava (y 60 %), sisal, yam beans Near swamps with water regulation resp. add. irrigation: Rice, bananas (on dams), Chinese cabbage (on ridges)

and other vegetables

F a i r y i e l d p o t e n t i a l 1st rains: Med. mat. maize H 622, finger millet (50-60 %); pigeon peas (March-F,); Virginia tobacco (higher

places) 2nd rains: Early mat. proso millet (O.-N., 50-60 %), e. mat. sorghum (40-50 %), e. mat. bulrush millet (bird

rejecting awned var. best); mwezi moja beans, e. mat. bambarra groundnuts (in light soils); dwarf sunflower Whole year: Pawpaws, mangoes, citrus (/\/ 40 %)

232

SIAYA 11

P o o r y i e l d p o t e n t i a l 2nd rains: E. mat. maize

P a s t u r e a n d f o r a g e 0.7—1.1 ha/LU on mixed savanna with star grass (Cynodon dactylon); down to 0.2 ha/LU feeding Bana or Napier grass and fodder legumes like Stylosanthes (also for pasture and soil improvement)

LM 3 = Lower Midland Cotton Zone m+f(vs) with a medium and a fully (weak) very short cropping season

G oo d y i e 1 d p o t e n t i al • 1st rains like LM 3 m/l -.(s) less 10 % (H 511 — 13 and cotton then fair)

2nd rains nothing Whole year: Sisal

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 511-12 (40-50 %), finger millet; pigeon peas (March-F.); cotton 2nd rains, start norm. Oct.: E. mat. proso millet, dwarf sorghum ('\> 40 %); green grams; simsim; sweet potatoes

near water Whole year: Cassava

P a s t u r e a n d f o r a g e 0.9-1.2 ha/LU, down to 0.25 ha/LU feeding Bana grass and Stylosanthes

100

50

L M 4 (m/s ) • i

Nr.: 9034021 Maseno.Usigu Dispensary

0 ° 0 5 S 3 4 ° 0 8 E 1 2 3 1 m 3 2 y . up to 1976

,1,1 I ±

TJITU-

-400

1 T "

J Jjj

100

-50

O

_ _ i — Average rainfall per decade I rainfall surpassed in 6 out of 10 years

— — Approx. pot. évapotranspiration of a permanent crop (sisal)

— — Approx. pot. évapotranspiration of early mat. sorghum

Approx. pot. évapotranspiration of early mat. maize

Approx. pot. évapotranspiration of cotton 1 400 • Rainfall per indicated growing period, surpassed in 6 out of 10 years

LM 4 = Marginal Cotton Zone

LM 4 = Marginal Cotton Zone with a (weak) medium to short cropping season (m/s) + i and intermediate rains

(see Diagram Maseno, Usigu Dispensary)

G o o d y i e l d p o t e n t i a l 1st rains, start norm, end March: E. mat. sorghum {y 60 %), e. mat. proso millet (60—70 %); e. mat. beans

(y 60 %), tepary beans (70—80 %), green grams, cowpeas, chick peas (on h. bl. soils); e. mat. sunflower like Issanka {y 60 %), simsim

Whole year: Sisal Near swamps: Like LM 3

2 3 3

SIAYA 12

F a i r y i e l d p o t e n t i a l 1st rains: E. mat. maize (40—50 %), e. mat. bulrush millet (50—60 %); pigeon peas (y 40 %), soya beans (40—

50 %), e. mat. groundnuts and e. mat. bambarra grdn. (both in light soils); onions

P o o r y i e l d p o t e n t i a l 1st rains: Cotton

P a s t u r e a n d f o r a g e 1—2 ha/LU; less than 0.8 ha/LU if horse tamarind (Leucaena leucocephala) and other palatable shrubs are planted in order to improve fodder situation during dry season

LM 5 = L o we r Midland Livestock-Millet Zone

LM 5 = Lower Midland Livestock-Millet Zone (s/m) + i with a (weak) short to medium cropping season and intermediate rains

Very small on lakeside. Potential see South Nyanza District. Bulrush millet (bird rejecting awned variety) should be introduced. No protein crop necessary because of good fish supply

1' See Busia *•' Should be intercropped with maize because of hail storm danger 3) See Busia 4) Planting towards the end of the long rains *' Good for rotation because of its resistance against Striga spec, and nematodes

2 3 4

SI AY A

SOILS 345 B

SERIOUS LIMITATION see descriptions

Steep s lopes, unsuitable tor cul t ivat ion, not marked in Nat Pks For Res. and ranching areas

Waterlogging

Shallow soil

\

GENERAL FERTILITY GROUPS

(according to soil list )

subject to

^.y

10 IS ?0

'• I

high

moderate to high

moderate

moderate to low

34 , E 34 " 3° E

SIAYA 14

SOIL DISTRIBUTION. FERTILITY AND MAJOR CHARACTERISTICS

The land is mainly a peneplain and slopes very gently from the 6831 to the west. Dominant soils are soils on lower-level uplands (172 U, 174 U, 177 U). Unit I 77 U has a limited fertility. Also, watei holding capacity is small because it occurs above „murrain cuirass". In addition to that, there are soils with a lopsoil rich in organic matter ( 169 U). Some of the upland soils are moderately deep. Inselbergs have shallow soils.

In the southern parts of the district a variety of soils occur in the valley bottoms (383 V). These SOUS ne mainly poorly drained, often mottled and subjed to Hooding.

Along the Yala river young alluvial soils are found. They usually vary greatly in texture and colour over short distances, but may have a relatively high natural fertility (368 PI).

SOILS ON HILLS AND MINOR SCARPS

Soils developed on undifferentiated Tertiary volcanic rocks (olivine basalts, rhyolites. andesites) 14 H = complex of well drained to moderately well drained, shallow to moderately deep, dark brown, f i rm stony, clay loam to clay;

x, m-h ' in places with humic topsoil leutric REGOSOLS; with verto -luvic PHAEOZE MS, partly lithic phase)

Soils developed on basic igneous rocks (serpcnlinites, basalts, iiephclinc plmimlites. older basic tuffs included)

20 H = somewhat excessively drained, shallow to moderately deep, dark reddish brown, Iriable. gravelly clay, wi th acid humic topsoil

x, m-h (humic CAMBISOLS, partly paralithic phase)

Soils developed on quartettes 24 H = somewhat excessively drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places with acid

x. m-h humic topsoil (RANKERS; with LITHOSOLS and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses 27 H = complex of excessively drained to well drained, shallow, dark red to brown, friable, sandy clay loam to clay; m many places

x, m-h rocky, bouldery and stony and in places with acid humic topsoil (dystnc REGOSOLS, wi th LITHOSOLS, humic CAMBISOLS

l i thir hase and Rock Outcrops)

SOILS ON PLATEAUS AND HIGH-LEVEL STRUCTURAL PLAINS

Soils developed on Intermediate igneous rocks (syenites, trachytes, pnonolites, etc I 6 2 L = well drained, very deep, dark reddish biown to dark red, friable clay

h (n.to-rhodic FERRALSOLS)

SOILS ON UPPER MIDDLE-LEVEL UPLANDS

Smis developed on granites

131 U = well drained, very deep, dark red to yellowish red. Inable to f i rm, sandy clay to clay, w i th acid humic topsoil

h (humic ACRISOLS)

Soils developed on various rocks 139 U = well drained, very deep, dusky red to yellowish red. friable to f i rm, clay loam to clay; in places with acid humic topsoil (ferralo-

h chromic/orthic ACRISOLS)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks ( basalts, etc. I 143 U = well drained, extremely deep, dark reddish brown, (liable clay

h (dystnc NITOSOLS)

144 U = well drained, very deep, red to dark led. friable to f i rm, clay; in places moderately deep over petro-plinthite (eutoe NITOSOLS,

h with rhocV FE RRALSOLS. partly petro-ferric phase)

Soils developed on various rocks ( Kavirondian sednnenls. often mudstones)

1 68 U = well drained, deep to very deep, dark reddish brown 10 strong brown, friable clay

h (rhodic to orthic FERRALSOLS)

1 ' Soil texture-classes

It = heavy

m = medium

I = light

x = stony, boulder] v = varying texture m-h = medium to heavy

m, h = medium and heavy (e.g. almiptly umleilav ing B topsail ol different l e x l i m i

2 3 6

SIAYA 15

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 69 U = moderately well drained, shallow to moderately deep, dark brown, f i rm clay

h (verto-luvic PHAEOZEMS, lithic phase)

Soils developed on intermediate igneous rocks (andesites, etc.) 1 72 U = well drained, moderately deep to deep, dark reddish brown, friable clay; in many places over petro-plinthite (chromic LUVI -

h SOLS, part ly petroferric phase; with ,.murrain cuirass" soils)

174 U = association of : well drained to moderately well drained, shallow soils over petroplinthite (about 50 %); on interfluves („murram

h cuirass" soils)

well drained, very deep, dark reddish brown to strong brown, friable clay; on valley sides (dystric/eturic NITO-

SOLSandor th ic FERRALSOLS)

Soils developed on acid igneous rocks 177 U = well drained, moderately deep to deep, yellowish red to strong brown, friable clay, over petroplinthite or rock; in places shallow

h over petroplinthite (orthic FERRALSOLS, partly petroferric phase; with „murram cuirass" soils)

178 U = well to moderately well drained, shallow, dark reddish brown, stony to gravelly clay over petroplinthite; in places moderately

x, h deep to deep („murram cuirass" soils (80 %); wi th ferralo-chromic ACRISOLS)

Soils developed on granites 179 U = complex of : well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petro-plinthite

h (orthic FERRALSOLS, partly petreferric phase; wi th orthic ACRISOLS)

moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30 %) („murram cuirass"

soils)

Soils developed on various rocks (Kavirondian sediments, often mudstones) 188 U = well drained, moderately deep to very deep, dark red to strong brown, friable clay; in places shallow over petro-plinthite (orthic

h to rhodic FERRALSOLS, partly petro-ferric phase; wi th ,,murram cuirass" soils (10—40 %)

SOILS ON LACUSTRINE PLAINS

Soils developed on sediments from lacustrine mudstones 325 PI = poorly drained, very deep, very dark grey to black, very f i rm, slightly sodic, cracking clay, wi th calcareous deeper subsoil

h (lower level of Kano plains) (pellic VERTISOLS, sodic phase)

SOILS ON BOTTOMLANDS

Soils developed on infill mainly from undifferentiated Basement System rocks 345 B = complex of imperfectly drained to poorly drained, very deep, very dark grey to brown, mott led, friable to f i rm, sandy clay to

m, h clay, often abruptly underlying a topsoil of friable sandy clay loam; in places saline and sodic (dystric PLANOSOLS; with pellic

VERTISOLS, vertic and humic GLEYSOLS and plinthic ACRISOLS)

SOILS ON FLOODPLAINS

Soils developed on sediments from various sources (recent floodplains) 368 A = complex of well drained to imperfectly drained, very deep, dark greyish brown to dark reddish brown, stratified soils of varying

v consistence and texture (eutric FLUVISOLS)

SOILS ON SWAMPS

370 S = very poorly drained, very deep, very dark grey to black, f i rm, cracking clay, wi th acid humic topsoil (seasonal swamps) (humic

h GLEYSOLS)

371 S = very poorly drained, very deep, dark grey to black, f i rm clay; w i th acid humic topsoil ; in many places peaty (permanent swamps)

h (humic GLEYSOLS and dystric HISTOSOLS)

SOILS ON COASTAL OR LAKE-SIDE BEACH RIDGES

Soils developed on beach ridges along Lake Victoria 381 Z = imperfectly drained, very deep, dark brown to greyish brown, friable, sandy loam to sandy clay of varying salinity and sodicity;

m-h with inclusions of loose sand to loamy sand soils (SOLONCHAKS, undifferentiated; with ARENOSOLS, undifferentiated)

SOILS IN MINOR VALLEYS

383 V = complex of well drained to poorly drained, deep, dark reddish brown to black, f i rm, silty clay to clay; in places calcareous

h and/or cracking.

Soil description from Kenya Soil Survey: Exploratory Soil Map and Agro-Climatic Zones Map of Kenya, scale 1:1 000 000, Rep. El , Nairobi

1982. See this map also for colours; symbols simplified here.

237

SIAYA 17

P O P U L A T I O N AND L A N D

At the time of the Census in September 1979, more than 474,000 people lived in Siaya District (Table 3). Only 1 % (4,877 people) of the total population lived in the two townships of the district. The rural population of nearly 470,000 had to share a total rural area of 251,700 ha, i.e. 0.39 ha agricultural land per person, and for an average household of a little more than 5 people, 2.14 ha were available (Table 5). In LM 1, the Sugar Cane Zone, less land was available (1.6 resp. 0.3 ha). This is a severe situation as the figure of the lower quartile of the samples of the Small Farm Survey 1977 (Table 8b) was 2.0 ha per farm. In the Cotton Zones (LM 3-4), the average size is about 3 ha (per head 0.5). A comparison with the figure of the lower quartile with 3.2 ha shows that here the shortage of land is starting. Especially in the Marginal Cotton Zone (LM 4), there is an increasing necessity for pasture.

In the Sugar Cane Zone (LM 1), the most critical location is South Ugenya with less than 1 ha agricultural land per household in 1979 (Table 5). This figure gives an idea of the critical situation in this area. Regarding the population growth, agricultural intensification is absolutely necessary in the whole district to improve the situation of the small farmers.

SIAYA DISTRICT

TABLE 3: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

East Uyoma 9 380 10 081 19 461 2 934 113 171

West Uyoma 8 894 10 098 18 992 2 812 109 173

West Asembo 8 274 9 808 18 082 2 961 93 193

East Asembo 8 499 9 884 18 383 3 325 83 220

South Sakwa 11 973 13 788 25 761 4 319 226 113

North Sakwa 8 849 10 652 19 501 2 985 161 120

Yimbo 9 426 10 647 20 073 3 448 187 107

Bondo Division 65 295 74 958 140 253 22 784 975 143

South Gem 12 808 15 288 28 096 6 319 150 187

North Gem 12 879 15 216 28 095 6 350 111 251

East Gem 17518 20 321 37 839 8 118 145 260

Yala Division 43 205 50 825 94 030 20 787 407 230

East Alego 21 687 26 282 47 969 8 705 242 197

Central Alego 16313 20 100 36413 6 935 179 203

West Alego 10 691 13 574 24 265 3 501 117 207

Usonga 4015 5 154 9 169 1 569 74 123

Boro Division 52 706 65 110 117816 20 710 613 192

South Ugenya 11 697 14 865 26 562 5 399 95 277

East Ugenya 12248 15 745 27 993 6 258 138 202

North Ugenya 18 801 23 826 42 627 8 275 184 231

Uholo 11 106 14 129 25 235 5 489 108 232

Ukwala Division 53 852 68 565 122417 25 421 526 232

Siaya District 215 058 259 458 474 516 89 702 2 522 188

239

SIAYA DISTRICT

TABLE 4: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3*

LOCATION/DIVISION No. of Households total

Farmers Family b) Non-Relatives Persons per

Household . . total b )

LOCATION/DIVISION No. of Households total

Adult >15 years

Children < 15 years

Other Relatives

Non-Relatives Persons per Household . . total b )

Location:

East Uyoma 2954 3.32 1.35 1.18 0.74 6.59

West Uyoma 2824 3.28 1.35 1.58 0.49 6.72

West Asembo 2970 3.32 1.28 1.22 0.30 6.05

East Asembo 3339 3.00 0.86 1.09 0.36 5.51

South Sakwa 4331 3.25 1.23 1.18 0.26 5.92

North Sakwa 2973 3.20 1.29 1.37 0.55 6.44

Yimbo 3505 3.02 1.12 1.20 0.40 5.73

Division Bondo 22896 3.19 1.24 1.25 0.42 6.10

Location:

South Gem 6399 3.18 0.45 0.51 0.26 4.39

North Gem 6370 2.66 1.02 0.46 0.27 4.40

East Gem 8140 2.67 1.05 0.64 0.28 4.64

Division Yala 20909 2.65 1.02 0.55 0.27 4.49

Location:

East Alego 8748 2.79 1.05 1.27 0.33 5.40

Central Alego 6950 2.76 1.00 1.12 0.03 5.19

West Alego 3520 3.02 1.04 2.43 0.40 6.89

Usonga 1569 2.93 0.94 1.38 0.54 5.79

Division Boro 20784 2.82 1.03 1.42 0.35 0.44

Location:

South Ugenya 5410 2.58 1.04 1.07 0.19 4.88

East Ugenya 6298 2.58 1.04 0.66 0.15 4.44

North Ugenya 8393 2.68 1.04 1.14 0.18 5.04

Uholo 5505 2.54 0.97 0.90 0.15 4.56

Division Ukwala 25606 2.62 1.02 0.96 0..17 0.48

DISTRICT: SIAYA 90195 1.72 1.06 1.04 0.30 5.25

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two person per household as well

240

SIAYA 19

SIAYA DISTRICT

TABLE 5: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqk m in '00 ha = sqkm in ha

Area

total

Non-a gricultural land Agri­

cultu­

A r e a i n a g r o - e c o l o g i c a l z o n e s Agric land Area

total Unsuit. Forest Others

Agri­

cultu­

A r e a i n a g r o - e c o l o g i c a l z o n e s Agric land

Location/Division steep Res., (roads, ral A E Z per

without townships Census slopes lakes, home­ land house­

79 swamps steads,

rivers...)

UM 1 LM 1 LM2 LM3 LM 4 LM 5 hold person

East Uyoma 113 2 11 100 6 94 3.48 0.52

West Uyoma 109 11 98 48 50 3.52 0.52

West Asembo 93 9 84 77 7 2.84 0.47

East Asembo 83 8 75 4 67 4 2.26 0.41

South Sakwa .226 13 sw. 4 23 186 63 103 20 4.33 0.71

North Sakwa 161 8 sw. 2 16 135 6 110 19 4.54 0.69

Yimbo 187 10 sw. 33 lake 7

19 118 36 82 3.47 0,60

Bondo Division

South Gem

975 33 46 97 799 10 407 359 20 3.49 .0.56 Bondo Division

South Gem 150 15 135 56 79 2.14 0.48

North Gem 88 (111)1)

9 79 79 1.21 0.27

East Gem 145 15 130 30 100 1.61 0.35

Yala Division

East Alego

383 (407)D

39 344 30 235 79 1.65 0.37 Yala Division

East Alego 242 sw. 4 24 214 12 98 104 2.45 0.44

Central Alego 179 6 sw. 5 lake 5

18 151 13 98 34 2.18 0.41

West Alego 117 sw. 12 lake 5

12 88 16 72 2.54 0.37

Usonga 74 sw. 39 7 28 28 1.78 0.31

Boro Division

South Ugenya

612 6 70 61 481 25 212 238 2.32 0.41 Boro Division

South Ugenya 62

(95)D

6 56 56 0.96 0.20

East Ugenya 138 13 125 122 3 1,99 0.45

North Ugenya 184 18 166 13 103 50 2.01 0.39

Uholo 108 11 97 96 1 1.77 0.38

Ukwala Division 492 (526) ! )

48 444 287 107 50 1.75 0.36

Total rural area 2517 39 116 264 2 098 30 547 408 695 359 20 2.14 0.39

' ( ) = Census areas differing from measured areas in older maps

For official land statistics see supplementary publication to FM-Handbook, Vol. HI A: Agriculture Land Statistics.

241

S I A Y A 20

A G R I C U L T U R A L S T A T I S T I C S

Cotton is the major and so far the only important cash crop grown in the district. It is esti­mated that 3-4,000 ha are planted annually yielding between 220 and 500 kg of seed cot­ton per ha. Ninety percent of the cotton crop is interplanted into maize. *) A cash crop gaining in importance is sugar cane, although the generally low soil fertility within the district makes sugar cane growing costly.2)

SIAYA DISTRICT

TABLE 6: COTTON PRODUCTION3)

Ginnery Zone Year Ginnery Zone

1975/76 1976/77 1977/78 1978/79 1979/80

Ndere

Seed Cotton in t

Bales

1172

2057

1055

1852

1565

27^6

156^

37^5

1790

31^2

a) Source: C.L. & S.M.B., does not refer to district area only

S M A L L F A R M S U R V E Y ( S F S ) 3 )

The farms investigated are above average in size. They are not very intensively cultivated and no improved cattle are kept; the high stocking rate of 2.4 LU/ha does not consider the commonly used grazing areas. Fertilizer is almost exclusively applied to sugar cane (tables 7 and 8). Besides subsistence crops like maize and sorghum, cotton (in LM 3—4) and sugar cane (in LM 1) are the most important crops (table 9). Extremely low yields and little input level characterise the farming system (table 11). Widespread cattle diseases prevent the successful introduction of improved livestock; roughly 85 % of the grazing stock are cattle and 15 % are sheep and goats (table 10).

Practically all food produced is consumed locally (table 12). There is considerable potential for output increase (table 14) but a lasting improvement in soil fertility requires the introduction of a proper mixed farming system and the use of increasing amounts of fertilizer.^) The introduction of a mechanisation system based on the use of draught animals is feasible and would help to improve the labour productivity considerably.

1) Cotton Research Station investigation - the farm activities shown in Graph of the SFS do not fully support these statistics 2) No exact agricultural statistics are available; for more detailed and up to date information see FMHB Vol. Ill A 3) November 1977, sample size 30. For more detailed and up to date information see FMHB Vol. Ill B 4) See also notes on farm management information, output and nutrient input, page 51

2 4 2

SMALL FARM SURVEY AREAS (1977) and

AGRO-ECOLOGICAL

ZONES

+SOILS

SI AY A

Unsuitable steep slopes

Belt o l A E Zones —

A E Zones —

Subzones

Climatic data lor AEZ formulas se

5 '0 '5 0

AE/ FI la!.-

34 E

?0

i : M U I

eria i • .

: ill I and H

Z5

National Number of Survey Area

Survey Area. sample size 30 per number

n 3" u S

' • Mm ot Agr, German Agr Team

34 »'E

SIAYA 22

O w

Ui N

3 u. O H ü Z 5 o: c ü « z o p < z o O ai < —

dl Al E

à C O O E M = U. to

c at -a 0 u

-d o

Ol ±! c N O r:

4J iJ *J O i- *J u u o a o o C o —

K\ CC • •

^ co so

r\j O

h Si irJ 0'

>, - t -a a J -

• - I o

•H vo rg ix O O r-( O

h-- J

s - • H

Q S < _ J

< N

c/i <:

r«~\ iA rvj

O O O

O O O

0) H E -H

K\ "s r^

A V

•3 C\ H C*-

O O O O

r* tV -i -*

o o o o

^ H M

O '' H

ti .. N «1

• W 3

E •n U 0)

c r O U.

0

*> — 01 « B = «l • ** «

S M •H S « E c t • » c E C se H w M C 0

11

c o>

II

I\J ïft

ïft

O O • co

O >H

o ! c u

u

2 4 4

S I A Y A 23

3 C O o O.

O -H 3 CO *> O

J u t E O

- 3 >> CO dl

V C « rt O -H O U CO C tl V E

•P E U c o s

H S b.

Pi H e*)

S <

N

(0 s

E

c 3 c. (0 b, 3

J O c >-

oï O C3

I I J C 11 N O N

•H O -H CO -P M

10 E o e u t» t. (fi - H cd

b, J b,

CM

oo oo M

« • • KN rt I N

O 1 ^

» >R

I

t- F J=

o. 11 M B a 3

rt b . O • P rt

<H a. <tH C o ai 0

X cO

c C 0 CD O bo

•H r-i •H c •P 4J . P I l P U n O CO 0 3

C o u. 0

K\ KN K\ »

• • • • rt rt O O

1AC\1 K> VO K\ ^ J * • • # • • • •

O O O O O O I\J

CO CM 4

•O e +> co m c

rt O c n t, u i o C &4 O

z

a es b. b.

VJ3 C\J o o

rg f\j fO

O rt

o

o

VJ3 OJ t j \ O

R Cl

S rt b . B

C • 0 0 M

O

u a c « •rt n > 3

0

rt £.

CO O C CO 0 at CO U

u c V s» CL. a

A V

o o O O O rt

BJ a co J=J= x

rt c n c & o o CO

eo Ü .% S c

=5

«1 J= CO o CD « M H C •p H Ort h a • p • H

10 u« o «i o JJ c • H S CO m o X

o < b . E H

cO ci J : JS

CO

C\J O 00 -=>• I N f\J r-l

U M a o I N OJ H I N 0 0 >s CD d- K \ VO rvj v û

N a r i rt r-t CM

to bo bo be to tû

x x x x x x to

X

O b.

O O •H •P X> P. CD E O 3 3 CO t? G O O SH

U Ç~ e o H Ç

rt S CO «I

o bO c

o a.

3 E co ë 3 cd - 3

p .e u c c te c. 3 I l h » O » O O h

b. U3 CO O O

OJ 't*. • CA

C^ 'S* • tr\

CM .3"

\0 ' t * • C\J

O CM

5 & CS x. • *

u c

E

b. P CS

C U

O C3

a s

al a b> ^ _J

2 4 5

SIAYA 24

SIAYA DISTRICT

TABLE 8 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: UM 1 - LM 1 Survey Area 08

Range

Assets People on Farm

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

Up« Qu.

Loo Qu.

4.1

4.1

5.6

2.0

8.9

10.3

10.0

3.0

1.3

1.9

2.0

2.9

2.9

3.0

2.0

0.6

1.5

1.0

2.3

3.3

4.0

Land Use

Hange Annual ha

Crops Perm. ha

Crops %

Pasture ha %

Forage ha %

Fallow ha %

Other ha

Usa %

Avg. 0 1.5 37 0.7 17 1.3 32 - 0.3 0.2 6

Avg. 1 1.5 32 1.0 20 1.3 28 o.l 3 0.5 12 0.3 6

Up. Qu. 2.0 60 0.8 20 1.2 46 - 0.5 13 0.4 10

Lo. Qu. 0.7 29 - - 0.3 13 - - 0.1 4

Total ^5.0 20.2 38.9 0.1 9.9 7.2

Farming Intensity

Hange Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Hange Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture i Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Dp. Qu.

Lo. Qu.

1.2

1.6

0.9

0.8

1.1

0.3

2.5

2.5

6.9

0.7

3.9

54.3

Inputs Applied

Range Improved Fertilizer Applied Manure Plant Protection Seed Used % of area

pure nutrient kg/ha Applied t/ha

Seed Used % of area

pure nutrient kg/ha Applied t/ha Insecticide

kg/ha Fungicide kg/ha

Seed Used % of area N P205 K20

Applied t/ha Insecticide

kg/ha Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 46.4 4.5 2.4 14.7 - - - 0.2 - 0.8 - - 0.3

Avg. 1 50.3 19.2 15.6 25.8 - - - 0.7 0.1 2.2 0.2 - 1.2

Up. Qu. 83.3 12.0 36.0 - - - 0.2 - 1.9 - - -

Loo Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

246

S I A Y A 25

SIAYA DISTRICT

TABLE 8 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: LM 3-4 Survey Area 07

Range

Assets People on Farm

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 1 4 No.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

6.9

6.9

8.4

3.2

21.3

30.it

31.0

0.6

1.5

1.0

3.0

3.0

4.0

2.0

0.6

1.9

1.0

2.7

4.5

3.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha *

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

2.8 'to

2.8 24

3.2 55

1.4 27

83.2

0.1 2

0.8 7

4.2

2.7 39

3.0 25

4.2 60

0.5 15

79.8

0.2 3

3.4 29

6.8

0.8 12

1.4 12

1.2 20

24.4

0.2 3

0.3 2

0.4 8

0.1 1

7.0

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr. Farm Land

LO/ha Pasture & Forage

LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Op. Qu.

Lo o Qu.

0.8

1.0

0.7

1.0

1.5

2.4

2.2

3.1

-

Inputs Applied

Range Improved Fertilizer Applied Manure Plant Protection Seed Used % of area

pure nutrient kg/ha Applied t/ha

Seed Used % of area

pure nutrient kg/ha Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

Seed Used % of area

N p2o5 Kao

Applied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 38.Ó 0.4 - 2.5 - - - 0.1 - 1.1 - - -

Avg. 1 52.9 3.9 - 7.6 - - - 0.2 - 1.7 - - -

Up. Qu. 66.7 - - - - - - - - 1.0 - - -

Lo. Qu. - - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of all farms excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm, 50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

247

SIAYA 26

SIAYA DISTRICT

TABLE 9 a: CROPPING PATTERN AEZ: UM 1 - LM 1 Survey Area 08

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Maize Sorghum Beans Beans IPC Groundnuts Sunflower Onions Cassava Sugarcane Maize & Sorgm Maize & Beans

0.4 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.5 0.0 0.7

1.0 0.7 0.5 0.2 0.2 0.*+ 0.2 0.5 1.1 0.4 0.9

0.80 0.00 0.20 0.00 0.00 0.G0 0.00 0.00 o.8o 0.00 0.80

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11.if . 4.2 4.0 0.4 0.2 2.2 0.3 0.6

16.0 o.4 19.8

19.1 7.1 6.8 0.7 0.5 3.7 0.5 1.0

26.9 0.7

33.2 Total 59.6 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Maize Beans Beans IPC Sunflower Cassava Sweet Potatoes Sugarcane Maize & Beans

0.2 0.1 0.0 0.1 0.0 0.0 0.5 0.4

0.6 0.9 0.1 0.4 0.3 0.2 1.1 1.0

0.20 0.00 0.00 0.00 0.00 0.00 0.80 0.60

0.00 0.00 • 0.00 0.00 0.00 0.C0 0.00 0.00

5.4 1.8 0.1 1.8 0.6 0.2

16.0 12.8

13.9 4.7 0.3 4.7 1.6 0.5 41.4 33.1

Total 38.7 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Sweet Bananas Cookng Bananas Coffee Tea

0.0 0.1 0.1 0.0

0.2 0.3 0.3 0.2

0.00 0.00 0.24 0.00

0.00 0.00 o.co 0.00

0.2 1.8 2.7 0.2

4.1 36.4 55.4 4.1

Total 4.Ö 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

248

SIAYA DISTRICT

TABLE 9 b : CROPPING PATTERN

AEZ:LM3-4 Survey Area 07

First Rains Annual & Semipermanent Crops

Average Average Upper Lower Total Sample Crop 0

ha 1 ha

Quartile ha

Quartile ha

Area Crop 0 ha

1 ha

Quartile ha

Quartile ha ha %

Maize 0.8 1.4 i.4o 0.00 24.6 28.2 Sorghum 0.7 1.3 1.20 0.00 21.4 24.6 Fingermillet 0.0 0.3 0.00 0.00 0.8 0.9 Beans 0.2 0.7 0.40 0.00 5.4 6.2 Cowpeas 0.0 0.5 0.00 0.00 1.0 1.1 Groundnuts 0.1 0.3 0.00 0.00 1.5 1.7 Sunflower 0.0 0.8 0.00 0.00 0.8 0.9 Cotton 0.5 1.0 0.80 0.00 14.0 16.1 Cassava 0.1 1.0 0.00 0.00 4.0 4.6 Sweet Potatoes 0.0 1.2 0.00 0.00 1.2 1.4 Others 0.0 0.5 0.00 0.00 1.4 1.6 Maize & Beans 0.2 0.9 0.00 0.00 5.2 6.0 Maize & Cowps 0.0 0.2 0.00 0.C0 0.2 0.3 Maize & Others 0.1 0.7 0.00 0.00 4.4 5.0

[ FMlt & Sorghum o.o 1 0.6 1 0.00 o.co 1.2 1.4 Total ö7o2 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Maize Cassava Maize & 3eans

0.0 0.1 0.0

0.4 1.0 1.4

0.00 0.00 0.00

0.00 0.00 0.00

0.8 4.0 1.4

12.9 64.5 22.6

Total 6.2 10C.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Sweet Bananas 0.0 0.2 0.00 C.G0 0.2 100.0

Total 0.2 100.0 •

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

SIAYA 28

(J

2 H

3

<

o Z

u o H co

£ ' HM tSl

sä I ü > w j Z -o ° S B B "a

g as s .s O | u a ai w X

CQ

<

S • J

s D N U

£ CV s C i CA» CV r-l vD O B H £ | O 1 s 1 CO r-> 1 1 - t f CA, •<r »A CA. 1 CO H O !> v D cv a •

• 05 « • • • • • • « • • • • • • • • « ; = > * > C C c c \ o O a o O OJ v r Cv - ï O t o CA, •st c • o ; ^N c>

• 3 E H

.* h O £ > t > r-d) o O ~s 0s G< I A -c o o I P s ;

J3 - P • o • Ci o • Ci •P M O v \ «O UN vO

o \ r H H r H r-3 to 03 co

o O o o o o

« r<- l > r^ 6 0 >> cv I 1 1 « 3 OJ 1 1 > 1 to CV 1 1 >> • H h • « t l • t l

eu •H Ci

o O •H d

T3

o •H IS

"O

•H d

T3 TJ

o <M <H CM

>-? O 0 O

» • - 1

A a CV

c 1 cv c 1 O 1 CO

CA l-f 1 1 i f t CA. CA.

cv ^4 I A

r H CA, 1 vO 9 o t ~ • ^ V.+

I A CV o t > * i » • - 1

A a c « • • « * « « • • S • • • • • • • H +» O c o CA O c O O o O CV CA. CA " < • o I A c - CA ^7 o ^-f M O • O • o « «S EH o ^ 4 " r^ U I A t > S o

II II II 10

II o r- r«, II r- II

a) II

cv 1 l A 1 c v C-H 1 1 II CA. ir~ i 1

II a)

• • Ci • C-l o o o o c O

o CO

O

IQ U i )

10 CO

O

IQ U i )

10

'M <M ^ a. •H o o o •rt o •H

o O > H CA. rH O o C-l 1 £ o o Ci I et t e • » \ 0 * M*; e ~

J C a H cv CV

w + CO

+ to J3

+ CO co

+ CO

+ to J3

+ CO co

U O • P 41 •p

a & 1 cv & 1 > •3

O CA. t-H o C v 1

> H

•H C C \

t~-c 1

> H

•H

3c • • > •3 • I A • <Ö » u~, e « D

O o O O rH f—i O r-< O O

O ü

o O ü

o a -p P

t i o t > c o c v CA, r 10

ai t s ^ o

4)

t i o C.J 1 C 1 CA rH | 1 t ~ H UN r-i CO cv cv 1

10 ai f-H C i cv 1

o 4)

t i o

• • • • CA. • > ^ • .* • H d o o o O H •r l r-l •r i 4) ) 1-3

K t l

a 6C Ci a> S)

t l

a 4) 6C Ci

•H r-i • H H ' r i

41 I 1 1 1 1 I 1 1 I t p •P 1 1 & 1

CA, 1 O

O O 1 1

-P 4-J

c2 Ci O O 1 1

P a.» .-y

X « • « CA, • CJ U CA. * !ti u O u

H

O O r~!

H

O

r-i

i—'• 0

H

o H

u

H H

O

r-i

0

H

o H

rî rt cj rt c!

u 4-> - P 4-> • P P h CA. CA. 0 CA, O r- o O a 0 O V l 1 1 1 O 1 r-i O 1 1 - p 1 1 O 1 o 1 cv o 1 1 + j •p Cv r-i 1 1 • P -P 4> • « • « • *-• p O c <n O o o <H <n | 0 «M «M

W O 0 C O O O 0 C O O

ta rH f - o c r- i n o x> *<;* 1 A , H i | 1 1 1 1 1 1 1 1 • c ' 1 c^ I \ .0 H o vD H 1 • o SiO c—; l • « H r-i • t • I A • i > Î 0 I A • >o CO 3 CV o O o r~' •v; r-H •si­

• • • rH • • • • » H ë • H • • 3 3 3 , «

4) O * 4) O 0J O * -P 3 .5, 3 3 3 «

1> O " 4) & 4) O " +> 3 3

4) O " O 18

4) O " O 1

t u M 6 0 O fco • t M 60 60 O 60 •O O t ü us h «s u w (H e-i d u U II :-i]n u ns u rt h Ê-I rt t i h II u 4) 6 H O l i t i ll II t l Ü u O U V U a o CJ i . o (< « h a U O i ) > t l o ü

X 4) ft 4> ft 4) A . — 4) ft 3 O a ft o ft a ft a> ft 3 O 4) ft S

o b> ft > ft •> ft TJ > ft O -P > ft > ft > ft * -v > ft o t< > ft 0

o < : » < s << ö 4) <* O ^ 10 < ; ö < ä « ; & . < Ö r^ fM ft < & rl P. • p > o a o E ü 1) EO » . o « > B S> 4) • H O 4> 4) 4> m co u H •rt • 03 CO -H H Ä G O H X >

•M u u L, a 3 3 <d s ' •P

4J K J a 3 3 3 •P

CO S - P - P co P

• 3 4> 4) 4) - H <s • 0 4) 0 4) * -^ <0 + + V «> + >•> >» >> >-' o 4> ?» >> ^ J U r 3 O

•O H > r-l fl 10 T3 to

4) H ffl 4) O r-l fl « - P 4 ) 6C 4> 4->

> CM - P rH b C\J +J •3 0! > a 'S o O »i (M 0 CU p. M OJ O •3 O O - r l 'S o t l a> te * » X E 4) t l +> s ü ft 3 s; o ft •a i 4) J D •H T) I V Xt ft 3 a n > 3 » G a t> s ö j ^ S t l S3 P5

H l » H O « 1-3 3 S5 H O W r^ K T M ü r^ ^

• 2

o Xi

C o D Ü

-1

>

2 5 0

SIAYA 29

O

Z

U O H t/3

>

Ü g < O Z o E "O

O x s .s O | u a a: u s J3 O

« 09 <

H U

« r f H 1 on Q T,

< J > <

H o: 0s

- 1

£> CA O r-( 1 1 1 ! 1 1 1 1 i i O J \ 'M C^ o 1 O t o 1 O 03 co 1 • 0 « 4 • • • • • « • • • !=> +» O D o o I A •C sO l-t -<?" ~0 —' • O r% r H o r - l

H 3 C-. CV cv

Ü r. O t > !> r-V o u ^ o &

I A ( 0 O r- I A ^ - i o JC - P • r - l & 3 r^i H o • ÔÏ r - l

+> W C«A o f ^ o CA

o \ C^v r-t CA r H CA r - l 10

o ra 3 0

m 3 O

10

o ra 3 0

m 3 O

o ü O

ca M >» 1 | | 1 ï 1 1 | >! i | | | > ï

• r i u 1 ï

u u ft •w

cd • r l

-o • r l

t 3

• r l

-o •c s «M t M <H -3 O O O

» H a <s 1 1 , 1 1 1 i , i i >* H

J-* CO 0^ S , O '^ tr> , • * * c-CA C/J M 1 • Ä » H

a <s • « « • • • • • • » • •H +» O 2 o o I P v - N * vO H H ^r O H r-l

O H O O H • o H • O H • Cl CO Oi t o

M o l p . u-\ O

tl 11 !| a tl o t > O 11 E> !|

a) o o

r-\ rv OJ I T v <-t CA i - < 1 H C^ r - l 1 a) o o

• • c: • r - l cV • H a)

o o 10 cA •vT Ci >~ « cV > s -

10 (4 o

U O

(4 o

U O

<H <H <n o. •H r - -> ^ •H f ^ . •H 41 O H 1 I A H cv i > C V 1 41 cv ^~ « 1 41 V 33 • • to • S to • K

£ r - l H Oi Ci w

to +

ra + CO

O to +

ra + CO

O O 4) 4J o Ai

> c v CA > •H o v > •H

2 1 1 1 1 i i 3 • vu 3 • v O 1 •3 a 3 * 1 r-l

a 3 o o ^ f 3 -*d" o 3 •<t O o

O 0

u 0

O 0

u 0

10 • p •P u 4)

«H 1 1 1 1 ! 1 i i

O CA

• M

o i - i • (V s

O

-<* •

•<T 1 co cu Ol

O

• ^ 1 > •H r H rH CV • r l cv • r l Ci r - l

C

r-l

te G o 4)

r - l

C O

r-l

te G

f - l r - l •H H • H

a •P C A ç^\ o CA •P N CA •P ? 4) 1 1 1 1 1 1 1 | i i • p • -H 1 • H 1 p > - v f o UA ~ 1 4J Ö v O I A < 1 JP ÇS X

o u

H

• O

• O «

cv r- •

CV

H

O

H

£> • Cl

"""~

c o

rH

M

O

'S

u

H ™"" H

O

H

c o

rH

M

O

'S IB cd <d (0

M

O

'S 10 •P • p •P -P JW h O CA O O CA c c i A Cl 0

« 1 1 1 1 1 ! 1 1 i i -P O 1 r-{ 1 H 1 > CV 1 1 • p - p c>- CV 1 1 •P •P

« • m • • 0

* J <w O O O O < H 'M O 'M <H

w •SR

O

V i ^Ä ft •SR

O

V i ^Ä ft a O c- Cr\ o o t o t o o t o '-0

H | 1 1 1 1 1 t 1 i i « o 1 i r \ 1 " •t 1 >- ' J \ Cl 1 • • o C/X r< 1 e • H o • » » ir- « o ^ I A * C ,'t a o r ^ c r - l -<c r-l r J V f r-l

t • • H • » • • • H • * 3 • • 3 a 3 d 3 3 3 3 3 Ö 3 3 3 3 & O O " « C « O 1 j p « ffff o o" a> cy «u o * -P <U O" O ' • p 4> Qf &

ta bo ho o ta . . hO 60 60 O M •o o M « h <a u a (K E-( <S ' u u II ^ (S fc B rt 03 r i E-l <S H r l II II 41 En CO (4 u II II fc o U O u O U o <0 o ^ O IH S J4 U h 11 <D > U Cu 4)

a o P i a ft o ft -— o ft S c O ft CD ft O ft i ) ft S O 4) ft ^ o > s. > eu > ft -a > ft o - p > ft > ft > ft <-^ > ft O (-1 > ft O

o < & << XJ < » a> < S=> il 10 < :=> «. o «; :=> • < » r^ ft ft < ra rA ft JO i» 4) p 4) S r * 4 ) 10 o m > e « <a •H O 4) Cl <D <0 (0 (-1 r - ) • r i r QO CQ " H H X ß O H X

> r i r. r l ft 3 <a «a s

•P r3 id 3 3 3

•P co Ö -P •P M •H

r i r. r l ft 3 <a «a s •P id 3 3 3 •P « •P

r - ) 4) 4) 4> - r i (H TJ 11 41 4) w « + + \ (8 + > » > > > > ^ O O >%>*>, ü r - l O

•O r-f > H a X ) w 4) H a 4) O H a 4) -M 41 fc£ 41 -P

> ru -P H '•4 ro +> H rt > C 'S O O *< C\J 0 t« ft l< IM 0 d o O -H 'S O (4 D t l -P E a O t . P s o ft CÖ

X. o P. •ö i a JD • H •Ö 1 4) X I ft CÖ 8 ß > a O G a s» 3 O O E ^ » f"! M o H O e j .-q ~' i > H O 10 r 3 r l M O r-J r-l

D _ l

r »o N J VO r -H O

o O

_J D

l O 00 vo o o

o o D D i n

J _1 --i n o

l O • * S3 0) o O S3 0)

>, >. • '

1 I 0)

> ü

U D L-> _ l • J - J i n o o r g ( N • - H

c D D D

o op

c D

251

SIAYA 30

SIAYA DISTRICT

TABLE 11 a: INPUTS AND YIELDS OF MAJOR CROPS AEZ: UM 1 - LM 1 Survey Area 08

Crop T.r.ï)ut 5 ï i e l d Crop Imp-r ov e d

Nut r i c n t : ; Ch.-îird c a l s ï i e l d Crop

Imp-r ov e d N P , O 5 ' K20 Manure I R Ù J C C . Fung­

ï i e l d

Seed.o i c i d e o' /'•• k; t /ha kR/'ha k s / h a t / h a k,-:/ha k r / h a k g / h a

F i r s t R a i n s

Maize Avg. 90 13 37 _ 1 .36 ?. - 1 ,357 UpQu 100 26 60 - - if - 2 / / 0 0 LoQu 100 - - - - - 900

Sorghum Avg, - _ 20 _ - 2 _ 716 UpQu - - - - - - - 750 LoQu - - - - - - - 300

Maize & Beano Maize Avg. 80 12 29 - O.9O 2 - 2 , 3 3 6 Bo a n s Avg. 10 - 3 - O.O9 - - •'+80 Maize üp Qu 100 33 60 - O.6O 5 - 3 , 0 0 0 Beans UpQu - - - - - - - 600 Maize LoQu 100 - - - - - - 1 ,688 Beans LoQu - - - - - - - 188

Second R a i n s

Avg. 57 5 20 0 . 7 7 1 1 1 ,^91 Maize Avg. 57 5 20 0 . 7 7 1 1 1 ,^91 UpQu 100 - 'fO - - - - 2 , 2 5 0 LoQu - - - - - - - 450

Beans Avg. - _ k _ _ 2 2 928 UpQu - - - - - - - 1 ,200 LoQu - - - - - - 500

Maize & Beans Maize Avg. 50 8 17 - 0 . 1 5 3 3 l , 6 < + 6 Beans Avg. - - - - - - - 'f26 Maize UpQu 100 - 58 - - - - 2 , 2 5 0 Beans UpQu - - - - - - - 600 Maize LoQu - - - - - - - 1 ,125 Beans LoQu - - - - - - - 125

P e r e n n i a l Crops

S u g a r c a n e Avg. - 11 - - - - - 3 2 , 1 7 5 UpQu - - - - - - - kz, coo LoQu - - - - - - - -

Cookng Bananas Avg. - - - - 0 . 1 5 - - 3 , 2 9 9 UpQu - - - - - - - 2 , 2 5 0 LoQu - - - - - - - -

Cof fee Avg. - 23 _ - 0 . 7 1 - 16 1 ,232 UpQu - - - - - - 13 1 ,635 LoQu —

— — — — ™ 313

252

SIAYA 31

SIAYA DISTRICT

TABLE l i b : INPUTS AND YIELDS OF MAJOR CROPS AEZ: LM 3-4 Survey Area 07

Crop i In nut 3 Yield

kg/ha

Crop .Imp­roved Seeds

%

Nutr lent s Chemicals Yield

kg/ha

Crop .Imp­roved Seeds

% kf,'/ha

P2Û5'

kp;/ha

KpO

ke:/ha

Manu re­

t/ha

Insec.

kr /ha

Fung­icide kg/ha

Yield

kg/ha

First Rains

Avg. UpQu LoQu

67 100

3 13 20

- 0.02 1 - 2,121 2.250 1,500

Maize Avg. UpQu LoQu

67 100

3 13 20

- 0.02 1 - 2,121 2.250 1,500

Sorghum Avg, UpQu LoQu

-

"

"" "" 0.01 - -;

997 1,125

600

Beans Avg. UpQu LoQu

— ~ -

1.1't 1 ** 871 1,125

hOQ

Groundnuts Avg, UpQu LoQu

20 - - - - -

*~ 638 800 113

Cotton Avg. UpQu LoQu

57 100

"™ "" "" 0.35 10 20

':

694 750 375

Maize & Beans Maize Beans Maize Beans Maize Beans

Avg. Avg. UpQu UpQu LoQu LoQu

20

-

k

mm

0.03 0.03

1

-

2,085 hkO

2,250 600

1,200 I60

Second Rains

Maize Avg. - - - - 0,63 - - 1,913

Perennial Crops

Cassava Avg. UpQu LoQu

- -

— —

-- -

-3,l?-5

253

SIAYA 32

SIAYA DISTRICT

AEZ: UM 1 - LM 1 TABLE 12 a: DISPOSAL OF CROPS

Survey Area 08

Crop Production

kg

Marketin g Board Local Market Home Consumption Crop Production

kg kg kg % !<- % First Rains

17,320 2,070 12 3,2*to 19 12,010 69 Maize 17,320 2,070 12 3,2*to 19 12,010 69 Haizo 5: Beans 57,037 4,400 8 14,930 26 37,707 66 Maize Z-. Sorgm l8o 0 0 0 0 13 0 ICO Beans 2,420 2'to 10 1,080 5 1,100 >*5 Beans IPC 620 80 13 120 19 420 68 Sorghum 2,9^0 0 0 620 21 2,520 79 Groundnuts 100 0 0 80 80 20 20 Sweet Potatoes 3,000 0 0 0 0 3,000 ICO Sunflower 1,166 1,166 100 0 0 0 0 Cabbage 6oo 0 0 53o 97 20 3 Onions 350 0 0 300 86 50 14 Tomatoes 280 0 0 200 71 So 29

Second Rains

8,695 1,285 15 270 3 7,1'!0 82 Maize 8,695 1,285 15 270 3 7,1'!0 82 Maize £• 3eans 30,41*0 3S0 1 11,580 38 18,48o 61 3eans 1,390 40 3 1,000 72 350 25 Beans IPC 80 60 75 0 0 20 2S Sunflower 1,955 8,910 1*56 0 0 -6,955 -356 Onions 720 0

p

0

ermanent C

720

rons

100 0 0

Cookng Bananas ^50 0 0 400 09 50 11

SIAYA DISTRICT

AEZ:LM 3-4

TABLE 12 b: DISPOSAL OF CROPS Survey Area 07

Crop Production

kg

Marke tin g Board Local Marke t Home Consumption Crop Production

kg kg ,1 kg "!} I'S ')o

First Sains

Maize 60,255 7,620 13 13,510 22 39,125 65 Maize i 3eans l8,5<*5 6,020 32 3,740 20 8,7u5 47 Maize & Coups 490 0 0 90 18 400 82 Maize ?-• Others 9,711 2,391 25 1,710 18 5,61c 53 Beans 3,420 0 0 1,390 41 2,050 59 Fingermillet 350 140 40 70 20 140 40 FMlt & Sorghum 1,380 0 0 80 6 1,300 94 Sorghum 21,180 0 0 5,330 28 15,350 72 Cowpeas l3o 0 0 100 56 SO 44 Groundnuts 765 190 25 305 4o 270 35 Sweet Potatoes 18,000 0 0 0 0 18,000 100 Sweet Pot. IFC 20,020 0 0 0 0 20,020 100 Sunflower 950 950 100 0 0 0 0 Cotton 8,360 8,360 100 0 0 0 0

Second Rains

Maize 1,530 0 0 765 50 765 50 Maize & Beans 843 0

P

0

»rmanent C

0

Jrops

0 843 100

Nil

2 5 4

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 b: DISTRIBUTION OF FARMING ACTIVITIES

Crop 1 Maize Cases: 24 Crop 2 Maize & Beans Cases: 60D

AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30 AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30

- 100 '. . of Ihe ' ~~

Land Preparation: cases Land Preparation:

JILL jJlliiiL s

- - to

jlIlLlL llll I • 1 _I_WIJL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

Jllk 1 111], XJllUi Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

ILL JUL IILL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

JllllL JIL L _JI1L*J J_*. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

J II I • • • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Li Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

• I I _• a_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

III I II J IL jj IL JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

J l 1M Jl llL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

LlL. L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

A Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

lllLJL JILL ÜILÏIL IIIIILIIIIIL, •••il.i.l • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1) Maximum 30 per crop and season

255

SIAYA 34

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 d: DISTRIBUTION OF FARMING ACTIVITIES Crop 10 Beans Cases: 11 Crop 18 Sorghum Cases: 6

AEZ:UM1-LM1 Survey Area 08 Sample Size: 30 AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30 100 % of the cases Land Preparation: Land Preparation:

il i I i l l i LIL J_LL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

JJWL I I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

J I U L 11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

1 ± I I I ! Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

1 u Jj_l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

LL ill ILLULI I I III J_ l kid Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

256

SIAYA 35

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 f: DISTRIBUTION OF FARMING ACTIVITIES Crop 34 Sunflower Cases: 12 Crop 51 Coffee (Robusta) Cases: 11

AEZ:UM1-LM1 Survey Area 08 Sample Size: 30 AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30 100 %

' of the '• ; cases Weed in«:

I • 1 • • • I I - I I • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

±1 J1L 1 • i J I L -a • • A Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: Pruning/Cutting:

JL_1 ±1 i ±_JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizing:

JLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

- I I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

-• •_ JLLL J_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

UlL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

J i l l JL JiL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

I II I I I I 1 I I |J Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

257

SIAYA 36

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 h: DISTRIBUTION OF FARMING ACTIVITIES Crop 56 Cooking Bananas Cases: 6 Crop 63 Sugarcane Cases: 14

AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30 AEZ: UM 1 - LM 1 Survey Area 08 Sample Size: 30 100 '•

~ ~ " " ~ " " — — ' ~ ~ — ~ ~ of the Weeding: cases Weeding:

T

JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

i • • i • • i I I 1 i I i M I I i

T

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

_L J_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting: Pruning/Cutting:

J I I I l _ _ I I I 1 I I I

T Ï

_ i _i I i i l I i i i I • i_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Fertilizing: t

i i , . i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

l_l_i A La _J Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

258

SIAYA 37

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 j: DISTRIBUTION OF FARMING ACTIVITIES Crop 1 Maize Cases: 20 Crop 2 Maize & Beans Cases: 17

AEZ:LM3-4 Survey Area 07 Sample Size: 30 AEZ: LM 3-4 Survey Area 07 Sample Size: 30 100 %

. of the " ~ ; Land Preparation: cases Land Preparation:

JW J_l I I • III JJ_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

JL I I I • • III. I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

JLL X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

J L J_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

_I_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

_L JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding: First Weeding:

J lILlxJL J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JIILLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

lll.ll!.. . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

JL

• • L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

l _ l l_ JIUi JUAAÂÏL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

SIAYA 38

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 k: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 1: DISTRIBUTION OF FARMING ACTIVITIES

Crop 18 Sorghum Cases: 18 . Crop 24 Groundnuts Cases: 5

AEZ: LM 3 - 4 Survey Area 07 Sample Size: 30 AEZ: LM 3 -4 Survey Area 07 Sample Size: 30

100 ". , ! of the

Land Preparation: cases Land Preparation:

A li_L JUL A at . S - - S

ILli Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

1 U_ HII I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

J_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Im. i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

1 1 L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

i l l t i l l — I UL Jl L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec

Third Weeding: Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jill illui- U I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

2 6 0

SIAYA 39

SIAYA DISTRICT SIAYA DISTRICT

TABLE 13 m: DISTRIBUTION OF FARMING ACTIVITIES TABLE 13 n: DISTRIBUTION OF FARMING ACTIVITIES Crop 35 Cotton Cases: 14 Crop 64 Cassava Cases: 4

AEZ:LM3-4 Survey Area 07 Sample Size: 30 AEZ: LM 3-4 Survey Area 07 Sample Size: 30 100 "-. of the cases Land Preparation: Weed i ne:

•I II • I • • L _U_

o> . . —

5 X 3

I I I I I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

III 111! I I X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizine: Prunine/Cuttine:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizine:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

I I I I I . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

]_L HA Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

.ui] M i l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

•I • •• I • • • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

• I I 11 I 1_1 •_!_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

111 II 1_L I • II. II • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

261

SIAYA 40

z o N

< u o o -1 o

•<j w ó os o < Q z < : o. O ei u o! w o-»5

o

z o H U D O O Bi a.

W

OQ

H

y 2 H Ol

S <: <

H Z o N

Z o En O O

I A

X •A

u

( N 1

n

w J o w

os u <

rH

>

c 0

• H +4 y 3 •o O

a.

t-1

2

o o -s-

1\J

VO rA o o o

\1\

0 0

H

Os vo

1 c c ir

r-

rvj rA rH

VC rjv

H Z o N

Z o En O O

I A

X •A

u

( N 1

n

w J o w

os u <

rH

>

c 0

• H +4 y 3 •o O

a.

•H

H Z o N

Z o En O O

I A

X •A

u

0 0"* l

«g >

0

ES

w J o w

os u <

rH

>

c 0

• H +4 y 3 •o O

a.

-o 0 0 H

H Z o N

Z o En O O

I A

X •A

u

0 0"* l

«g >

0

ES

w J o w

os u <

u 4) ri

44 -H 3 -H O H

JZ 44 *> U •H o

o o M

o o m

eu

O O

u z o N

U z <t u

w

• H " < z M

o œ < X

ru

X rJ)

<

0

m

! 0 0 ro

0 ^1

1 0

Ê

a •>< ce u ta,

~4 41 > 01

J

a 0

44 O 3

•o O U a.

•H

O O O

I A 0 0

rH J -

o o o

H 8 o

l - l

IA

H I A

u z o N

U z <t u

w

• H " < z M

o œ < X

ru

X rJ)

<

0

m

! 0 0 ro

0 ^1

1 0

Ê

a •>< ce u ta,

~4 41 > 01

J

a 0

44 O 3

•o O U a.

i-t

o c o

0 0

tv. rvj

r-l

u z o N

U z <t u

w

• H " < z M

o œ < X

ru

X rJ)

<

0 u 0

• H =:

01 U

f 5 • H r -

Ê

a •>< ce u ta,

~4 41 > 01

J

a 0

44 O 3

•o O U a.

M

o o o

rA

u z o N

U z <t u

w

• H " < z M

o œ < X

ru

X rJ)

<

0 u 0

• H =:

01 U

f 5 • H r -

Ê

a •>< ce u ta,

o

44 ' H 3 H O - H

• H 11 3 U .

O o IA • rH

o o

0 0

(M

O O IA

vO

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

•• c

•—! m

— I

c c

• • 1 T 0 £ CM

M »7 O W H ) «S

g Ë

r-l •H O

W

01 > «

a o

• H 44 O 3

0 (H

CM

5 8 vO

rA

O O H

O I A

O o o

0 0

c^

e\j

0 0 o o 1CN

0 0

J -00 rvj

VO VO IA

o o o IA tA

O r-l

l A rA

O O O

o (M

O

«M

IA O H

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

•• c

•—! m

— I

c c

• • 1 T 0 £ CM

M »7 O W H ) «S

g Ë

r-l •H O

W

01 > «

a o

• H 44 O 3

0 (H

CM

s o o o

*

0 0 H Cv. r H

o o o

<• rvl • A

VO IA

VO O O O

0 0

I A r-i rvj

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

h O E

h 0

•H S O l o

H M • 0

U TJ "1 o a * - i

a. c\j o s->

• + a *> a to 44 c a s

> r* -4

M »7 O W H ) «S

g Ë

r-l •H O

W

01 > «

a o

• H 44 O 3

0 (H

CM

M 8 rvl

VO Cv. rv O O O

o r-l

<\I H

rvl o o H

rA

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

h O E

h 0

•H S O l o

H M • 0

U TJ "1 o a * - i

a. c\j o s->

• + a *> a to 44 c a s

> r* -4

M »7 O W H ) «S

g Ë

r-l •H O

W

01 r j

44 «H 3 H 0 - H

X I 44 44 U • H « 3 ta,

O O

0 0

H »A

O O •a-

H

O O o

-a-

8 o I A

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

h O E

h 0

•H S O l o

H M • 0

U TJ "1 o a * - i

a. c\j o s->

• + a *> a to 44 c a s

> r* -4

M »7 O W H ) «S

g Ë

r-l •H O

W

•*» - H S

S

«. to X

to 60 X

to X W bO te

1 * to

Je ce

je tç

je «. to Je

CO je

to Je

te je •îR

bO Je

tfi J<î

ta JE

SO j e « bO

Je Je to

Je to

je

W Z o

U z < o

œ << o s w

H

X 1-3

• • •

W • <

h O E

h 0

•H S O l o

H M • 0

U TJ "1 o a * - i

a. c\j o s->

• + a *> a to 44 c a s

> r* -4

M »7 O W H ) «S

g Ë

r-l •H O

W 03 «

a •a r-t V

• H >H

Z

h V H

•H rH •H •M

a> u .

I A O M a.

o rvj

H 01 >

1 ' m o Ce a . M

S " z a

u .. a> a . B o u ce a O ta.

•o

« •rt

Z

c

•H r* •H *> 1-.

U .

1A O r«t a.

o

se

o > _ 1

c 0

- H 4> U 3

•e 0

c.

« c

H Q

. . a> a, s o u, a a

-o

rH

•H

z

• H i-< •H 44 -4 0>

u.

IA O o

a;

rH 0) !» 0)

e 0

• H 44

« S 3 ° « û-• * c g .S fi CO

. . o> a. s o c ce n u u.

u

« >, o T3

z

0) N

- H M • H 44 kl 0>

ta,

I A O (M a.

o ro

•H O >

•A

a o

•H 44 U 3

•o

3- r t

03 Q h

. . J, a. E o t . ce a O ta,

0 •D M 9>

»

Z

u

« N

•H r-l •H 44 C ai u.

I A o r\J

CL.

O rvl

rH 0) > 01

- 4

B 0

•H 44 O 3

T> 0

S * s -o 0

t . . . Q)

O. B O u os a U ta.

o •o rH 0)

•IH > l

Z

c

N •H rH •rt 44 U 01

ta.

I A o ru a .

o rvl » z

ES ° f ; *» ta u

d £ 2 * g o

S -z a

u .. « a. 8 o u ce a U b.

a •a r-t V

• H >H

Z

h V H

•H rH •H •M

a> u .

I A O M a.

o rvj

H 01 >

1 ' m o Ce a . M

S " z a

u .. a> a . B o u ce a O ta.

•o

« •rt

Z

c

•H r* •H *> 1-.

U .

1A O r«t a.

o

se

o > _ 1

c 0

- H 4> U 3

•e 0

c.

« c

H Q

. . a> a, s o u, a a

-o

rH

•H

z

• H i-< •H 44 -4 0>

u.

IA O o

a;

rH 0) !» 0)

e 0

• H 44

« S 3 ° « û-• * c g .S fi CO

. . o> a. s o c ce n u u.

u

« >, o T3

z

0) N

- H M • H 44 kl 0>

ta,

I A O (M a.

o ro

•H O >

•A

a o

•H 44 U 3

•o

3- r t

03 Q h

. . J, a. E o t . ce a O ta,

0 •D M 9>

»

Z

u

« N

•H r-l •H 44 C ai u.

I A o r\J

CL.

O rvl

rH 0) > 01

- 4

B 0

•H 44 O 3

T> 0

S * s -o 0

t . . . Q)

O. B O u os a U ta.

o •o rH 0)

•IH > l

Z

c

N •H rH •rt 44 U 01

ta.

I A o ru a .

o rvl

262

SIAYA 41

VI w z o N -J

< u 3 o j o u u Ó ei ü •< Q

a -t

z o H U D Q O ei o.

w j

H

H

H

S < <

H Z O SI

z o

S t>

IA

z

• SI

• • <

LTl ITt

1

r - l

CO - ) O co t - i cc u

<

i H 01 > 01

- 1

c o

•H 44 u 3 •o O u

t-4

r 4

o o M

O O o IA

IA

o o in o o rvj

ru

O VO

ru 1A

O O O

M

r-i

1 I N

H Z O SI

z o

S t>

IA

z

• SI

• • <

LTl ITt

1

r - l

CO - ) O co t - i cc u

<

i H 01 > 01

- 1

c o

•H 44 u 3 •o O u

M

o o o

ru

O CO ( M

O o 00

•H

O H

00

ö m rA

O O

ru

•* O O o

H Z O SI

z o

S t>

IA

z

• SI

• • <

0 c^ 1

— 0 l/î CO

>

k i

c m

CO - ) O co t - i cc u

<

i H 01 > 01

- 1

c o

•H 44 u 3 •o O u

t-i

O o IA

.-I

O 0 3 O o o

H

O CA ru

O IA

ru ru 1-i

o o I A

H Z O SI

z o

S t>

IA

z

• SI

• • <

0 c^ 1

— 0 l/î CO

>

k i

c m

CO - ) O co t - i cc u

<

u 01 *)

44 - r l 3 •-< O -n

44 t l • H O 3 Cv

O O o

r-i

O o vo

H

O o o

#

O o oo

§

H Z «< •

U]

J

< Z M O CE •X X

<\) z

• NI

U

c

i*> i ' c 0 (^

r\

1 C co

«< CS CS M

i-l

> 01

J

d o

• r l 44 O 3

O

O,

1-1 M

O o

CO i - l O o

O r> R

o o

o H

IA

vo IA

IA IA

O O

r*

IA ru 8

r H

§

H Z «< •

U]

J

< Z M O CE •X X

<\) z

• NI

U

c

i*> i ' c 0 (^

r\

1 C co

«< CS CS M

i-l

> 01

J

d o

• r l 44 O 3

O

O,

y-i

O O O

CU

O o CsJ

S O o ru

o o

O O CN

§

H Z «< •

U]

J

< Z M O CE •X X

<\) z

• NI

U

0 11 c

•-* E

ci in

*> c

- H r -

co

«< CS CS M

i-l

> 01

J

d o

• r l 44 O 3

O

O,

1-1

O O

H

O O

o H

O

o

o o vO

o o

VO

§

H Z «< •

U]

J

< Z M O CE •X X

<\) z

• NI

U

0 11 c

•-* E

ci in

*> c

- H r -

co

«< CS CS M

U O N

44 - H 3 i - I O - H

£ 44 44 I * • r l « 3 t t v

O O O

ru

O O

l - l

ru

o

8 ru

8 o

8 ru

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

'—1 n i C r- i

•k> 1 0 O

4 J CN ro

0 m

•• 1 •Z 0 C rg

CM r-

co • J o

a < CS CS Cv

H • H O

CO

r 4 01

01 J

a o

• r l 44 O 3

O

O .

3 M

O o O

-3-

J -00

CO O o

00

00 K O o

IA

O

o -3-

oo O

vu 0-

o O ru

r H

O ru 8 ru

I A ru

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

'—1 n i C r- i

•k> 1 0 O

4 J CN ro

0 m

•• 1 •Z 0 C rg

CM r-

co • J o

a < CS CS Cv

H • H O

CO

r 4 01

01 J

a o

• r l 44 O 3

O

O .

3 8 C\J

ru

o 0 0 ru 8

o

ru

o o -3-

O ru

ru

0> ru O I A OO

I A vu O O O

H

oo CN

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

« o e u 0

•H e o l o

d <\l

h -o " O B ' - -

0 . I M d

>> • + 0

*> « tO-w « B S

S» rH -H

co • J o

a < CS CS Cv

H • H O

CO

r 4 01

01 J

a o

• r l 44 O 3

O

O .

M O O I A

H

8 o H

O O rvj

O CA

r-l

O O VO

O O t N

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

« o e u 0

•H e o l o

d <\l

h -o " O B ' - -

0 . I M d

>> • + 0

*> « tO-w « B S

S» rH -H

co • J o

a < CS CS Cv

H • H O

CO

u o N

+» «H 3 r - l O - H

J3 44 44 k, • H O 3 Cv

O O OJ

r - l

O O o ru

O

o ru

H

O O

o 8 00

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

« o e u 0

•H e o l o

d <\l

h -o " O B ' - -

0 . I M d

>> • + 0

*> « tO-w « B S

S» rH -H

co • J o

a < CS CS Cv

H • H O

CO

• 3

« se to X X If « to

X Jf «. to M

to ce je Tfi.

bo X

faO OD JS S « to

X to „ «. CC

X «0

X to

X to

X

H

§ SI

W

Ü

ce o s M

H

£ H )

• NI •

U

<

« o e u 0

•H e o l o

d <\l

h -o " O B ' - -

0 . I M d

>> • + 0

*> « tO-w « B S

S» rH -H

co • J o

a < CS CS Cv

H • H O

CO r4 01

10 •o i H 01

•H X

z

h 01

•H H • H 44 h e

u.

lA O rg a. S

H 01 > 01

a o

• H 44 O 3

•O O

z u o a, a c? a as -H O co e

t . . . ai a. B O h as a O b.

a V I H «1

• r !

z

« •H

-H 44 U 01

Cv

f o ru

3 S .

r l 01 > 01

-J

s o

W -H Z 44 «S O U 3 co -o

0

* £ u « c M -H < z a . . o Cu B O M cc a u c

01 •O ( H Ol

• r l >*

Z

U 01 r î

• H f-i • H 44 U 01

Cv

IA O l \ ] a,

o ru

01 > 01 - ) S 0

• H 44 U 3

-o O H a.

C0

S .5 u co a

H . . ai 3 . E o c os a O Cv

a •0

V

z

u a>

•H «H • r t

CA O IM

3 . S f i 01 > 0)

J

a o

• r t 44 Ü 3

os -a H 0 3 M O Cu Cv a z •*

co o h

. . Ol a. E O h as a U Cv

a • o r* C

•H

Z

h 01 N

•H i - t • H 44 h 01

Cv

IA O ru a , S

1-1 01 > 01

c 0

• r l 44 U

C0 3 Z t > « t 0 U k l

co a, < c X -H o co co

k l . . o a. s O k. as « U Cv

m •o r4 01

• r t »

z

k i O

• r l i H • r l 44 k> 01

Cv

IA O ru a .

o ru 01

e 0

•rl 44 U 3

•O O

a. u si a M -M < x a

u « c> a. e o fc> as a U Cv

10 •o i H 01

•H X

z

h 01

•H H • H 44 h e

u.

lA O rg a. S

H 01 > 01

a o

• H 44 O 3

•O O

z u o a, a c? a as -H O co e

t . . . ai a. B O h as a O b.

a V I H «1

• r !

z

« •H

-H 44 U 01

Cv

f o ru

3 S .

r l 01 > 01

-J

s o

W -H Z 44 «S O U 3 co -o

0

* £ u « c M -H < z a . . o Cu B O M cc a u c

01 •O ( H Ol

• r l >*

Z

U 01 r î

• H f-i • H 44 U 01

Cv

IA O l \ ] a,

o ru

01 > 01 - ) S 0

• H 44 U 3

-o O H a.

C0

S .5 u co a

H . . ai 3 . E o c os a O Cv

a •0

V

z

u a>

•H «H • r t

CA O IM

3 . S f i 01 > 0)

J

a o

• r t 44 Ü 3

os -a H 0 3 M O Cu Cv a z •*

co o h

. . Ol a. E O h as a U Cv

a • o r* C

•H

Z

h 01 N

•H i - t • H 44 h 01

Cv

IA O ru a , S

1-1 01 > 01

c 0

• r l 44 U

C0 3 Z t > « t 0 U k l

co a, < c X -H o co co

k l . . o a. s O k. as « U Cv

m •o r4 01

• r t »

z

k i O

• r l i H • r l 44 k> 01

Cv

IA O ru a .

o ru

263

S I A Y A 42

O N r j < U

5 o - i o u

6 ei O < Q

o, O DS U

oä ÜJ O.

2 ai _) Z O p u Q O Bi CL,

tg - j

CQ

<

H

H C/3

S

<

w z o K l

z o f i EH O o

K \

Z J

• Kl

» •

<

1 L I m r-l

co J o w M ce o <

r H

> 01

C

0

• H

H-> y

3 " O O

u a.

• H

> 1

8 <M

H

o j o j o j

o o ON

O o o o \o i-i

o KN.

r H ON

o o o

0 0

0 0 OJ

w z o K l

z o f i EH O o

K \

Z J

• Kl

» •

<

1 L I m r-l

co J o w M ce o <

r H

> 01

C

0

• H

H-> y

3 " O O

u a.

r-t

8 0 0

o o o

0 0

u^ UN o

o o

0 0 H

w z o K l

z o f i EH O o

K \

Z J

• Kl

» •

<

a .

~ O li) co >

k 0

L I K v 2

TT " L I

E r

co J o w M ce o <

r H

> 01

C

0

• H

H-> y

3 " O O

u a.

H

o o CV

o o o

o l<N

r H o o o I A

j t CN-

w z o K l

z o f i EH O o

K \

Z J

• Kl

» •

<

a .

~ O li) co >

k 0

L I K v 2

TT " L I

E r

co J o w M ce o <

u «1 n

H-> - H 3 H O -r f

A H-> * > L,

•H a 3 Cv

8 CO

o o o o

o o o

ta z o N

U

• to

• J < z M

o < X

<\J

X

-s .

• S I

u

<

C

ro 1

C m

C

rs j

1 2 o co < ce ce « LV

« > 01 -) a 0

•H « J y 3

0 U

a.

M

• H

8 ( M

O O O

O 0 0 r H

cv.

l-t

o o o

a .

vu t-l ta z o N

U

• to

• J < z M

o < X

<\J

X

-s .

• S I

u

<

C

ro 1

C m

C

rs j

1 2 o co < ce ce « LV

« > 01 -) a 0

•H « J y 3

0 U

a.

t-4

O o ON

o o o

0 0

O r H

CN o o o

vO

ta z o N

U

• to

• J < z M

o < X

<\J

X

-s .

• S I

u

<

a

c • H =

ai in "v. 0 E

2 o co < ce ce « LV

« > 01 -) a 0

•H « J y 3

0 U

a. M

8 t v

O O

o

O O

o UN

ta z o N

U

• to

• J < z M

o < X

<\J

X

-s .

• S I

u

<

a

c • H =

ai in "v. 0 E

2 o co < ce ce « LV

o H

4-> - H 3 r H 0 - H

. C * > V b • r i Cl 3 Cv

8 o j

O o o

O O UN

CN.

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

•• C

fO r-> •w i C 0 J- ' es:

m

C m

•• 1 •u 0 C (M

rsi r-

CO

3 C I

ce ce Cd Cv

i - I • H O

co

r - l 01

C

a 0

• r i 4-> O 3

O M a.

1-1

o o J -

O o j

O ru 8

o i n f \ l

O O (M

o J -H

O O o

OJ H

OJ UN 8

o oo

0 0 ON

0 0 ON

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

•• C

fO r-> •w i C 0 J- ' es:

m

C m

•• 1 •u 0 C (M

rsi r-

CO

3 C I

ce ce Cd Cv

i - I • H O

co

r - l 01

C

a 0

• r i 4-> O 3

O M a.

•H 8

0 0

o o o

N H

O O O O

UN

-» cv O O o

vu

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

0) U O B

U O

• H E O 1 O

H OJ f

•S ..-» « a "-.

û , CM (0

• + B •u a « 0 0

> i H - r i

CO

3 C I

ce ce Cd Cv

i - I • H O

co

r - l 01

C

a 0

• r i 4-> O 3

O M a.

M

O o UN

O O

o UN

8 o

O O UN

NN

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

0) U O B

U O

• H E O 1 O

H OJ f

•S ..-» « a "-.

û , CM (0

• + B •u a « 0 0

> i H - r i

CO

3 C I

ce ce Cd Cv

i - I • H O

co

« • P - H 3 i - l 0 - H

d * • * » U • H « 3 Cv

O o ON 8

O o o J -

O O O

J -

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

0) U O B

U O

• H E O 1 O

H OJ f

•S ..-» « a "-.

û , CM (0

• + B •u a « 0 0

> i H - r i

CO

3 C I

ce ce Cd Cv

i - I • H O

co

•t» •H a s

*fc t o j e

to X

t a j e

to j e * to

j e to

j e faC

j e • * te

j e t e

j e to

j e t e

j e >ft. to j e

te j e

to j e

te j e • «

te j e

te j e

te j e

to j e « t o

j e t e

j e t e j e

to j e

u z o Kl

U

o es < o 9

CO

r - l

X

• Kl • U

<

0) U O B

U O

• H E O 1 O

H OJ f

•S ..-» « a "-.

û , CM (0

• + B •u a « 0 0

> i H - r i

CO

3 C I

ce ce Cd Cv

i - I • H O

co r H a>

a 13

a - H X

z

h o

• H r H • H •4J U, e

t v

UN o IM

a.

o o j

ne

H 0> > 0)

a o

- H HH U 3

• o O

_ •"

M co g)

. . a i

O h

ce a

n •o ( H 0)

- H

z

• H r H - H *J U o

Cv

m O A )

a,

o ry a :

r H

> 0)

- 1

a! S^ 0 , v

E H 0 " S5 3 co a

u .. « 0, s O t . ce a U h .

• o

• r i X

z

V 0) tg

• H H • H 4->

0)

u.

m o <\i

a.

o e

H a> i> a>

r )

S 0

• r i 4J U 3

T>

5 a-M B C0 - H

U g, U

. . o> a. B o c ce a U b.

co •a r-i V

• r i S M

z

u 9} N

• r i r H •H + • L, ai

Cv

UN o OJ a.

o OJ

se

r H 01 > ai

J

a o

• H HJ O 3

• o

S ° g a,

O o t .

. . ai o, e O v es a U Cv

o •a r H ai

- r i X

z

V ai N

• H r-i • r i

t . ai

Cv

UN O OJ

D .

o OJ

ae

t-i ai b-a i

J

c 0

• H HJ O 3

•o 0 U

a. B

t H

CD U

. , a i a, B O u ce • U Cv

o • o

a> • H X

z I N

a> N

•H r H - r i HH M ai

Cv

UN O OJ

a.

o OJ

_ ?

C

o • H +» O

H T3 » 0 5 *« Q a« z Ö o O -H CC

a. E o u « a U b

a 13

a - H X

z

h o

• H r H • H •4J U, e

t v

UN o IM

a.

o o j

ne

H 0> > 0)

a o

- H HH U 3

• o O

_ •"

M co g)

. . a i

O h

ce a

n •o ( H 0)

- H

z

• H r H - H *J U o

Cv

m O A )

a,

o ry a :

r H

> 0)

- 1

a! S^ 0 , v

E H 0 " S5 3 co a

u .. « 0, s O t . ce a U h .

• o

• r i X

z

V 0) tg

• H H • H 4->

0)

u.

m o <\i

a.

o e

H a> i> a>

r )

S 0

• r i 4J U 3

T>

5 a-M B C0 - H

U g, U

. . o> a. B o c ce a U b.

co •a r-i V

• r i S M

z

u 9} N

• r i r H •H + • L, ai

Cv

UN o OJ a.

o OJ

se

r H 01 > ai

J

a o

• H HJ O 3

• o

S ° g a,

O o t .

. . ai o, e O v es a U Cv

o •a r H ai

- r i X

z

V ai N

• H r-i • r i

t . ai

Cv

UN O OJ

D .

o OJ

ae

t-i ai b-a i

J

c 0

• H HJ O 3

•o 0 U

a. B

t H

CD U

. , a i a, B O u ce • U Cv

o • o

a> • H X

z I N

a> N

•H r H - r i HH M ai

Cv

UN O OJ

a.

o OJ

2 6 4

S I A Y A 4 3

to tu z O N J < U Ü

o - J o u Ó o <: Q

o. o öS u a: a eu c/5

w > a -> z o p u Q O Bi CU

W - J CD <

H U

H

S < <

> 01

J

B O

• H •U

3 T3 0 U

a.

k-t

> 01

J

B O

• H •U

3 T3 0 U

a.

M

> 01

J

B O

• H •U

3 T3 0 U

a. »-4

u CI M

4> - r i a rH O •-"

•c *> *> u - H © 3 b .

O

01

• O

• H

3

0 h

a,

2 M

O

01

• O

• H

3

0 h

a,

S

O

01

• O

• H

3

0 h

a,

-

(D M

* > - H 3 <-< O - H

•C * i *> U •H « 3 U .

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

r-j v

10

ë w o o H a:

r H • H O

CO

H eu

O H )

s o • r i

U

3

O

3 .

M M

o o o •>

CO •-t o

o CO

I A

I N vu r H

0 0 O o

CO

ro

o O O O ( M

H

o H

I A H

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

r-j v

10

ë w o o H a:

r H • H O

CO

H eu

O H )

s o • r i

U

3

O

3 .

3 O

o

H

o O O o

0 0

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

• H

+ co O

• o w . .

* - £ », - 0 « O B ' " .

Q. M O Sri

• + 18 * » Q t O - M « a o

> M - H

10

ë w o o H a:

r H • H O

CO

H eu

O H )

s o • r i

U

3

O

3 .

-O O vo

O o tA

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

• H

+ co O

• o w . .

* - £ », - 0 « O B ' " .

Q. M O Sri

• + 18 * » Q t O - M « a o

> M - H

10

ë w o o H a:

r H • H O

CO

O M

+> fi 3 i -t O - H

J= * » * > U • H 0) 3 b ,

8 I A

H

§ 0 0

o o

CO

O O ON

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

• H

+ co O

• o w . .

* - £ », - 0 « O B ' " .

Q. M O Sri

• + 18 * » Q t O - M « a o

> M - H

10

ë w o o H a:

r H • H O

CO

• P • H a s

» te X

to X

to te X * te 10 bO

X ' S * Jf w .* If bO X • * .

to te X

te X S &. to

X te te

X te I r l te

X te

X te

X te

X

W

§

§ E H

S u • J < z M a os «< X

-* z

• u

<

• H

+ co O

• o w . .

* - £ », - 0 « O B ' " .

Q. M O Sri

• + 18 * » Q t O - M « a o

> M - H

10

ë w o o H a:

r H • H O

CO 01

a

» •rt

1 * (D

•« • *

* H +»

U ,

IA O rvj a.

O INI

V

s 0

• H * J O

CO 3 W 13 "< O a u u a. «* a Z -n

u a, B o u as a u h.

o rH ai

•ri »

Z

C

• H r H • r i *J U

b ,

I A O r-.i a,

o ru

ai

- ) c o

u 3

•D 0

t u S) c M - H < z o

h " o a. e O h K a u u,

•s .2

Ä

0) M

- H r-( - H

Cm

? O

r H <P t> ai

C! O

- r i • * J

O 3

-o 0

Z k, s a, X o c as •** O ai a . . ai a. E o t-x cg u u.

a •a •H ai

'ri X

Z

u ai N

• r i r H •rt *> U ai

b .

LA O IM

a. 2

r-l 01 • 01

a o

•H

u 3

15 0

6-1 B . U

d5 M Z 0

kl . . 01 a, s O k.

ce « U h.

a •a <-\ •H X

z

« N

• r i r H • r i 44 ki 01

b ,

l A

o ru a,

o INJ

s :

r H 01 > 01

J

C o

'T*

Ü 3

ai -o H o 3 Li O a,

b. C Z T t

ui m . . o a. B o u os a O b.

a •a

ai

>*

z In tP N

•H ft •H

01 b .

I A o rvp

a .

o

H C 3 0 S -H E- *> M o ? 3 C* -d

•» S < a. 05 => a E l - H <

o, a o h a, a U b .

a

» •rt

1 * (D

•« • *

* H +»

U ,

IA O rvj a.

O INI

V

s 0

• H * J O

CO 3 W 13 "< O a u u a. «* a Z -n

u a, B o u as a u h.

o rH ai

•ri »

Z

C

• H r H • r i *J U

b ,

I A O r-.i a,

o ru

ai

- ) c o

u 3

•D 0

t u S) c M - H < z o

h " o a. e O h K a u u,

•s .2

Ä

0) M

- H r-( - H

Cm

? O

r H <P t> ai

C! O

- r i • * J

O 3

-o 0

Z k, s a, X o c as •** O ai a . . ai a. E o t-x cg u u.

a •a •H ai

'ri X

Z

u ai N

• r i r H •rt *> U ai

b .

LA O IM

a. 2

r-l 01 • 01

a o

•H

u 3

15 0

6-1 B . U

d5 M Z 0

kl . . 01 a, s O k.

ce « U h.

a •a <-\ •H X

z

« N

• r i r H • r i 44 ki 01

b ,

l A

o ru a,

o INJ

s :

r H 01 > 01

J

C o

'T*

Ü 3

ai -o H o 3 Li O a,

b. C Z T t

ui m . . o a. B o u os a O b.

a •a

ai

>*

z In tP N

•H ft •H

01 b .

I A o rvp

a .

o

2 6 5

W E S T E R N P R O V I N C E

B U S I A D I S T R I C T

C o n t e n t s District page

Natural Potential 3

Introduction 3

Climate Tables 4

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map 12

Soil Distribution, Fertility and Major Characteristics 13

Population and Land 15

Population per Location and Division 15

Household Composition per Location and Division 16

AEZ — Land Area Available per Location, Division, and per Household and Person 17

Agricultural Statistics

(Area, Production, Yields and Number of Growers of Major Cash Crops) 17

Cotton - Production 1975/76-1979/80 17

Small Farm Survey 18

Farm Organisation According to Farm Size Groups 20

Assets, Land Use, Farming Intensity, Inputs 22

Cropping Pattern 24

Herd Composition 26

Inputs and Yields of Major Crops 28

Disposal of Crops 30

Distribution of Farming Activities per Month 31

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 38

267

BUSIA 3

N A T U R A L P O T E N T I A L

INTRODUCTION

The agro-ecological zonation of the Busia district is nearly the same as in Siaya because of the similar climatic conditions (see Siaya 3) except for the area near the lake. Here, it is not so dry because the shore lies near the northern end of the area and is dominated by the lake wind. Therefore, the difference concerning rainfall between the lake shore and the interior is less, but still 900 to 2 000 mm when comparing the annual averages. Regarding the 60 % reliability, it is 400 to 900 mm during the first rains and between 80 and nearly 800 mm during the second rains, dropping again slightly in the northern parts. In the wetter areas it is difficult to divide the seasons (see Diagram Butula) because there is no clear gap between them. If we write in zone LM 1 1 <-> m i this means that "a long season followed by a medium one" is one possibility to divide the more or less continuing growing period provided that second planting is intented to start in beginning of September. The planting may start earlier if fields are already empty, or it starts later if crops of the first rains continue into the second rains. In the wetter subzone of LM 1 this is usual, therefore "or two" is written to express the various possibilities of growing cycles included.

Busia is the most westerly district of Kenya but no longer remote due to the excellent now tarmac road from Kisumu. There are large sugar cane zones to be developed*) and potential cotton areas.

The poor soils are the main problem, often underlain by hard-pans. Cassava, which is now very common, should not be the only answer to the poor soil conditions. More legumes, i.e. bambarra groundnuts which grow on very poor soils and accumulate nitrogen, more cattle manure and compost are essential. Nematodes are a serious danger for bananas. There are important, well-suited crops resistant to nematodes, i.e. roselle. Striga (whitchweed) is a problem for cereals. A chance to fight it is more ploughing in order to sow a trap crop (sorghum) and to plough it in with the upsprung Striga plant.

The differences in the annual average rainfall and in the 60 % reliability of rainfall can also be seen in the 60 % reliability of the duration of the growing periods (see Table 3): The Marginal Cotton Zone (LM 4) has a growing period of 130 days and one of 45 days or less; the wetter subzone of the Sugar Cane Zone (LM 1), however, has a growing period of 215 days or more followed by a 130-150 days period. The annual average temperature is between 21 and 22°C. Humidity of the air is relatively high due to the lake. The evaporation is 1 800—2 000 mm per year for the entire district.

BUSIA DISTRICT

TABLE 1 : RAINFALL FIGURES FROM VARIOUS STATIONS having at least 10 years of records up to 1976

No. and

altidude Name of Station

Years

of rec.

Kind of

rec.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Mon

May

tlily rainfall in

June July

mm

Aug. Sept. Oct. Nov. Dec.

8933026 Port Victoria Cath. 32 Average 925 49 57 133 189 137 48 29 45 46 69 88 34

1 250 m Mission

8934030 Nangina Cath. Mission 37 Av. 1 420 41 59 124 246 155 79 72 108 151 160 156 70

1 219m 60% prob.1' 1 278 13 43 114 224 144 62 52 90 118 135 121 51

8934037 Lukoli Dispensary 21 Av. 1 613 38 58 143 241 234 116 96 118 106 140 214 110

1 219m 60% 1 473 12 11 103 179 130 107 73 41 88 126 133 57

8934039 Butula Cath. Mission 29 Av. 1 990 64 124 155 289 311 172 122 175 167 163 145 107

1 295 m 60% 1 786 34 53 113 283 241 130 81 132 129 120 115 68

8934105 Busia, Cotton Exp. 19 Av. 1 766 70 80 156 278 245 102 84 141 157 182 172 100

1 220 m Station

1) These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

J) LM 1 and 2 on suitable soils, see Mbuvi.J.P.: A preliminary evaluation on the suitability of the area of Busia District for Sugar cane development.

Kenya Soil Survey P 18, Nairobi 1975.

269

BUSIA 4

BUSIA DISTRICT

TABLE 2: TEMPERATURE DATA

No. and Name of i \ AEZ1 '

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y. of

rec.

8934105 Busia Cotton LM

1 220 m Experimental 1

Station hp

Mean max. 29.7 29.3 29.0 27.7 27.3 27.0 26.7 26.7 27.3 27.8 27.4 27.9 27.8 10

Mean temp. 22.6 22.6 22.7 22.2 21.9 21.3 21.2 21.0 21.4 22.1 21.8 21.8 21.9

Mean min. 15.5 15.9 16.4 16.7 16.4 15.6 15.6 15.4 15.5 16.4 16.1 15.7 15.9

Abs. min. 10.6 12.2 11.7 14.4 14.4 12.2 12.2 12.2 12.8 13.9 12.2 12.8 10.6

' AEZ = Agro-ecological zone; hp = higher places within the zone

BUSIA DISTRICT

TABLE 3: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological

Zone

Subzone Altitude

in m

Annual mean

temperature

in°C

Annual av.

rainfall

in mm

60 % reliability

of rainfall1^

1st rains 2nd rains

in mm in mm

60 % reliability

of growing period

1st rains'') 2nd rains Total '

in days in days in days

LM 1

L. Midland

Sugar Cane Zone

p or two

1 300-1 500 21.7-20.5

1 800-2 000 800-900 650-800 215 or more 130-150 345-365 LM 1

L. Midland

Sugar Cane Zone 1 r-, m i

1 300-1 500 21.7-20.5

1 6 5 0 - 2 000 750-900 550-750 195 or more 120-130 315-325

LM2 1 ~ (m/s)i

1 200-1 350 22.3-21.4

1 550-1800 650-800 480-650 190ormorc 110-120 300-310

Marginal Sugar 1/m — (s/m)i 1 200-1 350 22.3-21.4 1 450-1 550 650-700 550-580 180 or more 105-120 285-300

Cane Zone l/m — (s/m)

1 200-1 350 22.3-21.4

1 420-1 450 ' 600-650 460-480 170 or more 105-115 275-285

LM3 m/1 ~ (s)

1 140-1 250 22.7-22.0

1 200-1 420 500-650 400-460 155-175 8 5 - 95 240-270

L. Midland

Cotton Zone

m/1 - (s

or s/vs) 1 140-1 250 22.7-22.0 1 200-1 450 530-650 300-550 150-170 8 0 - 90 230-260

m/1 - (s

or s/vs) 1 140-1 250 22.7-22.0

1 100-1 200 480-530 200-300 135-155 4 5 - 75 m+f(vs)

1 140-1 250 22.7-22.0

1 100-1 200 480-530 200-300 135-155 4 5 - 75

LM4

Marginal Cotton (m/s)+i

Zone

1 135-1 200 22.7-22.3 900-1 100 < 4 0 0 - 4 8 0 < 100-220 125-135 < 4 5

D Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants

2' More if growing cycle of cultivated plants continues into the period of second rains

3 ' Only added if rainfall continues at least for survival (> 0.2 EQ) of most long term crops

270

34°iE 34'|30'E

BUSIA

AVERAGE ANNUAL RAINFALL

in mm

+ SOILS

1400

8934

Temperature recording station, operating 1976

Rainfall recording station, operating 1976

and having at least 10 years ot records

26 Station number in grid

8934 Grid number

Broken boundaries are uncertain because of lack of rainfall records

°'S'

o

10 25 km

Min. of Agr., German Agr. Team, R. Jaelzold Soils KSS

34" iE 34 *'E

60% RELIABILITY OF RAINFALL IN FIRST RAINS

(Feb.-July or less ) Amounts in mm. surpassed norm, in 6 out of 10 years

+ SOILS

BUSIA

4 0 0 ^ 400: ' Lake

n " 15 20 25 km

Mm ol Agr. German Agr Team R Jaetzold Soils KSS

34°lE 34? 30'E

60% RELIABILITY OF RAINFALL IN SECOND RAINS

(Aug Jan. or less ) Amounts in mm. surpassed n o r m , i n 6 out of 10 years

+ SOILS

BUSIA

U N

'27 H x,m -h

0 Broken boundaries are uncertain because of lack of rainfall records

15 20 25 km

Min of Agr. German Agr Team, R. Jaetzold Soils KSS

34 E

BUSIA

AGRO-ECOLOGICAL

ZONES +SOILS

Bell ol Ab Zones ^ —

A E Zones

Subzones

Chmalic data loi AEZ lormulas see table I and II

_ _ Broken zonal bound trii are uncertain 01

— — mean transitional slrlps

M Unsuitable sleep slopes -(s/m)

v- ',/

20 2 5 k m

AEZ R lalzold 8t Soils KSS Mm ot Agr. German Agr Team

BUSIA9

AGRO-ECOLOGICAL ZONES

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone

LM 1 = Lower Midland Sugar Cane Zone with permanent cropping possibilities, p or two dividable in two variable cropping seasons

Relatively small, potential see Kakamega District

100-

LM 1 l^m i

mm

-100

Average rainfall per decade I rainfall surpassed in 6 out of 10 years ———Approx. pot. évapotranspiration of a permanent crop (bananas)

Approx. pot. évapotranspiration of m mat. maize like H 511

Approx. pot. évapotranspiration of m. mat. maize like H 622

' 885 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

= Lower Midland Sugar Cane Zone with a long cropping season followed by a medium one and intermediate rains

V e r y g o o d y i e l d p o t e n t i a l (av. > 80 % of the optimum) 1st rains, start norm, mid F.: M. mat. (120 days) sorghum; m. mat. (115 days) sunflower like Vympel or Hybrid

S 301 A, m. mat. (120 days) soya beans; sweet potatoes Whole year, best planting time b. March: Pawpaws, guavas, yam beans

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: M. mat. maize H 622 and 632 (60-70 %), late mat. (150 days) sorghum (70-80 %), finger millet;

late mat. beans, pigeon peas (March-F.); yellow yams (F.-O./N.); sweet pepper, kales, Chinese cabbage, spinach, cabbage, chillies, egg plants (to 2nd r.), pumpkins

2nd rains, start undistinctly end Au./begin S.: Maize H 511, m. mat. sorghum; beans (y 60 %), cowpeas, sweet potatoes; m. mat. soya beans, e. mat. sunflower like H S 345 or Kensun 252; kales, Chinese cabbage, spinach, onions

Whole year: Sugar cane, bananas (nematodes danger)1), tea in upper places (70-80 %, but medium to low quali­ty), Robusta coffee (^ 60 %)^\ avocadoes, cassava

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 2nd rains: Maize H 622, 632, finger millet; late mat. groundnuts and late mat. bambarra groundnuts (both in

light soils); cabbage Whole year: Mangoes, taro, citrus

P a s t u r e a n d f o r a g e Around 0.5 ha/LU on sec. pasture where orig. there has been a moist submontane forest; down to 0.13 ha/LU feeding Napier or Bana grass, banana leaves and others

1) Windbreaks against the daily winds from the lake, light shade and mulching or compost are necessary to re-establish the former forest eco­

system, otherwise bananas and coffee grow poorly. Hardpan soils should be avoided. Best planting time for bananas begin Oct.

275

LM 2 = Marginal Sugar Cane Zone

LM 2 = Marginal Sugar Cane Zone with a long cropping season l^fm/s) i followed by a (weak) medium to short one and intermediate rains

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, mid F.: M. mat. sorghum; m. mat. sunflower like Vympel or H S 301 A, m. mat. soya

beans; sweet potatoes, onions Whole year: Cassava, pawpaws, yam beans

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622, 632 in higher parts, H 511-513 in lower parts, late mat. sorghum, finger millet; beans^),

pigeon peas (March-F.), late mat. rosette resistant groundnuts (in light soils); cotton (60-70 % but low quali­ty); sweet pepper, tomatoes, cabbages, kales, roselle

2nd rains, start undist. S.: Bulrush millet, m. mat. sorghum, ratoon sorghum (S.-Au.); beans, green grams; onions, kales

Whole year: Bananas (nematodes danger)1), pineapples, tomatoes, sisal

F a i r y i e l d p o t e n t i a l 1st rains: Bambarra groundnuts, cowpeas; tobacco 2nd rains: Maize H 511 ; pigeon peas (O.-S., 'v 60 %), cowpeas; sweet potatoes; simsim; cabbages; cotton (40—

50 %, July-F.)3) Whole year: Sugar cane (on less suitable soils and near LM 3 marginal), Robusta coffee, citrus, mangoes

P a s t u r e a n d f o r a g e 0.5-0.7 ha/LU on high grass savanna with Hyparrhenia and Panicum dominating; down to about 0.15 LU/ha feeding Napier or Bana grass and banana leaves.Desmodium species for soil and pasture improvement

LM 2 = Marginal Sugar Cane Zone l/m — with a long to medium cropping season (s/m) i followed by a (weak) short to medium one and intermediate rains

Small and transitional. Crop potential like LM 2 1—m/s i but m. mat. sorghum in 2nd rains and bananas only fair, maize H 511—13 in 2nd rains and sugar cane (also on good soils) only marginal. Ratoon sorghum 1st to 2nd rains good. Stocking rates 'v 10 % less

100- 100

50

r— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx pot évapotranspiration of a permanent crop (bananas)

Approx pot évapotranspiration of m mat. maize l i ke H 511

Approx pot évapotranspiration of e. mat. sorghum

Approx. pot. évapotranspiration of cotton

• 5 75 • Rainfall per indicated growing period, surpassed in 6 out of 10 years

' Should be intercropped with maize because of hail storm danger

•*> Although nearly marginal, cotton is mainly planted in 2nd rains because of more labour availability. It can be interplanted in maize already

during July.

276

B U S I A 1 1

LM 3 = Lower Midland Cotton Zone

LM 3 = Lower Midland Cotton Zone m/l^(s with a medium to long cropping season or s/vs) followed by a (weak) short or short to very short one

(see Diagram Nan gin a)

G o o d y i e l d p o t e n t i a l 1st rains, start norm, begin of March: E. mat. maize like Taboran or Katumani, m. mat. maize like H 511 513

( ^ 60 %), mat. sorghum (70 80 %). e. mat. millets(70-80 %);m. mat. beans,green grams, cowpeas, ground­nuts and bambarra gr. (both in light soils); simsim^'; sweet potatoes: cotton ( ^ 60 % ), m. mat. soya beans, sunflower 252 or H S 345. chick peas (on heavy black soils), dwarf castor^); tomatoes, onions, muskmelons

2nd rains, start norm. b. Sept.: Simsim. green grams Whole year, best pi. time March: Cassava ( ^ 60 %), sisal, yam beans Near swamps with water regulation resp. add. irrigation: Rice, bananas (on dams), Chinese cabbage (on ridges)

and other vegetables

F a i r y i e l d p o t e n t i a l 1st rains: Maize II 022, finger millet (50-60 %); pigeon peas (March F.). tobacco (on sandy soil, higher places) 2nd rains: Early mat. proso millet ( 0 . N.). ratoon of sorghum, dwarf sorghum, c. mat. bulrush millet (bird re­

jecting awned var. best): mwezi moja beans, e. mat. batnhaia groundnuts (in light soils); sweet potatoes in swampy places; cotton (July F., 'v 40 %)3 '

Wohle year: Pawpaws, mangoes, citrus

P o o r y i e l d p o t e n t i a l 2nd rains: F. mat. maize

P a s t u r e a n d f o r a g e 0.7 1.0 ha/LU on mixed savanna with star grass (Cynodon dactylon); down to about 0.18 ha/LU feeding Bana and Napier grass; Desmodium or Stylosanthes for pasture and soil improvement

LM 3 = Lower Mid/and Cotton Zone m + f(vsj with a medium and a fully (weak) very short cropping season

G o o d y i e l d p o t e n t i a l 1st rains like LM 3 m/1 — (s) except cotton, m. mat. sorghum (60 70 ' • I Whole year: Sisal

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 51 I 13 (40 50 Ji ). finger millet; cotton, pigeon peas (March F.) 2nd rains, start norm. Oct.:V.e. mat. foxtail millet, dwarf sorghum ( v 40 ''•'< ):green grams, simsim;sweet

potatoes near water Whole year: Cassava

P a s t u r e a n d f o r a g e 0.9 1.2 ha/LU. 'v 0.25 ha/LU feeding Bana grass and Stylosanthes

LM 4 = M a r g i n a I Cotton Zone

LM 4 = Marginal Cotton Zone (m/s) + i with a (weak) medium to short cropping season and intermediate rains

G o o d y i e l d p o t e n t i a l 1st rains, start norm, mid March: E. mat. sorghum (^ 60 7< ). e. mat. foxtail or proso millet (60 70 %); e. mat.

beans ('v 60 %), e. mat. tepary beans (70 80 %), green grams, cowpeas. chick peas (on h. bl. soils);e. mat. sunflower like Issanka C^ 60 %), simsim

Whole year: Sisal Near swamps: Like LM 3

F a i r y i e l d p o t e n t i a l 1st rains: E. mat. maize (40 50 % ). e. mat. bulrush millet; pigeon peas ( ^ 40 %), soya beans (40-50 % ). e.

mat. groundnuts and e. mat. bambarra groundnuts (both in light soils); onions

P o o r y i e l d p o t e n l i a I 1st rains: Cotton

P a s t u r e a n d f o r a g e 1—2 ha/LU; horse tamarind (Leucaena leucocephala) and other palatable shrubs to plant in order to improve fodder situation during dry season

' Planting towards the end of the long rams

5' Good for rotation because of its resistance against Singa and nematodes

2 7 7

34IE

BUSIA

SOILS

GENERAL FERTILITY GROUPS Bl i MIIIIMLI tl BOll lisli subiei i to lot al dlltereim i

K

SERIOUS LIMIIATIONS rrptiamaj

\ y H—_

H |g

„..!=. -

25 lim

BUSIA 13

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

The district is characterized by undulating terrain with higher lands intersected by numerous ivalleys. The main river is the Sio which drains into Lake Victoria. Rock exposures are common between Bunyala and Sio and consist of precambrian gneisses and granites. The majority of the soils are moderately deep (soil depth 50-80 cm to murram or parent material).

. Soils of the uplands (179 U, 188 U) Soils on the hills are shallow (units 23 H, 14 H, 17 H). They are generally rocky and/or stony have a low natural fertility, in most of the district they are moderately deep.

On the uplands, sous of unit 144 U also occur with a little higher natural fertility than soils óf the unit 151 U. The topsoils of these units vary, but in general they are darker in the higher areas because of a higher humus content.

In the flood plains soils of unit 345 B occur. They may additionally include soils which show great differences in texture depending on depth.

Very dark cracking clay soils occur in the neighbouring plains around the Yala swamp (unit 325 PI). In the swamp, soils tend to have a very high (371 S) to moderately high organic matter content (370 S); sandy soils, having developed on beach ridges, occur along the Lake (381 Z).

SOILS ON HILLS AND MINOR SCARPS

Soils developed on granites = complex of somewhat excessively drained, shallow, stony and rocky soils of varying color, consistence and texture (dystric

REGOSOLS; wi th ferralic CAMBISOLS, lithic phase and Rock Outcrops)

Soils developed on quartzites = somewhat excessively drained, shallow, dark brown, very friable, rocky, sandy loam to clay loam; in many places wi th acid

humictopsoi l (RANKERS; wi th LITHOSOLS and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses = complex of excessively drained to well drained, shallow, dark red to brown, friable sandy clay loam to clay; in many places

rocky, bouldery and stony and in places wi th acid humictopsoi l (dystric REGOSOLS; wi th LITHOSOLS, humic CAMBISOLS

lithic phase and Rock Outcrops)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

23 H

x,v1»

24 H

x, m

27 H

x, m-h

, Soils developed on basic igneous rocks (basalts, etc.)

144 U = well drained, very deep, red to dark red, friable to f i rm, clay; in places moderately deep over petro-plinthite (eutric NITOSOLS;

h with rhodic FERRALSOLS, partly petro-ferric phase)

Soils developed on granites 151 U = well drained, deep to very deep, brown to dark brown, friable, sandy clay to clay

h (ferralo-orthic ACRISOLS)

friable clay; on valley sides (dystric/eutric

yellowish brown, friable clay, over petro-

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on intermediate igneous rocks (andesites, etc.) 1 7 4 U = association of: — well drained to moderately well drained, shallow soils over petropiinthite (about 50 %); on interfluves

h („murram cuirass" soils)

— well drained, very deep, dark reddish brown to strong brown,

NITOSOLS and orthric FERRALSOLS)

Soils developed on granites 179 U = complex of : — well drained, moderately deep to very deep, reddish brown to

h plinthite (orthic FERRALSOLS; partly petro-ferric phase; wi th orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petro-plinthite (about 30%) („murram

cuirass" soils)

Soils developed on various rocks (Kavirondian sediments, often mudstones) 188 U = well drained, moderately deep to very deep; dark red to strong brown, friable clay; in places shallow over petro-plinthite (orthic

h to rhodic FERRALSOLS, partly petroferric phase; wi th „murram cuirass" soils (10—40 %

SOILS ON LACUSTRINE PLAINS

Soils developed on sediments from lacustrine mudstones 325 PI = poorly drained, very deep, very dark grey to black, very f i rm, slightly sodic, cracking clay, wi th calcareous deeper subsoil

h (lower level of Kano plains) (pellic VERTISOLS, sodic phase)

SOILS ON BOTTOMLANDS

Soils developed on infill mainly from undifferentiated Basement System rocks 345 B = complex of imperfectly drained to poorly drained, very deep, very dark grey to brown, mott led, friable to f i rm, sandy clay to

h, m clay, often abruptly underlying a topsoil of friable sandy clay loam; in places saline and sodic (dystric PLANOSOLS; wi th pellic

VERTISOLS, vertic and humic GLEYSOLS and plinthic ACRISOLS)

279

BUSIA 14

SOILS ON SWAMPS

370 S = very poorly drained, very deep, very dark grey to black, f i rm, cracking clay, wi th acid humic topsoil (seasonal swamps) (humic

h GLEYSOLS)

371 S = very poorly drained, very deep, dark grey to black, f i rm clay, wi th acid humic topsoil; in many places peaty (permanent swamps)

h (humic GLEYSOLS and dystric HISTOSOLS)

SOILS ON COASTAL OR LAKE-SIDE BEACH RIDGES

Soils developed on beach ridges along Lake Victoria 381 Z = imperfectly drained, very deep, dark brown to greyish brown, friable, sandy loam to sandy clay of varying salinity and sodi-

m-h, I c i ty; wi th inclusions of loose sand to loamy sand soils (SOLONCHAKS, undifferentiated; wi th ARENOSOLS undifferentiated)

' Soil texture-classes

h = heavy

1 = light

m = medium

x = stony or bouldery

v = varying texture

m-h = medium to heavy

m, h = medium and heavy (e. g. abruptly underlaying a topsoil of different texture)

Soil description from Kenya Soil Survey: Exploratory Soil Map and Agro-climatic Zones Map of Kenya, scale 1 : 1 000 000 Rep. E1, Nairobi 1982,

see this map also for colours, symbols simplified here.

2 8 0

P O P U L A T I O N AND L A N D

The population of the Busia District was nearly 300 000 people at the time of the Census in September 1979 (Table 4). About 8 % of this figure lived in the Busia Township. For the 275 000 rural people, there was a total area of 157 900 ha available of which 134 900 ha were agricultural land (Table 6). These figures indicate that an average household of 5.36 people had to

to make his living, as the figures of

live on 2.72 ha of agricultural land and 0.57 ha were available per person (Table 6).

In the AEZ LM 1 (Lower Midland Sugar Cane Zone) this is still adequate for a small farmer the fairly well developed Marachi Location with 2.18 ha show (Table 6). However it must not be forgotten that regarding the population growth it will be impossible in the future to improve the rural situation unless agricultural intensification progresses rapidly.

In LM 2-3 (Lower Midland Marginal Sugar Cane Zone and Lower Midland Cotton Zone") the lower quartile of the Small Farm Survey 1977 is 2.4 ha (Table 9b). In view of the fact that in the samples of LM 2-3 more than half of the agricultural land is used for livestock, any agricultural improvement possible becomes more and more necessary

In Bunyala Location (mainly LM 4 = Marginal Cotton Zone, the worst zone of the district) there are less than 2 ha available per household. Therefore, melioration and cultivation of the large swamps there should start.

Despite the fact that intensification of land use in the Busia District is not very urgent of the district, development of its potential is in the national interest.

because of the land/population ratio

BUSIA DISTRICT

TABLE 4: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households l

Square

kilometers Density

North Teso

South Teso

Northern Division

Bukhayo

Marachi

Central Division

Samia

Bunyala

Hakati/Southern Division

Busia Urban

South Teso

Bukhayo

Busia Township

15 809

23 585

39 394

27 799

25 610

53 409

21 879

13 593

35 472

2510

3 196

6 161

16 628 32 437

25 060 48 645

41 688 81 082

30 932 58731

29 982 55 592

60 914 114 323

25 635 47 514

16472 30 065

42 107 77 579

2 756 5 266

3 396 6 592

6 838 12 999

11 867 12 990 24 857

6 285

8 642 I

14 927

10 694

9 667 I

20 361

8 390

5 756 I

14 146

1 138

1 406 I 3 127 I 5 671 l

200

306

507

407

236

644

248

182

430

1

20

22

44

162

158

159

144

234

177

191

164

180

4 246

321

568

557

Busia District 140 142 157 699 297 841 55 105 1 626 183

281

BUSIA 16

BUSIA DISTRICT

TABLE 5 : COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION")

LOCATION/DIVISION No. of Households total

Farmers Family ' Non-Relatives Persons per

Household k. total b)

LOCATION/DIVISION No. of Households total

Adults >15 years

Children < 15 years

Other Relatives

Non-Relatives Persons per Household k. total b)

Location:

North Teso 6267 3.08 1.29 0.45 0.28 5.10

South Teso 8603 3.26 1.34 0.71 0.28 5.50

Division Northern 14870 3.19 1.32 0.60 0.28 5.39

Location:

Bukhayo 10759. 3.06 1.38 0.75 0.27 5.46

Marachi 9724 2.96 1.29 1.11 0.34 5.71

Division Central 20483 3.00 1.35 0.92 0.30 5.57

Location:

Samia 8356 2.95 1.17 1.07 0.46 5.65

Bunyala 5752 2.63 0.72 1.33 0.55 5.22

Division Hakati/ Southern 14108 2.82 0.98 1.17 0.55 5.48

Location:

Busia Urban 1106 2.22 0.65 0.65 0.55 4.07

South Teso 1400 2.57 0.85 0.70 0.48 4.61

Bukhayo 3126 2.39 0.84 0.58 0.35 4.15

Division Busia Township 5632 2.39 0.81 0.62 0.42 4.25

DISTRICT: BUSIA 55093 2.99 1.14 0.87 0.36 5.36

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two persons per household as well.

282

BUSIA DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

BUSIA 17

in '00 ha = sqkm in '00 ha = sqkm in ha

Location/Division

without townships

Area

total

(Census)

79

Non-agricultural land

Unsuit.

steep

slopes

Forest

Res.,

lakes,

swamps

Others

(roads,

home­

steads

rivers...)

Agri­

cultural

land

A r e a i n a g r o - e c o l o g

A E Z

LM 1 LM 2 LM 3

i c a 1 z o n e s

LM4

Agric. land

per

household person

North Teso

South Teso

Northern Division

Bukhayo

Marachi

Central Division

Samia

Bunyala

Southern Division

200

306

506

20

31

51

178

273

451

85

85

81

180

261

97

8

105

407

236

643

41

24

65

364

212

576

221

196

417

118

16

134

25

25

248

182

430

13 25

2 sw50 18

15 50 43

210

112

322

30

30

167

30

197

2.83

3.15

2.99

0.55

0.56

0.55

3.40

2.18

2.77

0.62

0.38

0.49

13

82

95

2.50

1.85

2.25

0.44

0.37

0.42

Total rural area 1 579 21 50 159 1 349 502 425 327 95 2.72 0.57

For official land statistics see supplementary publication to FM-Handbook, Vol. Ill A: Agriculture Land Statistics.

A G R I C U L T U R A L S T A T I S T I C S

Roughly 27,000 ha of cotton are planted within the district annually. Seventy-five percent of the crop is interplanted into maize, yielding between 200 and 500 kg of seed cotton per ha. Other important cash c and (very localised) tobacco. 1)

BUSIA DISTRICT

TABLE 7: COTTON PRODUCTION3)

Ginnery Zone

Samia

Seed Cotton in t

Bales

Nambale

Seed Cotton in t

Bales

Year

1975/76

3850

6756

1936

3398

1976/77

2086

3661

1686

2958

1977/78

1876

3292

1907 33^6

:ops are sugar cane and groundnuts

1978/79

2789

^93

2830

^965

1979/80

2516

J+415

3005

5273

a) Source: C.L. & S.M.B., does not refer to district area only

*) Reliable agricultural statistics are not yet available for this district. For more up to date and detailed information see FMHB Vol. Ill A

283

B U S I A 18

S M A L L F A R M S U R V E Y (S F S)1)

The SFS gives information on the farm organizations in AEZ LM 1—2 and LM 2—3, but it does not cover the low potential region LM 4 along the lake shores. The farms included in the survey own 4.7 ha (LM 1—2) and 7.3 ha (LM 3—4) of land, half of it used for annual crops, the rest for grazing and/or left fallow. The stocking rate of 3.4 LU/ha (LM 1—2) and 0.9 LU/ha (LM 2-3) does not take into account the fallow land and commonly owned grazing area and is actually only half as high. The farmers plant approximately one crop per year (tables 8 and 9).

Maize, finger millet and cassava are the major food crops. The farms investigated planted sugar cane on 11 % (LM 1—2) and cotton on 14 % of their arable land area (LM 2-3). This proportion is above the district average; sugar cane is planted in a regionally confined area occupying roughly 3 % of the total land area of the district, and roughly 8 % of the land is planted with cotton (table 10). Besides seed for maize, no purchased inputs are used; the extremely low yields are also a result of the low soil fertility (table 12). Widespread livestock diseases have prevented the introduction of improved cattle ; roughly 8—11% of the grazing livestock units are goats and sheep — the rest are cattle of which 50—60 % are male (table 11). The staple food produced is consumed within the district. With the expansion of sugar cane, which occupies the better soils of the region, the district has become a 'net food importer' (table 13).

The different farm activities are spread over a relatively large period which is partly a result of the rainfall pattern but also reflect the fact that more or less all farms work at subsistence agriculture level (table 14). Yield increases will continue to be moderate in the future and will require comparatively high nutrient applications (table 15).-)

Mixed farm development with special emphasis on livestock and mechanisation using draught animals promises a lasting im­provement in the living standards of the majority of small-holders.

!) November 1977, sample size 30. For more detailed and up to date informations see FMHB Vol. Ill B.

2) See also notes on farm management information, output and nutrient input, page 5 1

2 8 4

34"! E 34"* 'E

BUSIA

SMALL FARM SURVEY AREAS (1977) and

AGRO-ECOLOGICAL

ZONES + SOILS

Bell ol A.E Zones — A E Zones

Subzones Climatic data lor AEZ formula

M — Broken zonal boundaries are uncertain QI

— — mean transitional strips

Unsuitable s

National Number of Survey Area

Survey Area . sample size 30 per number

AEZ R latzold 81

JO 15 20 25 km

Soils KSS Mm ol Agr .German Agr Team

BUSIA 20

< U. O f-U Z

5 ui c o < z o p z < O

t / l — e S < -1

C/5 N S

» •

E I I ru \û l A U '. »A * O •<- >^i r H

a) f A l A ce

• u a •-i

r H a)

. u. c

r H

O a •-i

• A o rH 41 O

ry, n . »A

1/.

o m •o g

u ai C Ol 4 1 O

Ski ': B C u

"S IT ^ O ru ru --. vO vO J - O J - CO

3 B .,- vO l o I A i-< CO Oi B f A • A

T CT I A

rH

o o o. x H a

C E O

o • A 0 <-4 1 «1

a a. o o -a rJ

n u s o m -J . C , U z u

E ' J

- = >i n a - =

>i n a • « E N •r l O r l t :

n o ta B L. rH

c — It O » » E - • C »•> o ^> f N C — '~C I A I A r H I A I A « - " E L , .-• ' C«

H

P H I V « l r H O l A i n > . 01 r\ » A O C ^ O E C I t i : C«

i H

i E t H S a (\ rH r-i

M (s fa. n O H ru H ä § f \ j r u m X o r-

bv U .

H E

M 0 C - H i * « i : t r & w ta 6 0 t . b | BÇ u •-•' C u c- r-j x. Je M Je Ä i : J£ JC

•"" 01

a. c

r. '"" I 0 a •n

•o La cJ3

ir. to r. U

i t

S E > i Ol (S h i* cJ3 r it U 40 > U 3 ai .. c

« ai 10 >- n .. • H o 0l C >. >> >. 4 J 0 u->. M u E £ . £ E -a •r» «1 c p . u t : C -rr 0 r-i - " C c c • H a1 E r 3 • • Q . 1 r-i O r H r-l ~ . c o

E 10 *; • H U . O E • " ' - X - n 4 1 41 C C 4 J r-i U r H •a A c: « A V ai * j t j • 41 01 M >-. a •~ — a s u

A •r i g) A V

u • 0 H B M 4-> O V O u. -r H > 3 c É O rH «3

c LS .* a < • r i c -H o E u o - •J 3 • -H c E E c $ r-i J 3 Ol 4d v. "c E B B E

•r l O 01 O tC O > . i. U u ., B O h > 3 "O U C- • • H r H • H E H • — IT. « u T3 • f H C r- «i m a 8 £ B

= u 4 1 4J 4 - ' F - U H E <-* E M) r H i-t

b ~ N B û B CC 3 • H o U *J 1- E 3 E »• • H o a 2 - H ^ •H a B B I H O

E b 0 a G 3 O C c ^ t B 1 . t3 £ 3 ftj T ) c o • H B 0 h u u c u a. o J U- — a • C < U - • . C C X i U . 0 co 0 H 0 r t j C 0

U . J r t j EC U .

U '_ h r

H O

-3-

o o

vO CO

O O

H r A

IM • 1

O O O O

ru

d s* I A

I A I A

r H

I A I A • 1 •

- T O •

I A

0) 10

~~ E ~~ E • c u

c i? c I t U . 3

J C B C l -

Ci - ^ d

... Il

• O

I A

O o

^ ao

3 -H

f A

I A

r H

O

- H

0 «M

O O

rH

O W3

r H

CO

O

r A l A • 1 •

I A O

CO

»A

N O N E • H C - H ta <-> à

10

E V E 10

E V E M > g a -H c

fa. J u. i-l

H r E U'.

• A -» ru ru »A ^ ru r H M ru w> | rH

-* r«. • * • O r-l

• 1 • •-I H

r E U'.

f\J O o o O o H O O O d rH O •-* o ru 0 ru

«H n R a ifl 5 9 I t I t ß n i : m ra ra c I t = E3 C: _ C x: X £ e x x: •H - H »J hH

T )

* rH _! rH 01 r-\ 01

* — • a n l t te id > l0*%

« l rH c 4> c- J J m « 1 a. rH O r-l O B i o o O u o jO IB U 10

10 E 0 k>

E - O 10

• ta

H B ** o 43 - a p . 4 1

O E « Q 10

n Cl ir E •~ hn X r H - H O

U 10

n X a a « j ) 4 l B 10 • 0 «3 O c O 1.1 ai o > B 0 là > E Ci U

10 • m lO a> H a O U « 0 CI 0' U

S c U. C -3 uS

, N «-. M 4J 0> -o (0 u M B S o E O t a 1 " * J - H B B *> JZ t m * J --< a. b£ B •r i • r i •rH i~ r- rH k-

E Cl

M

rH R

O

uj a i~ X H

s it O A ) o a o al £ 3 B * J HJ a n' • " Oi E Cl

M

rH R

O

r uj a i~ X H

•Si O o o o a o u

£ t o co IB U o 41

O E 0

* J 0'

ra x

H

E 0

01 14 •r i CO

0) s

Z3

ï r H

E L re u.

-' E .1!

a. >

•r i

a 0

M

c 1 V ~ 0,

i c

s - 3 u

- ^ 1 -

i

o

286

BUSIA 21

Cu D O U O w N E3 S ut < O H ü Z

i o o % z o H < Ol

O

3

• J

<

H O Pi m H I t a <N

Q S <: j

GO S I D es 3

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

S. & H

I A • * * • f\j O

O H ON

J - IA NO • • • IA O ry 3

Î

m m H rvi oo ON

. . . m m * \

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

1

! r- ift • 1 o

00 -3" K\ « t •

t\l O r-l

I. ! !

tN. P -H H

• 1 • O O

c c o t l 0) ^ NO IA ON (NJ c « J ON r > H

•O tA rH h"\ INJ . rH

i-l « O

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

H

1 O 00

J - IA O a • •

rvi O rA it b. b.

m rvj -s-O OO I N

• • • <\l (M IA.

•o t l I-l « o ft) .C ON rA CJ O >j a lA (Nj j - rN

"N to ON H OJ NO

. * o X

•p •H c a

1 « «

a C o H r : u 01 a. s.

t l U U t l H K U t l

E 11

Farming Intensity:

Cropping Intensity

Portion of improved

cattle kept

Portion of Farmers

owning a Plough

Labour on Farm:

Family Adults

Perm. Hired Labour

Children >

lk years

Persons living on Farm

- average household size -

Adults > I't years

Children < I't years

Subsistence Units

Home Consumption of Major

Food produced on Farm

Haize

Beans

Fingermillet

Sweet Potatoes

Farm Size & Land Use

Livestock on Farm

Farm Size Group

f H IA tN NO IA • * ON NO

oo O O O O O O K N

rH r-l 1 • •

O o

r-l 1\J 1ft • • J -

o o

tA 1ft . H

rvj KN. *

H

tA NO lA NO • • • • .*• O O tA

Farm Size & Land Use

Livestock on Farm

Farm Size Group

! ON N l l \ 1 ^ K\ I O J O

K\ O O O O O O r o

H 'M W\ « a •

O O O

H N 1ft • • CO

o o

H 1ft • 00

IA • O

CN (A O • 1 • •

Farm Size & Land Use

Livestock on Farm

Farm Size Group

î CN- J - rvj H H IA i-l • 1

r-l O O O O O H

H rH r j

. . . O O O

rH « 1 • NO

O

J - SR. • NO

O

H

• 00 fNl O

• 1 • * J - O tA

•H C

« C f « « « « « « x x x x x x x x

« « 0 « J3 X X X

rt rj « « x x x x IR

a X V I

ra X

» => O 3 J i J J *1

E

'Ht

Farm Size Total

Land Use:

Annual Crops

First Season :0then

Haize

Fingermillet

Sunflower

Cassava

Cotton

Total

Second Season^'

Cotton

Cassava

Total

i-H to e. o t i

o

c o c « l

1 ft* 1 a.

Sugarcane

Bananas

portion of total

Grar.ing & Forage

portion of total

ft> to

•o c

t i ft»

X

o

Livestock on Farm:

Cattle:

local

improved

Sheep & Goats

Total

287

BUSIA 22

BUSIA DISTRICT

TABLE 9 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: LM 1 Survey Area 09

Range

Assets People on Farm

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

up. Qu.

Lo. Qu.

7.3

7.3

10.0

3.0

9.6

11.1

14.0

2.0

0.8

1.5

1.0

2.8

2.8

3.0

2.0

0.1

1.5

1.5

2.2

2.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

2.5 35

2.5 30

3.2 57

1.2 28

75-2

0.5 7

1.1 13

0o8 15

14.2

3.4 48

3.7 44

5-2 54

0.6 13

102.7

-

0.5 7

0.8 10

0.8 12

15.9

0.3 4

0.3 3

0.3 7

0.1 2

7.9

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

0.9

1.0

0.7

0.5

1.0

0.1

1.0

0.9

4.2

0.1

-

Inputs Applied

Range Improved Seed Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha

Plant Protection Improved Seed Used % of area

Fertilizer Applied pure nutrient kg/ha

Manure Applied t/ha Insecticide

kg/ha Fungicide kg/ha

Improved Seed Used % of area

N P2O5 K2O

Manure Applied t/ha Insecticide

kg/ha Fungicide kg/ha

AC AC PC AC PC AC PC AC PC AC PC AC PC

Avg. 0 46.9 0.2 0.5 2.8 - - - 0.1 - 1.8 - - -

Avg. 1 51.8 5.1 20.0 5.0 - - - 0.7 - 2.1 - - -

Up. Qu. 92.3 - - 3.3 - - - - - 3.1 - - -

Lo. Qu. 28.6 - - - - - - - - 0.2 - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of farms, excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

288

BUSIA 23

BUSIA DISTRICT

TABLE 9 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: LM 2 - 3 Survey Area 10

Range

Assets People on Faro

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

Up. Qu.

Loo Qu«

4.7

4.7

6.4

2.4

13-5

14.0

17.0

6.0

1.0

Ï.3

1.0

1.0

2.9

3.0

3.0

2.0

0.5

2.0

2.2

3.0

3.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

2.3 50

2.3 4o

2.9 70

1.4 37

69.0

0.2 5

0.5 8

0.4 10

6.9

1.4 30

1.4 25

1.8 37

0.4 16

41.1

0.4 7

0.4

0.5 11

0.9 16

0.8 13

15-0

0.2 4

0.2 4

0.3 6

0.1 3

6.1

Farming Intensity

Range Cropping Intensity cropa/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity cropa/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

0.9

1.0

0.8

1.0

1.3

0.6

3.5

3.4

7.3

1.6

4.0

81.6

Inputs Applied

P.ange Improved Seed Used % of area

AC

Fertilizer App ied Manure Applied t/ha

AC PC

Plant Protection P.ange Improved Seed Used % of area

AC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

P.ange Improved Seed Used % of area

AC

N

AC PC p 2o 5

AC PC

K20

AC PC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Avg. 0 64.1 1.0 - 4.3 - - - - - 1.9 - - -

Avg. 1 67.4 2.9 - 11.0 -" - - 0.1 - 2.2 - - -

Up. Qu. 8I.7 - - 5.2 - - - - - 2.9 - - -

Lo. Qu. - - - - - - - - - 0.3 - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of farms, excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

289

BUSIA 24

BUSIA DISTRICT

AEZ: LM 1 TABLE 10 a : CROPPING PATTERN

Survey Area 09

First Rains Annual & Semipermanent Crops

Average Average I Upper Lower Total Sample Crop 0

ha 1

ha Quartile

ha Quartile

ha Area Crop 0

ha 1

ha Quartile

ha Quartile

ha ha %

Maize 0.8 0.9 1.20 0.20 22.6 25.7 Sorghum 0.3 0.6 oAo 0.C0 3.5 9.7 Fingermillet 0.2 0.5 0A0 0.00 7.2 8.2 3 e ans 0.1 0.4 0.00 0.00 2.2 2o5 Groundnuts 0.1 OA 0.00 0.00 1.3 2.0 Sunflower 0.3 0.5 o.6o 0.00 9.8 11.1 Cotton 0.4 0.6 0.6o 0.00 12.if 14.1 Cassava 0.2 0.5 o.4o 0.00 7.5 8.5 Sugarcane 0.3 1.1 o.So 0.00 10.3 11.7 Others 0.1 0.5 0.00 o.co 1.6 1.8 Maize 8c 3eans 0.1 0.3 0.00 0.00 4.0 4.6

1 Total 37.3 1C0.0

Second Rains Annual & Semipermanent Crops

Average Average Upper Lower Total Sample Crop 0

ha 1 ha

Quartile ha

Quartile ha

Area Crop 0 ha

1 ha

Quartile ha

Quartile ha ha 'fO

Maize 0.0 QA 0.0C O.CO QA 1.6 3eans 0.0 QA 0.00 O.oO 0.3 3.2 Groundnuts 0.0 0.3 0.00 0.00 0.6 2.4 Sunflower 0.1 QA 0.12 0.00 2.7 10.9 Cotton 0.0 0.7 0.00 0.00 ±A 5.6 Cassava 0.2 0.5 QAO 'o . L/O n r- 30.1 Sugarcane 0.3 1.1 o.So C. Cu ic.3 41.3 Maize & 3eans 0.0 0.6 O.uO 0 . 00 1.2 4.3 Total 1 2^.9 100.0

Permanent Crops

Crop Average

0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha ha ',C

Sweet 3ananas 0,0 0.4 0.00 0.00 0.4 100.0 Total 0.4 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

2 9 0

BUSIA 25

BUSIA DISTRICT

TABLE 10 b: CROPPING PATTERN AEZ: LM 2-3 Survey Area 10

First rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Maize Sorghum Fingermillet Beans Sunflower Cotton Tobacco Cassava Others Maize & FMilt Maize & Beans

0.6 0.0 0.4 0.0 0.3 0.6 0.1 0.3 0.0 0.0 0.2

C.8 0.4 0.5 0.2 0.7 0.8 0.5 0.5 0.3 0.2 1.0 !

o.8o 0.00 0.60 0.00 o.8o 0.80 0.00 o.4o 0.00 0.CÛ o.co

0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.CO 0.00 0.00

18.9 0.4

11.8 0.4

10. 4 17.1 1.6 8.4 0.5 C.2 6.0

24.9 0.5

15.6 0.5

13-7 22.6 2.1 11.1 0.7 0.3 7.9

Total 75.8 100.0

Second rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha 0'

Sunflower Cotton Cassava Others

0.0 0.1 0.3 0.0

0.4 0.6 0.5 0.2

0.00 0.00 0.40 0.00

0.00 0.00 O.CO 0.00

1.3 1.8 8.4 0.2

11.3 15.4 71.7 1.7

Total 11.7 10C.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha 0/ /3

Cookng Bananas 0.0 0.1 O.CO 0.00 0.1 100.0

Total 0.1 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points % columns = % of total farm land

291

B U S I A 26

u o o ft i / i

w > p-l c

o D £ - N o

< f* <U

n - I

7, •a O c

ft • o

1 0 1 )

O X Cu c

O 1

u o ü Ui X

w -J

<

H U

OS ft IZ)

Q s < ft

m N

n w « <

H C"- - t -<? - v *

ra H i 1 1 ! 1 1 ! 1 1 1 CA - < r - - i ••J's £ . - - 1 W u-\ O ^ + O l '-À O CJ • CS • * 0 « « • « • m » » * •

Ö -P

• c Q o O "' C\' o CA i r \ O

O :°\ '-A c ;-5 EH <H i - l

.M U 0 O O O 4) O !> I A <-i C- i n I A i H »_ ' A i r

J2 -t.» • m • r-l > A • H •P W H t A r-î t n r-!

o \ H H rH

1-5 to • a 2 O o o ü u o

K>

bo >> | 1 1 I 1 | I 1 > 1 ! 1 I 1 >. •H u t l u ft •M •H

a -3

• r l

T3

•H a

-3 13

Ö < H <w ft

>4 o û 0

ö a) i 1 1 1 1 1 1 1 ! 1 •2ft en "<f • V f S A I vt L-1. O _ ^ - l Vl C! ;•<.*

O -<! •<& ö a) • • • • • • • « • • • e

•rt +> O o o O (V vD m i r \ o V A vO CA I A C I A

9 &i O O • O • 9 &i • r-i I T ï H I A IH O O^ O

O

II II II ta

• p II

• H • CM 3 3 •

Cr-, 1 II

• CA 1 II

0 o H C\î CV C3 ta

u 4)

m u o

ta u 4)

ta u 4)

•"*•

m u o

ta u 4)

' M ft ' M ft • H t - O r^. • r l I > •r l 0> ai VA rH r - ( Cvl O <o C'A 1 4) O ' .0 C'A 1 41 cu » •

O r- " c \ •

H 03 I A *

.—< »

w + ta

+ n

+ CO

+ ta

+ n

+ CO

4> 4! - p •V -W

> t > C-- > • r l r- > •H

o 1 . 1 1 | 1 1 H -vf (M ~*-t -»t « ! H c ^ J - i C\! 1 H H

s a • •< • <0 ö - - Ï • « » o u rH H U r-i O

o o 0

M G 0

o 0

M G 0

ta - p p ( i o o O ta Q. ta

< H i ! 1 1 1 1 1 1 • H • r H % • « 1 4)

> C\! « CM 1 o

> •H o O H •H H •H V r 3 • W

a 4) 4) tc c 4' a

r-< H •H H •H G 4-1 c\ o rf\ 4-> ^ C A

•>•> ri « i i 1 1 ! 1 1 ! 1 1 1 • P 1 1 rH 1 v ) c^ C'î C- -4 1 +J a Cl ^ 1 ^ 1 •P (u X

O td u

H

0 O H

ÎÂ • o V T , • d

o

H

O

rH

td u

H ^mm """"

o d o

H

O

rH (B « (3 Rl K j

ta •P • p + J •P -P

^ 0 - •""* ^ " A 0 O • * • - ü l C o i 1 1 1 1 I 1 1 1 1 • P 1 1 o 1 IM 1 CO CN> ! 1 • p p t o CV 1 I +>[ -P V • fr • • I

4* < H o O o < H <M o < M ) < H M 0

^ « c C

> 1 ° 0

^ « c C

> 1 •SA

(0 O r- c c~ rr \ ^ f - c > -; »-* , H i | 1 | I | 1 | 1 I • i - i 1 CM 1 L-v 1 X. C'N rH t • « t o w*'* ;—| 1 t • H c « « c.' • V , " ^ O C i • :r\ t.") 3 o O c O I A H o I A , ^ m 1

• • • <-\ • • • • « H • • r H • • •a 3 3 a a> <5' O'

3 3 3 « 3 ^ (t) 3 3

<u o" 4> o* ai & +> a> <5' O' 4) O" 4) O* 4) O* -P 4) O* & •P 4> cycy u> to ta o feo • • M fcO M O bO •Ö O to «a h «s t< nj t, e-t ta u u II .* m h ni h m h f ai u u II II 4) EH lü u u II II fc O b 4) H a> U eu a; O ti o u o u a> U 4) 1) > f.1 4) 4>

X o Ci Ï Ci a ft ^ o ft : . o O ft (U ft u ft O ft y; O 41 ft 3

o > ft > ft > ft "Ö > ft o • p > ft > ft > ft »-N > ft O t l i> ft O

o < s <: s < & m < O « ta < O < Ö < S « < Ö tl ft ft - < 3 r l ft

+> > 4) p. 4) E X 4> (0 - o 4) £» E 4> 4) •H O 4) V 4> ta m u H •r i to m - H H A a o i-l .C

> h U U O

fl « d e •P r-1 t. H fc, c

al tg flj 3

•P W Ö -P -P W •H

h U U O

fl « d e • P t. H fc, c al tg flj 3 •P «3 •P

•-J C 4) 1> -H « • Ö 4) 4ï 4) ^ ^ (0 + + \ <s + > » > > ! > » w Ü 4) > > > > > » ü i J o

•a H > r-i ta •O a o H <a 4) O H a 4) • p 4> bC 4) <P

> N *•> H U <\j - p 'S « > « H co

o t i t\l 0 d p. U M 0 'S o O -rl «J o fc 4> h -P S B 4) t , -M 5ï o ft 8 s a p . •O 1 4) .O •H •a i t) jo ft 8 a C > 3 P C a > 3

S H O W » S3 S U o » M » r-! O W »J o

a > 3 S H O W i ^ i j M O rP K )

D

3

§ |

O J

oo Ö

o O ft ft

D 3 • O »1 ft ~*

»n o »r i • * S

O O o S O

>, >> • '

(N I

C-l 1 >

O

D 3 3 -1 ft -1 »o o o ( N ( N - H

D D 3

o u o C/l

T )

> > O

0 M a F a E c

D ft

292

BUSIA 27

ca H S l S 1 a CO I 1 8 «tf ôo o en

1 t - M ; sO

—1

O ! I A r H

v T cv • es

S3 - P • O

« • • • e • * • • • « « • • • « • • es S3 - P

• O

O c o l A o O O o o (V * * vO (M 3 " vO (\ H3 H

.M (4 O en en ^ « O

. C *> • •£> S • et vO

s vf;

• ?5 vO

•P co i r \ * l f \ -vt tfv •P co r-l r-t r-t

1-3 CO

5 W ça

o O o

ça

o o Ü u

a o O Ct*»b en to >» r H 1 O 1 -* rH 1 1 >> -<r r H i 1 >; • H h • • • u • M P. • H

Cil

C o O •r-l e« •a

O •H

"0 T3

•r-l e« •a

•H

"0

O <H « M « M

v j O O O

60 rH S i O ! 1 « 0 1 1 }ft CO >rf « 0 o en

1 r H O

V-0 Cl •<ft o H r-j •#. O «1 « « « • • • ff • • • • • • « 0 « ' t T» +> o o c CT, O O O o o o (M M -<r vu cv r-i en -Cf è> CV en 9 EH

CT,

• en H

m vO r t

• c:

M

O

II u

en r H

u M

II fc r-l O i n H to en l u co r f 1

en r H

u «S • • vO • vO • o o rH O! O !

o tu u o

CO t-,

Ü

a tu u o

CO t-,

Ü

a

«M < H <M

ft •H i > O r- •H î> • H

8> 4) en r-i O 02 tC' w en I 4) co C-l er 1 eu ai si w •

o •

O

en r-i X en • w + +

C0 « + CQ CO

+ + C0 «

+ CQ CO

eu eu p O p c^ en > C1 en > •H r^. > •H

10 r-i 1 -S H 1 1 •a o en r-H o en l H a u-i r-t e^ 1 H ö 3 « • •a • vu • ri » vO • M Ï D O O O o ( V CV O N O

o u 0

M

O u 0

M

O ta • P •p «4 s s O

O r-l

, 1 en

r-l en Ci cv en en H

C0 vO c^ H

co eu

<H « • • • • to • > Cû « !> •r i c a O r H r H CM •H C i • H O H 5 .-3.

a V a 4) o

V O a

c 4> 1 i i 1 1 ! I 1 ! I •P

P o i >T\ 1 c-

• en en or * I

rH •P •P

•H

d •— CD

M «

- i 1 H . p • u

• H

C5

X CCj o O rH cv ed !-r cv es ( i

o o l - l

o rH

Ü

H

o rH

O

<-H

o l - l

o rH

Ü

H

o rH

O

<-H a « ed 45 «5

(0 -P • P p ) • P

t l 0 0 0 O 0 4> 1 i i 1 1 1 1 1 1 1 -P 1 1 1 1 1 1 1 1 1 1 +» - p I 1 1 1 • P - P 41

4» < H <H CM <H <M

CQ

*4

0 0

•^ *4

0 0

•^ 10 c> o> t> o • > O C N /-> vT) 1 > !> r-', ^ - l

H G i O 1 1 1 r i o 1 1 • CO t cv 1 " r H • A i?", CV 1 •• • t> ir^ c. | • * H 9 t » ( A • % * c> • 0 0 r+. t > • t> t >

S O O o r-i r H o O C i ^Ct" cv ' v i

«

a. 3, a 13 4) O* 4) O» 4) 0> -P

• • • • « H • • H • « a. 3, a 13

4) O* 4) O» 4) 0> -P 41 O" Ö" 3 3 3 «i

4) O" 4) O* 4) O* +> 3 3

CI) O" O" 3 3

4) O O M M 60 0 fco • • 00 tû 60 O tû •O 0 to a U ai U 0 u z-< « h h II X a M o h a u EH a u u M II 4) EH ctl p U Il II U O Vt 4> U O h t l tl o t., <U U « (H 4) U eu 4» > h U (1

Jd iy C i o ft C C i .—^ ö ft 3 o <t> ft o ft o ft CJ ft S 0 O P i S o > p. > p. > p, -c > ft O - p > ft > ft > ft,-> > ft O U > ft O o «; o < » < o v < » 1-5 co «: » «: o <; & • < O J p. ft < r> H; ft •p > 41 a 4) E X CO

a o 4) > E 4) 41 • r i «J 4> 4) 4) •• (0 ffl h H • H * CO (0 »ri H .«= a o rH X i

> 3 3 3 e • p r 3 M »H H G

Ctî Cj <Q 3 •P C0 Ö +> •P CO

•H 3 3 3 e •p M »H H G Ctî Cj <Q 3 • P w •P

H » O 4) 4) - H 05 •n 4) 4) 4) s~* «J + + \ CU + > » > » « * » » - ' O 4) >* t>. W Ü h3 o

• 0 H *3 > H CO • o CS

<u H *3 0) o H <0 4) 4J 1> t e 4> -P

> rvi -p H u CM -P H eu > a H e3 O h M O cd a. h CM O d o O T H <tj O «H 4> U ±> j r B O h - P X Ü CH N S U ft •Ö t 41 .O • H •O 1 41 jO ft CB B

Ö H O w D C C > 3

3 H O CO » o fi U » Ö

M Ö H O w M ) a C > 3 3 H O CO • H 1-5 M O (A 1-3

•d *o *ü

o, .s

D

o Ü

293

BUSIA DISTRICT

AEZ:LM 1

TABLE 12 a: INPUTS AND YIELDS OF MAJOR CROPS

Survey Area 09

Crop I n DU t:» Y i e l d

k g / h a

Crop unp ­r o v e d Seeds

'iu t r . „ • n t K i.' h d- P.] ? c a l s Y i e l d

k g / h a

Crop unp ­r o v e d Seeds

k'V'ha

r 2 ° 5

:-:':/ha

K20

kit/hs.

Manure

t / h "

I n s o c

k;r /ha

Fung­i c i d e kr : /ha

Y i e l d

k g / h a

F i r s t R a i n s

Avg. UpQu LoQu

96 100 100

2 15 19

- 0.66 It

6 -3,866 3,375 2,025

Maize Avg. UpQu LoQu

96 100 100

2 15 19

- 0.66 It

6 -3,866 3,375 2,025

Sorghum Avg » UpQu LoQu

- - - - - - -1 ,12c 1 ,200

500

F i n g e r m i l l e t Avg. UpQu LoQù

-"~ "~ ~ ~" "* *** 1,103

1 ,250 638

S u n f l o w e r Avff .

UpQu LoQu

88 100 100

— k ~ 0.69 2 -

1,757 1,688

800 C o t t o n Avg.

UpQu LoQu

68 100 -

8

;

"" 18 18

_

9'+5 925 500

Second R a i n s

G r o u n d n u t s Avg. - - - - - - - 1,075

S u n f l o w e r Avg. UpQu LoQu

100 100 100

— 6 " • — - -

1,725 1,000

5^0

C o t t o n Avg. UpQu LoQu

75 100 -

10 -

21 25

k

21 25

908 925 700

P e r e n n i a l Crops

C a s s a v a Avg. Up Qu LoQu

• •

-

— ~* ~ — ™* 7,557

3,750

S u g a r c a n e Avg. UpQu LoQu

-7

--

- -7,725

13,750

BUSIA DISTRICT

AEZ: LM 2-3 TABLE 12 b: INPUTS AND YIELDS OF MAJOR CROPS

Survey Area 10

Crops I i r .u ';;- i' u.-ld

k r / h a

Crops I:i:p-rov . ' d S e e d s

N-.HT l e n t o Che.-ii c a l s i' u.-ld

k r / h a

Crops I:i:p-rov . ' d S e e d s

1 . . . 'l-.. i -vr, / i .cL

p 2 o 5

k r / h a

Kpü

k - / h a

r .anuro

t / h a

Tnaeo ,

kr/\v\

t 'iuig-i c i de k f / h a

i' u.-ld

k r / h a

F i r s t B a i n s

Maize Avg. Up Qu Le Qu

88 100 100

2 8 *" 0 . 0 1 2 -

2 , ^ 9 3 3 , 1 3 0 1 ,923

F i n g c r m i l l e t UpQu LoQu

- : ': :

- - -916

1 ,000 623

S u n f l o w e r Avg. UpQu LoQu

93 100 100

~ 2 - - _ -

9'v7 1 , Oh?.

v ^ o

C o t t o n Avg. UpQu LoQu

82 100 100

-^ —

0 , 0 6 11 13

1 «.

b':-l 800 375

Second R a i n s

Avg o UpQu LoQu

100 100 100

--

-- -

-957 900 '120

S u n f l o w e r Avg o UpQu LoQu

100 100 100

--

-- -

-957 900 '120

C o t t o n Av g » 33 - __ - - 31 31 511

P e r e n n i a l Crops

Avg. UpQu LoQu

--

-- -

- h,6h2 8,125

C a s s a v a Avg. UpQu LoQu

--

-- -

- h,6h2 8,125

BUSIA 30

BUSIA DISTRICT

AEZ: LM 1

TABLE 13 a: DISPOSAL OF CROPS

Survey Area 09

Crop Production

kg

Marketing Board Local Market Home Consumption Crop Production

kg M * kg * kg % First Raina

Maize 94,195 7,470 8 18,535 20 68,190 72 Maize & Beans 9,415 1,800 19 2,720 29 M95 52 Beans 1,350 0 0 720 53 630 7 Fingermillet 7,875 0 0 1,575 20 6,300 80 Sorghum 7, W O 0 0 1,150 15 6,330 85 Groundnuts 1,630 300 18 1,105 68 225 14 Sunflower 13,210 13.1V7 100 63 0 0 0 Cotton 11,156 8,556 77 0 0 2,600 23

Second Rains

Maize 1,620 900 56 0 0 720 44 Maize & Beans 2,520 0 0 1,620 64 900 36 Beans 44o 0 0 160 36 280 64 Groundnuts 58o 250 43 285 49 <*5 8 Sunflower 5,242 5,242 100 0 0 0 0 Cotton 2,190 2,190 100 0 0 0 0

Permanent Crops

Cassava 6,860 0 0 2,60C 38 4,260 62

BUSIA DISTRICT

AEZ:LM 2 - 3

TABLE 13 b: DISPOSAL OF CROPS

Survey Area 10

Crop Production

kg

Marketing Board Local larket Home Consumption Crop Production

kg kg i kg % kg % First Rains

Maize 41,200 7,180 17 13,935 34 20,085 49 Maize & Beans 28,200 4,200 15 11,699 41 12,301 44 Beans 255 0 0 170 67 85 33 Fingermillet 9,570 160 2 2,460 26 6,950 73 Sorghum 240 0 0 0 0 24o 100 Sweet Potatoes 20,090 0 0 0 0 20,090 100 Sunflower 7,231 5,970 83 377 5 884 12 Cotton 9,927 9,027 91 0 0 900 9 Tobacco 1,030 1,030 100 0 0 0 0

Second Rains

Fingermillet 720 0 0 400 56 320 44 Sunflower 4,154 3,550 85 »v36 10 168 4 Cotton 1,140 1,140

P

100

ermanent

0

3rops

0 0 0

Cassava 5,230 0 0 l ^ O 33 3,490 67

296

BUSIA 31

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 b : DISTRIBUTION OF FARMING ACTIVI : £S

Crop 1 Maize Cases: 25 Crop 12 Finge- '"et Case.: 3

AEZ: LM 1 Survey Area 09 Sample Size: 30 AEZ: LM 1 Survey ' "> Sample Size: 30

100 \ . of the

Land Preparation: cases Lan_ naratio. "

liioL S - - S

I • 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

UW I II Jan. Feb. Mar. Apr. May Jur. J *' Aug. Sep. Oct. Nov. Dec.

S». Hing.

Jul 11 I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

.„III, I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fei 'lizing:

liLlthL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. oep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

J •_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: I MM.,-J and Spraying

i l l . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. M-r. i ,A; ... Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

1 JIluL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

HI I I» 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

-UL Jill 111L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

J L

• ! • • • ! • • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

• • llllllll.lll • I llm ml Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

297

BUSIA 32

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 d: DISTRIBUTION OF FARMING ACTIVITIES Crop 18 Sorghum Cases: 14 Crop 24 Groundnuts Cases: 7

AEZ:LM1 Survey Area 09 Sample Size: 30 AEZ: LM 1 Survey Area 09 Sample Size: 30 100 %

. ol the Land Preparation: cases Land Preparation:

IUL tu - • to Q) . . " •

Ï - - S

J L LJl U Jl Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

ill JIUIILIL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

LJL LL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

JLUlllJjL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

O 11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

LJL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

JJLlLiili L ILL Uli Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec

298

BUSIA 33

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 f: DISTRIBUTION OF FARMING ACTIVITIES Crop 34 Sunflower Cases: 26 Crop 35 Cotton Cases: 26

AEZ: LM 1 Survey Area 09 Sample Size: 30 AEZ: LM 1 Survey Area 09 Sample Size: 30 100%

— ' of the " ~ ; Land Preparation: cases Land Preparation:

i _ l J • ••! •• I I L_L S - - S _ . - - CO

!_• 1 •• II« • II« ••• i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

illuL llxli J U . • .1. I. ..I II. I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

• • • ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

,ll ILUllLU L kJiL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• • • • • • • I • • I II • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

LJ _ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

, • 1 • 1 I 1 1 • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

i-J l u • ! I I lil«« • • • Jan. Fejb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• _ • • • • • • • • ! • H i I • ! i

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding: • • II • • «I« ! • - • «I « « «

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Li. JJIIIIILII uldLiI I nil iL ii • J L jiIùiL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

299

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 h: DISTRIBUTION OF FARMING ACTIVITIES Crop 63 Sugarcane Cases: 10 Crop 64 Cassava Cases: 7

AEZ: LM 1 Survey Area 09 Sample Size: 30 AEZ: LM 1 Survey Area 09 Sample Size: 30 100 '.

U / A' "' ' h e

Weeding:

I • • I I I I I I I 1

cases Weeding: T 1 1 1

j = -- -a a I I E + 3 I I 1 IJ ° 1 1 S ' = 1 1 1 a.. :- 1 1 1 1 1 1 1

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

J LJL J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

I I ±

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

J I L I I I I I I • I I Jan.'Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

300

BUSIA 35

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 j : DISTRIBUTION OF FARMING ACTIVITIES Crop 1 Maize Cases: 25 Crop 2 Maize & Beans Cases: 12

AEZ: LM 2-3 Survey Area 10 Sample Size: 30 AEZ: LM 2-3 Survey Area 10 Sample Size: 30 100 %

. of the ~ ! Land Preparation: cases Land Preparation:

LILIL JUL ~1 O» - • R> at . ->

S - - S

JLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

JJ iL -L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

J—••• • I LA Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

J L JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

± J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding: First Weeding:

JUL llllh Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLUL Jan. Feb. Mar. Apr. May Jun. Jut. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

i JjIldL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

ill]

• I ••• •• I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

••I HilLinli Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

301

BUSIA 36

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 k: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 1: DISTRIBUTION OF FARMING ACTIVITIES Crop 12 Fingermillet Cases: 23 Crop 18 Sunflower Cases: 22

AEZ:LM2-3 Survey Area 10 Sample Size: 30 AEZ: LM 2-3 Survey Area 10 Sample Size: 30 100 %

. of the ~~~ ! Land Preparation: cases Land Preparation:

L U L I L JUL li 5 - - S

II I l ill ULI I I IUI X Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

• t i l l l.ll Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

I ll III 1 Mil l I i l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

JJI11111 iL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

,l,,l mi i m M M » ii M lLlL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JUL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

JUL

± JIL J I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

JL _L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

II Jl ll. ill ll Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

302

BUSIA 37

BUSIA DISTRICT BUSIA DISTRICT

TABLE 14 m: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 n: DISTRIBUTION OF FARMING ACTIVITIES Crop 35 Cotton Cases: 25 Crop 64 Cassava Cases: 15

AEZ:LM2-3 Survey Area 10 Sample Size: 30 AEZ: LM 2-3 Survey Area 10 Sample Size: 30 100 'i of the

Land Preparation: cases Weeding:

I I •"• •• • I I I ••• • 5 f 1 u I I I I I I I I • I

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

• » • I • • H i " ! i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvestinc:

Li ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weedine:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

••Iliii I .1 Il L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

- U I I I • •• . l . l l - l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

j j i-ill i ••••••1 MM. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

iliii •!•• !• JU U I Hill Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

303

BUSIA 38

W Z O S3

Z o e-i

O O

I A

X

U

0

CN 1 0

O"? CN

1

CC

co

o co « ü t

eu > eg

J

C 0

O 3

•v O u

a.

M

• H

o O 1-4

ru

VO o I A

o o o H

O o

VO

A I

1-4

VO ON

W Z O S3

Z o e-i

O O

I A

X

U

0

CN 1 0

O"? CN

1

CC

co

o co « ü t

eu > eg

J

C 0

O 3

•v O u

a.

^ W Z O S3

Z o e-i

O O

I A

X

U

>

u

0

^ ° EÏ?

co

o co « ü t

eu > eg

J

C 0

O 3

•v O u

a.

« 8 OJ

W Z O S3

Z o e-i

O O

I A

X

U

>

u

0

^ ° EÏ?

co

o co « ü t

+J -rt 0 r-t 0 H

£ -W * > U • H O S b .

O O O

i-4

o o o

O O - 3 -

w Z O S I

w z • < o

CK < CT O

co •

CT K < Z

M

Z

• •

u

0

l-n ) 0 0

n

0 rN

1 C

a o co - 1 •< ce CB

l x

> CV

J

a 0

- H

ü 3 •o 0 u

M

»H

O O VO

SI vo I A 8

o 1-4

O o o

r-o

H 0 0

w Z O S I

w z • < o

CK < CT O

co •

CT K < Z

M

Z

• •

u

0

l-n ) 0 0

n

0 rN

1 C

a o co - 1 •< ce CB

l x

> CV

J

a 0

- H

ü 3 •o 0 u

O O o

ON

0 0 C\J f A

w Z O S I

w z • < o

CK < CT O

co •

CT K < Z

M

Z

• •

u

G U 0

• H E

m n ^ C E

7S

a o co - 1 •< ce CB

l x

> CV

J

a 0

- H

ü 3 •o 0 u

M

o o o

w Z O S I

w z • < o

CK < CT O

co •

CT K < Z

M

Z

• •

u

G U 0

• H E

m n ^ C E

7S

a o co - 1 •< ce CB

l x

o

*> - H 3 H O - H

ja *>

• H « 3 U .

o o r A

H

O o rvi

o o I A

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

LT)

c ' j j m 0 *~

J j f )

0

*• I CO H ) O 10 H } «< CS ce u b .

H • H 0

t o

. H 0>

e J a o

• H • p u 3

O

M

3

O o

I A

8 o O O i r »

CO

CO C7\

ru

o o I A

0 0

o co I A

O o o

I A

o

I A

O

i - l 8 o o*

VO

O f-4 1-4

I A 0 0 I A

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

LT)

c ' j j m 0 *~

J j f )

0

*• I CO H ) O 10 H } «< CS ce u b .

H • H 0

t o

. H 0>

e J a o

• H • p u 3

O

M

o o o

I A

VO H H

«M O O O

o" r-4

O Cv

I A I A 8

o I A I A

O vO

O r-4 OJ

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

c s-i

c E

, J K

E "

C m r-4 ^

•o

b -o « o a •".

O, AJ O X . • + »

t C - P « o a

> r-4 - H

CO H ) O 10 H } «< CS ce u b .

H • H 0

t o

. H 0>

e J a o

• H • p u 3

O

H

O O O

O O O I A H

O O

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

c s-i

c E

, J K

E "

C m r-4 ^

•o

b -o « o a •".

O, AJ O X . • + »

t C - P « o a

> r-4 - H

CO H ) O 10 H } «< CS ce u b .

H • H 0

t o

•1 M

•M - H 3 i-4 O - H

JO - P •W h • H O 3 b ,

o o

r-4

8 0 0

co

O O

H

o o o

I A

O O O

I A

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

c s-i

c E

, J K

E "

C m r-4 ^

•o

b -o « o a •".

O, AJ O X . • + »

t C - P « o a

> r-4 - H

CO H ) O 10 H } «< CS ce u b .

H • H 0

t o

4» • H

e 9

* co Ja J?

to X « to

X t o

X t o

Je Vi t o X

t o X

t o j e

t o j e »e. t o

j e t o

j e t o

j e t o

j e « t o j e

t o j e

t o j e

t o j e • * .

t o j e

t o j e

t o j e

to j e

w z o N

W z < o as

< CT

W

r-4

S •J)

• ta.

<

c s-i

c E

, J K

E "

C m r-4 ^

•o

b -o « o a •".

O, AJ O X . • + »

t C - P « o a

> r-4 - H

CO H ) O 10 H } «< CS ce u b .

H • H 0

t o r-4

co e

» •O r * o

X

î o

O ru a.

o o

> t o ^ t o % 1 CC o CT - H

< o 5 3 < -o CQ o \ u n u. w M 0 a. ^H < z n u . . ai

a. s ce « u u,

a •a H V

• H X

z

V

- H H —4

h

b .

O

CM

O

rvj

1-4 O > e

* j

B O

- H

3 • o 0

a.

B < - H

u

a, a O H ce a U h .

O

-o

X

Z

a>

•H rH - H

a> b .

o rvj

O X

• H a> S-«

- 1

B O

** U 3

T ! 0

t o t , •« a. z Z ' H < CQ CO

( î

. . a) a . G

O u ce 40 U b .

a •o

f4 X

z

u 9) N

•H r-t • H

U 0)

b .

I A o A l

0 .

o rvi se

1-4

O >

a 0

•rt • *>

U

S 3

Z T3 < 0 O t .

ce • < B CT - H O

m m u

. . Qi a. e o t-ce a O b .

a •a f-4 o

• H X

Z

u

N • H »H •H *» U il

b .

1A o OJ a.

o OJ

r-4 0) >

B 0

- H

O 3

T3 O U

z a. O

t <= H - H O U 0

k l

. . o a. s « a U b .

a •a 1-4 a>

•H X

z

in 9 N

•H M • H

I H a>

b .

1 A o OJ a.

o OJ U o

S § o • - . E i ~ CO o

5e = O

ce s a E l - H < z a

a, H o u ce a U h .

» •O r * o

X

î o

O ru a.

o o

> t o ^ t o % 1 CC o CT - H

< o 5 3 < -o CQ o \ u n u. w M 0 a. ^H < z n u . . ai

a. s ce « u u,

a •a H V

• H X

z

V

- H H —4

h

b .

O

CM

O

rvj

1-4 O > e

* j

B O

- H

3 • o 0

a.

B < - H

u

a, a O H ce a U h .

O

-o

X

Z

a>

•H rH - H

a> b .

o rvj

O X

• H a> S-«

- 1

B O

** U 3

T ! 0

t o t , •« a. z Z ' H < CQ CO

( î

. . a) a . G

O u ce 40 U b .

a •o

f4 X

z

u 9) N

•H r-t • H

U 0)

b .

I A o A l

0 .

o rvi se

1-4

O >

a 0

•rt • *>

U

S 3

Z T3 < 0 O t .

ce • < B CT - H O

m m u

. . Qi a. e o t-ce a O b .

a •a f-4 o

• H X

Z

u

N • H »H •H *» U il

b .

1A o OJ a.

o OJ

r-4 0) >

B 0

- H

O 3

T3 O U

z a. O

t <= H - H O U 0

k l

. . o a. s « a U b .

a •a 1-4 a>

•H X

z

in 9 N

•H M • H

I H a>

b .

1 A o OJ a.

o OJ

304

BUSIA 39

l/S UI z o N

< U

O O - 1 o u tel

Ó

O

Q

ui _J

Z O U Q O 0i o.

w « < H

H O

2 t/3

5 <

m

H Z O N

z O E i

8 u KN

z f )

f N

f H • <

0 VC INJ

1 0

r~> (NI

0 Cn 1

0

W

O co

ce u

- H 0) > 0)

J

c o

•H *i U 3

T ) O

Cu

t - t o o rA ru

VD I A f A

o o rA

l - l 0 0 I A

o o I A " V O O I A

OJ

O vo

ON - 3

O o

H

r-l

OJ l - l

VO

H Z O N

z O E i

8 u KN

z f )

f N

f H • <

0 VC INJ

1 0

r~> (NI

0 Cn 1

0

W

O co

ce u

- H 0) > 0)

J

c o

•H *i U 3

T ) O

Cu

O o o

I M

o j I A

ra O o o

H OJ

O - 3 -\ O O O

OJ

vo -3- I A

O O

0 0

H Z O N

z O E i

8 u KN

z f )

f N

f H • <

U)

> œ

y,

c

" °

W

O co

ce u

- H 0) > 0)

J

c o

•H *i U 3

T ) O

Cu

M

O O J -

H

o co O o

O o

I A

O

o - 3 -

OJ H o o vo

'

H Z O N

z O E i

8 u KN

z f )

f N

f H • <

U)

> œ

y,

c

" °

W

O co

ce u

(4 * » - H 3 ' H O - H

• H C 3 fc.

O O r H

H

o o

l - l

O O l - l

o o ON

H Z O N

U z < o

os < o s w

o ce < z

o j

£

U

<

0

5 m

0

i C

to

to

. c« ce

> 0)

B O

•H •U U 3

- o O u

a ,

M M - H

O O M

I A

2 fA IA 8

co

I A

O V£> I A

O o J -\ o o OJ

VO VO o o

I A

H

OJ - 3 -

I A OJ

o o

I A

H

O I A

f A OJ

H Z O N

U z < o

os < o s w

o ce < z

o j

£

U

<

0

5 m

0

i C

to

to

. c« ce

> 0)

B O

•H •U U 3

- o O u

a ,

- H

O o I A

o rA rA

O o

vu

i H

o o

o o

0 > -3-

VO -3-

O O 0 >

OJ r - l

C^ O O O

r H

UN J -

H Z O N

U z < o

os < o s w

o ce < z

o j

£

U

<

9 0

• H £

' S fa-~ - 0 E

to

to

. c« ce

> 0)

B O

•H •U U 3

- o O u

a ,

t - t

O O I A

r H

t A vo O O

\ 0

U I A I A

O I A

r-l

OJ o j

0 0 r-l

o o

O O

H Z O N

U z < o

os < o s w

o ce < z

o j

£

U

<

9 0

• H £

' S fa-~ - 0 E

to

to

. c« ce

o

* > - H 3 H O - H

X * » V fa •H «1

O O K \

H

o o I A

O O I A

H

o o

0 0

o 0

ON

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

•• ( N f^' m ." 1

0 < -JJ r^

0

• • 1 T 0 C I M rN , -

co I-J o co r j «s ce ce u h ,

H • H O to

r H

« r j

a o

• H •t» O 3

0 t l

3 M

O O O

- 3 -

0 0 0 0 O

o o

- 3 -

O ON

I A VO

8 I A

O O

-3-

CO o

VO 1 i H I A OJ

o o

O0

r H

O -3-

0 0 I A

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

•• ( N f^' m ." 1

0 < -JJ r^

0

• • 1 T 0 C I M rN , -

co I-J o co r j «s ce ce u h ,

H • H O to

r H

« r j

a o

• H •t» O 3

0 t l

3 O o o

t\J

o j AJ o o

rvi

o CO

O o

- 3 -

G

c OJ

I A VO

0 0

I A r>- O o

OJ

r H

V 0 H

I A r H

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

0 l-i

E!

>-l

E °

•o T. •S ..JJ

fa-e o e 0 "~. eu r\j u • + B

*> O bC-u « o a

> . | H - r i

co I-J o co r j «s ce ce u h ,

H • H O to

r H

« r j

a o

• H •t» O 3

0 t l

M o o

rg

l - l

O o vo

8 I A

O OJ

H

1 8

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

0 l-i

E!

>-l

E °

•o T. •S ..JJ

fa-e o e 0 "~. eu r\j u • + B

*> O bC-u « o a

> . | H - r i

co I-J o co r j «s ce ce u h ,

H • H O to

fa « H

+» «H 3 r H 0 - H

J3 * > *> h • H o> 3 6 M

g o j

H

o

8 OJ

O o

OJ

r H

I o o

0 0

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

0 l-i

E!

>-l

E °

•o T. •S ..JJ

fa-e o e 0 "~. eu r\j u • + B

*> O bC-u « o a

> . | H - r i

co I-J o co r j «s ce ce u h ,

H • H O to

*> • H a

3

« co Je

60 j e

to Je

bO j e « je

bO j e

to je « to

j e to

je to

j e to

j e « to je

to je

t « j e

to je •JR Jf Jf to

Je * • * to

je CC

j e to

je to

je

w z o N

W Z <« u

CG

«ï

co

H

Z -J)

• •

u

<

0 l-i

E!

>-l

E °

•o T. •S ..JJ

fa-e o e 0 "~. eu r\j u • + B

*> O bC-u « o a

> . | H - r i

co I-J o co r j «s ce ce u h ,

H • H O to

H V

• o r-l 0)

z

fa o

i-I - H +» h a>

lx .

I A O t \ l

a .

o

H

> V

a o

• H *> U 3

T I

o " m a

u .. a> a. e O h ce n o u.

• o

z

b c N

•H

rH

*> a>

u .

I A o OJ

0 .

o OJ

> 0)

c

«.5 S ï 85

« 3 -x a

fa .. « a. e O fa ce a

O X I .-« V

•A X

z

fa a>

•r i l - l

fa

I A o o j

o OJ be

r H «1 > 01

»J)

e 0

- H •«J

U 3

• o O fa

« a -5 c

« 'H

03 co fa

. . 0) 3 . S O fa ce n

o •o

01 • H X

z

fa 0> N

• r i H • r i

fa 01

U .

I A o OJ a.

o OJ

r - l O > 0>

J

0 0

•rt •*> Ü

« -i « 0

S £ Ö = Z . n

CO ct> fa

. . Ol Û, E O fa ce a

rH 0)

•rt >>

Z

fa

« •S t 01

I A O OJ

0 . a i-i

> e

J

e 0

• H •»>

« o.

•< c S " CO o

fa . . CD

CU s O fa ce a U [fa

o 73 M 01

•H

z

fa 0> N

• H r H • r l

fa a>

tfa

UN o O l

CU

o o

• H

e o

- H ** O 3

T l 0 fa

CU M

« a

3 -z o

u •• c 0, s o u ce a U h

• o r-l 0)

z

fa o

i-I - H +» h a>

lx .

I A O t \ l

a .

o

H

> V

a o

• H *> U 3

T I

o " m a

u .. a> a. e O h ce n o u.

• o

z

b c N

•H

rH

*> a>

u .

I A o OJ

0 .

o OJ

> 0)

c

«.5 S ï 85

« 3 -x a

fa .. « a. e O fa ce a

O X I .-« V

•A X

z

fa a>

•r i l - l

fa

I A o o j

o OJ be

r H «1 > 01

»J)

e 0

- H •«J

U 3

• o O fa

« a -5 c

« 'H

03 co fa

. . 0) 3 . S O fa ce n

o •o

01 • H X

z

fa 0> N

• r i H • r i

fa 01

U .

I A o OJ a.

o OJ

r - l O > 0>

J

0 0

•rt •*> Ü

« -i « 0

S £ Ö = Z . n

CO ct> fa

. . Ol Û, E O fa ce a

rH 0)

•rt >>

Z

fa

« •S t 01

I A O OJ

0 . a i-i

> e

J

e 0

• H •»>

« o.

•< c S " CO o

fa . . CD

CU s O fa ce a U [fa

o 73 M 01

•H

z

fa 0> N

• H r H • r l

fa a>

tfa

UN o O l

CU

o

3 0 5

B U S I A 4 0

Vi W Z O N

< u 3 o j o u w

É Q

o .

§ u Bi tü Û. 00 - J W > ( i l -J Z O H U

O O f * o.

02

<

y 2 H on

S < on D 05

H Z O N

Z O E-c

ë o f \ x

• w

• <

0

1

c

rv

Q C l

t

0

co

o co H 0£

<

H ai >

J

c o

• r i •U

3 •O O U

a.

»-t r-l

o o ru

o o o

• H

• H o o o

[ > .

o - 3 -H

8 o o o

o r H

1 A i

(NJ

•3

H Z O N

Z O E-c

ë o f \ x

• w

• <

0

1

c

rv

Q C l

t

0

co

o co H 0£

<

H ai >

J

c o

• r i •U

3 •O O U

a.

3 O o H

(NJ 1-4

o o o

co

o I A

I A I A

o o o

r H H

(NJ

H Z O N

Z O E-c

ë o f \ x

• w

• <

v.-C

C

c T i -t c

co

o co H 0£

<

H ai >

J

c o

• r i •U

3 •O O U

a.

• H

O O

o o o

o o o

(A

H Z O N

Z O E-c

ë o f \ x

• w

• <

v.-C

C

c T i -t c

co

o co H 0£

<

u 9

•W - r i 3 <H O - H

J3 * > - U 1* • H 41 3 f-

o o

O o

NO

o o o

KN,

' 8 o -3-

u z o e3

w z «ï o

cc < o = > co

o cs < x

ru

X

N

H

<

0

m 1 0

0 :NJ

1 C

eo

O

« CS U

« J

a o

•H +J O 3

•a 0 u

a .

W t-H

8 I A

0J (M

H o o o

co

ITv

CM 5 H

o o o

(NJ

l - t

s (V -3-

u z o e3

w z «ï o

cc < o = > co

o cs < x

ru

X

N

H

<

0

m 1 0

0 :NJ

1 C

eo

O

« CS U

« J

a o

•H +J O 3

•a 0 u

a .

•-H

o o H

M

O H

O H

o o o ON

m -s- « o

o o

j r Cv

u z o e3

w z «ï o

cc < o = > co

o cs < x

ru

X

N

H

<

C u

•" 1

^ 0

T c

C, CN

eo

O

« CS U

« J

a o

•H +J O 3

•a 0 u

a .

M

O O

o o o

UN

I A J - c o o

I A

u z o e3

w z «ï o

cc < o = > co

o cs < x

ru

X

N

H

<

C u

•" 1

^ 0

T c

C, CN

eo

O

« CS U

t . « * » - H 3 rH O - r i

JS -U

• H a> * h .

o o

CO

o o m

8 o VO

z o

N

W z < u ce • < o 3 M

M

X

• •

<

• • r j

C 1 • U L - ,

O r -

0

• • 1

CCN ( M T —

2 O CO

J < ce « u u .

i - i • H O

CO

0>

9

e o

• H . U O 3

O

M

o o

I A

H

ON r- l

CO f i

o o o

CO »NJ

o t-i

r-l

o o o

1-1

$ IA NO

o o o

H

H O N

r H O N

z o

N

W z < u ce • < o 3 M

M

X

• •

<

• • r j

C 1 • U L - ,

O r -

0

• • 1

CCN ( M T —

2 O CO

J < ce « u u .

i - i • H O

CO

0>

9

e o

• H . U O 3

O

S 8 o

f^ l *\ o o o

CNJ

• H

o ? 8 o

co

a •-t (NJ

o o o

CO

0 0 (NJ

0 0 (NJ

z o

N

W z < u ce • < o 3 M

M

X

• •

<

c

0 £

- J 0 £

L I C ON

f-H T—

•o

fc, - 0 « o S3 * - „

S . (NJ (0 ir>

• + a *» a to*> e o c

2» r H <rl

2 O CO

J < ce « u u .

i - i • H O

CO

0>

9

e o

• H . U O 3

O

M 8 o

o o

l Â

o o o

IA

o o o

IA

z o

N

W z < u ce • < o 3 M

M

X

• •

<

c

0 £

- J 0 £

L I C ON

f-H T—

•o

fc, - 0 « o S3 * - „

S . (NJ (0 ir>

• + a *» a to*> e o c

2» r H <rl

2 O CO

J < ce « u u .

i - i • H O

CO

« • p - r i 3 i H 0 - H

J3 -M •W h • H O 3 <•.

O o CT-

8 o I A

o o o

I A

o o o

J -

z o

N

W z < u ce • < o 3 M

M

X

• •

<

c

0 £

- J 0 £

L I C ON

f-H T—

•o

fc, - 0 « o S3 * - „

S . (NJ (0 ir>

• + a *» a to*> e o c

2» r H <rl

2 O CO

J < ce « u u .

i - i • H O

CO

• U • r i a

a

tt je Ml

X te

je « «0

je je j e « j e to je s C O

Je w te je J? us

j e Kl je

« te je je

to je

CO je

•eft to je J? to

je to je

z o

N

W z < u ce • < o 3 M

M

X

• •

<

c

0 £

- J 0 £

L I C ON

f-H T—

•o

fc, - 0 « o S3 * - „

S . (NJ (0 ir>

• + a *» a to*> e o c

2» r H <rl

2 O CO

J < ce « u u .

i - i • H O

CO o

o • o r H « •H X

Z

ai

• H i - l • H 4 * h O

b .

1A O <\J a.

o

H

> 0)

a o

• H 4 J Ü 3

T ) O

c & M

to a X - H M

co a u

,. « a. E O h ce a O h.

a •a

V • H X

Z

V H

• H rH • H •P U 9

b ,

I A o r i

a .

o (NJ

te

r- l O > 9

a C0 0

S -S o *>

«< 3

2 S **-3 co a

u . . g) a. 8 O h ce d

(0 •o

« •A > i

z

N • H r i - H

a> h .

s o (NJ

r H

-) c o

- H 4 J u 3

•o

« £ CO c CO . H

< U 10

h . . o

% E O b

ce « O 0 ,

a •o M 9

•rt X

t .

.2 •rt

<D

I A o (NJ

a.

o (NJ

M:

r H

> C l

a 0

•H * » o 3

•a

•s ° a a. < ca o CO . H

< r i

. . aj Q. e O b es a U Cv

a •o e

• r i X

z

u 9 N

- * i r H • r i 4J h

b .

I A o (NJ

a .

o (NJ

9

a 0

T l 4 *

3 •o 0 u

a ,

c • r i

o h

.. o a. e O U ce a

o • o f i 9

•H X

Z

s

tt>

I A o (NJ

3 .

o (NJ

t e

e o

• H

i 2 as o o

h •• • 0. B o u ce a

o • o r H « •H X

Z

ai

• H i - l • H 4 * h O

b .

1A O <\J a.

o

H

> 0)

a o

• H 4 J Ü 3

T ) O

c & M

to a X - H M

co a u

,. « a. E O h ce a O h.

a •a

V • H X

Z

V H

• H rH • H •P U 9

b ,

I A o r i

a .

o (NJ

te

r- l O > 9

a C0 0

S -S o *>

«< 3

2 S **-3 co a

u . . g) a. 8 O h ce d

(0 •o

« •A > i

z

N • H r i - H

a> h .

s o (NJ

r H

-) c o

- H 4 J u 3

•o

« £ CO c CO . H

< U 10

h . . o

% E O b

ce « O 0 ,

a •o M 9

•rt X

t .

.2 •rt

<D

I A o (NJ

a.

o (NJ

M:

r H

> C l

a 0

•H * » o 3

•a

•s ° a a. < ca o CO . H

< r i

. . aj Q. e O b es a U Cv

a •o e

• r i X

z

u 9 N

- * i r H • r i 4J h

b .

I A o (NJ

a .

o (NJ

9

a 0

T l 4 *

3 •o 0 u

a ,

c • r i

o h

.. o a. e O U ce a

o • o f i 9

•H X

Z

s

tt>

I A o (NJ

3 .

o (NJ

t e

3 0 6

B U S I A 41

c/5 W z o N < u Ü o -J

o <j

6 ai ü < a z a. O e£ u ai u o. CA

UJ - J

Z O

H <J

Û O e* o.

W - J CO

< H

5 H C/5

S C/5

m

o> > a> _) c 0

•H -P U 3 •a o u u.

h-*

o> > a> _) c 0

•H -P U 3 •a o u u.

o> > a> _) c 0

•H -P U 3 •a o u u.

«

01

4-> - H 3 r H O H

£ * > * > t l • r i O 3 U .

M 0>

0)

a o

- H •P Ü 3 •c 0 U

a,

H

M 0>

0)

a o

- H •P Ü 3 •c 0 U

a,

•-«

M 0>

0)

a o

- H •P Ü 3 •c 0 U

a, »H

u o M

P - H 3 H 0 - H

a *> P h • r i V

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

O W 1« M J O

H •w O

co

»H 0)

a 0

• H - P O 3

O k l

a.

M

o o INI

r - l

O O ir\

C\J

0 0 I A

O o I A

C\J

^

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

O W 1« M J O

H •w O

co

»H 0)

a 0

• H - P O 3

O k l

a.

3 O O r -

H

o H

0 0

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

• H

+

B H

•a

e s -a. m es

• + a •p a • t s

> i - l - H

O W 1« M J O

H •w O

co

»H 0)

a 0

• H - P O 3

O k l

a. H

O O C7N

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

• H

+

B H

•a

e s -a. m es

• + a •p a • t s

> i - l - H

O W 1« M J O

H •w O

co

V H

+» - H 3 .-< O - H a *• •P u • H O 5» (X

O o VC

O o

r- t

i-i

O O

H

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

• H

+

B H

•a

e s -a. m es

• + a •p a • t s

> i - l - H

O W 1« M J O

H •w O

co

•** • H C

3

1 Ä to 60

X to X

bO IR 60 cc x

tc « te to X

to to X

* to 60 5 te X • «

to X

te to X

to X

>ft to to X

to to X

S

§ e-i o o

j < z M C3 os < X

z

• ta • U

<

• H

+

B H

•a

e s -a. m es

• + a •p a • t s

> i - l - H

O W 1« M J O

H •w O

co r - l CO

co - o

V •H

z

h V N

• H r - l •H •P

C I x

cr\ o rvj

> CO

W

5 a œ o C= . H

5 =• m o ^> "-

M

Z CO

. . a i a. E O t i

a: a CJ h.

n • o r4 01

•i-I X

z

V N

• r l i - l

P U CO

u.

CA O a,

o ru

> O

. J

c o

-rl

o 3

"C O k>

3 -I o

u .. a> a. e o u « a o u.

CS •u #-i

•H > i

z

u V

• H H - H

U O

CA

o a,

o O

> a 0

• w

u 3 •o

T ° ft u

a e § S

M ca . . ei) a, e o u « K

a

i - t V

•H X

Z

01 N

- H

• f t

O) U .

1 o s:

I - I o> > « a o

• H •P O 3

•o O

e. £ 3 S M H

x a,

a. E O k. CE « U Cv

a

o •H

Z

h a N

•ri •1 - H

h 01

u.

O ry a,

o 0)

« 1-1

B 0

• r f 4J Ü 3

•a 0 u

co * ^ f l

a, s

es a) U Cv

co T3 f 4 0)

•H > i

Z

k l c

• H

<-( •H • P U 0)

Lv

m o M

a,

o rvl «

S c

5 ° 3> >H E i * • CO u

2 5 d 2 S * g .S « Z cet

u •• c a. e o u ce a

co - o

V •H

z

h V N

• H r - l •H •P

C I x

cr\ o rvj

> CO

W

5 a œ o C= . H

5 =• m o ^> "-

M

Z CO

. . a i a. E O t i

a: a CJ h.

n • o r4 01

•i-I X

z

V N

• r l i - l

P U CO

u.

CA O a,

o ru

> O

. J

c o

-rl

o 3

"C O k>

3 -I o

u .. a> a. e o u « a o u.

CS •u #-i

•H > i

z

u V

• H H - H

U O

CA

o a,

o O

> a 0

• w

u 3 •o

T ° ft u

a e § S

M ca . . ei) a, e o u « K

a

i - t V

•H X

Z

01 N

- H

• f t

O) U .

1 o s:

I - I o> > « a o

• H •P O 3

•o O

e. £ 3 S M H

x a,

a. E O k. CE « U Cv

a

o •H

Z

h a N

•ri •1 - H

h 01

u.

O ry a,

o 0)

« 1-1

B 0

• r f 4J Ü 3

•a 0 u

co * ^ f l

a, s

es a) U Cv

co T3 f 4 0)

•H > i

Z

k l c

• H

<-( •H • P U 0)

Lv

m o M

a,

o rvl

3 0 7

BUSIA 42

<J1 W z o N _l < o 3 o -> o u Ui

ó e*

O

Q

w J

Z O p u D Q O ei o-

w ca <

H y 2 H

S < D «

•H 0) >

s o

•H 4» O 3 •o O U

a.

2

1

•H 0) >

s o

•H 4» O 3 •o O U

a.

r-l

•H 0) >

s o

•H 4» O 3 •o O U

a. M

u

V - H 3 H 0 H

J= 4» * > t i • r i © S b ,

f t

> 9

- J

a 0

•H 4 * U 3

T: 0 u

M

'

f t

> 9

- J

a 0

•H 4 * U 3

T: 0 u

t-4 r-4

f t

> 9

- J

a 0

•H 4 * U 3

T: 0 u

M

t. « *> - H 3 H O - r i

£ <<-> 4» h •H « » h .

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

f N V

W

o w (M

u

o

H • H

o CO

H 9

9

e 0

• H 44

3

O t t

a.

3 o o

0 0

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

f N V

W

o w (M

u

o

H • H

o CO

H 9

9

e 0

• H 44

3

O t t

a.

2 o o ts

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

• H •f

0 o

e H

•o o ^

1-1 • • I l h 13 > -m a .

Cv CM 10 • + a

*» a c o a

> r-l - H

W

o w (M

u

o

H • H

o CO

H 9

9

e 0

• H 44

3

O t t

a. «

o o

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

• H •f

0 o

e H

•o o ^

1-1 • • I l h 13 > -m a .

Cv CM 10 • + a

*» a c o a

> r-l - H

W

o w (M

u

o

H • H

o CO

9 M

4 * «H 3 i H O - H

£ 4» •U t , • r i 9 3 b,

O o

0 0

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

• H •f

0 o

e H

•o o ^

1-1 • • I l h 13 > -m a .

Cv CM 10 • + a

*» a c o a

> r-l - H

W

o w (M

u

o

H • H

o CO

4» - H C

3

« to X J?

" tO Je;

* l 10 to *ft to X

to j : 2 a }

-SC « to

" to J? « to

X to to

X to « to to

X to M

to X

W z o Kl Z o

o

• J < z M o ex < z - 3 -

S

• Kl

• <

• H •f

0 o

e H

•o o ^

1-1 • • I l h 13 > -m a .

Cv CM 10 • + a

*» a c o a

> r-l - H

W

o w (M

u

o

H • H

o CO

i-H

CO -o r-l 9

•rt X

V

•S

9 b.

f o IM

H 9 > 9

- 1

a o

•H 4 * U 3 n o t,

a,

a -rt

m u

. . 9 a. E O k. ce « o u.

O

•o r-l 9

•H X

z

r i 9

- r i r-1 • H * > r i 9

b,

LTS

O n i

û .

O

a:

r- l 9 > 9

G O

T )

4» U 3

- 0 O r i

O.

S - r i

a t.

.. g A G O r i

a a U b.

CO

• c

r-f 9

•rt X

U 9

• H r 4 • r i 4 * U 9

U .

f o I M SÄ

i H 9 !> 9

e o

-rt 4> O 3

• o O u a. e

•rt

CO U

• • 9 a. B o t. es as c_> u.

o TJ rH 9

•r l X

(4 •H

O IM

O . ff 9 > 9

a 0

- H •»>

O 3 •a o t i a. a

• H

CD t l .. «

Cu E O t i

es a

a •a i H 9

•H X

z

t l 9 N

• H r * • H 41 t. 9 u.

I A O <M

a.

o ' M

i - l 9 t» 9

S 0

•H 4> U 3

• o O u a. e

• H

O t l

.. o a. s o u os a O b .

to •o i H 9

• H X

z t« 9 H

•H i H • H •4* t l 9

b i

I A O ru a.

o IM 9

J

e 0

• r i 4> O 3

os -o U 0 3 U O OL. -5 b. a Z - H s co O .. o a. s o u es a u u.

CO -o r-l 9

•rt X

V

•S

9 b.

f o IM

H 9 > 9

- 1

a o

•H 4 * U 3 n o t,

a,

a -rt

m u

. . 9 a. E O k. ce « o u.

O

•o r-l 9

•H X

z

r i 9

- r i r-1 • H * > r i 9

b,

LTS

O n i

û .

O

a:

r- l 9 > 9

G O

T )

4» U 3

- 0 O r i

O.

S - r i

a t.

.. g A G O r i

a a U b.

CO

• c

r-f 9

•rt X

U 9

• H r 4 • r i 4 * U 9

U .

f o I M SÄ

i H 9 !> 9

e o

-rt 4> O 3

• o O u a. e

•rt

CO U

• • 9 a. B o t. es as c_> u.

o TJ rH 9

•r l X

(4 •H

O IM

O . ff 9 > 9

a 0

- H •»>

O 3 •a o t i a. a

• H

CD t l .. «

Cu E O t i

es a

a •a i H 9

•H X

z

t l 9 N

• H r * • H 41 t. 9 u.

I A O <M

a.

o ' M

i - l 9 t» 9

S 0

•H 4> U 3

• o O u a. e

• H

O t l

.. o a. s o u os a O b .

to •o i H 9

• H X

z t« 9 H

•H i H • H •4* t l 9

b i

I A O ru a.

o IM

3 0 8

B U N G O M A D I S T R I C T

C o n t e n t s District page

Natural Potential 3

Introduction 3

Climate Tables 4

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential

and Water Availability & Requirement Diagrams 9

Soil Map 14

Soil Distribution, Fertility and Major Characteristics 15

Population and Land 17

Population per Location and Division 17

Household Composition per Location and Division 18

AEZ — Land Area Available per Location, Division, and per Household and Person 19

Agricultural Statistics (Area, Production, Yields and Number of Growers of Major Cash Crops) 20

Coffee - Area - Production - Yields 1974/75-1979/80 20

Pyrethrum — Trends in Production and Quality : 20

Cotton — Production 21

Small Farm Survey 22

Farm Organisation According to Farm Size Groups 24

Assets, Land Use, Farming Intensity, Inputs 26

Cropping Pattern 28

Herd Composition 30

Inputs and Yields of Major Crops 32

Disposal of Crops 34

Distribution of Farming Activities per Month 35

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 41

309

BUNG.3

N A T U R A L P O T E N T I A L

INTRODUCTION

The Bungoma district is mainly situated on the slopes and foothills of Mt. Elgon, and its natural potential is partly related to the natural potential of the districts in Central or East Kenya also situated on the slopes of a volcanic mountain : forest, tea and coffee zones, fertile volcanic soils, enough water. However, the climate shows differences. Here, the foot plains featuring well-distributed annual average rainfall of 1200—1800 mm are generally wetter than in East Kenya due to local rains caused by winds from Lake Victoria (p. 81). This allows sugar cane cultivation (except in western areas); for the same reason, differen­tiation in rainy seasons during the year is much less than in East Kenya.

It is very difficult to say what the second rains are because of more or less continuous rainfall. Therefore, the growing periods given in the subzones are only one possibility of dividing the normally very long period. The symbol for the second cropping season indicates here the remaining time for cultivation after the first maize crop is harvested. Of course the second period may be longer if planting starts earlier, but then the first one is shortened (Table 3).

The average annual rainfall in the district ranges from 1 000 to 1 800 mm; the seasonal distribution is 500—1 000 mm during 1st rains and 430—800 mm during 2nd rains in 6 out of 10 years (60 % reliability). The Agro-Ecological Zones stretch from Tropical Alpine Zones to Lower Midland Zones with tea, wheat/maize-pyrethrum, coffee, sunflower-maize, sugar cane and cotton zones. The potential for tea is not yet developed. Annual crops may be late maturing ones. The total amount for the 60 % reliability of growing periods ranges from more than 360 days (in LH 1) to about 230 days (in LM 3 or UM 3/UM 4).

In the southern part of the district (especially in LM 3) the annual mean temperature is about 21—22°C — in the northern part, however, because of the altitude, 5-10°C (in TA I and TA II). Evaporation is relatively low and increases from less than 1 400 mm (on Mt. Elgon) to 1 800 mm (in UM 1/UM 2). In the southern part of the district only, evaporation is about 1 800-2 000 mm per year.

BUNGOMA DISTRICT

TABLE I : RAINFALL FIGURES FROM VARIOUS STATIONS

having at least 10 years of records up to 1976

No. and

altitude Name of Station

Years

of rec.

Kind of

rec.

Ann.

rainf.

mm Jan. Feb. Mar. Apr.

Monthly rainfall in

May June July

mm

Aug. Sept. Oct. Nov. Dec.

8934023 Bungoma, Vet. Station 43 Average 1 607 53 89 123 227 239 143 122 136 140 134 122 86

1 370 m

8934060 Kimilili, Agric. 30 Av. 1 627 40 57 116 226 254 163 135 150 165 155 97 63

1 676 m Department 60% prob1 ' 1 330 13 56 55 165 202 162 106 113 148 139 66 20

8934082 Bungoma, Agric. 23 Av. 1 619 61 73 141 240 237 134 108 131 125 165 128 78

1 433 m Department

8934098 Kimilili, Forest 16 Av. 1 556 58 59 100 222 233 114 128 155 153 163 116 55

2 073 m Station

8934113 Kapsakwany, Chief's 14 Av. 2 054 66 114 153 277 246 201 152 197 208 243 116 81

1 829 m Centre

8934118 Sirisia, Chief's 14 Av. 1 699 42 63 135 251 251 136 143 153 155 176 111 84

1 615 m Camp 60% 1 475 24 49 101 176 176 107 113 123 121 143 82 23

8934119 Webuye, Health 13 Av. 1 734 52 82 135 248 283 159 163 148 165 165 78 56

1 524 m Centre

8934120 Chwele, Health 14 Av. 1 677 63 78 130 215 240 128 179 122 156 191 103 74

1 615 m Centre

* These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

311

BUNG. 4

BUNGOMA DISTRICT

TABLE 2: TEMPERATURE DATA

No. and Name of j \

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y. of

rec.

8934107 Kamusinga LH 1

1 705 m School lp

to

UM 2

hp

Mean max. 26.8 27.8 27.6 26.2 24.9 24.8 23.5 (22.8) 25.2 25.6 25.0 (25.6) 25.5

Mean temp. 19.9 20.6 20.7 20.4 19.4 18.8 18.3 18.1 18.7 19.6 19.4 19.5 19.4

Mean min. 12.9 13.4 13.7 14.6 13.8 12.7 13.1 (13.3) 12.1 13.5 13.7 13.3 13.3

Abs. min. 7.8 11.1 10.0 11.1 11.1 10.0 10.0 11.1 10.0 10.0 10.0 10.0 7.8

' AEZ = Agro-ecological zone; lp = lower places, hp = higher places within the zone

TABLE 3: CLIMATE (N THE AGRO-ECOLOGICAL ZONES

Agro-Ecological

Zone

Subzone Altitude

in m

Annual mean

temperature "

in°C

Annual av.

rainfall

in mm

60 % reliability

of rainfall 1'

1st rains 2nd rains

in mm in mm

60 % reliability

of growing period

1st rains ' 2nd rains Total3)

in days in days in days

TAI

Tropical-Alpine

Cattle and

Sheep Zone

3 000-3 500 10.0- 7.0 1 0 0 0 - 1 3 0 0 Unir nportant, because crops only near UH

TAH

Tropical-Alpine

Sheep Zone

Relatively small, unimportant

U H 0 - 1

Forest Zone and

Sheep and Dairy

Zone

Here all Forest Reserve (steep slope s and valuable timber)

LH 1 p or 1/m

Tea-Dairy Zone ^ m 1 9 5 0 - 2 400 18.0-15.2 1 6 5 0 - 1 8 0 0 750-950 650-800 190 or more2) 170-175 > 360

LH 2

Wheat/Maize- vi i or two

Pyrethrum Zone

1 8 0 0 - 2 200 18.8-16.4 1 300-1 700 630-800 630-690 185 or more 100-130 285-330

UM 1 vi i or m/l

Coffee-Tea Zone " m / s '

m/1 ^ s/m

1 500-1 950 20.6-18.0

1 620-1 800 650-800 620-700 170 or more 110-130 280-300 UM 1 vi i or m/l

Coffee-Tea Zone " m / s '

m/1 ^ s/m

1 500-1 950 20.6-18.0

1 6 2 0 - 1 8 0 0 700-750 600-650 170 or more 105-115 275-285

UM 2 vi i or

Main Coffee m/1 s i

Zone

1 5 0 0 - 1 8 0 0 20.6-18.8 1 350-1 700 650-720 550-630 160 or more 85-105 245-265

UM 3 1/vl i or

Marginal Coffee m ^ s i

Zone

1 500-1 800 20.6-18.8 1 200-1 600 550-650 450-580 140 or more 85-105 215-245

UM 4

Sunflower- 1/vl or

Maize Zone two

1 5 0 0 - 1 8 0 0 20.6-18.8 1 200-1500 500-630 450-560 130 or more 80-100 210-230

LM 1

Lower Midland 1 — m

Sugar Cane Zone

1 3 5 0 - 1 5 0 0 21.5-20.6 1 6 0 0 - 1 8 0 0 700-800 500-650 210 or more 130-140 340-350

LM 2 1 - (m/s)i

Marginal Sugar 1/m ^ (s/m)

Cane Zone m/l ^ s/m

1 3 5 0 - 1 5 0 0 21.5-20.6

1 400-1 650 650-750 480-580 195 or more 115-130 310-325 LM 2 1 - (m/s)i

Marginal Sugar 1/m ^ (s/m)

Cane Zone m/l ^ s/m

1 3 5 0 - 1 5 0 0 21.5-20.6 1 400-1 600 650-700 460-580 180 or more 105-115 285-295

LM 2 1 - (m/s)i

Marginal Sugar 1/m ^ (s/m)

Cane Zone m/l ^ s/m

1 3 5 0 - 1 5 0 0 21.5-20.6

1 5 0 0 - 1 6 5 0 630-700 480-630 155-175 105-115 260-290

LM 3

Lower Midland m/1 (s)

Cotton Zone

1 2 0 0 - 1 4 0 0 22.4-21.2 1 2 0 0 - 1 5 0 0 500-650 430-500 150-170 85-105 230-270

1' Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants

' More if growing cycle of cultivated plants continues into the period of second rains

3> Agrohumid conditions continue from 1st to 2nd rains in the whole district

3 1 2

34°|30'E 35°lE

BUNGOMA

AVERAGE ANNUAL RAINFALL

in mm

+ SOILS 1°

346B h

1200

345 B m,h

— 1600 345 B

/T\ Temperature recording station, ^ operating 1976

4- Rainfall recording station, operating 1976 and having at least 10 years ol records

23 Station number in grid

8934 Grid number

J N

Min ol Agr., German Agr Team. R Jaetzold Soils KSS

25 km

Broken boundaries are uni > beoaua slnfall records

54 * E

M! Elgon

K

35" E

BUNGOMA

60% RELIABILITY OF RAINFALL IN FIRST RAINS

"7 (Man i i July i 4 Amounts In mm .ad

r \ norm in 6 oui irs

+ SOILS

.

20

MU-. Dl Ayi ijRmifln Agr Team R Jaetzold Soils KSS

34" 30 E

Mt. Elqon

K 7t~J »»X

35° E

BUNGOMA

60% RELIABILITY OF RAINFALL IN AGROHUMID PERIOD

OF SECOND RAINS (mid July - Feb. or less)

Amounts In mm, surpassed norm, in 6 out of 10 years

+ SOILS

346B h

. ie

Broken boundaries u •cords

to 15 20 2 5 k m

Mm. o( Agr., German Agr Team, R Jaetzold Soils KSS

34" 'Jo E 35" E

BUNGOMA

AGRO - ECOLOGICAL

SOI LG

Forest Reserve

A Steep slopes, unsuit tor cultivation /W (not marked in For ResJ

d AF2 R Jalzold '81

Bell ol A.E Zones • — « Broken zonal boundaries are uncertain of

A E Zones mean Iransilional Strips Subzones

Climatic data lor AEZ formulas see table I and I

Mm ol Agr. German Agt Team

AGRO-ECOLOGICAL ZONES

TA = TROPICAL-ALPINE ZONES

TA I = Tropical-Alpine Cattle and Sheep Zone

Grazing for sheep and cattle. Cabbages, potatoes and pyrethrum marginal (cultivatable near forest only)

TA II = Tropical-Alpine Sheep Zone

Grazing for sheep

UH = UPPER HIGHLAND ZONES

UH 0 = For est Zone

UH 1 = Sheep and Dairy Zone

Here Forest Reserve because of steep slopes and valuable timber production

LH = LOWER HIGHLAND ZONES

LH 1 = Tea-Dairy Zone

LH 1 = Tea-Dairy Zone with permanent cropping possibilities, p or dividable in a long to medium cropping season l/m — m followed by a medium one

Most of it is Forest Reserve because of steep slopes, water retention and valuable timber production

V e r y g o o d y i e l d p o t e n t i a l (av. more than 80 % of the optimum) 1st rains, start norm, mid to end F.: Peas; cabbages, lettuce 2nd rains, start norm, begin of August: Peas

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: Potatoes (y 60 %y)\ rape seed; carrots, leek, kales, endive 2nd rains: Potatoes ('v 60 %); carrots, kales, cabbages Whole year, best planting time end F.: Tea (high quality on deeply weathered soils)

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 1st rains: Maize H 611 or H 7801 (50—60 %)-), finger millet; onions and sweet potatoes (lower places) 2nd rains: Leek, lettuce Whole year: Pyrethrum (higher places), plums, passion fruit (lower places)

P a s t u r e a n d f o r a g e Around 0.6 ha/LU on secondary pasture of Kikuyu grass, well suitable for grade dairy cows; fodder planting not necessary

LH 2 = W h e a t/M a ize- P y ret h ru m Z o n e

LH 2 = Wheat/Maize-Pyrethrum Zone vi i with a very long cropping season and intermediate rains, or two dividable in two variable cropping seasons and i.r.

G o o d y i e l d p o t e n t i a l (av. 60—80 % of the optimum) 1st rains (to 2nd r.), start norm. March: Late mat. wheat like Kenya Bongo (Apr./May—O./N.), late mat. tri-

ticale, late mat. maize like H 611 (e.F./Apr.—S./N., 'v 80 % on deep volcanic soils in lower places); peas, horse beans, potatoes^) (Apr.—Au.); late mat. sunflower like Kenya White (60—70 %, lower places 'v 70 %), linseed, rapeseed; cabbages, kales, cauliflower, carrots, beetroot, spinach, celery, lettuce

2nd rains, start undistinctly around end of June: M. mat. Barley like K. Research (June—O.), m. mat. wheat like K. Tembo (June—O.); linseed; kales, carrots, beetroot, spinach, tomatoes (lower places), celery

Whole year: Black Wattle, New Zealand Flax (higher places)

F a i r y i e l d p o t e n t i a l (av. 40—60 % of the optimum) 1st rains: Finger millet, m. mat. beans like Cuarentino (50—60 %, lower places); tomatoes, onions 2nd rains: Peas, beans (below 2 100 m); potatoes (S.—D./J.); cabbages, cauliflower, onions, lettuce Whole year: Pyrethrum (nearly 60 %); apples, pears, and plums above 2 200 m ; strawberries, passion fruit

(below 2 100 m)

> Spraying against fungus diseases important

*•> Needs 8 months to ripe (Feb.-Sept.)

317

BUNG. 10

P a s t u r e a n d f o r a g e Around 1 ha/LU on highland savanna of Kikuyu, Red oats and tufted grass-') between Cedar forest remnants; y 0.6 ha/LU on art. pasture of Nandi Setaria > 2 000 m or Rhodes grass < 2 000 m ; with add. feeding of Giant Setaria and lucerne or clover down to 0.3 ha/LU; suitable for grade dairy cows

UM = UPPER MIDLAND ZONES

UM 1 = Co f fee-Tea Zone

UM 1 = Coffee-Tea Zone vi i or with a very long cropping seson and intermediate rains, m/l — dividable in a medium to long cropping season followed by a medium to short one and i. r. m/s i

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, begin of March: Cabbages, kales 2nd rains, start undistinctly begin of August: M.mat. sunflower like Comet Whole year: Tea (^ 80 %, less quality), passion fruit, guavas

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 612-614, H 7801 (higher places), H 622 or 632 (lower places), finger millet; beans; potatoes

(60—70 %, higher places), sweet potatoes (lower places); m.mat. sunflower like Hybrid S 301 A; spinach, onions, carrots (above 1 600 m), broccoli

2nd rains: Beans (y 60 %), sweet potatoes; kales, onions, tomatoes Whole year: Arabica coffee, bananas, yams, taro (in valleys), mountain pawpaws, avocadoes, loquats

F a i r y i e l d p o t e n t i a l 1st rains: High alt. sorghum; tomatoes 2nd rains: Maize H 511 & 512, high alt. sorghum (Aug.—F.), finger millet; potatoes; cabbages Whole year: Citrus, taro (on slopes)

P a s t u r e a n d f o r a g e Around 0.6 ha/LU on artificial or sec. pasture of star grass; down to about 0.12 ha/LU feeding Napier or Bana grass, banana leaves and stems, maize stalks and sweet potato vines.

UM 1 = Coffee-Tea Zone with a medium to long cropping season m/l — s/m followed by a short to medium one

The same like above, but sunflower Comet and tea only good instead of very good; stocking and feeding rates about 10% less.

Main Coffee Zone

Main Coffee Zone with a very long cropping season and intermediate rains, dividable in a medium to long cropping season followed by a short one and i.r. (See Diagram Kimilili)

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, begin of March: Maize H 612-614 (y 80%, higher places, Mch.-O.); cabbages, kales Whole year, best planting time March: Castor

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622, 632 (70-80 %, lower places, Mch.-Au.), finger millet; m.mat. beans (lower places)^);

sweet potatoes; m.mat. sunflower like HS 301 A or Comet (May/June—O.), m.mat. soya beans; onions, spinach, tomatoes

2nd rains, start undistinctly b. of Aug.: E.mat. beans (y 60 %), onions (on light soils) Whole year: Arabica coffee (y 60 %, on good deep volcanic soils), Macadamia nuts, bananas (in valleys), passion

fruits, avocadoes, mountain pawpaws, guavas

F a i r y i e l d p o t e n t i a l 1st rains: M.mat. wheat and barley (only in northeastern higher places, May—S.); potatoes, pigeon peas (lower

places) 2nd rains: Maize H 511-513 (50-60 %), 622,632 (> 50 %); potatoes, sweet potatoes; tomatoes Whole year: Arabica coffee (on less suitable soils), bananas (outside valleys), citrus, taro (in valleys), yams,

pineapples (lower places)

3) The bad tufted grassses Eleusine jaegeri and Pennisetum schimpen' are expanding if the areas are overgrazed. They may be controlled by fire.

4) Sometimes rotting because of too wet conditions

UM 2

UM 2 vi i or m/l — s i

318

BUNG. 11

P a s t u r e a n d f o r a g e 0.6-1 ha/LU on sec. pasture, around 0.5 ha/LU on art. pasture of Rhodes grass; down to 0.15 ha/LU feeding Napier & Bana grass and ethers; Silver Leaf desmodium (Desmodium uncinatum) best fodder legume (for rotation and dairy cows)

mm

100-

UM 2 vi i or m/ l - s i

Nr.: 8934060 K imi l i l i , Agr. Dep.

0°47N 34°40E 1676m 30 y. up to 1976

mm

-100

^ _ "

xu

50

rainfall surpassed in 6 out of 10 years

Approx pot. évapotranspiration of a permanent crop (bananas)

— — Approx. pot. évapotranspiration of m mat. maize like H 511

Approx. pot. évapotranspiration of m. mat. maize like H 622

' 770 1 Rainfall per indicated growing period,surpassed in 6 out of 10 years

UM 3 = Marginal Coffee Zone (here Coffee-Maize Zone)

UM 3 = Marginal Coffee Zone l/vl i with a long to very long cropping season and intermediate rains, or m — s / dividable in a medium cropping season followed by a short one and i.r.

(See Diagram Ndubu)

G o o d y i e l d p o t e n t i a l 1st rains, start norm, begin March: Maize H 612-614 (nearly 80 %, higher northeastern places),

H 622, 632 (y 70 %, lower places), finger millet ('v 60 %), high alt. sorghum; m.mat. beans (lower places)4), sweet potatoes; m.mat. sunflower like Comet (June-O.), m.mat. like HS 301 A (y 60 %), m.mat. soya beans (lower places, ^ 60 %); cabbages, kales, onions (on light soils), tomatoes, spinach

2nd rains, start undistinctly b. of Aug.: V.e.mat. beans ('v 60 %); onions ('v 60 %on light soils) Whole year: Mountain pawpaws, Macadamia nuts, castor

F a i r y i e l d p o t e n t i a l 1st rains: M.mat. wheat and barley (only in northeastern higher places); potatoes (higher places) 2nd rains: Potatoes (higher pi.), sweet pot.; tomatoes Whole year: Arabica coffee (with mulching on good deep soils ^ 40 %, otherwise poor resp. marginal), bananas

(like coffee), avocadoes, citrus-*), pineapples

P a s t u r e a n d f o r a g e 1-1.2 ha/LU on nat. sav. pasture, 0.6 ha/LU on art. pasture of Rhodes grass; down to 0.18 ha/LU feeding Napier or Bana grass and others. Desmodium uncinatum best fodder legume

319

BUNG. 12

UM 4

UM 4 l/vl or two

mm

100-

50

UM 3 - 4 l/vli to LH 3 l/vl

Nr.: 8934069 Ndubu Farm

0 ° 5 0 N 34° 59'E 1860 m 21 y. up to 1961

100

i—Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx. pot. évapotranspiration of a permanent crop (bananas)

— — Approx. pot. évapotranspiration of m. mat. maize like H 511

Approx pot. évapotranspiration of I.mat. maize like H 612

l 861 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

= Sunflower-Maize Zone

= Sunflower-Maize Zone with a long to very long cropping season dividable in two variable cropping seasons

See Kakamega District

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone

LM 1 = Lower Midland Sugar Cane Zone with a long cropping season I — m followed by a medium one

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm. F.: M.mat. white sorghum; sweet potatoes; sunflower like 252 or HS 345, m.mat. soya

beans like Black Hawkor Hill; sweet pepper, kales, Chinese cabbage, spinach Whole year, best pi. time b. of March; Sugar cane on deep alluvial soils, cassava, pawpaws, guavas

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622, 632; finger millet, late mat. sorghum; late mat. beans, pigeon peas (Mch.—F.); m.mat.

sunflowers, cabbage, chillies, yellow yams (F.—O./N.) 2nd rains, start undistinctly e. of Au.: Maize H 511, 512, (70-80 %), 622 (y 60 %), m.mat. white sorghum,

finger millet; beans, l.mat. cowpeas; m.mat. soya beans, sunflower 252; kales, Chinese cabbage, spinach, onions, sweet pepper, late mat. bambarra groundnuts (in light soils)

Whole year: Sugar cane on plateau soils, bananas (nematodes danger), tea in upper places (70—80 %, but me­dium to low quality), Robusta coffee, avocadoes, taro on alluvial soils

F a i r y i e l d p o t e n t i a l 2nd rains: Late mat. groundnuts (rosette danger, 50-60 % in light soils) Whole year: Mangoes, citrus, taro on plateau soils

P a s t u r e a n d f o r a g e Around 0.5 ha/LU on sec. pasture (orig. moist submontane forest); down to about 0.12 ha/LU feeding Napier or Bana grass and banana leaves

5 ) With add. irr. (D.-F.) well growing

320

LM 2 = Marginal Sugar Cane Zone

LM 2 - Marginal Sugar Cane Zone with a long cropping season I — (m/s)i followed by a (weak) medium to short one and intermediate rains

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, mid F.: M .ma t. sorghum; sweel potatoes, e.mat. sunflower like 252 or HS 345, m.mat.

soya beans: onions Whole year: Cassava, pawpaws

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622. 632 higher parts. II 51 I - 5 1 3 lower parts, late mat. sorghum, finger millet; beans1),

pigeon peas (March F.). late mat. rosette resistant groundnuts (in light soils); m.mat. sunflowers; cabbages, kales, roselle. sweet pepper; cotton (60 70 7r but low quality I

2nd rains, start undistinctly end An.: Bulrush millet, m.mat. sorghum, ratooning sorghum (S.-Au.); beans. green grams; onions, kales

Whole year: Bananas (nematodes danger), pineapples

F a i r y i e l d p o t e n t i a l 1st rains: Bambarra groundnuts, cow peas, tobacco

2nd rains: Maize H 51 I; pigeon peas ( O . S . , ^ 60 ''/< ), cowpeas; simsim; cabbages Whole year: Sugar cane (on less suitable soils marginal), Rob us ta coffee, citrus, mangoes

P a s t u r e a n d f o r a g e

0.5-0.7 ha/'LL' on high grass savanna with Hyparrhenia & Panicum dominating; down to about 0.15 LU/ha feeding Napier or Bana grass, banana leaves and others

LM 2 = Marginal Sugar Cane Zone with a long to medium cropping season l/m — followed by a (weak) short to medium one (s/m)

Small and transitional. Crop potential like LM 2 I - m/s but m.mal. sorghum in 2nd rains and bananas only fair, maize H 511 13 in 2nd rams and sugar cane (also on good soils) only marginal. Ratooning sorghum 1st to 2nd rains good. Stocking rales 'v 10 % less

LM 2 = Marginal Sugar Cane Zone with a medium to long cropping season m/I — followed by a short to medium one (s/m)

Small, crop potential like LM 2 I ~ (m/s) i but earlier mat. varieties. No Robusta coffee. Stocking rates 'v 15 ' ;

less

LM 3 = Lower Midland Cotton Zone

LM 3 - Lower Midland Cotton Zone with a medium to long cropping season m/I — (s) followed by a (weak) short one

G o o d y i e l d p o t e n t i a l 1st rains, start norm. beg. of March: M.mat. maize H 5 1 1 - 5 1 2 ( ^ 60 % ). m.mat. sorghum (70 80 %), ratooning

sorghum 1st to 2nd r., e.mat. millets (70 -80 %); m.mat. beans, green grams, cowpeas; groundnuts and bambarra gr. (both in light soils), simsim-'; sweet potatoes; cotton (lower places, "V 60 %), m.mat. soya beans, tobacco (higher places), sunflower 252 or HS 345; tomatoes, muskmelons, onions; chick peas (esp. on heavy black soils)

2nd rains, start undistinctly end of Au.: Simsim, green grams Whole year, best pi.time March: Cassava ( ^ 60 %)., sisal. Near swamps with water regulation resp. add. irriga­

tion: Rice, bananas (on dams). Chinese cabbage (on ridges) and other vegetables

F a i r y i e l d p o t e n t i a l 1st rains: Maize H 622. finger millet (50 60 % ); pigeon peas (March-F.) 2nd rains: E.mat. proso millet (O.-N.), dwarf sorghum, e.mat. bulrush millet (bird rejecting awned var. best):

e.mat. beans, e.mat. bambarra groundnuts (in light soils); sweet potatoes in swampy places Whole year: Pawpaws, mangoes, citrus

P a s t u r e a n d f o r a g e 0.7-1.0 ha/LU on mixed savanna; to about 0.18ha/LU feeding Bana or Napier grass and others; Stylosanthes for pasture improvement

321

= z

< 3 S

— J

o LU O - o z

ID DQ

-

—- a ;

IL _ - • o E

- § -± ui LU

GO 3 c b - w

-ç en CT o

!ï i1!1

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

The topography of the district ranges from the heights of the Mt. Elgon region to the low areas of the Nzoia river which drains the major part of the area. In the central part around Bungoma the landscape is characterized by a succession of valleys and higher areas. Apart from the Mt. Elgon region, the area is underlain by granites from the Basement system.

On the highest part of the extinct Mt. Elgon volcano, soils rich in organic matter are found (unit 5 M). DownhilLthe depth of the horizon rich in organic matter becomes less thick (unit 4 M).

On the volcanic footridges, which make up the lower part of the mountain, fertile soils with a topsoil darkened by organic matter occur (units 76 R and 77 R). Soil units 90 F having a moderate to high fertility and 98 F with a low to very low fertility occupy the following footslope.

On the undulating plains upland soils of units 151 U and 188 U are dominant. Generally speaking, they have good physical properties, but their nutrient level is low. In the southeastern part of the district they are associated with soil unit 179 U which has developed on granites and includes an association of soils with a low fertility and „murram cuirass" soils.

Soils of the valley bottoms have poor workability and are often waterlogged (units 345 B, 346 B, 347 B). They occur around Bungoma and in the northeastern part of the district.

SOILS ON MOUNTAINS AND MAJOR SCARPS

Soils developed on olivine basalts and ashes of major older volcanoes 4 M = well drained, shallow to moderately deep, dark reddish brown, friable, humic, rocky and stony clay loam (nito-humic CAMBI-

x, m ' SOLS, rocky phase)

5 M = imperfectly drained, shallow to moderately deep, dark greyish brown, very friable, acid humic to peaty, loam to clay loam,

m wi th rock outcrops and ice in the highest parts (dystric HISTOSOLS, lithic phase; with LITHOSOLS, rock outcrops and ice)

SOILS ON HILLS AND MINOR SCARPS

Soils developed on granites 23 H = complex of somewhat excessively drained, shallow, stony and rocky soils of varying colour, consistence and texture (dystric

x, v REGOSOLS; wi th ferralic CAMBISOLS, lithic phase and Rock Outcrops)

Soils developed on undifferentiated Basement System rocks, predominantly gneisses 27 H = complex of excessively drained to well drained, shallow, dark red to brown, friable, sandy clay loam to clay; in many places

x' rocky, bouldery and stony and in places wi th acid humic topsoil (dystric REGOSOLS; wi th LITHOSOLS, humic CAMBISOLS

lithic phase and Rock Outcrops)

SOILS ON VOLCANIC FOOTRIDGES

Soils developed on Tertiary basic igneous rocks (basalts, nepheline phonolites; basic tuffs included) 76 R = well drained, extremely deep, dark reddish brown to dark brown, friable and slightly smeary clay, wi th acid humic topsoil

h (ando-humicNITHOSOLS;with humic ANDOSOLS)

77 R = well drained, extremely deep, dusky red to dark reddish brown, friable clay, wi th acid humic topsoil

h (humic NITOSOLS)

SOILS ON FOOTSLOPES

Soils developed on colluvium from basic igneous rocks (serpentinites, basalts, etc.) 90 F = well drained, very deep, dark reddish brown, f i rm, moderately calcareous clay

h (calcic CAMBISOLS)

Soils developed on colluvium from undifferentiated Basement System rocks 98 F = complex of well drained, deep to very deep, dark reddish brown to dark yellowish brown soils of varying consistence and tex-

x, v ture, in places gravelly and stratified (ferralic ARENOSOLS; with ferralo-chromic, orthic LUVISOLS)

SOILS ON UPPER MIDDLE-LEVEL UPLANDS

Soils developed on Tertiary or older basic igneous rocks (basalts, nepheline phonolites, etc.; basic tuffs included) 121 U = well drained, extremely deep, dark reddish brown, friable clay, with humic topsoil

h (mollic NITOSOLS)

Soils developed on biotite gneisses 137 U = well drained, extremely deep, dark reddish brown, friable clay, with thick acid humic topsoil

h (humic NITOSOLS)

323

BUNG. 16

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 144 U = well drained, very deep, red to dark red, friable to f i rm, clay; in places moderately deep over petroplinthite (eutric NITOSOLS;

h with rhodic FERRALSOLS, partly petroferric phase)

Soils developed on granites 151 U = well drained, deep to very deep, brown to dark brown, friable, sandy clay to clay

h (ferralo-orthic ACRISOLS)

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on granites 179 U = complex of: - well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petroplin-

h thite (orthic FERRALSOLS, partly petroferric phase; wi th orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30 %) („murram

cuirass" soils)

Soils developed on granites and quartz-feldspar gneisses 181 U = well drained, deep, strong brown to reddish yellow, very friable, sandy clay loam to sandy clay (orthic FERRALSOLS; wi th

m-h ferral icCAMBISOLS)

Soils developed on biotite gneisses 182 U = association of : — well drained, moderately deep to very deep, red, very friable, sandy clay to clay, over petroplinthite (rhodic

h FERRALSOLS, partly petroferric phase)

— shallow soils over petroplinthite (about 50 %) („murram cuirass" soils)

183 U = well drained, very deep, dark red to dark reddish brown, very friable, sandy clay loam to clay

m-h (rhodic FERRALSOLS)

Soils developed on various rocks (Kavirondian sediments, often mudstones) 188 U = well drained, moderately deep to very deep, dark red to strong brown, friable clay; in places shallow over petroplinthite (orthic

h to rhodic FERRALSOLS, partly petroferric phase; with „murram cuirass" soils (10—40 %)

SOILS ON BOTTOMLANDS

Soils developed on infill mainly from undifferentiated Basement System rocks 345 B = complex of imperfectly drained to poorly drained, very deep, very dark grey to brown, mott led, friable to f i rm, sandy clay to

h, m clay, often abruptly underlying a topsoil of friable, sandy clay loam; in places saline and sodic (dystric PLANOSOLS; with pellic

VERTISOLS, vertic and humic GLEYSOLS and plinthic ACRISOLS)

346 B = complex of imperfectly drained to very poorly drained, very deep, very dark grey to dark greyish brown, mott led, f i rm clay; in

h places peaty or wi th acid humic topsoil (dystric GLEYSOLS; with eutric PLANOSOLS and some dystric HISTOSOLS)

347 B = poorly drained, very deep, dark greyish brown to black, very f i rm, slightly calcareous, cracking clay; in many places wi th a

h saline and sodic deeper subsoil (pellic VERTISOLS, partly saline-sodic phase; wi th eutric or vertic GLEYSOLS)

U Soil texture-classes

h = heavy

1 ' = light

m = medium

x = stony or bouldery

v = varying texture

m-h = medium to heavy

m, h = medium and heavy (e.g. abruptly underlaying a topsoil of different texture)

Soil description from Kenya Soil Survey: Exploratory Soil Map and Agro-climatic Zone Map of Kenya, Scale 1:1.000.000 Rep.EI , Nairobi

1982.

See this map also for colours; symbols simplified here.

324

BUNG. 17

P O P U L A T I O N AND L A N D

The results of the last Census indicate that 504 000 people lived in the Bungoma District in September 1979 (Table 4). Nearly 75 000 of the above mentioned figure were registered in the three townships of the district. An average rural family of 5.36 people owned approx. 2.86 ha, the total amount of agricultural land was 199 200 ha, i.e. 0.46 ha per person were available (Table 6).

There is less land than that in the better Agro-Ecological Zones of LH 1-2 (Lower Highland Tea-Dairy and Wheat/Maize-Pyre thrum Zone), UM 1-2 (Coffee-Tea and Main Coffee Zone), and LM 1-2 (Lower Midland Sugar Cane and Marginal Sugar Cane Zone). Taking into account that the population growth has been very high and that in all areas mentioned between 30-50 % of the agricultural land has been used as pasture, it becomes clear that agricultural intensification is a must for the future. This is also true for those areas of the district where the present-day situation does not yet seem to be quite so critical.

BUNGOMA DISTRICT

TABLE 4: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

South Malakisi 15 198 15 942 31 140 4 542 160 194

North Malakisi 8 021 8 679 • 16 700 2 667 87 190

Sirisia Division 23 2-19 24 621 47 840 7 209 248 192

West Bukusu 29 575 32 298 61 873 10 364 350 176

East Bukusu 39 552 41 501 81 053 12 442 418 193

Bungoma Township 12 727 12 434 25 161 5 262 56 442

Kanduyi Division 81 854 86 233 168 087 28 068 825 203

Kimilili 23 751 24 682 48 433 7 308 178 271

Ndirisi 20 249 21 492 41 741 6311 205 203

Bokoli 24 888 26 425 51 313 7 336 218 235

Webuye Township 9 104 8 859 17 963 3 960 56 315

Mt. Elgon Forest 505 422 927 269 610 1

Kimilili Division 78 497 81 880 160 377 25 184 1 268 126

Cheprais 14010 14 243 28 253 4 129 101 277

Elgon 24 885 25 035 49 920 8 091 252 197

Elgon Division 38 895 39 278 78 173 12 220 354 220

Naitipi 13 682 13 970 27 652 3 288 194 142

Ndalu 10 694 11 112 21 806 3 002 184 118

Tongaren Division 24 376 25 082 49 458 6 290 378 130

Bungoma District 246 841 257 094 503 935 78 971 3 074 163

325

BUNG. 18

BUNGOMA DISTRICT

TABLE 5: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3^

LOCATION/DIVISION No. of Households

• total

Farmers Family b) Non-Relatives Persons per Household . , total b )

LOCATION/DIVISION No. of Households

• total Adults Children >15 years < 15 years

Other Relatives

Non-Relatives Persons per Household . , total b )

Location: South Malakisi 4524 3.71 1.89 0.93 0.31 6.34

North Malakisi 2662 3.51 1.58 0.98 0.19 6.27

Division Sinsia 7186 3.65 1.76 0.95 0.27 6.63

Location:

West Bukusu 10406 3.45 1.64 0.66 0.19 5.94

East Bukusu 12411 3.59 1.85 0.71 0.35 6.50

Bungoma Township 5188 2.70 1.02 0.62 0.30 4.65

Division Kanduyi 28005 3.38 1.62 0.67 0.28 5.95

Location:

Kimilili 7350 3.50 1.85 1.08 0.16 6.58

Ndirisi 6289 3.56 1.98 0.88 0.19 6.62

Bokoli 7308 3.70 2.01 1.10 0.17 6.98

Webuye Township 3966 2.74 1.02 0.51 0.25 4.53

Mt. Elgon Forest 268 2.35 0.78 0.19 0.08 3.46

Division Kimilili 25181 3.47 1.76 0.94 0.18 6.35

Location:

Cheptais 4146 3.79 1.33 0.91 0.28 6.81

Elgon 8085 3.41 1.74 0.81 0.22 6.17

Division Elgon 12231 3.55 1.76 0.84 0.24 6.39

Location:

Nawi ri 3284 " 4.22 2.79 1.21 0.20 8.42

Ndalu 2994 3.98 2.16 0.90 0.24 7.28

Division Tangarer 6278 4.00 2.59 1.06 0.22 7.87

DISTRICT: BUNGOMA 78881 3.52 1.77 0.84 0.24 6.36

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one and two persons per households as well

326

BUNG. 19

BUNGOMA DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqkm in '00 ha = sqkm in ha

Area

total

Non-agricultural land Agri­

cultural

A r e a i n a g r o - e c o 1 o g i c a 1 z o n e s Agric. land Area

total Uns uit. Forest Others

Agri­

cultural

A r e a i n a g r o - e c o 1 o g i c a 1 z o n e s Agric. land

Location/Division steep Res., (roads, land A E Z per

without townships Census slopes lakes, home­

79 swamps steads,

rivers...)

LH 1 LH 2 UM 1 UM 2 UM 3 UM 4 LM 1 LM 2 LM 3 household person

South Malakisi 160 1 24 135 28 15 49 43 2.97 0.43

North Malakisi 87 1 13 73 1 67 5 2.74 0.44

Sirisia Division 247 2 37 208 29 15 116 48 2.85 0.44

West Bukusu 350 53 297 43 66 188 2.86 0.48 East Bukusu 418 3 66 349 7 53 111 136 42 2.81 0.43

Kanduyi Division

Kimilili

768 3 119 646 7 53 154 202 230 2.84 0.45 Kanduyi Division

Kimilili 178 27 151 22 120 6 3 2.39 0.36 Ndirisi 205 1 31 173 6 79 21 2 63 2 3.25 0.49 Bokoli 218 10 33 175 36 49 9 81 2.39 0.34

Kimilili Division

Cheprais

601 11 91 499 58 175 94 21 2 147 2 2.67 0.40 Kimilili Division

Cheprais 101 12 89 24 64 1 2.16 0.32 Elgon 252 5 38 209 111 52 29 17 2.58 0.42

Elgon Division

Nawiii

353 5 50 298 135 52 93 17 1 2.37 0.37 Elgon Division

Nawiii 194 19 175 7 95 73 5.32 0.63 Ndalu 184 18 166 36 130 5.52 0.76

Tongaren Division 378 37 341 7 131 203 5.42 0.69

Total rural area 2 347 21 334 1 992 135 52 180 221 278 224 156 466 280 2.86 0.46

For official land statistics sec supplementary publication lo FM-Handbook, Vol. I l l A : Agriculture Land Statistics.

327

BUNG. 20

A G R I C U L T U R A L S T A T I S T I C S 1 )

The district is one of the most fertile regions of Kenya. The combination of good soils and high, well distributed precipitation makes it particularly suitable for small-scale farming.

Coffee is planted on approximately 2,500 ha yielding approximately 200—400 kg of clean coffee per ha, but there is still considerable potential for yield increases. Pyrethrum production is limited by its high labour demand and therefore not very suitable for the relatively large farms of the area. It is estimated that roughly 7,000 ha of cotton is planted annually, yielding between 300 and 500 kg of seed cotton per ha. The ginnery at Malakisi gins 3,000 t of seed cotton p.a. of which two-thirds is probably produced within the district.

BUNGOMA DISTRICT

TABLE 7 a:

Co-operatives

COFFEE AREA - PRODUCTION - YIELDS3)

Item Unit Year Item Unit

7V75 75/76 76/77 77/78 78/79 79/80

Area

Production

Yield

ha

t

kg/ha

2186

636

291

2186

566

259

2186

868

397

2186

532

2 3

3500

910

260

25^3

1031

kQ5

TABLE 7 b: PYRETHRUMb) TRENDS IN PRODUCTION AND QUALITY

Item Year Item

1975/76 1976/77 1977/78 1978/79 1979/80

Production in t dried flowers

Pyrethrin content %

21 l < t

1.3

5

l . J f

5

1.2

3.7

1.2

' Fairly exact statistics exist for the industrial crops only; for more detailed and up to date information see FMHB Vol. Ill A

328

BUNGOMA DISTRICT

TABLE 7 c: COTTON PRODUCTION0)

Ginnery Zone Year Ginnery Zone

1975/76 1976/77 1977/78 1978/79 1979/80

Malakisi

Seed Cotton in t

Bales

2298

4032

2771

4863

3185

5589

3042

5338

3643

6392

Sources: a) C.B.K.

b) Pyrethrum Board

c) C.L. & S.M.B., does not refer to district area only

S M A L L F A R M S U R V E Y 0

The SFS was carried out in only two areas of the district (LH 1—2 — UM 1—2 and LM 1—2). The size of the farms included in the survey is comparatively big (6—7 ha), particularly when comparing this with the overall farm size in the district of 2.86 ha. The high proportion of pasture and fallow land (60 %) indicates that there is still a labour shortage; the stocking rate of 1.5-2.0 LU/ha reflects the high potential of the region; 5-10 % of the cattle are improved dairy stock. The farmers grow approximately one crop p.a. and use comparatively large amounts of fertilizer (table 8, 9). Between 55 % and 80 % of the total annual crop area is planted with maize; the large sunflower and sugar cane area found in the investigated farms is higher than average (table 10). Between 7—9 % of the grazing livestock units are goats and sheep and 45 % of the total cattle population are male (table 11). The high maize yields show that the farmers are well informed on production techniques and also reflect the high natural fertility of the soils (table 12). About 25 % of the maize produced is exported from the district (table 13). The graph 14 indicates that most farmers plant and cultivate their maize crop at the recommended time of the year, but sun­flower and beans receive less attention. The output and nutrient input table (15) reflects the enormous agricultural potential of AEZ LH and UM. The soils of the Lower Midlands (LM) are less fertile, but by selecting suitable crops like sweet potatoes, cassava, Napier grass, etc., high and reliable yields can be achieved here as well.*-)

The geographical remoteness of the district is one of the major reasons that its agricultural potential is as yet not fully tapped. The production of maize, milk, and beef could be increased. To achieve this goal, labour productivity must be increased through mechanisation of farm work as far as possible — and infrastructure and marketing be improved considerably.

*) For more detailed and up to date information, see FMHB Vol. III/B 2)

See also notes on farm management information, output and nutrient input, page 5 1

330

34» 30 E 3 5 " E

BUNGOMA

SMALL FARM SURVEY AREAS (1977) and AGRO - ECOLOGICAL

+ SOILS

346 B h

i I L-— • 179 U,

345 B m,h

National Number of Survey Area

Survey Area, sample size 30 per number

Forest Reserve

Steep slopes unsuit lor cultivation mot marked in For Res I

fil »Sil ' ;

25 km

AI 2 w iai/oia 8' Soils KSS

. ii 2 mos • • ••

: • I rtlMlI

Min ol Agi German Agr Team

BUNG. 24

u r H rA -H r>

ra u.

L Cl

rA H 1

vu - ï oo o

oo J - oo

c c

r H O H o H

r/> r H IT i H ' M K> -» Iß c o ir. là

• o

• o a' •w a l/l

E • (3 u S , u 3 C o o a J3 * H 3

3 rH O 0 g) h U 1 C a o.

*-\ rA C ' >> & o I M rf> •XJ S , u 3 C o o a J3 * H 3

•u C' O

r\j rA

• • rA O

oo

<\J

rH O 0 g) h U 1 C a o. O '

«M

O

u, « oo TJ r >

pH

I A I A

•M

C * - O o O — c u z U

E O » 3

>> i". a » 3

>> i". a *J C K •W O — •o

' 1- r H C H a a o «' ai E

* * E h c C (S

M = u-

r H a E la

• O H OO

0 0 I-*

• • •M O

oo • rvj

01 f< B -ri

Sa U. b.

o >0

rvj

F H

4 rA

a x ^

- 9

•3- ao IM

V40

r-t

a c c

x j c o •rt 1 w w w t r . ; S u i H t U bf • C IH u n Ü i : « JE M J£ J< J £ — 01

C a

u ^ 1 o rw • l - >

10 B • t . « I t

•o U B " H

u U Z E

>» ai 10 U 10 B " H ni .r u b il > h 3 ai U . • a t) B u b s •1-4 u 1 O >. >. >. 4-1 o u. s >> B) u E -C J3 « = * . -W

s «U C c U U. d 4

°^ - r j - C B C 4 J s • r t ai E a) 3 m J i-i o i-i P^ ^ i O 0 01 rH

B E V) 4-> •H U . 0 £ 4J K f S • H

01 rH

B

ai C c 4J r H l . r - l *D A B * A V Oi 4J T H

«H m * J a M <« a v» a . a r ai A H 5 A V o

H «H

m

- +i o ai o u. X L. ; • Ö c E V B ai to a

• H c U X a < ••* c •^ 2 c 0 3 3 h «

to a

• H M c c c p ZZ ai rH-C 01 * J

f= P N E L " - r i 0

01 9 to a

• H •rH o ai o te o >) u n. u u: f= P N E

L " - r i 0 te j 2 ^ tó (S- • H r H H C r H • T n • ti — • H f= P N E

L " - r i 0 B B O

5 0 *> 4J t . 4J

4J - n U B u

3

•H C E fc.

r H •H 5? H

3 ..-1

10 X 3 * m

• H

u. K O

Ü H r i O 13 O "ï O œ a X Ift r- t z. 3 O. t : * U • J c o a, o  u, ß, a u m < 1 j al E O i t e c • 0 o

u A Q. •

1

x u.

a '-u

«M lA m . * r H I A i

ry CM fM * -*

oo >« • -* » A I A «M ON SO

ir

— 10 H

N H O O -* O O O 0 0 I A I M a> r H O H r H

a M

~ E ~ E •c t. E c c q .-- 3

-J c B h

_ O Q

i-I N • A H • • • H H IM

• r\j S O *

• IA J - r> rM • A IM

I A (V O o o I M O O O O IM rA O a O O I A

a i J4 a> a i K « 1) E

•H O - H •." - J " !

W E a E L > U,

W E a E L > U, ra ri c

U. J u.

H H a f - O rA r H | • .# H <\j

1 * H

O- »Il • r A

• A •a -» W\ I A

f \ j H O O r H O O H O rA O r A O o .»

4 J • H m (U a u) r.. c i ; a c n (C Q I t IV • o a c 3 «73 C. C X .c _- Ü x -C X X X X X X X : <* x » i - A ^ J r-I J

=3

•a r-t •3 r H r H «1 r-< 01

a • — •3 w I t u ir > - i

4» PH *> B 4-* u a, t-i o - i O C 0 O C l- o u. a t»

B C g) r - O H U - J 0 4 J B o Ci, 4-1

U O m U H u a EH c E m c M V l ï 3 UM u-* •o p—4 • H o M S 3« » a a «J L c 0 o E a Oi

1/5 V ai a 0 B

r H U i / )

a m c X 01

* * 01 I c

c b. B - 3 .. -• M u M B • _ 01 •o c m Ci U i « 1 I C C 1 0l

a * • - r i • r i a c x c m a r U • «

a • •r4 H r. U H t -E H n u: a a u 3 * * o oi ai L •» o a *•• | ) * J t l ra 03 01

U r 4J

C x o rt o u ai

03 r j U p - Ü m u It u t. c

X u. 10

ai x

,_, 0 • t u. . O . û. 1 '•" •*• o E 1 ' 9 E- 0

01 tl i

N H o H ta o l/î O ^ E Hj, ai a L B > + j

- 3 S 0

>• u

S m

Q

332

BUNG. 25

O OL O m N S3 S < U.

O H Ü

z i o u u < z o H < Z < o ou o s 02

tt.

w - I m

H

H

5 H 5 < o Ü z D CO

3 C o o a -O 'H 3 (C 4J o j e t .

E O - 3

>> m ai • P C M •H c - H o u to c ai « E 4J E u c o o HI = fc,

N W <

F. •o U c a U. c in 3 rJ O

c 1* <£ o c C) ü a> N o M

•H o •H to •p to

F ai 1= L> > t, al •H tll u. J u,

IA O ry ^ )

O O

IA

O

* l «

E

•H 0 0)

a, 4J +J O t . 4J u o a) o a. o

te c

f> ry J - VO IN '•O

VO OO

ry

h S a> n i

r-l IA s -H O M S a

U, b<

o o

IA r-l r-l r-l OJ

O O O O O

a

IA -T rH ry vO -3-

0 E-i »A IA lA

a) a rH O o> œ M u l o> o a. o z

ry -3-H VD

O IA

^s 1 rvi

F a U N' a •ri u. œ c •o

H 0 £

c e •H o j j s

O H X

01 o C <» O n h I . « t>

«

A V

IA o

H -a-

• • o o

13 «

to C

O

f\l IA IA OV ry ry ON Vfl IA ry H

0> X >» 0)

M 3 X O

r O H H r> IA j - -3- vr> ON 00 IA rH rt ry

to u to U ja JE JE JE

4J *Ü ',_, « 0 g a, a> E

^ to 3 m 01 *• a" •C

0 u N § M a> jo to 0 u § C ai G |H 0 u A c •H * 01 0

£ CD t*. co <J w H O O O

Ä [»H

^O IA

-3- tft • ry

I A IA

to s:

to

a) ö C h a a) c to « 3 m to

ON ^ • ON

O IA

d s:

j X ) M

O

3 O O •J J H }

>, U

W) ON

a — P c

2 «

I

o a.

I

3 3 3

BUNG. 26

BUNGOMA DISTRICT

TABLE 9 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: LH 1-2 - UM 1-2 Survey Area 11

Bange Assets People on Farm Bange

Land ha

Livestock head

Squipment pieces

Family Adults

Pera.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

7.3

7.3

10.0

3.0

16.5

16.5

ao.o

7.0

2.0

2.2

2:.0

1.0

3.1

3.1

4.0

2.0

0.5

1.9

1.0

3.6

4.7

5.0

1.0

Land Use

Range Annual Crops ha %'

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

2.6 36

2.6 33

3.6 55

1.2 27

78.6

0.4 5

0.4 5

0.6 11

0.1 2

11.8

3.4 *+7

3.4 42

3.4 51

0.8 26

100.3

0.2 2

0.2

0.4 6

1.0 13

0.8 10

13.4

0.4 5

0.4 5

0.2 5

0.1 1

11.3

Farming Intensity

Sange Cropping Intensity cropa/yr.

Stocking Sate Improved Cattle % of total

Sange Cropping Intensity cropa/yr. Farm Land

LU/ha Pasture î Forage

L'J/ha

Improved Cattle % of total

Avg. 0 0.9 0.9 2.0 3,5

Avg. 1 2.0 58.9

Up. Qu. 1.0 1.5 4.7 -

Lo. Qu. i

0.3 0.7 2.1 -

Inputs Applied

fiange Improved Seed Used % of area

AC

Fer tilizer Applied Manure Applied t/ha

AC PC

Plant Protection fiange Improved Seed Used % of area

AC

Manure Applied t/ha

AC PC

Insecticide kg/ha AC PC

Fungicide kg/ha

AC PC

fiange Improved Seed Used % of area

AC AC PC ?205

AC PC K20

AC PC

Manure Applied t/ha

AC PC

Insecticide kg/ha AC PC

Fungicide kg/ha

AC PC

Avg. 0 61.0 7.4 0.3 11.6 - 0.7 - - - 0.2 0.1 - 0.3

Avg. 1 65.1 12.9 3-2 17.7 0.1 2.2 0.3 1.0 - 1.0 0.2 - 0.6

Up. Qu. 100.0 12.5 - 17.8 - - - - - 0.2 - - 0.5

Lo. Qu. 85.7 - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of farms, excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

334

BUNG. 27

BUNGOMA DISTRICT

TABLE 9 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS AEZ: LM 1-2 Survey Area 12

Hange

Assets People on Farm

Hange Land ha

Livestock head

Kquipment pieces

Family Adults

Perra.Hrd. Labourers

Children 7- 14 No.

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

6.0

6.0

8.if

2.8

13.0

15.0

21.0

5.0

1.0

1.6

1.0

2.8

2.9

4.0

2.0

1.0

2.4

3.2

3.0

1.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

Total

1.7 29

1.7 25

2.4 50

0.8 18

51.1 .

0.4 8

0.8 11

0.8 13

13.3

2.9 50

3.0 44

4.2 62

0.8 32

88.1

0.2 3

0.5

0.4 7

0.8 12

0.8 12

12.2

0.3 6

0.3 5

0.4 8

0.1 2

10.1

Farming Intensity

Hange Cropping Intensity orop6/yr.

Stocking Rate Improved Cattle % of total

Hange Cropping Intensity orop6/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo. Qu.

1.0

1.3

0.8

0.8

1.3

0.5

1.6

1.6

2.8

0.7

5.3

Si .2

Inputs Applied

Sange Improved Seed Used % of area

AC

Fertilizer Appl ied Manure Applied t/ha

AC PC

Plant Pr otection Sange Improved Seed Used % of area

AC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Sange Improved Seed Used % of area

AC

N

AC PC

P 2O 5

AC PC «2

AC

0

PC

Manure Applied t/ha

AC PC

Insecticide kg/ha

AC PC

Fungicide kg/ha

AC PC

Avg. 0 74.8 0.3 - 2.3 - - - 0.1 - - - - -

Avg. 1 75-9 3.3 - 9.6 - - - 0.4 0.2 0.2 - - -

Up. Qu. 93-2 - - - - - - 0.1 - - - - -

Lo. Qu. - - - - - - - - - - - -' -

Notes: Avg. 0 = average of all sample farms Avg. 1 = average of farms, excluding zero entries Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops PC = Perennial Crops

335

BUNG. 28

BUNGOMA DISTRICT

TABLE 10 a: CROPPING PATTERN AEZ: LH 1-2 -UM 1-2 Survey Area 11

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper ^uartile

ha

Lower ^uartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper ^uartile

ha

Lower ^uartile

ha ha %

Maize Maize IPC Fingerraillet Beans Beans IPC Sunflower Cabbage Cassava Pyrethrum Passionfruit Maize & Beans

1.1 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.1 0.0 1.2

3.1 O.k 0.3 0.7 0.2 0.8 0.1 0.1 0.3 0.1 1.9

1.60 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.20 0.00 2.00 o

oooooooooo

ooooooooooo

ooooooooooo

3^.0 O.k 0.5 5.2 0.2 1.6 • 0.2 0.1 2.9 0.1

36.'t

41.6 0.5 0,6 6.if 0.3 2,0 0.3 0.1 3.6 0.1

kk.5 Total öl.8 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper C^uartile

ha

Lower üuartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper C^uartile

ha

Lower üuartile

ha ha %

Beans Beans IPC Cassava Pyrethrum Passionfruit

0.0 0.0 0.0 0.1 O.C

0.7 0.2 0.1 0.3 0.1

0.00 O.CO 0.00 0.20 0.00

0.00 0.00 0.00 0.00 0.00

l.k 0.2 0.1 2.9 0.1

29.2 5.0 2.5 60.8 2.5

Total k. 8 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper vvuartile

ha

Lower ^uartile

ha

Total Sample 'Area Crop

Average 0 ha

Average 1 ha

Upper vvuartile

ha

Lower ^uartile

ha ha 0/

Sweet Bananas Cookng Bananas Coffee

0.1 0.1 0.2

0.6 O.k 0.2

0.00 O.CO 0.28

O.CO 0.00 0.00

1.9 1.7 5.0

22.2 19.9 57-9

Total d.6 100.0

Avg 0 = average of all sample farms

Avg 1 = average of all farms excluding zero entries

Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

3 3 6

BUNG. 29

BUNGOMA DISTRICT

TABLE 10 b: CROPPING PATTERN AEZ: LM 1-2 Survey Area 12

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Maize Sorghum Fingerraillet 3eans Groundnuts Sunflower Engl. Potatoes Cabbage Cassava Sweet Potatoes Sugarcane Pyrethrum Maize 8« 3eans

0.9 0.0 0.1 0.1 0.0 0.3 0.0 0.0 0.2 0.0 0.1 0.0

0.3

1.1 0.2 0.3 0.3 0.4

0.8 0.3 0.2 0.5 0.2 1.5 0.4 1.2

1.20 0.00 0.20 0.12 0.00 0.52 0.00 0.00 0.20 0.00 0.00 0.00 0.40

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2Ó.2 0.6 2.7 2.2 0.4 8.0 • 0.3 0.3 5.9 1.2 4.4 0„4 9.2

42.4 1.0 4.4 3.5 0.6

13.0 0.5 0,5 9.6 1.9 7.1 0.6

14.9 Total 1 61.8 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha /o

Sorghum Beans Sunflower Cassava Sweet Potatoes Sugarcane Pyrethrum Others

0.0 0.0 0.3 0.2 0.0 0.1 0.0 0.0

C.l 0.2 0.9 0.5 0.2 1.5 0.4 o.k

0.00 0.00 0.40 0.20 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.5 9.5 5.9 0.5 4.4 0.4 0.4

0.6 2.4

43 o7 27.2 2.4

20.2 1.3 1.3

Total 21.8 100.0

Permanent Crops

Crop Average

0 ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample area Crop

Average 0

ha

Average 1

ha

Upper Quartile

ha

Lower Quartile

ha ha % Cookng Bananas 0.1 0.3 0.12 0.00 2.6 100.0 Total 2.6' 100.0

Avg 0 = average of all sample farms

Avg 1 = average of all farms excluding zero entries

Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

337

BUNG. 30

3 00

O

Z

U O H <*> w >

5 s Ü >

5 -° 2 I

S .s O i

u

w -1 co <

H y 2 H

s < s o o z D CO

N w

I T CM CT- \ C O C ! H S •A, CO r H o 1 o 1 1 tn u " I 1 >A sO O O I A . c - I > S ö v T I A sO 0 KC CO r H

• • • • « • • f • • • • • • • • t a 4J c o o v c O O 0 i-H O ^ ï 0 CM "*C t > CM O •£> r- C-l • O H t O O

H? E-< r H H

.* U O O) o

J3 - P

c n e n <n U O O) o

J3 - P 0 c~ O? t > 0 !>• CM i > 0 !>

U O O) o

J3 - P • £ > • r H t > • r-, •P C/J I A • ^ C • A vr VA

O v . r- l r - l r - i •-3 10 10

3 ra 5

0 O O ü O O

10

• H P i

t l • r l cd

•O

1 1 - . f

• O

1 ^ r-•

0

1 1 >-. t i

•H cd

• 0

r^+

O v f « O

1 1 u • r l

Cd • 0

t l • r l cd

•O

>-. t i

•H cd

• 0

u • r l

Cd • 0

O <M <M ' M

i - l 0 0 0

t O H i r C! O «.0 y i O «) 3 S ^ D t o V I S cd O 1 O 1 ^-v 1 CO m 1 1 I A vO O O 3 t > vO S 0 v O > t VA O r^.

• H +> N O « E H

O

« • v » • 0 • • • « • • • « • • ^."J • • « • • H +> N O « E H

O

o O o vO 0 • O O r - l O - 4 0 O vD t > CM • t > O C'­ e n t o • H +> N O « E H

O

H 0 M Q °> • • H +> N O « E H

O

I A H O H î >

• H +> N O « E H

O vO

ca

vO

+> II O <*\ e n II a II at CO 1 - , en CM ->? rH cn 1 V f a en 1 o • • vO • v O 0

O ca t i cu

O r-t CM CO t , 0

O !

t l CU

ca t i cu

CO t , 0

t l CU

<H <M Ï M

ft • r l O 0 O • H O • r l 0) CU t o H O'- H r H £*. en 1 O r H £ > o > 1 CU CU •—* • • t o • K CO • X

J3 0 1—! C.' r - i W + + +

ca CO w CO '0 Cu 0 4 J CU • p

e n e n

• 1 O

r-i

e'­er. ! 1

> cd

0 vO

• • s f t o

O

0 VU • - • * r* rH

ed

• H C

=3 t o r-i

e n

• v i CM >

H cd

•H C »

o o

c 0 ü e n H e n O X 0 0

i - l e n ü

O O

ü O X 0 0

ü

O O

IQ 4-> - p U 10 co cu c en r- e n O 0 0) 0 ü

<H r-( 1 O 1 I A 1—» 1 1 0 CM v r CM VA VA m H > O O en H > •H « • • • • t > « •H 0 0 • O) O O 0 H 1-1 CM •H

CM r^ BB

• jT ^ 4 ' • jT ^ 4 '

cu V c 0 c r- l H •H r-i •H

ß t > t > -P C 0 c > e n 4-> N 0 •P :-] Cu 1 1 1 1 r-\ 1 m r-i 1 1 -P CM 1 VA 1 Crs ^- 1 - , 0 v i - 1 -P ej SO OJ v j r H • P cd X • • cd • • • 0 ^ • cd U 0 • ed t .

O O O 0

H

O O CM ,' CJ

H

O

H

c**\ 0

r H

a H

0

H

CJ

H

O

H

0

r H

a H

cd cd cd * cd O • p •p 4-J -!-> O J

fc 0 £> O ,-v. O 0 ;> 0 0 0) 1 1 1 1 1 1 1 1 ! I • p 1 1 1 - , 1 i H 1 t o ô: 1 1 • P -P t o A t 1 1 • P • p

V « • • • 4 * <|H C C c <IH CM O <M ' M M i Û C O 0

•SR

Û C O 0

•SR

CO r-i r-l

cq

e n c I A t > t > O O H O 3 H e n CO

r-i r-l

cq

o 1 1 1 O 1 e r 1 — ' ! ! » v ï ! CM 1 c^ H r - l 0 " H 1 • • 3 r-i 1 » » CO

r-i r-l

cq • • i - l • • • e n • 3 «) e n • r-i r-

CO r-i r-l

cq o o 0 e n O O 0 H 3 H v t

• • • H • • • • • H • • H • • S 3 , 3 Ö 3 3 3 3 3 cd 3 3 ed y 3

« o* o cy « cy -p CU o " o > <u c y a cy eu o " - P « O" O" • p a> c y c y h0 60 M O fcO - M M b0 O t û T3 O M cd u cd h cd u e-i « t i t i II ^ cd t i cd t i cd t i I H cd u t i II II o E-i cd t l t l II II t< e i< « h c i t l 4) CJ ü t i O t l 1) t i O t o o > t l CU CU

u O ft o ft O ft . - \ O ft 3 0 O ft O ft Î ) ft 0 ft s O 0 ft 2 o > ft > ft > ft - o > ft O 4J > ft > ft > ft ^ > ft 0 t i !» ft O O < 3 < ö < 3 D O J a < t 3 << S < Ö « < O f 1 ft ft < Ö J ft

• p > 4) p . 0) B Ä 4) 10 » . o cu > 0 *. c 4) CU •H ü 4> CU o •• ca co t i H •H . CO CO -H r- i X C O H -C

> u u u P, +> • J c< H t , c cd Cd q j 3

-P CO S -P +> CO • r l cd cd cd E • p

c< H t , c cd Cd q j 3 - P CO +>

>-3 4) 0) CU - r l « T3 4) 4) D ^ ^ Cd + + \ cd + >» ï>> ! » ^ - o o > > > » > > ü 1-3 O

•o H > H CO T3 w 4) H « 0 0 H cd 41 • p 4> bv D +>

> ( \ l -P i-H t l OJ 4J H rd > G H cd

o t l (M O cd ft t i CM O cd O O - r i ca 0

u O t i +J S R 0) t l -P s ü t i IM s 0 ft X! 1 CU J3 • H T ) 1 « ,£) ft cd G C !» 3 t > c a > 3 ö ö B t i » Ö

H O i- t O CO • J => » H O W • 3 t-3 H O ,, rH 1-1

M3 Ö

D -1

00 vo

d d

>. >> 1-1 1-1

eu u

O c5 3 -1

vo o

O tu

J. i 5 D D 3 -J _] _l

u u eu

-o T) -a c c c 3 3 3

o t/5

t>0

o a. E 3

T] a IU

O X 1/1

O,

e

3

•B

3 3 8

B U N G . 31

O

Z

u u o H c/5 PJ

> O Z N

< o z o p o CL s o u Q ai ta X

w

oa

<

H CJ 02 H c/î

O < S ? o _ i

o z N D W oa <

v j t r \ c*. vO C A \p CT- 0*' - - t 10 H Ö 1 O 1 1-1 1 t o Oi 1 1 u-. r^ i!"~ I A C! !> v . 0 V \ o CO v f CO o CO • (S « « • • • t • * 4 » • • • • • • « • • ÏD *J C O o tr­ o d O O O r<"\ O t > • < v O H i n v r o ,~t • O

i-3 E H H s .*<:

t e O

o> o » ~<t - c 3 co v j - ü 3 co vt JC - P • o; • H ü • H -P co 3 -c 3 ü 3

. - H M

6 o o

o o o

M

6 o

w to

•H >* u

1 1 1 1 ! 1 1 1 > 5 i 1 1 1 H

04 •H • H

C M

• H CO

• 0

' M D •3 «M

• H

C M

• H CO

• 0

' M

• J O 0 O

t Û r H v ; U-N r— \ 0 î£ CA \ 0 O r ï s > v f ^ G Ö ö 1 O 1 r - l 1 ee Oi 1 1 i r v r°\ l > I P , O i c- vD I A o CO v } - co O co

•H -P « O • • • • • o • • • • • • • « • vu • • • • •H -P « O o o O r- O O O O o o c^ c tr- V f M3 H • >A v f O ,-H v? •H -P « O •

O <*> CV r f • v r d o r»

o r H

ia • P

-"— II O r~- r- II w""" u

<S o; r H c^ cv I A r H CA | I A r-l CA 1 o • • c • O • o w

H

i-H H CA a u

C A co u

w H

a u

co u

<M ' M ' M

a. • H L > Cr» o • H O • H

4> 4) CA 1 sn r H v O O ! r H f 4) ^D Oi H ! CU

4> X « • o> • • CA • C*i X a O r H .-H W +

co

+ CO

+ CO

•a + co

+ CO

+ CO

•a o O 4-< 0) HJ

ta 3

t > 1 I A

c -H , 1

>

3 CA

• C A P C A

• C A r-i

> H cd

• H

CO t >

O

• I A r H !>

r H CO

•r>

ß 3

O Ü

O d o o; Cl o U O

0.' O

O

0

o o U O

O

O

0 (0 - p • P

(4 co CO

0 ) & I o 1 VA 1 1 £ o

rH CO rH C A c- C A 1 o > CO C A

CA « 4) >

• r i 4 )

• • • • c I A • • r l I A • • r l • r i

4 ) o O O o o r-l HH H H Î

W te ß ß 4) 4 ) te ß O ß

H r H • H r H •H c . P c<-> o C A - P M ^r- • P N (U 1 | 1 1 1 • ! 1 1 1 - P 1 1 cv 1 0^ V j -^-r r H v i | - P (3 . * r-l *<; | • P Ö X <fl • • vO • cd M vO * c5 U o U

r H

c H O i o

H

O

H

Cl ü

H

O

r l

U

r H "" '

o

H

O

H

ü

H

O

r l C 0 C* ca ns

w • P • p « j - p • p

u O r- E> CA1 0 O C A o o a) 1 | 1 1 | | 1 | • 1 - p 1 1 r H 1 r - i 1 O CAI 1 | • p 4 J O C A 1 I • p +> 0) • • r H • r-i • • p <M c O O ' M ' M O ' M ' M

w 0

• < * 0

• A

0 0

• < * 0

• A

0

ce H H 3 «

o O £*. C A !> c^, i A V * I A C A t—! o ce H H 3 «

1—' 1 1 1 1 1 f ° i l - l 1 1 * o 1 1 (—! 1 v C I A r-i | • e O O r-H | • • ce

H H 3 « • c- • • • - C • ^0 O v ^ • V . ' c

ce H H 3 « o o o O o r H vr H V f

• • • H • » • • » H • • r H « A

a 3 3 ni 4) O* <U & 4> O* -P

3 3 3 3 3 « 3 3 CU 3 3 a 3 3 ni 4) O* <U & 4> O* -P «) o* cy 4) o * 4) c y 4) o * -p 4> c y cy • P o) cycy hû to t û o ho • • M hO M O bO •O o to a u ta u « u EH a u u II X * M al H d U EH cd u u i l u 41 6 H ca H ^ II II SH « ) U flj M a i H V <0 o U 4> J-i Ü M D U 4) 4) > U <U 4)

.M 41 ft (U ft O ft " v O f t / i 0 •i) ft «U ft o ft J ft S O 4) ft 5 o > ft > ft > ft -Ö > ft o • p > ft > ft > ft ,-^ > ft O M > ft O o < a < Ö < a o <C t> .-H 10 < & < » <! S3 • < o r P P- ft <<Sr i ft

• p > 4) P- 4) S M 4) M » x o o > E 41 4 ) • r l O 4) 4> CD ca co u H • H - CO CO *H H Xt G O H J3

> u u u ft 8 (8 «S H

• P r H fci H H c <ti <d d 3

-P c/3 a -p •P W •H

u u u ft 8 (8 «S H

• P fci H H c <ti <d d 3 -P w •P

•3 O 4) 4) 'H (S • Ö CU 4) 4> ^ ^ a) + + \ CS + >> >» S>> ^ Ü 4) s>> >» >% o • M ü

"O H > H to •o w V H Ö 4> O H a 4 ) 4 J 4 ) bC 4 ) - P

> (M -P r-t (-. ( M 4 J H ca > c H c8 o u oj o a P. U CM O ca o O -H ca o u 4> h -P •£. E 4 ) t , * J s o t< N s o ft "O ( 4> ,D • H • 0 1 4 ) f) ft cri a a t> 3 t> C fl > 3 » Ö e H » Ö

M & H O «J r H 3 S H O W , r H M l M O ( M ^

- 1 VO -H O t / l t/)

5 S

D D

00 vo

ö ö

CN CN

5 6 = D -J

3 >o

i n «o

•* O

13 o o

O

13

v i

>> V3 l- l >>

O ) CN t-.

1 1 è D 3

-4 »o O o

O) (D O)

tu u (U

D 3 D

* 3#

> a in C/3

c o 3 Ü

D -1

339

BUNG. 32

BUNGOMA DISTRICT

TABLE 12 a: INPUTS AND YIELDS OF MAJOR CROPS

AEZ:LHl-2 Survey Area 11

Crop Input:- Yield Crop Imp­

roved

I'iu tr? Kil to fJkf::ii cals Yield Crop

Imp­

roved H ?2°5 :\o0 i:*xm~o Insec . fung­

Yield

Seeds icide kfr/ha k?s/ha k;:/ha t/ha kr/ha k-'/ha kp:/ha

First Rains

Avg. 100 8 3 1 '(,111 Maize Avg. 100 8 3 1 '(,111

UpQu 100 11 '>6 - .- - - 3,750

LoQu 100 - - - -' - - 2,813

Maize « Beans

Maize Avg. 95 3^ 23 5 0.0'+ 1 - 3,288

Beans Avg. - k 3 1 0.0'f - - 5?-5 liaise UpQu 100 31 58 h - 2 - '+, 500

Beans Up Qu - - - - - - 563 Maize LoQu 100 - - - - - - 2,500

Beans LoQu - - - - - - - 150

Second Rains

Beans Avg. - _ 17 - - - - 30^ UpQu - - 25 - - - - '+50

LoQu - - - - - - - 13

Cabbage Avg. 100 - 23 - - 67 67 2 , 0C0

Perennial Crops

Avg. 3 58'h Pyrethrum Avg. 3 58'h UpQu - - - - - - - SCO LoQu - - - - - - - 120

Cookng Bananas Avg. - - - _ ~ - - 3,600 UpQu - - - - - - - k, 000 LoQu - . - - - - - - 750

Coffee Avg. - 56 _ 1 0.25 3 15 3,586 UpQu - hG - - - 3 25 5,000 LoQu — "" — — — — *~ 1,786

340

BUNG. 33

BUNGOMA DISTRICT

TABLE 12 b: INPUTS AND YIELDS OF MAJOR CROPS AEZ:LM 1-2 Survey Area 12

Crop I n p u t G Yi-.»ld

k g / h a

Crop Imp­r o v e d S e e d s

Nu t r i e n t s Che iV: i c a l a Yi-.»ld

k g / h a

Crop Imp­r o v e d S e e d s

N

krc/ha

p2°5

k , : / h a

K20

k p / h a

i-iat'.ure

k / h a

In:;ec o

k p / h a

lAing-i c i de k,:.;/ha

Yi-.»ld

k g / h a

F i r s t R a i n s

Maize Avg. UpQu LoQu

95 100 100

3 12 -

0A6 -

2,307 3,375 1,575

Beans Avg. UpQu LoQu

- - - - - - -706 8 oo 200

S u n f l o w e r Avg. UpQu LoQu

100 100 100

-~ **

-"""

-876 865 500

Sweet P o t a t o e s Avg. UpQu LoQu

-"" "• *• **

- ':

5,^90 6 ,000 1,500

Maize & Beans Maize Beans Maize Bo a n s Maize Beans

Avg. Avg. UpQu UpQu LoQu LoQu

88 13

100

100 ;

l 'f 2

-

0..1A 0 . 6 5 0 . 1 9

- -

2 , 5 2 7 26'f

2 , 7 0 0 'lOO

1.800 120

Second R a i n s

S u n f l o w e r Avg. UpQu LoQu

100 100 100

-**

\

0 . 1 1 "" -

7't'f 1 ,000

350

P e r e n n i a l Crops

C a s s a v a Avg. UpQu LoQu

- - -— — ~

-8,'f05 ^,875

• 2 , *tOö

Cookng Bananas Avg. UpQu LoQu - - -

-0 . 2 0

-

9,605 5,625 2 , 0 0 0

BUNG. 34

BUNGOMA DISTRICT

TABLE 13 a. DISPOSAL OF CROPS

AEZ: LH 1 - 2 - UM 1-2 Survey Area 11

Crop Production

kg

Marketing Board Local Market Home Consumption Crop Production

kg kg * kg % kg % First Rains

Maize 154,590 53,1*00 38 23,370 15 72,820 47 Maize & Beans 125,160 28,550 23 52,580 42 44,230 35 Maize IPC 720 0 0 720 100 0 0 Beans 3,450 1*00 12 1,91*0 56 1,110 32 Beans IPC 240 0 0 16 7 224 93 Fingermillet 420 0 0 0 0 420 100 Sunflower 600 0 0 0 0 600 100 Cabbage 1,225 0 0 1*1*0 36 785 64

Second Rains

Beans 602 1*00 66 1*0 7 162 27 Beans IPC 80 0 0 1*8 60 32 40 Cabbage 21*0 0 0

Permanent C

175

rops

73 65 27

Coffee 600 600 100 0 0 0 0 Pyrethrum 48 1*8 100 0 0 0 0 Cookng Bananas Wo 0 0 0 0 480 100

BUNGOMA DISTRICT

AEZ: LM 1-2

TABLE 13 b: DISPOSAL OF CROPS

Survey Area 12

Crop Production

kg

Marketing Board Local Market Home Consumption Crop Production

kg kg % kg % kg % First Rains

Maize 62,710 22,230 35 18,810 30 21,670 35 Maize 8c Beans 26,710 4,630 17 6,160 23 15,920 60 -Beans 1,326 I60 12 370 28 796 60 Fingermillet 2,080 0 0 240 12 1,840 88 Sorghum 870 0 0 320 37 550 63 Groundnuts 140 140 100 0 0 0 0 Engl. Potatoes 180 0 0 148 82 32 18 Sweet Potatoes 5,940 0 0 360 6 5,580 94 Sunflower 4,000 4,000 100 0 0 0 0 Cabbage 9,300 0 0 6,700 72 2,600 28

Second Rains

Beans 225 0 0 0 0 225 100 Sorghum 430 0 0 0 0 430 100 Sweet Potatoes 3,500 0 0 360 10 3,140 90 Sunflower 9,880 9,628 97

Permanent 1

0

>ops

0 252 3

Nil

342

BUNG. 35

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 b: DISTRIBUTION OF FARMING ACTIVITIES

Crop 1 Maize Cases: 11 Crop 2 Maize &Beans Cases: 40D

AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30 AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30

Land Preparation:

liiJLL

100 ". of the cases

JÉ • - o o> • n oi -*

5 - - S

Land Preparation:

L U L J l l l l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

X u L Ul 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

JU JIL! Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

J IL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

J I L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

IL JJILI Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

ulllL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Il I II I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Liii I iLllll

x Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

X •I • • •1111 I L • Jililii • • lllil...i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

' Maximum 30 per crop and season

343

BUNG. 36

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 d: DISTRIBUTION OF FARMING ACTIVITIES Crop 10 Beans Cases: 9 Crop 51 Coffee Cases: 21

AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30 AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30 100 % of the ~ " cases Weeding: Land Preparation:

Uli JLii . • 1 j_l i I I I . I I • I I

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

Jl 1 J L • I I • I - I •_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: Pruning/Cutting: T

! •

i u i i i i i i • - • - - • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

J I . L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

!__• - • . . i I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

11 11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

J l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

JJ J I l Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

344

BUNG. 37

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 f: DISTRIBUTION OF FARMING ACTIVITIES

Crop 52 Pyrethrum Cases: 11 Crop 55 Sweet Bananas Cases: 3

AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30 AEZ: LH 1-2 - UM 1-2 Survey Area 11 Sample Size: 30

100 '. _ of ine cases

T Weeding: Weeding:

• I 1 I I I I • I • • 33 -i- l l I I I l_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

_L i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting: Pruning/Cutting:

I • • • t ^ i - L 1 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Fertilizing:

• I t i

Jan: Feb. Mar. Apr. Mav Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

I • • I I I I I I I Ll Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

3 4 5

BUNG. 38

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 h: DISTRIBUTION OF FARMING ACTIVITIES Crop 56 Cooking Bananas Cases: 4 Crop 1 Maize Cases: 22

AEZ: LH 1-2 - UM 1-2 Survey Area: 11 Sample Size: 30 AEZ: LM 1-2 Survey Area 12 Sample Size: 30 100% oi the

Weeding: cases Land Preparation:

j a I I I L lîl

!• i Liiii J _ L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Seeding:

jiiiL

• • • ! ! •

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting: First Fertilizing: T

J I I I I I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Second Fertilizing: T 4-

I -*--T t £

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Harvesting: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weedine:

ji*illlL _•_•_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jill ••i •in» i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

• 1 • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

ill »II, I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

3 4 6

BUNG. 39

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 j : DISTRIBUTION OF FARMING ACTIVITIES

Crop 2 Maize & Beans Cases: 18 Crop 10 Beans Cases: 11

AEZ: LM 1-2 Survey Area 12 Sample Size: 30 AEZ: LM 1-2 Survey Area 12 Sample Size: 30

100% of the j

Land Preparation: cases Land Preparation:

II i± LiJ J LL ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

I I » » Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jjjl I I II Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

I • I. » Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding: First Weeding:

III! Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

1± J IL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JLUL J LL 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding: Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

•ill. I. •Ill 11 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

347

BUNG. 40

BUNGOMA DISTRICT BUNGOMA DISTRICT

TABLE 14 k: DISTRIBUTION OF FARMING ACTIVITIES TABLE 14 1: DISTRIBUTION OF FARMING ACTIVITIES

Crop 34 Sunflower Cases: 21 Crop 56 Cooking Bananas Cases: 9

AEZ: LM 1-2 Survey Area 12 Sample Size: 30 AEZ: LM 1-2 Survey Area 12 Sample Size: 30

_ 100 %

o( the . cases Weeding

Land Preparation:

11 III- I. OJ . . CO 01 — ~* 34-3"

• I I I I I • I • J_L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Dusting and Spraying:

_U L •III • ml Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: Pruning/Cutting:

J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weedine:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Lili Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

LLLL Jlllhll Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

• » J U . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

IllilJLJ- •I I I I ! I I ill Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

348

BUNG. 41

(O

z o N

< u Ü o -J o u ó ei

Q

CU O

UI > u -J Z O H O 3 O O ei o.

w - ) m

y 2 H c/3

S < s o Ü

z D ca

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

r H

> a>

G O

- H *> U 3 •o O u

a.

(•H

*-i

• H

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

r H

> a>

G O

- H *> U 3 •o O u

a.

a

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

r H

> a>

G O

- H *> U 3 •o O u

a.

M

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

H +> -H 3 -H O H *> t. •rl O 3: Cx

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

0 m

I m 00

rvj

0

PO

1 0 C

CO

3 w o ÉH M Z

rH S

a J

a 0

• H * J

3

0 X a.

8 ••

co I A H

CT\ VO §

* 00

I A

r j H

O o o

O I A rH

O o fA

o o rA

0 0 rH

0O I A

o o o

O IM H

I A H

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

0 m

I m 00

rvj

0

PO

1 0 C

CO

3 w o ÉH M Z

rH S

a J

a 0

• H * J

3

0 X a.

—1

o o o

O IA

O H

O O O IA

J -

I A I A

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

c

go £> e n n 0 0

•H i n r i ce > —

CO

3 w o ÉH M Z

rH S

a J

a 0

• H * J

3

0 X a.

M

O O IM •

O O IA

H

c

| S fcj K >< C 1

U N M <

< er

CVJ

s

• t

u

c

go £> e n n 0 0

•H i n r i ce > —

CO

3 w o ÉH M Z

t . o

*J -rl 3 r-t 0 -M a *> •u u •rl ai 1 tx

1 ru

8 8 O o

O <M <M

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

•is

• • I "3 0 ™ r*

OJ r -

3 o

E H M Z

H • H 0

M

rH O

J

a o

-ri

3

O X

S*

M M • H

1 vu

O O f\!

O o rH

*~~

o o

ON

H rH

o

8 rH H

IA f\l

IA 00

IA 00

o o o

H

H

00 H (SJ

O O O

f -

IA H H rH

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

•is

• • I "3 0 ™ r*

OJ r -

3 o

E H M Z

H • H 0

M

rH O

J

a o

-ri

3

O X

S*

3 I A

00 8 o

OO

O IM ON

o o AJ

5> rH

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

V

1 o e a

> x o

u o o

o> p.i-1

•o 0 4J

"S « m

o a . a. ru m • + a)

•u a COM « o a

> rH -H

3 o

E H M Z

H • H 0

M

rH O

J

a o

-ri

3

O X

S*

M

o o VO

f\l

rA AI

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

V

1 o e a

> x o

u o o

o> p.i-1

•o 0 4J

"S « m

o a . a. ru m • + a)

•u a COM « o a

> rH -H

3 o

E H M Z

H • H 0

M

« * * -H 3 r-t 0 -H

£ *> *> h •rl O 3 lx

i IA

o o o J-

o o IA

o o vO

IA

8 I A

IM

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

V

1 o e a

> x o

u o o

o> p.i-1

•o 0 4J

"S « m

o a . a. ru m • + a)

•u a COM « o a

> rH -H

3 o

E H M Z

H • H 0

M

•*» •H a •JR

* to x

to X S » J« « CO

JS DD to te

Ä tfi to JS

to X i? •JÄ to to

X to

X to

X 's?. to

X to to to

X

u z o SJ

X os M •< a \ «< H EH

3 •

• U

<

V

1 o e a

> x o

u o o

o> p.i-1

•o 0 4J

"S « m

o a . a. ru m • + a)

•u a COM « o a

> rH -H

3 o

E H M Z

H • H 0

M _ r H

CO «i

3 rH » •H

z x H

•H H •H 4> X «

l x

IA O ru a , S

H

>

s §

ÇO o ^s- X-os a , M S* ° 3 8 " Z g,

. . o a . B o u a a U (X

o •o rH a>

• H X

Z

u V (9

•H rH

bu

IA O r>i

0 .

O

rH O > »-) c o

f H

o 3 Tl o X

O,

EH ig Li

. . o O, G O U •s a O (x

•o rH

•H >1

Z

X a> N

•pH

M •H 4-> X 0)

(X

IA O CV a.

o AJ

rH O >

e o

•rl

U

1 £

» o. w c PS i n CU (Q

M

a. a O x os a U (x

O

•rH X

z X

« N

•rl H •rt *» X 0)

lx

IA

M a . i ff

rH O > f

a fi ° 5 u

£ ^ § 2 2 û-CO s co Z CM «,

X

.. o a. s O x os a U MU

a •o rH 9

•H X

z X

N •H H •rl *» X «

lx

IA o Al CU |

o A l

H at

§ •H 4-»

Il

a Tl rH » •H X

Z

X O N

•H rH •H HJ X

e Ix

IA O IM a .

o IM 3 •

p •" EH * , (0 u

2 1 d 2

S "• g o S " z a •• « a. e o u os a U bu

3 rH » •H

z x H

•H H •H 4> X «

l x

IA O ru a , S

H

>

s §

ÇO o ^s- X-os a , M S* ° 3 8 " Z g,

. . o a . B o u a a U (X

o •o rH a>

• H X

Z

u V (9

•H rH

bu

IA O r>i

0 .

O

rH O > »-) c o

f H

o 3 Tl o X

O,

EH ig Li

. . o O, G O U •s a O (x

•o rH

•H >1

Z

X a> N

•pH

M •H 4-> X 0)

(X

IA O CV a.

o AJ

rH O >

e o

•rl

U

1 £

» o. w c PS i n CU (Q

M

a. a O x os a U (x

O

•rH X

z X

« N

•rl H •rt *» X 0)

lx

IA

M a . i ff

rH O > f

a fi ° 5 u

£ ^ § 2 2 û-CO s co Z CM «,

X

.. o a. s O x os a U MU

a •o rH 9

•H X

z X

N •H H •rl *» X «

lx

IA o Al CU |

o A l

H at

§ •H 4-»

Il

a Tl rH » •H X

Z

X O N

•H rH •H HJ X

e Ix

IA O IM a .

o IM

349

BUNG. 42

co U z o N -J <! u 5 o j o o ( i l

Ó ai ü < a

> u - 1

z o H

u D Q O 06 EL.

09

<

D O

y 2 H co Q < S O Ü

z D 03

rH

> ai

J

s o

3 • o o

a ,

»H

rH

> ai

J

s o

3 • o o

a ,

l - l

rH

> ai

J

s o

3 • o o

a ,

• H

Ui Ol f4

•k» - H 3 r-l O •<

£ V * > L, • H © Ä t v

O te

3 K

C-1

<

S

oj

S J

• • f

<

0 r~! p-i

1 LTl ce

(N

0

m 1 C c

co • J o to o H PH Z

O > Ol

J a o

•H 4-> U 3

• c 0 t . a,

M o o o o* J-

« ru O I A

O O - 3 -

H

O l - l

VO O O o o" - 3 -

OJ

OJ

vû rt OJ

8 o m

P«. l - l OJ

VO CO • H

O te

3 K

C-1

<

S

oj

S J

• • f

<

0 r~! p-i

1 LTl ce

(N

0

m 1 C c

co • J o to o H PH Z

O > Ol

J a o

•H 4-> U 3

• c 0 t . a,

M

o o o o*

£ o j IA

O O

o o o (NJ H

i n s o o o

O J 0 0 H

T T LA f A \ O O O J-

-3--3"

O IA

O te

3 K

C-1

<

S

oj

S J

• • f

<

0 C M 3 C JJ E

n U 0 C

M IT! r-t CC > r -

co • J o to o H PH Z

O > Ol

J a o

•H 4-> U 3

• c 0 t . a,

k *

o o o »A

o o IM

o o o IA

o o o

o rt

o LA

rt

O te

3 K

C-1

<

S

oj

S J

• • f

<

0 C M 3 C JJ E

n U 0 C

M IT! r-t CC > r -

co • J o to o H PH Z

kt

M 4J - H 3 H O -H

JS *J +> u •H « 3 ta.

8 vo

O o

r-l

o o o J-

O o o -3-

O OJ OJ

OJ

W Z O

« es M << Q > H H .-1

S

» •

u

<

<—l vo C rA

Ut

. . i r- 0 c r-

CO o n M Z

1-1 • H o

CO

rt 0)

a J

s 0

• H ^ 1 O 3

0 Li

a .

o o o m

.H

O vo rt

o o o

J-

OJ KN

J -OJ

o o IA

OJ

H LA

OJ -3

W Z O

« es M << Q > H H .-1

S

» •

u

<

<—l vo C rA

Ut

. . i r- 0 c r-

CO o n M Z

1-1 • H o

CO

rt 0)

a J

s 0

• H ^ 1 O 3

0 Li

a .

M § o o rt

« I A o o o o l - l

I A

O O vu

O OJ

-3-

r i IA 8

o l - l

W Z O

« es M << Q > H H .-1

S

» •

u

< Vegt. Period

1st + 2nd: p or

1/mnra

in Daye,1st:

190 or more

CO o n M Z

1-1 • H o

CO

rt 0)

a J

s 0

• H ^ 1 O 3

0 Li

a .

-O

g I A

o o OJ

OJ

O o

VO

o VO

OJ

»A H o o LA

W Z O

« es M << Q > H H .-1

S

» •

u

< Vegt. Period

1st + 2nd: p or

1/mnra

in Daye,1st:

190 or more

CO o n M Z

1-1 • H o

CO

a> N

* * «H 3 H 0 - H

J5 *> +> t . • H V 3 ta.

o o OJ

o o m

o o LA

OJ

O O O

i - l

W Z O

« es M << Q > H H .-1

S

» •

u

< Vegt. Period

1st + 2nd: p or

1/mnra

in Daye,1st:

190 or more

CO o n M Z

1-1 • H o

CO

•P •H d w. to 5 t O

ï f t to ta

Ai t£ «. te te

X to X

to » 60 X

to X

to X

to • «

to X

te X

to X

to X • *

to X

to X

to to X

W Z O

« es M << Q > H H .-1

S

» •

u

< Vegt. Period

1st + 2nd: p or

1/mnra

in Daye,1st:

190 or more

CO o n M Z

1-1 • H o

CO •H a>

a •o H a>

• H X

Z

k.

LA o OJ a.

o PU se

a> > a>

a 0

• H *» Ü 3

T) O ki

w 5 ° ^ «H U OQ CO . . a* a. E o k. ce a U ta.

•o i H «

z ' h t>

•H

• H

». O

b .

1 A O O l

a.

o f \ l

»H o > 0} !-) C 0

- H

3

«£ a a.

«s u a .. v a. s O ki ce a

o •o rt a>

•H X

z k. ai N

i - i •H

ki 0)

h .

IA O OJ 0.

o OJ

« ai

• J

e o

• H

U H 3

« -D

3 £

s c a: . H E= CO o

kl . . j , a, s O k.

a: a U b.

a rH V

•H X

z kl » M

•i-t r H • r i

ki « bu

IA O OJ

a,

o OJ

r H O >

a

«.s z *> «« u

s = m -a

v 0 M kl

a. u t j a M . H •< 3C O

ki . . a> a . E O k; K a U b.

a •o i - i ai

•H X

z kl e N

• H r H • H

U

»

LA O OJ

0 .

o OJ *:

rt ai t>

1-9

B 0

•H

O

« -g U o ï *< o a. »J h. c Z ^ l 9

co n k.

.. o a. e o u as a O h,

0 •o l - l ai

•H X

Z

kl

a> N

• H H - H 4> k> ai

LA O OJ

a.

o OJ *: «

>J

c o

•H 4* o 3

• o CO o

s •« o a. >H

S B

E i . H O 0* Q

k. •• « a. B O h as a u u.

a •o H a>

• H X

Z

k.

LA o OJ a.

o PU se

a> > a>

a 0

• H *» Ü 3

T) O ki

w 5 ° ^ «H U OQ CO . . a* a. E o k. ce a U ta.

•o i H «

z ' h t>

•H

• H

». O

b .

1 A O O l

a.

o f \ l

»H o > 0} !-) C 0

- H

3

«£ a a.

«s u a .. v a. s O ki ce a

o •o rt a>

•H X

z k. ai N

i - i •H

ki 0)

h .

IA O OJ 0.

o OJ

« ai

• J

e o

• H

U H 3

« -D

3 £

s c a: . H E= CO o

kl . . j , a, s O k.

a: a U b.

a rH V

•H X

z kl » M

•i-t r H • r i

ki « bu

IA O OJ

a,

o OJ

r H O >

a

«.s z *> «« u

s = m -a

v 0 M kl

a. u t j a M . H •< 3C O

ki . . a> a . E O k; K a U b.

a •o i - i ai

•H X

z kl e N

• H r H • H

U

»

LA O OJ

0 .

o OJ *:

rt ai t>

1-9

B 0

•H

O

« -g U o ï *< o a. »J h. c Z ^ l 9

co n k.

.. o a. e o u as a O h,

0 •o l - l ai

•H X

Z

kl

a> N

• H H - H 4> k> ai

LA O OJ

a.

o OJ *:

350

BUNG. 43

c/5 U z o N -J < u O

o -J o u Ó a: o < a z •< P. O o* u as tü o. t/5 - J UJ > u -1

z o 3 Q O e* a.

CQ

< (-

H U

2 H m 3 < o Ü z D

u z o t3

U H b. U. O CJ

-) < Z M

« < z

I A

S

* •

u t

<

c m r\j 1

i n

CM

0

1 CT

w J o w • *

ex « u b.

_ }

c 0

•H 4-) Ü 3

•a o u

a .

»-4

o o o I A

f A

oa o o

1 A l A

r> r i )

1 n u z o t3

U H b. U. O CJ

-) < Z M

« < z

I A

S

* •

u t

<

c m r\j 1

i n

CM

0

1 CT

w J o w • *

ex « u b.

_ }

c 0

•H 4-) Ü 3

•a o u

a .

u z o t3

U H b. U. O CJ

-) < Z M

« < z

I A

S

* •

u t

<

C £ 0>

h

£ ° ^ tA -H rt

w J o w • *

ex « u b.

_ }

c 0

•H 4-) Ü 3

•a o u

a .

•rt

u z o t3

U H b. U. O CJ

-) < Z M

« < z

I A

S

* •

u t

<

C £ 0>

h

£ ° ^ tA -H rt

w J o w • *

ex « u b.

o>

44 - H 3 r i O ' H

•C - P •W t i • H O 3 b ,

O

o I A

r i

o o ON

ru

u z o

U U b. (x O O

z M

z

r j

X

• U

<

m o A I 1

l_~

r j

Ln C

1 in c;

CO J O M

« os H u.

M 11

- 1

a o

- H * > y 3

•o 0

o.

M t - t w

8 o

3 I A IA

o o

0 0

O lA M

l A r\j H

O o J -

l-l

O

H

O ON

o o o

vu r i

ON r> H

r> O I A

8 o o ru

O r i rvl

eo ON

u z o

U U b. (x O O

z M

z

r j

X

• U

<

m o A I 1

l_~

r j

Ln C

1 in c;

CO J O M

« os H u.

M 11

- 1

a o

- H * > y 3

•o 0

o.

rt H-)

o o -s-

O O ON

O O O

- 3 -r H

rt l A

ON I A (NJ

O O

o -a-r i

O rvl r i

NO I A

u z o

U U b. (x O O

z M

z

r j

X

• U

<

•r-( LT [

rt g,

S 0 E

0 *

>3

CO J O M

« os H u.

M 11

- 1

a o

- H * > y 3

•o 0

o.

M

o o l A

o »A

O O O o

A I

u z o

U U b. (x O O

z M

z

r j

X

• U

<

•r-( LT [

rt g,

S 0 E

0 *

>3

CO J O M

« os H u.

o K

44 - H S ri 0 - H

£ 4-> *> U • H V 3 U ,

8 o rvl

o o ON

O O Ai

o o o

z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

m .. ce

c i 4.' L I

. . 1

C O

M J O M O H M Z

r i • H O

M

r-t

J

a 0

44 U 3

O

M rt

O o OC

- 3 -

I A I A H

r> O O

O r- l

lA O l A

M l A

o o o

OJ H

l A ON

ON O N 8

O N

O ON 8 O

O o

0 3 rt

O rt rvl

I A

I A

o o o

os A I

I A

I A rvl ri

z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

m .. ce

c i 4.' L I

. . 1

C O

M J O M O H M Z

r i • H O

M

r-t

J

a 0

44 U 3

O

rt

O O O

lA

O N O lA lA

1A tA

O ON

O O O

r j

NO rvl rt

O N

0 0 O O O

IA ri

I A r i r i

IA

z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

t. o

s E

10 o t

r-i O \ r >

& H

•o

•S .. •" o c , a. ru «o • + us

* » Q b0 44 e o a

M J O M O H M Z

r i • H O

M

r-t

J

a 0

44 U 3

O

rt

O O KN.

O rA

o ON

O O

o

rvl z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

t. o

s E

10 o t

r-i O \ r >

& H

•o

•S .. •" o c , a. ru «o • + us

* » Q b0 44 e o a

M J O M O H M Z

r i • H O

M

44 <H 3 r i 0 -rt

• f l * » 44 (4 • H V 3 b,

O o o

rvl

O o ON

O O i H

(M

O

8 I A

O O IA

z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

t. o

s E

10 o t

r-i O \ r >

& H

•o

•S .. •" o c , a. ru «o • + us

* » Q b0 44 e o a

M J O M O H M Z

r i • H O

M

44 • H a

3

« te X J? u

X jf » to > R

M X

60 te * te 60 X

t « X • *

«0 X

te te X . «. X

00 bO to X

z o ta

< H E-i

W 1» h. O U

ri

z

• •

<

t. o

s E

10 o t

r-i O \ r >

& H

•o

•S .. •" o c , a. ru «o • + us

* » Q b0 44 e o a

M J O M O H M Z

r i • H O

M r i

u T3 «H a>

- H

z

b,

l A O I M

a. a H

ai

to < Q 03 o O -H

«4 « 1 O

5 3

03 o

« £ U

S* B

0 . .H < z m

u . . a> a. B O 1. ce a o u.

•o r i « • H > i

Z

« - H

«4 44 h a>

u .

l A O r-l

a,

o ry

1-4

> >-) B O

T 4 44 U 3

T ) 0

a,

M E-t (0

U . . Q) a. B O I H os a U b ,

•o

a> • H X

z

a>

• H •H • H 44 U V

b ,

lA O rvl a,

O ry

> ai

• J

C

o - r t 44 U 3

•a o

M 0 , U

b- .H O U (0

t . . . a) 3. B o u a: « U b .

o TS H a>

• H

Z

u a> N

•rt H •rt 4> t . ai

b ,

l A O (M a.

o INJ s:

i - i a> > a>

-J

a

M v

5 ° S5 §2 S0-S 5 <

h .. a> a, e ce a O b.

m •o r-i S

•rt >•

z

o N

•rt rt •rt 4»

ai b .

I A

° A I

a. |

s rt a> 0 a>

J

a o

Tt 44 U 3

• o

2 ° Z û-5 c

o n .. v a. B o u os a U b,

a • o r i 01

•rt >i

Z

N •rt rt •rt 44

cp b ,

I A O M a,

o rvi a:

bl o

< J w o œ o O -H EH +. CO o

? = ß. T!

j 2 S * s a EH - H

-< z a

t , •• « a, s o u os a O bc

u T3 «H a>

- H

z

b,

l A O I M

a. a H

ai

to < Q 03 o O -H

«4 « 1 O

5 3

03 o

« £ U

S* B

0 . .H < z m

u . . a> a. B O 1. ce a o u.

•o r i « • H > i

Z

« - H

«4 44 h a>

u .

l A O r-l

a,

o ry

1-4

> >-) B O

T 4 44 U 3

T ) 0

a,

M E-t (0

U . . Q) a. B O I H os a U b ,

•o

a> • H X

z

a>

• H •H • H 44 U V

b ,

lA O rvl a,

O ry

> ai

• J

C

o - r t 44 U 3

•a o

M 0 , U

b- .H O U (0

t . . . a) 3. B o u a: « U b .

o TS H a>

• H

Z

u a> N

•rt H •rt 4> t . ai

b ,

l A O (M a.

o INJ s:

i - i a> > a>

-J

a

M v

5 ° S5 §2 S0-S 5 <

h .. a> a, e ce a O b.

m •o r-i S

•rt >•

z

o N

•rt rt •rt 4»

ai b .

I A

° A I

a. |

s rt a> 0 a>

J

a o

Tt 44 U 3

• o

2 ° Z û-5 c

o n .. v a. B o u os a U b,

a • o r i 01

•rt >i

Z

N •rt rt •rt 44

cp b ,

I A O M a,

o rvi a:

3 5 1

B U N G . 4 4

Id z o N - 1 < u 3 o - J o o u ó ai O < Q

BU O a u w CL

> 3 z o H O D Q O Qü D.

W

03 <

y 2 H on

5 < o o z D

u z o N

H • W (X Ex O O

< z M O 03 < X

I A

X

N t

H • <

0

rv i i

L I

0 0

1 LI ce

w o M •X

3 U u.

c 0

*J y 3 •o O b

a.

M

• H

8 o

VO rA

o o I A

O I A

J -

o I A O i - t

o o

f H

fA IA 0J

o o r j

f H

( y o o f H

f H

PU f H

H f H

r u z o N

H • W (X Ex O O

< z M O 03 < X

I A

X

N t

H • <

0

rv i i

L I

0 0

1 LI ce

w o M •X

3 U u.

c 0

*J y 3 •o O b

a.

o o o I A

o IA -9-

Ö O IA

O O

IA

t A VO

O O O

f H

OO f H

O o

£v- IA rvi

O o 00

u z o N

H • W (X Ex O O

< z M O 03 < X

I A

X

N t

H • <

• H m C E «

M

ss s * -H H

w o M •X

3 U u.

c 0

*J y 3 •o O b

a.

M

o o I A

N

CO IM

f H I A

O O (M

O lA

rvj

oo »A

oo rA

O o

o o IA

u z o N

H • W (X Ex O O

< z M O 03 < X

I A

X

N t

H • <

• H m C E «

M

ss s * -H H

w o M •X

3 U u.

ai

* * - H 3 f H 0 H

*> b •H G) 3 tx

O O -3-

H

8 s 8 o o 00

U z o co

w

!x O O

z M < X

<\J

X

s

N w

<

L I O r j 1

L I

CN

m 0

I L~! ce

3 o w «ï es ce u u.

r H 0> >

J

a o

+ J

o 3

•O 0 b

û .

M f H M

O O I A

00 0 0

o o IA

8 CO 00

o o J -

f H

H f H 8

IA

(H

tN H

IA rvi

o o

f H

t>- O IA

U z o co

w

!x O O

z M < X

<\J

X

s

N w

<

L I O r j 1

L I

CN

m 0

I L~! ce

3 o w «ï es ce u u.

r H 0> >

J

a o

+ J

o 3

•O 0 b

û .

f H

O o o IA

o J -

u o IA

O O

IA

-s-VO

IA VO

o o o f H

O O

K\ IA o o rv j

r H

IA J -U z o co

w

!x O O

z M < X

<\J

X

s

N w

<

•H ai C

E O

e

°S >3

3 o w «ï es ce u u.

r H 0> >

J

a o

+ J

o 3

•O 0 b

û .

M

o o m rvj

00 H o IM

o o

0 0 f A

CO IA

o I A rA

o o IA

U z o co

w

!x O O

z M < X

<\J

X

s

N w

<

•H ai C

E O

e

°S >3

3 o w «ï es ce u u.

b O

• P - H 3 . H O ' H

J : * > * > b - H 0) 3 t x

o o J

H

o o J-

1-1

O O i H

H

O O 00

8 f H

f H

w z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

" L", f - l c e rc rvj •u 1 C i »

•L» r * r j

. . I ^ m C 0 2

o M O E-c M Z

<- l •rf O

f H o > o

J

0 o

•H +> o 3

O b

CK

3 O O I A

V O

f H

O

i-l

o o J-

o o

J -I A r - l

00 f H i - l

o o

V O

f H

AJ ON o

o o rvi

rg O AI

w z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

" L", f - l c e rc rvj •u 1 C i »

•L» r * r j

. . I ^ m C 0 2

o M O E-c M Z

<- l •rf O

f H o > o

J

0 o

•H +> o 3

O b

CK

3 O o O

-3-

IA I A

O

o IA

O IA

IA vu

I A I A

o o

o o o f H

w z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

0> H O

E B

V} H C o

f H ^

>S •o o J->

• H •• in

o a . a, M o • + a

* • Q t c - p « a e

> f H - H

2 o M O E-c M Z

<- l •rf O

f H o > o

J

0 o

•H +> o 3

O b

CK

M

O O 00

» (\J

IA (M l \J

O IA i-l

O oo

H

O fA

I A 8 IA w

z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

0> H O

E B

V} H C o

f H ^

>S •o o J->

• H •• in

o a . a, M o • + a

* • Q t c - p « a e

> f H - H

2 o M O E-c M Z

<- l •rf O

H C N

+» - H 3 f H O - H

J3 4 J •M h • H O 3 Ex

8 c* f H

O O 0>

O O ON

o o -s-H

w z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

0> H O

E B

V} H C o

f H ^

>S •o o J->

• H •• in

o a . a, M o • + a

* • Q t c - p « a e

> f H - H

2 o M O E-c M Z

<- l •rf O

4» • H

a 9

« to 10 X

bO te >ft X t£

JC t £ « to

X to

X to

X to •m to

X to X

to X

to >R 10 X

to X

10 X

to X tt to to s to

w z o to

•< u E-i

r> u fx Ex O O . - I X S

• S! • U

<

0> H O

E B

V} H C o

f H ^

>S •o o J->

• H •• in

o a . a, M o • + a

* • Q t c - p « a e

> f H - H

2 o M O E-c M Z

<- l •rf O f H

a •a f H ai

• H X

z b

H • H f H • H +* M O

h.

IA O INJ a.

O

H a> t» V

a 0

z *> < o H 3 05 T l

O o u h

a, w S) B M -W < X CO

M . . o> a. e O M ce a u u.

o •o (H «* •H X

z u c

•H r H

U <0

h.

I A O K l

a,

o f H 41 > O

n o

-H

U 3 •o O 11 a.

w z c < - H Cd co a

h . . q>

a. 8 O H as a U ( x

CO

TS f H CO

• H X

Z

u Cil

- H f H • H

« Cx

IA O

Q.

o rvj •x\

f H CD > a i

e o

• H 4J U 3

OS T3 U 0 3 x o a. ~i (x B Z -H 3 W O

M . . 0) i B o u a n U (X

m •o f H

CO

- r t X

Z

u a i N

- H f H • H «* X ai

t x

IA O rvi a.

o rvi

f H O > ai

a 0

•H

OT 3 z -o •« 0 U X 03 0 . < B X -H O ta o .. « 0-. E O b K a O tx

a •a f H » • H X

z b o M

• H f H • H

b co

(x

IA O rvi a,

o (M

f H 0)

» a 0

•H «•» U 3

T5 0 b

a, B

•H

o b

. . 0} 0- B O b ce ce U lx

a •o f H ai

• H X

z b CO 14

•H f H • H -»> b a

lx

« o rvj O

e o

•H 4« U 3

• o 0

a. u to a M -M

•* X o

u •• • a. e o u es a U b.

a •a f H ai

• H X

z b

H • H f H • H +* M O

h.

IA O INJ a.

O

H a> t» V

a 0

z *> < o H 3 05 T l

O o u h

a, w S) B M -W < X CO

M . . o> a. e O M ce a u u.

o •o (H «* •H X

z u c

•H r H

U <0

h.

I A O K l

a,

o f H 41 > O

n o

-H

U 3 •o O 11 a.

w z c < - H Cd co a

h . . q>

a. 8 O H as a U ( x

CO

TS f H CO

• H X

Z

u Cil

- H f H • H

« Cx

IA O

Q.

o rvj •x\

f H CD > a i

e o

• H 4J U 3

OS T3 U 0 3 x o a. ~i (x B Z -H 3 W O

M . . 0) i B o u a n U (X

m •o f H

CO

- r t X

Z

u a i N

- H f H • H «* X ai

t x

IA O rvi a.

o rvi

f H O > ai

a 0

•H

OT 3 z -o •« 0 U X 03 0 . < B X -H O ta o .. « 0-. E O b K a O tx

a •a f H » • H X

z b o M

• H f H • H

b co

(x

IA O rvi a,

o (M

f H 0)

» a 0

•H «•» U 3

T5 0 b

a, B

•H

o b

. . 0} 0- B O b ce ce U lx

a •o f H ai

• H X

z b CO 14

•H f H • H -»> b a

lx

« o rvj

352

B U N G . 4 5

c/3 U z o N

< u 3 o -1 o u UJ

ô o < o z < O f* <J Cx W O. C/5 -1 UJ > u -1 z O H U 3 O O Pi O.

u m <

O

2 a i

Q

< O O z D oa

H Z O N

W

S h. O O

< z M O CS « t

• A

X O

• w

C N

1

0

1

cc

to , - j o w < C B

C C M u,

~H a» >

- 3

C

0

- r l ** O

3

•o O

x

3 0 0 0

VD

CO CO

C ^

t ^ O 0 0

I A

I A 0 0

1 I A 0 0

H Z O N

W

S h. O O

< z M O CS « t

• A

X O

• w

C N

1

0

1

cc

to , - j o w < C B

C C M u,

~H a» >

- 3

C

0

- r l ** O

3

•o O

x

1-4

1—1

0 0 0

I A

O 0 0

0 0

vu I A

vu I A

H Z O N

W

S h. O O

< z M O CS « t

• A

X O

• w

• H

0 1

t E e

^ 2 C B

. - I «

• > o

r- l H

to , - j o w < C B

C C M u,

~H a» >

- 3

C

0

- r l ** O

3

•o O

x

M

0 0 I A

rvi

0 0 0

- X

O O H

H Z O N

W

S h. O O

< z M O CS « t

• A

X O

• w

• H

0 1

t E e

^ 2 C B

. - I «

• > o

r- l H

to , - j o w < C B

C C M u,

X

* > - H 3 r H O H

•C - P V X • H O S Ci,

O O O

I A

O

O I A

A l

o N

U

w <x (x O u 2 M

" t

X

M

X = 3

N

U

t

O (NI

1

CN

C

1 i n co

co -) o w • <

C B

C S

u 1 * .

a>

o ;

J

a o

•H •)->

O

3

•c 0

x

• H

M

O O O

0 0

CO CO t s 8

0

0 0 ( H

CJv O

ON

0 8 0

VO f - t

VO CO

vo CO

o N

U

w <x (x O u 2 M

" t

X

M

X = 3

N

U

t

O (NI

1

CN

C

1 i n co

co -) o w • <

C B

C S

u 1 * .

a>

o ;

J

a o

•H •)->

O

3

•c 0

x

O O O

O O O

VO

I A I A 0 0 0

ON

I A I A o N

U

w <x (x O u 2 M

" t

X

M

X = 3

N

U

t

•H L* f.

^H c ""» X = 0

E

u x

• H o

> r-1

co -) o w • <

C B

C S

u 1 * .

a>

o ;

J

a o

•H •)->

O

3

•c 0

x

M

O O O

I A

O O O

- 3 -

o\ ON 0 0 0

I A

ON ON

o N

U

w <x (x O u 2 M

" t

X

M

X = 3

N

U

t

•H L* f.

^H c ""» X = 0

E

u x

• H o

> r-1

co -) o w • <

C B

C S

u 1 * .

x « M

• s * H 3 rH O - H

£ * > *> X • r l «1 * to,

O O O

O O

O O [ N .

H O

< W

u t x t x O

o

X o

N • tol

<

(NI

• • i

c 0 C O

•1 o w o e-t M

z

i H • H O

co

rH V

0) J

C 0

- H +» O 3

O Li a<

M

o O o

0 0 I-I

o co

O

o-* O O O

O *

0 0

I A O O O

O rvj

ON i H r-1

<\l O r-1

O O O

I A A I

UN «H

A l I A

H O

< W

u t x t x O

o

X o

N • tol

<

(NI

• • i

c 0 C O

•1 o w o e-t M

z

i H • H O

co

rH V

0) J

C 0

- H +» O 3

O Li a<

3 o o o

co

r-t I A H

0 0 0

CO

J - KN O O O

CO

I A I A

O I A

O O O

O H

ON (M

H O

< W

u t x t x O

o

X o

N • tol

<

« x o

E B

t °

•O

a a •-„ 0 . CM IQ

• + ai *> a to*» c a •

> i H - H

C O

•1 o w o e-t M

z

i H • H O

co

rH V

0) J

C 0

- H +» O 3

O Li a<

-o o o

0 0 0

8 I A

tvj

O O O

« I A

H H

H O

< W

u t x t x O

o

X o

N • tol

<

« x o

E B

t °

•O

a a •-„ 0 . CM IQ

• + ai *> a to*» c a •

> i H - H

C O

•1 o w o e-t M

z

i H • H O

co

N +» * H 3 H O - H

J5 *> *> X • H « 3 to.

O o o

vo­

0 0 I A

O O O

O O O

rA

H O

< W

u t x t x O

o

X o

N • tol

<

« x o

E B

t °

•O

a a •-„ 0 . CM IQ

• + ai *> a to*» c a •

> i H - H

C O

•1 o w o e-t M

z

i H • H O

co

+» • H d

3

w ta te u X

Ä te X

to to X ^ b0

X «0 CO IP *ft to

X t o

X to X

to « to X

to X

* to

• * .

to X

to X

to X

to X

H O

< W

u t x t x O

o

X o

N • tol

<

« x o

E B

t °

•O

a a •-„ 0 . CM IQ

• + ai *> a to*» c a •

> i H - H

C O

•1 o w o e-t M

z

i H • H O

co r H a»

a •0 P H 0)

•M X

z

« • H M • H

U S) to.

1 A O rvi a.

o 51

r-t S)

• >

w § 2 **

s ° 2 £ S" co a

. . ©

a. e 0 u ce a 0 u.

n • 0 rH V

•H X

z k>

• H

l x

I A 0 Of a.

• 0 IM

r H O > CD

C O

** U

3 • O

S2 CO ^ 1 < U 0

X . . 9

a. B O X as a O to.

•o M V

•A X

z

X

N • H i-i •rl ±> X V

to.

I A O <\J a. S

0-4

> ft)

x j

C 0

• H

ï ° £ * g-5 CO Q

X . . 0

3 . B O X es m O to.

a •a

V

•r* X

z X

a> N

-rt

•H

X ai

to,

I A O AJ

a.

0 (M

r H e > J a 0

•H

3

•a 0

X

a.

a • r l

O X .. «

a, E 0 x ce a U to.

a • 0

H

- H X

z X

M •H r H • H -P X «1 to.

f O A I s:

P H 0) « • « a 0

Ü 3

• 0

O

X

a,

c •*H O X

* . ai

ft 8 0 X es a O to,

a • 0

f\ a>

• H

X

z X

e N

•H r H • H

X 0) to.

I A O ru a.

0 A l o

J c o

• H

O

3 •o

CO 0

s «< o a, ? ° S-H

û- a " © a, e

O h as a O I x

a •0 P H 0)

•M X

z

« • H M • H

U S) to.

1 A O rvi a.

o 51

r-t S)

• >

w § 2 **

s ° 2 £ S" co a

. . ©

a. e 0 u ce a 0 u.

n • 0 rH V

•H X

z k>

• H

l x

I A 0 Of a.

• 0 IM

r H O > CD

C O

** U

3 • O

S2 CO ^ 1 < U 0

X . . 9

a. B O X as a O to.

•o M V

•A X

z

X

N • H i-i •rl ±> X V

to.

I A O <\J a. S

0-4

> ft)

x j

C 0

• H

ï ° £ * g-5 CO Q

X . . 0

3 . B O X es m O to.

a •a

V

•r* X

z X

a> N

-rt

•H

X ai

to,

I A O AJ

a.

0 (M

r H e > J a 0

•H

3

•a 0

X

a.

a • r l

O X .. «

a, E 0 x ce a U to.

a • 0

H

- H X

z X

M •H r H • H -P X «1 to.

f O A I s:

P H 0) « • « a 0

Ü 3

• 0

O

X

a,

c •*H O X

* . ai

ft 8 0 X es a O to,

a • 0

f\ a>

• H

X

z X

e N

•H r H • H

X 0) to.

I A O ru a.

0 A l

3 5 3

B U N G . 46

(/! U Z O IM - I < U 3 o - j o u u Ó a! a •< a

ft O

w -J

z o H O a o Bf! eu

w « < H

y 5 c/i

S < s o o z D co

M Z O S )

z o 6H

S u fA Z J

W

c r~ r\j 1 0

r-> I N

C 0

1 0

W H ) O

< as as u t v

ai > 01

J

c 0

•H

u 3 ta o '~ a.

i-t "H

o o IA O

O I A

I A

CO CV rH

S O o

VJ0

r -

CM rA •H

M Z O S )

z o 6H

S u fA Z J

W

c r~ r\j 1 0

r-> I N

C 0

1 0

W H ) O

< as as u t v

ai > 01

J

c 0

•H

u 3 ta o '~ a.

rH

M Z O S )

z o 6H

S u fA Z J

W

CD

0

W H ) O

< as as u t v

ai > 01

J

c 0

•H

u 3 ta o '~ a.

1-1

o o 'M;

M Z O S )

z o 6H

S u fA Z J

W

CD

0

W H ) O

< as as u t v

4-> -rt 3 W O H

£ - P •W U • H 0) 3 t u

O O <\J

O O -3-

c\l

o o J -

2 O N

U Z < U

as

o

CO

es

< x

M

X J

• H

<

L I CN m 1

ri

0

1 L-l

O

«« es os W Ex

rH 01

01

_)

3 •H O 3 •o O U

0 .

M M

O

o

I A

O O H

O I A

O O o

0 0

I A I A ro -

O O O

H

ro

r-l

I A 2 O N

U Z < U

as

o

CO

es

< x

M

X J

• H

<

L I CN m 1

ri

0

1 L-l

O

«« es os W Ex

rH 01

01

_)

3 •H O 3 •o O U

0 .

1-1 rH

O O O

0 0

0 0 Cv

2 O N

U Z < U

as

o

CO

es

< x

M

X J

• H

<

0 U

, 0

~ e

^ c cz

' LT»

- H ^

O

«« es os W Ex

rH 01

01

_)

3 •H O 3 •o O U

0 . l-t

O O O

2 O N

U Z < U

as

o

CO

es

< x

M

X J

• H

<

0 U

, 0

~ e

^ c cz

' LT»

- H ^

O

«« es os W Ex

o * * - H 3 r-( O - r i

j e ^1 *> u •r i <i 3 U .

8 0 0

o o -3-

I A

o o o t v

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

'ro u n

C

r- o C m

W | J O W • J

<

s

1-4 • H 0

CO

r-4 « CO

J s o

•rt

O 3

O re

a,

1H M t - l

8 I A

IA O

rH LA

O

8 t v c\J

o o I A

0 0

o 0 0 I M

X I A o o o o* I A

ro rA

0 0

H

O o O

CA t v

Cv IA H

Cv

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

'ro u n

C

r- o C m

W | J O W • J

<

s

1-4 • H 0

CO

r-4 « CO

J s o

•rt

O 3

O re

a,

t-t

8 o

0 0 % 8 o CM

H

oo o H

CM o o O

O

Cv VO

IA IA CM

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

« 0 8

U B O

cs H CM

•a

k> "0 w o a "-» a, cxj o

>> • + c«

t e * > « B C

> r-l i - I

W | J O W • J

<

s

1-4 • H 0

CO

r-4 « CO

J s o

•rt

O 3

O re

a, M

O

8 o 1 -1

CM t v

CO I M

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

« 0 8

U B O

cs H CM

•a

k> "0 w o a "-» a, cxj o

>> • + c«

t e * > « B C

> r-l i - I

W | J O W • J

<

s

1-4 • H 0

CO

« 4J - r t 3 f-4 0 - H

J3 * > * > U • H O » Pv

O o o

o o o

o o I A

o o o

V 0

O o I A

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

« 0 8

U B O

cs H CM

•a

k> "0 w o a "-» a, cxj o

>> • + c«

t e * > « B C

> r-l i - I

W | J O W • J

<

s

1-4 • H 0

CO

4* t* a

9 w cc tO

X ba « tc

X CC

* « bO

JC co

X 1 CO * to X

bO X

to X

CC V I to

X to to

X bO

X 1Ä to X

to to to X

U Z o

u Z

o CE

< a 9

CO

H

£

• •

U

<

« 0 8

U B O

cs H CM

•a

k> "0 w o a "-» a, cxj o

>> • + c«

t e * > « B C

> r-l i - I

W | J O W • J

<

s

1-4 • H 0

CO H

co ai

co

i H V

X

z b V M

• H rH • H +»

O Cm.

I A O I M

O .

o PU

H a> > a>

co 1-4 co < a as o O - H

• * O Z 3 « * TJ ca o - v t-Œ CU u M C

< z o .. « a. e o t. ce a U b,

co •o r H 01

•H X

z

c N

•H r H --H * i U 0>

b .

f O ro

f - l O s-01

r J

c o

• H i > u 3 •o O u

a.

c < -n Cd H co

t . . . oi a. s O u « « U b.

• o

0)

z u 01

• H

•rt

kt 01

tv

1 o r j ^s

ai > 01 ~> c 0

• H *> u 3

13 O

CO U < 3 . Z «e c Z - H

ca m u

.. o> a. B o u es a U tv

a •o V

•rt X

z

u a>

•r* r-l - H i >

01 t v

I A O CM

O.

o 'M

r H 01 > 0>

J

a 0

•H U

U 3 z -o < 0 U u

a. as < a

co a u

. . 0) a. s O v ce a O tv

h et 01 v .

> T )

» 'ri > •

Z

0>

N

• H

• H

H

01

Cv

I A O IM

O CM

Ï S

01 > e J

a 0

• H

U 3

• o O M

z a. o n c

S " u o

u .. o> a. B o u as o) U tv

a •o r H 01

• H

Z

h O N

•H r-C • H *» h 01

t v

I A O CM û.

o ru a:

u « < ^ U c as o S - H H * • CO u

? = a« -o

o •J h < a. as s a E< - H < z a •• e GH B o u os « O tv

co

i H V

X

z b V M

• H rH • H +»

O Cm.

I A O I M

O .

o PU

H a> > a>

co 1-4 co < a as o O - H

• * O Z 3 « * TJ ca o - v t-Œ CU u M C

< z o .. « a. e o t. ce a U b,

co •o r H 01

•H X

z

c N

•H r H --H * i U 0>

b .

f O ro

f - l O s-01

r J

c o

• H i > u 3 •o O u

a.

c < -n Cd H co

t . . . oi a. s O u « « U b.

• o

0)

z u 01

• H

•rt

kt 01

tv

1 o r j ^s

ai > 01 ~> c 0

• H *> u 3

13 O

CO U < 3 . Z «e c Z - H

ca m u

.. o> a. B o u es a U tv

a •o V

•rt X

z

u a>

•r* r-l - H i >

01 t v

I A O CM

O.

o 'M

r H 01 > 0>

J

a 0

•H U

U 3 z -o < 0 U u

a. as < a

co a u

. . 0) a. s O v ce a O tv

h et 01 v .

> T )

» 'ri > •

Z

0>

N

• H

• H

H

01

Cv

I A O IM

O CM

Ï S

01 > e J

a 0

• H

U 3

• o O M

z a. o n c

S " u o

u .. o> a. B o u as o) U tv

a •o r H 01

• H

Z

h O N

•H r-C • H *» h 01

t v

I A O CM û.

o ru a:

3 5 4

B U N G . 47

to LJ Z O N -1 < (J

3 o _i o u UJ

Ó et O < Q Z < a. O at u at ld a. vx -J w > Lil - I Z O p u Q o a.

w - j

« <

U

2 H S < s o o z D sa

u z o N

Z o

s o I A

z

N

• <

0

r\i 1 0

0 C

1 C

CD

J O ta -3 «S CE

os ta

a* > 0)

S 0

•rt -*> U 3

•o 0 t ,

3 ,

^H

O O

OO

O o

»A vu

r- l I A

o o IA

O •f

ru

l"v-I A

O O ru

OO r H

ON

u z o N

Z o

s o I A

z

N

• <

0

r\i 1 0

0 C

1 C

CD

J O ta -3 «S CE

os ta

a* > 0)

S 0

•rt -*> U 3

•o 0 t ,

3 ,

l-t

O o o

ru

eu O PJ

o o o

ru

oo VO

O" O J -

o o ru

O -3-

ru I A

o o ON

u z o N

Z o

s o I A

z

N

• <

0

0

et i

H 0

B —

J O ta -3 «S CE

os ta

a* > 0)

S 0

•rt -*> U 3

•o 0 t ,

3 ,

»H

o o 0 0

l-t

r H r H o o IA

O tA ru

O 0 0

ru ru ru 8

I A

u z o N

Z o

s o I A

z

N

• <

0

0

et i

H 0

B —

J O ta -3 «S CE

os ta

14 +> - H 3 r H O H

•H O 3 tv.

o o I A

O O

0 0

rH

O O >A

H

o o

u z o

Z

« os < ta => to

o 05 <t X

£

• ta

U

<

OJ m 1 0

C r i

1 in

J o to

< os ce u ta

> -9

Q 0

• H -fc» U 3

•O 0

a,

Ht f-t

o o m

- 3 -

0 0 I A

O o IA

J -

I A O I A

O O IA

O IA

J -

ru 0 0

ru oo

o O

0 0

VO I A S o

o vc

H

IA H

ri i-l

u z o

Z

« os < ta => to

o 05 <t X

£

• ta

U

<

OJ m 1 0

C r i

1 in

J o to

< os ce u ta

> -9

Q 0

• H -fc» U 3

•O 0

a,

*-* O o o I A

ru IM

O ru

O o IA

ru

C l O IA

O O

IA

-3- O -3-

O O ru

i-t

O O O

r H

u z o

Z

« os < ta => to

o 05 <t X

£

• ta

U

<

C' u 0

K U ">' °

J o to

< os ce u ta

> -9

Q 0

• H -fc» U 3

•O 0

a,

M

o o

ru

o o . IA

c o J -

o ru

ru

O O

0 0

O o VO

u z o

Z

« os < ta => to

o 05 <t X

£

• ta

U

<

C' u 0

K U ">' °

J o to

< os ce u ta

t. e

+> - H 3 H O -H

JZ * > * • U •rt 0) 3 ta

o o I M

ru

O O oo

ru

O O ru

ru

O o ru

H

o o »A

H

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

-1- c m

0

• • 1 T C C m r\t * -

2 o

ce as u ta

H - H O

w

H Oi

0 - ) C 0

•H +> O 3

O »4 a,

M t - t r-l

O O I A

-3"

f -oo

1-4 OO 8

o

O IA

O O -a-

O I A

J -

O 1-1

IA O N

o o IA

rH

I A l-t

ru r-i

O o oo

H

IA ru t A

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

-1- c m

0

• • 1 T C C m r\t * -

2 o

ce as u ta

H - H O

w

H Oi

0 - ) C 0

•H +> O 3

O »4 a,

M l-t

o o o r<-\

(\1

-a- rA o o o tA

H tA

tA ru

O IA

O O

K\

J - I A I A

O IA oo

O O ru

H

O H

cv

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

k> o e

e o C O

<-t H ru

•o O 4-i

"S ^ m

h fl r-o B -

eu ru to >> • + B

« o a 5» * H -rt

2 o

ce as u ta

H - H O

w

H Oi

0 - ) C 0

•H +> O 3

O »4 a,

H

O o o PO

ru i-l i - l

O o LA

O o

I A

O

o ru

VD ru

ru ru

O O 8

VO

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

k> o e

e o C O

<-t H ru

•o O 4-i

"S ^ m

h fl r-o B -

eu ru to >> • + B

« o a 5» * H -rt

2 o

ce as u ta

H - H O

w

C

*> i H 3 f - l 0 - H

.0 * • *> h •H O 3 (x

o o vD

O o ru

ru

O o VO

r-t

O I A 0 0

o I A

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

k> o e

e o C O

<-t H ru

•o O 4-i

"S ^ m

h fl r-o B -

eu ru to >> • + B

« o a 5» * H -rt

2 o

ce as u ta

H - H O

w

• r i a

3 Ï

•« te to ta « ta .M « te ce

X te X X * to

X 60 X S te

• * «0 X

to te X •s i&

to X

te to X

te X

U Z o SI u z «c u

os < a Ö

w

X

• •

U

<

k> o e

e o C O

<-t H ru

•o O 4-i

"S ^ m

h fl r-o B -

eu ru to >> • + B

« o a 5» * H -rt

2 o

ce as u ta

H - H O

w •-t

T3 rH » - H

z

• H f - l ^ 1 +» U

ta

O ru o.

o ru

rH SI > 0) J

a 0

• H

U 3

• a

S0-OS i-I O C0 to

u . . ai a, B O u os « O ta

to • o rH 4)

• H

z

N

rH • H

U ai

ta

t A O

a, o ru

l-t

> o -a

B

g"2

a. U N E

x a .. v a. B o u os a U ta

IC •o

«> •H

z 11 01

•rt i-H • H

U

ta

I A

o ru a.

o ru S

01 S» 0>

l •H 4> U

T3 O U

to °-z c

s -CC to

u . . 0) a. B O u os « O ta

a •v rH 0.'

•rt X

Z

u a> tg

•rt r H • H ** U a>

ta

f o ru s :

•-H a> > 0)

a O

• H * J U

os .§ « 0

3 û-z D

tO o

. . 01 O , E O t i

os a Ü ta

10 •o 1-1

s

z

0) N

•H H •rt

01 ta

I A o ru 0 , |

>

B 0

•H

1 2

S " to œ

u . . oi a. B o », os a O ta

a •a r^ a>

• H

z u, o

- H

•H

a> ta

tA O ru a ,

o ru ai

m -) e 0

• H * J O 3

T3 O

a. u a a »-t . *

< x a

L, .. «, CM S O u os e u ta

T3 rH » - H

z

• H f - l ^ 1 +» U

ta

O ru o.

o ru

rH SI > 0) J

a 0

• H

U 3

• a

S0-OS i-I O C0 to

u . . ai a, B O u os « O ta

to • o rH 4)

• H

z

N

rH • H

U ai

ta

t A O

a, o ru

l-t

> o -a

B

g"2

a. U N E

x a .. v a. B o u os a U ta

IC •o

«> •H

z 11 01

•rt i-H • H

U

ta

I A

o ru a.

o ru S

01 S» 0>

l •H 4> U

T3 O U

to °-z c

s -CC to

u . . 0) a. B O u os « O ta

a •v rH 0.'

•rt X

Z

u a> tg

•rt r H • H ** U a>

ta

f o ru s :

•-H a> > 0)

a O

• H * J U

os .§ « 0

3 û-z D

tO o

. . 01 O , E O t i

os a Ü ta

10 •o 1-1

s

z

0) N

•H H •rt

01 ta

I A o ru 0 , | st

>

B 0

•H

1 2

S " to œ

u . . oi a. B o », os a O ta

a •a r^ a>

• H

z u, o

- H

•H

a> ta

tA O ru a ,

o ru ai

355

BUNG. 48

c/3 W Z O SI -J < u 3 o - j o u w ó cd o < Q Z < O . O ei u öS u 0.

> (d -1 Z O H (J 3 Q O Bi BU

2

D O

H

y 2 H S < s o o z D «

U z o N

Z o ei o o I A

z:

N

U

• <

CM

1 C

r-N

0 0

1

co

03

O to < cc CE U

u.

> -) s 0

• H -U

3 •o o u

a .

•-< o o NO

ON 0 0 r H

O O ro r H

o o o

O0

l A KN,

I A ON

o o o

M

(NJ NO

U z o N

Z o ei o o I A

z:

N

U

• <

CM

1 C

r-N

0 0

1

co

03

O to < cc CE U

u.

> -) s 0

• H -U

3 •o o u

a .

«H

o o ON

o o o

o <-<

m l A

ON KN.

O O

o ON

f-< l A CNJ

U z o N

Z o ei o o I A

z:

N

U

• <

m ' - ' o

r-l i r ,

03

O to < cc CE U

u.

> -) s 0

• H -U

3 •o o u

a .

M

o o J -

o o o

NO

t-l r H H

o o o

l A

U z o N

Z o ei o o I A

z:

N

U

• <

m ' - ' o

r-l i r ,

03

O to < cc CE U

u.

a>

+> -H 3 r H O ••*

JZ *> • u fcc •r t ©

o o o

I-H

o o CN.

o o ir\ d-

O O lA

lA

W s o Cs!

U Z < o

CE < O

=> M

a CE « z

CM

X

M

U

• <

i n

0

1 03

3 03

CE CE U h .

a> > 01

a o

•H •U U 3

73 0 b

Q.

M • H

o o

NO

H

H rH 8 o CO (M

o r-< CM

J " r H

O O o

O lA rA

W s o Cs!

U Z < o

CE < O

=> M

a CE « z

CM

X

M

U

• <

i n

0

1 03

3 03

CE CE U h .

a> > 01

a o

•H •U U 3

73 0 b

Q.

*-4

o o

O O O

M rH

o lA

l A I A

o o o

W s o Cs!

U Z < o

CE < O

=> M

a CE « z

CM

X

M

U

• <

0 IJ 0

• H E

a M \ 0

C ^ f—i r -

03

3 03

CE CE U h .

a> > 01

a o

•H •U U 3

73 0 b

Q.

M

o o

O O O

0 0

o CN. o o o

1A

W s o Cs!

U Z < o

CE < O

=> M

a CE « z

CM

X

M

U

• <

0 IJ 0

• H E

a M \ 0

C ^ f—i r -

03

3 03

CE CE U h .

t . O

*> * H 3 i H O - H

£ * > •M h • H 01 ï b.

o o r\l

I-t

o o o CN-

O O O

g N U Z < o CE < a a 03

•-4

£

• •

U

? °

0

• • 1 'Z 0

02 «4 O 03 J «* CE CE W U .

H • H 0

03

rH

> O

a o

• r i

U 3 •o O u a.

2 o o I A

NO r-l

l A r H

o o o

0 0

ru

lA l-t

M l A r H

o

8 r H

NO I A NO

o O o

o

0 0 ON

oo ON

o o o 0 0

1 A l A CO

g N U Z < o CE < a a 03

•-4

£

• •

U

? °

0

• • 1 'Z 0

02 «4 O 03 J «* CE CE W U .

H • H 0

03

rH

> O

a o

• r i

U 3 •o O u a.

3 o o

'ON

o o o

o* H

l A l A INJ

O O O

CN

-s- O . O O O

0 0

-s-H

-s-r H

o o o

NO

g N U Z < o CE < a a 03

•-4

£

• •

U

O t-o E

U

e o c o

r H

H r» •o 0 i - '

• H « W h -a T-e o -a« ru o • + B

• P O t c * > C O Q

02 «4 O 03 J «* CE CE W U .

H • H 0

03

rH

> O

a o

• r i

U 3 •o O u a.

M

o I A I A

o o o

NO

O O LA

O O

o rA

c o o

•3-

g N U Z < o CE < a a 03

•-4

£

• •

U

O t-o E

U

e o c o

r H

H r» •o 0 i - '

• H « W h -a T-e o -a« ru o • + B

• P O t c * > C O Q

02 «4 O 03 J «* CE CE W U .

H • H 0

03

a N

•M - H 3 i H 0 - H

J3 * > +> h • H O

o o o

r H

o o l / \

NO

O O O

O O O

NO

O o o

NO

g N U Z < o CE < a a 03

•-4

£

• •

U

O t-o E

U

e o c o

r H

H r» •o 0 i - '

• H « W h -a T-e o -a« ru o • + B

• P O t c * > C O Q

02 «4 O 03 J «* CE CE W U .

H • H 0

03

4» • H C

3

ï f t to JE

te JE

te JE

ta JE « te to te « te

JE te te

JE te

JE ïft te JE

te JE

te JE

te JE

ï«. te JE

te JE

te JE 3 * te

JE te JE

te JE

te JE

g N U Z < o CE < a a 03

•-4

£

• •

U

O t-o E

U

e o c o

r H

H r» •o 0 i - '

• H « W h -a T-e o -a« ru o • + B

• P O t c * > C O Q

02 «4 O 03 J «* CE CE W U .

H • H 0

03 a>

10

« •H X

z

•H r H • r i 4* U

« ( X

IA O r\J a.

o PO

M 0> r> 0)

>-) a o

^H 4J O 3 •a o — u

5 °-w a 5 " os «

h

.. o a. e o u CE a U b.

a • o

V • H X

z

u o H

•H r H «H

a> u .

1 A O <N|

a.

o ni

a> > a >J

B 03 o

S -S 5 u

6 f ? o

B : M - H

03 a u

.. o a s O h œ a u t«

CD

•o

« - r i

z

a>

- H rH • r i •w u V

1 A O CNJ

a.

O

NE

O !> 0)

0 • H

3

2 °

< . . a> - s O u. CE a U ( x

co • o r-t V

•rt X

Z

U 9> N

• H r H - H *> U a>

u .

lA O fNl d.

o CNJ

NE

r H

>

a o

•H •b> O 3

•a

« 2

S ° CQ *r4

u ai . . ai a. E O t. CE a U h

a •o

a> • r i X

z

u CO

• H

r H • H •fc»

l .

eu u .

1 A O rvj o. 1

r H 0)

B 0

T t

O M - j

X °" 5 c »E - r i => 03 D

ki

.. « a, B o u, CE a

m

ai

• r i X

z

U

o H

• H r i • H

ai

<A o ru a,

O 'M

NE e

c 0

• H

« 3 g « 5 «« Q a, z

2 •" CE O IQ .. o a. e O h es a

10

« •H X

z

•H r H • r i 4* U

« ( X

IA O r\J a.

o PO

M 0> r> 0)

>-) a o

^H 4J O 3 •a o — u

5 °-w a 5 " os «

h

.. o a. e o u CE a U b.

a • o

V • H X

z

u o H

•H r H «H

a> u .

1 A O <N|

a.

o ni

a> > a >J

B 03 o

S -S 5 u

6 f ? o

B : M - H

03 a u

.. o a s O h œ a u t«

CD

•o

« - r i

z

a>

- H rH • r i •w u V

1 A O CNJ

a.

O

NE

O !> 0)

0 • H

3

2 °

< . . a> - s O u. CE a U ( x

co • o r-t V

•rt X

Z

U 9> N

• H r H - H *> U a>

u .

lA O fNl d.

o CNJ

NE

r H

>

a o

•H •b> O 3

•a

« 2

S ° CQ *r4

u ai . . ai a. E O t. CE a U h

a •o

a> • r i X

z

u CO

• H

r H • H •fc»

l .

eu u .

1 A O rvj o. 1

r H 0)

B 0

T t

O M - j

X °" 5 c »E - r i => 03 D

ki

.. « a, B o u, CE a

m

ai

• r i X

z

U

o H

• H r i • H

ai

<A o ru a,

O 'M

NE

356

K A K A M E G A D I S T R I C T

C o n t e n t s District page

Natural Potential 3

Introduction 3

Climate Tables 4

Rainfall Maps 5

Agro-Ecological Zones Map 8

Agro-Ecological Zones, with Land Use Potential and Water Availability & Requirement Diagrams 9

Soil Map 13

Soil Distribution, Fertility and Major Characteristics 14

Population and Land 16

Population per Location and Division 16

Household Composition per Location and Division 17

AEZ — Land Area Available per Location, Division, and per Household and Person 18

Land Sites in Former Scheduled Areas 18

Agricultural Statistics (Area, Production, Yields and Number of Growers of Major Cash Crops) 19

Tea - Area - Production - Growers - Yields - Returns 1975/76-1979/80 19

Coffee - Area - Production - Yields 1974/75 - 1979/80 20

Small Farm Survey 20

Farm Organisation According to Farm Size Groups 22

Assets, Land Use, Farming Intensity, Inputs 24

Cropping Pattern 26

Herd Composition (Grazing Livestock) 28

Inputs and Yields of Major Crops '. 30

Disposal of Crops 32

Distribution of Farming Activities per Month 33

Production Levels per Crop and Agro-Ecological Zones, Output and Nutrient Input 39

357

KAK. 3

N A T U R A L P O T E N T I A L

INTRODUCTION This district has one of the highest population densities of Kenya. In several locations, more than 700 people must live on the agricultural output of a sqkm. This figure, as well as a high annual rainfall averaging between 1 200 and 2 100 mm, suggests a high potential area, there are, however some limitations: in the center of the district rainfall is too high, leaching the soils and spoiling the crops (mainly by favoring fungus diseases). Therefore, this area is classified as UM 0 and is thus taken out of agricultural planning as a forest zone (of course some cropping is possible together with planting young trees). In large parts of the district the soils are the main problem. They are leached because of their age, poor, and in many places worn out. In the northeastern areas the generally humid climate is interrupted by droughts restricting cultivation of important perennial plants like bananas.

In view of the increasing population, the development of the full land use potential of a mixed farming ecosystem is very neces­sary, especially considering legumes, other vegetables, fruits and forage. In the main area, cultivation is possible troughout the year, although the time from December to February is drier (see Diagram Kakamega). Nevertheless, three harvests of vegetables and other quickly maturing crops are possible per year in many places. The growing periods shown in the subzones can be variated because there is no real dry gap between the rainfall peaks during the year. Only towards the end of the year and during the first weeks of the next one it becomes drier, although normally it is not an arid time except for the North-East.

The rainfall expectation is high, at least 500-1 100 mm during 1st rains and 450-850 mm during 2nd rains in 6 out of 10 years. The 60 % reliability of the length of the growing periods ranges from 365 days in UM 1 to about 230 days in UM 4 (see Table 3). In the eastern part of the district (in UM 0 and UM 1) the annual mean temperature is about 18°-20.5°; in the rest of the district it is higher than 20.5°.

Due to the wet climate evaporation is not high, 1 600-1 800 mm per year for nearly the whole district. Only in the very lowest parts,, the annual average evaporation is higher than 1 800 mm.

KAKAMEGA DISTRICT

TABLE 1: RAINFALL FIGURES FROM VARIOUS STATIONS having at least 10 years of records up to 1976

No. and

altidude Name of Station

Years

of rec.

Kind of

rec.

Ann. rainf.

mm Jan. Feb. Mar. Apr.

Mon

May

thly rainfall in

June July

mm Aug. Sept. Oct. Nov. Dec.

8934001

1 554 m

Kakamega District

Office

55 Average

60% prob.1'

1 930

1 729

60

32

95

56

151

112

254

216

260

230

190

161

164

147

230

197

186

156

134

118

118

81

87

58

8934002

1463 m

Bukura Farm Institute 52 Av. 1 788 52 91 161 257 247 157 131 187 161 127 123 94

8934009

1 615 m

Kaimosi Mission 34 Av.

60% 1 815

1 543

74

34

100

39

154

101

259

242

251

229

165

120

157

127

198

172

161

118

120

77

108

57

78

59

8934013

1 340 m

Mumias, Girl's School 41 Av. 60%

1 756

1 579

58

31

80

56

155

106

258

236

258

240

168

147

136

115

155

127

164

154

139

122

115

72

71

50

8934028

1 676 m

Kakamega Forest

Station

38 Av.

60%

2 025

1 866

88

53

108

101

148

156

279

288

289

218

195

187

171

169

220

217

173

144

140

145

122

109

93

64

8934031

1 463 m

Yala, St. Mary's School 34 Av.

60%

1 832

1 613

73

37

89

98

145

135

277

251

264

261

150

125

118

96

165

158

154

131

136

137

145

146

116

77

8934040

1 433 m

Butere Health Centre 34 Av. 60%

1 840

1 649

55

22

94

44

162

131

298

270

260

235

152

144

117

90

171

144

177

143

144

117

118

92

92

51

8934061

1 595 m

Malava Dispensary 29 Av. 60%

2 085

1 871

55

25

78

32

164

85

244

214

294

251

204

163

212

162

257

190

205

147

173

147

115

65

83

34

8934071

1 905 m

Turbo, Stanley Estate 28 Av. 1 332 39 42 78 157 166 142 155 225 134 82 59 52

8934078

1 707 m

Esirwa, Kaimosi F.T.C. 36 Av. 2 119 78 88 160 282 301 197 190 235 202 162 122 103

8934096

1 585 m

Kakamega, Exp.

Station

18 Av. 1 918 55 111 178 240 239 150 133 224 172 169 152 98

8934103

1 585 m

Vihiga, Maragoli 23 Av. 1 875 91 106 169 290 242 125 102 158 144 144 161 140

8935015

1 829 m

Turbo, Forest Lands

Estate

59 Av. 1 258 36 43 75 151 153 141 184 229 112 60 53 21

8935042

1 844 m

Lahre Farm 38 Av. 1 194 30 32 67 154 174 132 168 191 100 58 51 36

8935076

1 890 m

Turbo, Selborne Estate 29 Av. 1 169 35 40 72 142 148 124 147 202 108 67 43 40

These figures of rainfall reliability should be exceeded normally in 6 out of 10 years

359

KAK. 4

KAKAMEGA DISTRICT

TABLE 2: TEMPERATURE DATA

No. and Name of , _ „ n AEZ1-"

altitude Station

Kind of

records

Temperature in °C

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year

Y. of

rec.

8934028 Kakamega UM

1 676 m Forest Station 0

lp

8934009 Kaimosi UM

1615 m Mission 1

(operating lp

to 1949)

8935012 Soy, Kazi UM

1 885 m Moto Estate 4

(operating hp .

to 1936)

Mean max. 27.1 27.2 27.7 26.0 25.8 25.2 24.4 23.8 25.0 25.3 25.7 25.9 25.8

Mean temp. 19.0 18.8 19.7 19.3 19.0 18.3 18.0 17.5 17.8 18.4 18.9 18.7 18.6

Mean min. 10.8 10.4 11.7 12.6 12.2 11.3 11.6 11.1 10.6 11.5 12.0 11.4 11.4

Abs. min. 5.0 4.4 5.0 9.0 8.0 8.0 8.0 5.0 5.0 8.0 7.8 6.0 4.4

Mean max. 26.8 27.4 27.1 26.5 26.0 25.3 23.8 24.9 25.9 25.7 25.4 26.2 25.9

Mean temp. 21.1 21.6 21.4 21.1 20.5 20.1 19.3 19.8 20.4 20.4 20.6 20.8 20.6 8

Mean min. 15.3 15.7 15.7 15.6 14.9 14.8 14.8 14.7 14.9 15.0 15.8 15.4 15.2

Abs. min. 10.0 9.4 10.0 10.0 8.3 8.9 8.9 8.9 10.6 10.6 11.1 8.9 8.3

Mean max. 28.9 27.9 27.4 25.8 25.3 23.9 24.3 25.2 26.6 27.3 27.3 27.3 26.4

Mean. temp. 20.2 19.9 20.4 20.3 19.4 18.2 17.5 17.5 17.6 19.1 19.9 18.9 19.1

Mean min. 11.4 12.0 13.3 13.2 12.9 11.0 11.1 10.6 10.0 11.6 12.4 10.4 11.7

Abs. min. 3.9 5.6 7.8 8.9 8.3 4.4 5.6 5.6 6.7 7.8 8.3 3.3 3.3

' AEZ = Agro-ecological zone; lp = lowe'r places, hp = higher places within the zone

KAKAMEGA DISTRICT

TABLE 3: CLIMATE IN THE AGRO-ECOLOGICAL ZONES

Agro-Ecological Subzone Altitude Annual mean Annual av. 60 % re iability 60 % reliability

Zone in m temperature rainfall of rain fall1 ' of growing period

in°C in mm 1st rains

in mm

2nd rains

in mm

1st rains^' 2nd rains

in days in days

Total3 '

in days

UM0

Forest Zone 1 500-1 700 19.6-18.6 2 000-2 200 900-1 100 700-850 whole year very wet

UM 1 p or two/ 1 800->2 000 800-1 000 700-800 150 or more 210-215 365

Coffee-Tea Zone three 1 500-1 800 20.4-18.1 Coffee-Tea Zone

p or two

1 500-1 800 20.4-18.1

1 600 ->2 000 700-1 000 650-800 150 or more 210-215 365

UM 2

Coffee Zone Very small see Bungoma

UM 3

Marginal Coffee Very small see Bungoma

Zone

UM 4 1/vl or

Sunflower- two 1 500-1 900 20.9-18.9 1 000-1 600 500-700 450-600 115 or more 115 or less ^ 2 3 0

Maize Zone

LM 1

Lower Midland

3 or two

1 300-1 500 22.0-20.8

1 800-2 000 800-900 580-750 170 or more 180-190 350-360 LM 1

Lower Midland vi i or 1 300-1 500 22.0-20.8

Sugar Cane Zone l ^ m i 1 650-1 850 750-850 550-730 195 or more 135-145 330-340

LM 2

Marginal Sugar

1 ~ (m/s)i

1 300-1 500 22.0-20.9

1 550-1 950 700-900 550-700 195 or more 115-135 310-330 LM 2

Marginal Sugar 1/m,-, 1 300-1 500 22.0-20.9

Cane Zone (s/m) 1 500-1 800 650-750 500-600 175 or more 105-115 280-290

LM 3

Lower Midland Very small, see Bungoma

Cotton Zone

LM4

Marginal Very small, see Busia

Cotton Zone

*) Amounts surpassed norm, in 6 out of 10 years, falling during the agro-humid period which allows growing of most cultivated plants

2) More if growing cycle of cultivated plants continues into the period of second rains 3 ' Agrohumid conditions continue from 1st to 2nd rains in the whole district

360

3 4 1 » E 35'IE

KAKAMEGA

AVERAGE ANNUAL RAINFALL

in mm

+ SOILS

1600 S

9034

Mm. of Agr.. German Agr Team, R Jaetzold Soils KSS

25 km

2r\ Temperature recording station,

^ operat ing 1976. Q closed

4- Rainfall recording station, operating 1976 ° °

and having at least 10 years of records

78 Station number in grid

9035 Grid number

Broken boundaries are uncertain because ol lack ol rainlall records

9035

KAKAMEGA

ELIABILITY OF RAINFALL IN AGROHUMID PERIOD

OF FIRST RAINS II

• M d

+ SOILS

1 i * .^-—

A ^ r

I "i pi ".M IMIIIII H lano'iin

34130 E 35-1E

KAKAMEGA

60% RELIABILITY OF RAINFALL IN AGROHUMID PERIOD

OF SECOND RAINS Aug. Jan. or less

Amounts In mm, surpassed n o r m , in 6 out ot 10 years

+ SOILS

5 10 '5 20 2 S k m

Min of Agr.. German Agr Team. R. Jaetzold Soils KSS

KAKAMEGA

AGRO - ECOLOGICAL ZONES

+ SOILS

y\ \ tv... % Vvl or two

r

ûgjgj S'ühylower.'.}.'.Maize

Zone Lumi

V r

/ "

-".r:T /^<m) ^*J* I- (sim)

\ UM Margmal Sjgar Cane w \ ]

" — I S X Z o n e , V ^ v o H ,

'two

p or two LM 1

I-mi

V-V \ •••.•. Zone.. . / .••- . / . 1

Có7.Vee;':;:"

Zon

UM 1 ÇvP or

two/thr or two ; •

m9 j p s — . - -

hmi

Forest Reserve

Unsuitable ] steep slopes

(only marked outside Nat Parks or Forest Res )

AE7 R latzold '81

25 km

Bel! ol A.E Zones — A E Zones

Subzones Climatic data for AEZ formulas see table I unci fl

_ _ Broken zonal boundaries

— — mean transitional strips

Mm ol Agr German Agr Team

KAK. 9

AGRO-ECOLOGICAL ZONES

UM = UPPER MIDLAND ZONES

UM 0 = Forest Zone

Too wet for good yields of most crops. Forest best land use

UM 1 = Tea-Coffee Zone

UM 1 = Tea-Coffee Zone p or two/ with permanent cropping possibilities, three dividable in two to three variable cropping seasons

V e r y g o o d y i e l d p o t e n t i a l (av. > 80 % of the optimum) 1st rains, start norm, end of Febr.: Cabbages, kales 2nd rains, start undistinctly end of July: M. mat. sunflower like Hybrid S 301 A Whole year: Tea ('v 80 %, medium quality), passion fruit, guavas

G o o d y i e l d p o t e n t i a l (av. 60—80 % of the optimum) 1st rains (to 2nd r.): Late mat. maize like H 612—614 (higher places) and H 7 801, finger millet; potatoes

(60—70 %, higher places), sweet potatoes; m. mat. sunflower like H S 301 A, soya beans; spinach, broccoli, onions, carrots (above 1 600 m)

2nd rains: Beans (A^ 60 %), sweet potatoes; e. mat. soya beans; kales, onions, broccoli, tomatoes Whole year: Bananas, taro, yams, mountain pawpaws, winged beans'), loquats, avocadoes

F a i r y i e l d p o t e n t i a l (av. 40—60 % of the optimum) 1st rains: High alt. sorghum; beans (50—60 %)-); tomatoes 2nd rains: Med. mat. maize like H 511 and 512, high alt. sorghum (Aug.—F.), finger millet; potatoes; cabbages 3rd rains, start undistinctly around end O.: V. e. mat. beans and fast growing vegetables Whole year: Arabica coffee, citrus

P a s t u r e a n d f o r a g e Around 0.6 ha/LU on art. or sec. pasture of star grass; down to 0.12 ha/LU feeding Napier or Bana grass, banana stems and leaves, maize stalks, and fodder legumes (Desmodium uncinatum, Stylosanthes guyanensis)

100

UM1 por two/three Nr.:8934001 Kakamega, D.O. 0° 17'S 34°46'E 1530m 55y. up to 1976 100

— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

-— Approx. pot. évapotranspiration of a permanent crop (bananas)

— Approx. pot. évapotranspiration of med. mat. maize like H 622

— 942 ' Rainfall per indicated growing period, surpassed in 6 out of 10 years

365

KAK. 10

UM 1 = Tea-Coffee Zone p or with permanent cropping possibilities, two dividable in two variable cropping seasons

(see Diagram Kakamega)

Like UM 1 p or two/three, but no reliable third crop in N.—F. Stocking rates about 10 % less

UM 2 = Co f fee Zone

Very small and transitional, potential see Bungoma District, but much lower yields because of less suitable soils and sometimes excessive rains

UM 3 = Marginal Coffee Zone

Very small and transitional, potential see Bungoma District, but lower yields because of less suitable soils

UM 4 = Sunflower-Maize Zone

UM 4 = Sunflower-Maize Zone l/vl or with a long to very long cropping season, two dividable in two variable cropping seasons

G o o d y i e l d p o t e n t i a l 1st rains, start norm, around end of F./March (most crops continue to 2nd rains): Late mat. maize like H 612—

614; m. mat. or late planted e. mat. beans ('v 60 %)-), soya beans; sweet potatoes ("» 60 %); m. mat. sunflower like H S 301, late mat. sunflower like Kenya White in higher places; cabbages, kales, spinach

2nd rains, start undistinctly mid July: M. mat. sunflower like H S 301 A Whole year: Sisal, castor

F a i r y i e l d p o t e n t i a l 1st rains: Finger millet, high alt. sorghum (50—60 %): tomatoes, e. mat. onions (on light soils) 2nd rains: M. or late mat. beans (50—60 %); sweet potatoes, potatoes (higher places); late mat. onions (50—

60 %on light soils) Whole year: Avocadoes-'), citrus^-*, pineapples

P a s t u r e a n d f o r a g e Around 1.2 ha/LU on nat. pasture of Hyparrhenia savanna, about 0.6 ha/LU on art. pasture of Rhodes grass, down to 0.2 ha/LU feeding Napier or better Bana grass and Siratro (Macroptilium atropurpureum); suitable for grade cattle and dairy cows (silage or hay for dry season profitable)

LM = LOWER MIDLAND ZONES

LM 1 = Lower Midland Sugar Cane Zone

LM 1 = Lower Midland Sugar Cane Zone por with permanent cropping possibilities, two dividable in two variable cropping seasons

V e r y g o o d y i e l d p o t e n t i a l (av. > 80 % of the optimum) 1st rains, start norm, end of F.: Late mat. sorghum; m. mat. sunflower like H S 301 A, late mat. soya beans;

sweet potatoes Whole year: Yam beans, pawpaws, guavas

G o o d y i e l d p o t e n t i a l (av. 60—80 % of the optimum) 1st rains: Maize H 622 and 632, finger millet; late mat. beans-); sweet pepper, kales, Chinese cabbage, spinach,

cabbage, chillies, yellow yams (e. F.—b. N.), egg plants (to 2nd r.), pumpkins 2nd rains, start undistinctly around Aug.: Maize H 622 and 632 (e. June—N./D.), H 511 (e. July—D.), finger

millet, m. mat. sorghum; beans^); sweet potatoes; m. mat. soya beans, m. mat. sunflower like H S 301 A; cabbage, kales, Chinese cabbage, spinach, onions

Whole year: Sugar cane, bananas (nematodes danger), tea (upper places, nearly 80 %, but medium to low quality), Robusta coffee (y 60 %), cassava (on sandy soils), pigeon peas, avocadoes

1) Edible pods, vines and tubers. Fixes a lot of nitrogen (see Nat. Ac. of Science: The Winged Bean: A High Protein Crop for the Tropics. Wa­

shington 1975). Needs very high rainfall.

2) Sometimes rotting because of too wet conditions

•*) With add. irrigation (D.-F.) well growing

3 6 6

KAK. 1 1

F a i r y i e l d p o t e n t i a l (av. 40—60 % of the optimum) 2nd rains: Late mat. groundnuts and late mat. bambarra groundnuts (both in light soils), cowpeas Whole year: Taro, mangoes-*), citrus-*)

P a s t u r e a n d f o r a g e Around 0.5 ha/LU on sec. pasture where orig. there has been a moist submontane forest; down to 0.12 ha/LU feeding Napier of Bana grass, banana leaves and others (see LM 1 vl i)

100-

50 -

LM1 vli or l-m i

Nr.: 8934013 Mumias, Girls School 0°20'S 34°30'E 1319m 41 y. up to 1976

i n i

S 684

LTL_T-

II ii T " " T *

J

mm

100

- 50

M M 918

O N.

i— Average rainfall per decade I rainfall surpassed in 6 out of 10 years

Approx. pot. évapotranspiration of a permanent crop(f.i. bananas)

Approx. pot. évapotranspiration of m. mat. maize like H622

I aio 1 Rainfall per indicated growing period, surpassed in 6 out of 10 years 918-

LM 1 = Lower Midland Sugar Cane Zone vl i or /— with a very long cropping season and intermediate rains, m i dividable in a long cropping season followed by a medium one and i. r.

(see Diagram Mumias)

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, end of F.: M. mat. sorghum; m. mat. sunflower like H S 301 A, m. mat. soya beans;sweet

potatoes Whole year, best planting time beginning March: Yam beans, pawpaws, guavas

G o o d y i e l d p o t e n t i a l (av. 60-80 % of the optimum) 1st rains: Maize H 622 and 632 (60-70 %), late mat. sorghum (70-80 %), finger millet; late mat. beans2),

pigeon peas (March—F.); sweet pepper, kales, Chinese cabbage, spinach, cabbage, chillies, yellow yams (F.—O./N.), egg plants (to 2nd r.), pumpkins

2nd rains, start undistinctly end of Aug.: Maize H 511, m. mat. sorghum; beans (y 60%), cowpeas;sweet po­tatoes; m. mat. soya beans, e. mat. sunflower like 252 or H S 345; kales, Chinese cabbage, spinach, onions

Whoie year: Sugar cane, bananas (nematodes danger)1*), cassava, tea in upper places (70-80 %, but medium to low quality), Robusta coffee (y 60 %y\ avocadoes

F a i r y i e l d p o t e n t i a l (av. 40-60 % of the optimum) 2nd rains: Maize H 622 and 632 (Jy—N.), finger millet; late mat. groundnuts and late mat. bambarra ground­

nuts (both in light soils); cabbage Whole year: Taro, mangoes-'), citrus-*)

P a s t u r e a n d f o r a g e Around 0.6 ha/LU on sec. pasture where originally there has been a moist submontane forest; down to 0.13 ha/LU feeding Napier or Bana grass, banana leaves and stems, maize stalks, sweet potato vines and fodder le­gumes

' Remarks sec Busia

->' Danger of fungus discuses

3 6 7

KAK. 12

LM 2 = Marginal Sugar Cane Zone

LM 2 = Marginal Sugar Cane Zone with a long cropping season l^(m/s) i followed by a (weak) medium to short one and intermediate rains

V e r y g o o d y i e l d p o t e n t i a l 1st rains, start norm, mid F.: M. mat. sorghum;m. mat. sunflower like Vympel or H S 301 A, m. mat. soya beans;

sweet potatoes; chillies, onions, sweet pepper Whole year: Cassava (on light to medium soils), pawpaws

G o o d y i e l d p o t e n t i a l 1st rains: Maize H 622 and 632 in higher parts, H 511—513 in lower parts, late mat. sorghum, finger millet;

beans'), pigeon peas (March—F.), late mat. rosette resistant groundnuts (in light soils); cabbages, kales, egg plants, muskmelons, rose lie; cotton (60—70 % but low quality)

2nd rains, start b. S.: Bulrush millet, m. mat. sorghum, ratooning sorghum (Sept.—Aug.); beans, green grams; onions, kales

Whole year: Bananas (nematodes danger), pineapples, yam beans, guavas

F a i r y i e l d p o t e n t i a l 1st rains: Bambarra groundnuts, cowpeas; tobacco (on sandy soils) 2nd rains: Maize H 511 ; pigeon peas (0—S., ^ 60 %), cowpeas; simsim; cabbages Whole year: Sugar cane (on less suitable soils marginal), Robusta coffee, citrus, mangoes

P a s t u r e a n d f o r a g e 0.5—0.7 ha/LU on high grass savanna; down to 0.15 LU/ha feeding Napier or Bana grass, banana leaves and others (see LM 1 vl i)

LM 2 = Marginal Sugar Cane Zone l/m r—is/m) with a long to medium cropping season

followed by a (weak) short to medium one

Small and transitional. Crop potential like LM 2 1—(m/s) i but m. mat. sorghum in 2nd rains and bananas only fair, maize H 511 — 13 in 2nd rains and sugar cane (also on good soils) only marginal. Ratooning sorghum 1st to 2nd rains also good. Stocking rates about 10 % less

LM 3 = Lower Midland Cotton Zone

Very small and transitional, potential see Bungoma District

LM 4 = Marginal Cotton Zone

Very small and transitional. Marginal mainly because of cool temperature during night. Potential see Busia District

3 6 8

34?|30'E 35°|E

KAKAMEGA

SOILS

Steep slopes, unsuitable lor cultivation, not marked in Nat. Pks, For. Res. and ranching areas

n GENERAL FERTILITY GROUPS (according to soil list)

: M ? J . e . n 9 S ^ I ^ ? S ^ ^ : : i : £ - - 1m

3 U subject to local differences

moderate to high

20 25 km

Soils KSS

low to very low

SOIL DISTRIBUTION, FERTILITY AND MAJOR CHARACTERISTICS

The major part of the district shows a rather uniform undulating topography, but its eastern boundary is formed by the Nandi Escarpment, a prominent topographical feature. West of Soy, in the northeastern area of the district, there is a plateau with moderately deep soils (unit 61 L).

The dominant soils of the district are found on upper middle-level uplands (units 121 U and 139 U) and on lower middle-level uplands (151 U). Besides the soil unit 121 U, which is relatively rich with a variable content of humus in the topsoil, these soils have a low natural fertility. The soil units 168 U and 179 U also occur on uplands. They are poor in plant nutrients. Near the Nandi Escarpment on upper middle-level uplands, soil unit 133 U has developed on granites. This soil has a moderate to high fertility in plant nutrients.

On plateaus and higher-level structural plains, soil unit 61 L of low natural fertility is found. On hills and minor scarps soils of unit 23 H occur. Their fertility is variable.

Valley bottom soils with waterlogging can be seen in some places in the northern, western and northeastern part of the district.

SOILS ON HILLS AND MINOR SCARPS

Soils developed on granites 23 H = complex of somewhat excessively drained, shallow, stony and rocky soils of varying colour, consistence and texture (dystric

x, v 1 ' REGOSOLS; wi th ferralic CAMBISOLS, lithic phase and Rock Outcrops)

Soils developed on various parent materials (mixed igneous and metamorphic rocks) 25 H = well drained, shallow, reddish brown, friable, rocky and stony, sandy clay to clay (chromic CAMBISOLS, lithic phase; wi th

x, m-h eutric REGOSOLS, LITHOSOLS and Rock Outcrops)

SOILS ON PLATEAUS AND HIGH-LEVEL STRUCTURAL PLAINS

Soils developed on intermediate igneous rocks (syenites, trachytes, phonolites, etc.) 61 L = well drained, moderately deep to deep, dark red, friable clay, over petroplinthite; with inclusions of small bottomlands (rhodic

h FERRALSOLS, petroferric phase)

62 L = well drained, very deep, dark reddish brown to dark red, friable clay

h (nito-rhodic FERRALSOLS)

SOILS ON FOOTSLOPES

Soils developed on colluvium from undifferentiated Basement System rocks 98 F = complex of well drained, deep to very deep/dark reddish brown to dark yellowish brown soils of varying consistence and tex-

x, v ture, in places gravelly and stratified (ferralic ARENOSOLS; wi th ferralo-chromic, orthic LUVISOLS)

SOILS ON UPPER MIDDLE-LEVEL UPLANDS

Soils developed on Tertiary or older basic igneous rocks (basalts, nepheline phonolites, etc.; basic tuffs included) 121 U = well drained, extremely deep, dark reddish brown, friable clay, with humic topsoil

h (mollic NITOSOLS) Soils developed on undifferentiated Basement System rocks

130 U = well drained, deep, red to yellowish red, friable sandy clay

h (ferralo-chromic ACRISOLS)

Soils developed on granites 131 U = well drained, very deep, dark red to yellowish red, friable to f i rm, sandy clay to clay, w i th acid humic topsoil

h (humic ACRISOLS)

132 U = like 131 U, but rocky

x, h (humic ACRISOLS, rocky phase)

133 U = well drained, deep, yellowish red to brown, friable clay loam, with acid humic topsoil

h (humic CAMBISOLS; wi th humic ACRISOLS)

Soils developed on various rocks 139 U = well drained, very deep, dusky red to yellowish red, friable to f i rm, clay loam to clay; in places wi th acid humic topsoil (ferralo-

m-h chromic/orthic ACRISOLS)

SOILS ON LOWER MIDDLE-LEVEL UPLANDS

Soils developed on basic igneous rocks (basalts, etc.) 143 U = well drained, extremely deep, dark reddish brown, friable clay

h (dystric NITOSOLS)

144 U = well drained, very deep, red to dark red, friable to f i rm, clay; in places moderately deep over petro-plinthite (eutric NITOSOLS;

h wi th rhodic FERRALSOLS, partly petro-ferric phase)

Soils developed on granites 151 U = well drained, deep to very deep, brown to dark brown, friable, sandy clay to clay

h (ferralo-orthic ACRISOLS)

Soils developed on biotite gneisses 157 U ?= wel ldrained, deep, red, friable clay

h (rhodic FERRALSOLS; wi th ferralo-chromic ACRISOLS)

370

KAK. 15

Soils developed on various rocks (Kavirondian sediments, often mudstones) 168 U = well drained, deep to very deep, dark reddish brown to strong brown, friable clay

h (rhodic to orthic FERRALSOLS)

SOILS ON LOWER-LEVEL UPLANDS

Soils developed on acid igneous rocks 177 U = see Siaya District

Soils developed on granites 179 U = complex of :

h — well drained, moderately deep to very deep, reddish brown to yellowish brown, friable clay, over petro-plinthite (orthic

FERRALSOLS, partly petroferric phase; wi th orthic ACRISOLS)

— moderately well drained, shallow, brown to dark brown soils over petroplinthite (about 30 %) ("murram cuirass" soils)

Soils developed on granites and quartz-feldspar gneisses 181 U = well drained, deep, strong brown to reddish yellow, very friable, sandy clay loam to sandy clay

h (orthic FERRALSOLS; w i th ferralic CAMBISOLS)

Soils developed on biotite gneisses 182 U = see Bungoma District

Soils developed on undifferentiated Basement System rocks 187 U = well drained, very deep, red to dark red, very friable to friable, clay

h (rhodic FERRALSOLS)

Soils developed on various rocks (Kavirondian sediments, often mudstones) 188 U = well drained, moderately deep to very deep, dark red to strong brown, friable clay; in places shallow over petro-plinthite (orthic

h to rhodic FERRALSOLS, partly petroferric phase; wi th "murram cuirass" soils (10—40 %)

SOILS ON NON-DISSECTED EROSIONAL PLAINS

Soils developed on basic igneous rocks (basalts, etc.) 221 U = well drained, very deep, dark reddish brown to dusky red, friable clay; in places bouldery

h (nito-rhodic FERRALSOLS)

SOILS ON BOTTOMLANDS

Soils developed on infill from intermediate igneous rocks (phonolites) 339 B = poorly drained, moderately deep, dark grey to grey, mott led, f i rm clay, wi th humic topsoil; in many places over petro-plinthite

h (mollic GLEYSOLS, partly petro-ferric phase)

Soils developed on infill mainly from undifferentiated Basement System rocks 345 B = complex of imperfectly drained to poorly drained, very deep, very dark grey to brown, mott led, friable to f i rm, sandy clay to

m, h clay, often abruptly underlying a topsoil of friable sandy clay loam; in places saline and sodic (dystric PLANOSOLS; wi th pellic

VERTISOLS, vertic and humic GLEYSOLS and plinthic ACRISOLS)

346 B = complex of imperfectly drained to very poorly drained, very deep, very dark grey to dark greyish brown, mott led, f i rm clay;

m, h in places peaty or wi th acid humic topsoil (dystric GLEYSOLS; wi th eutric PLANOSOLS and some dystric HISTOSOLS)

' Soil texture-classes h = heavy 1 = light m = medium x = stony v = varying texture m-h = medium to heavy m, h = medium and heavy (e. g. abruptly underlaying a topsoil of different texture)

Soil description from Kenya Soil Survey: Exploratory Soil Map and Agro-climatic Zones Map of Kenya, scale 1:1 000 000, Rep. E 1, Nairobi 1982. See this map also for colours; symbols simplified here.

371

KAK. 16

P O P U L A T I O N A N D L A N D

The population of the Kakamega District consisted of 1 031 000 people in 1979 according to the Census of September ofthat year (Table 4). A few more than 32 000 people were inhabitants of the Kakamega Municipality, so that nearly one million rural people shared the 254 800 ha of agricultural land available. In the Kakamega District an average household consisting of 5.18 people had on average only 1.33 ha of agricultural land and one person not more than 0.26 ha (Table 5 and 6). In the zone UM 1 (Coffee-Tea Zone) the figures are 0.70 and 0.13 ha respectively. In the sugar cane zones LM 1 and 2 it is about the district average. Here, in many locations, the shortage of agricultural land is already extreme (Table 6).

In the zones UM 4 and LM 3—4 (Sunflower-Maize Zone and Cotton to Marginal Cotton Zone) the agricultural situation seems to be more positive with 4 and 0.6 ha respectively, but in these drier areas comparatively more pasture is needed to support the average small farm (Table 10a).

Summing up, it can be stated that nearly in all areas of this densely populated district (300 persons per sqkm) all possible means of improvement have to be used to overcome the critical situation and to help the rural population at least to keep their present standard.

KAKAMEGA DISTRICT

TABLE 4: POPULATION PER LOCATION AND DIVISION

CENSUS 1979

Location/Division Male Female Total Number of

households

Square

kilometers Density

North Maragoli 37 659 44 681 82 340 14 694 110 748

South Maragoli 27 805 32 064 59 869 10 752 88 674

East Bunyore 23 996 27 783 51 779 10 032 72 715

West Bunyore 28 233 32 719 60 952 12 262 97 627

Vihiga Division 117 693 137 247 254 940 47 740 368 692

Tiriki 31 937 35 585 67 522 12 037 106 633

Nyang'ori 12678 14 547 27 225 5 036 48 566

Hamisi Division 44 615 50 132 94 747 17 073 154 612

Butsotso 21 262 23 109 44 371 8 125 191 231

Bunyala 15 195 16 354 31 549 5 364 160 196

Kakamega Municipality 16 123 15 902 32 025 6 661 47 676

Lurambi Division 52 580 55 365 107 945 20 150 399 270

Isukha 38431 42 463 80 894 15 177 209 386

Idakho 28 095 31 659 59 754 11 760 139 427

Ikolomani Division 66 526 74 122 140 648 26 937 349 402

South Kabras 25 719 27 164 . 52 883 8 543 264 199

North Kabras 23 835 25 398 49 233 8 139 186 263

Kabras Division 49 554 52 562 102 116 16 682 451 226

Nzoia 8 367 8 788 17 155 2 643 96 177

Lumakanda 15 790 16 077 31 867 4 801 253 125

Soy 10 178 9 465 19 643 3 234 185 105

Lugari Division 34 335 34 330 68 665 10 678 535 128

Kisa 27 541 32 046 59 587 12 128 143 416

Marama 31 295 34 244 65 539 13 806 201 324

Butere Division 58 836 66 290 125 126 25 934 344 362

North Wanga 23 853 26 575 50 428 12 780 268 * 188

South Wanga 23 971 25 536 49 507 12 104 148 333

East Wanga 15 399 17441 32 840 7 184 152 215

Mumias Division 63 223 69 552 132 775 32 068 568 233

Kakamega Forest 2 576 1 349 3 925 808 322 12

Kakamega District 489 938 540 949 1 030 887 198 070 3 495 294

3 7 2

KAK. 17

KAKAMEGA DISTRICT

TABLE 5: COMPOSITION OF HOUSEHOLDS

PER

LOCATION AND DIVISION3^

LOCATION/DIVISION No. of Households total

Farmers Family ' Non-Relatives Persons per Households . , total b>

LOCATION/DIVISION No. of Households total

Adults >15 yea

Children rs < 15 years

Other Relatives

Non-Relatives Persons per Households . , total b>

Location:

North Maragoli 14695 2.78 1.60 1.03 0.19 5.60

South Maragoli 10756 2.81 1.50 1.04 0.18 5.53

East Bunyore 10013 2.79 1.47 0.78 0.13 5.17

West Bunyore 12275 2.78 1.38 0.69 0.12 4.96

Division Vihiga 47739 2.80 1.48 0.89 0.16 5.33

Location:

Tiriki 12012 2.39 1.58 0.99 0.16 5.16

Nyang'ori 5020 2.89 1.58 0.81 0.12 5.41

Division Hamisi 17032 2.30 1.58 0.93 0.15 5.55

Location:

Butsotso 8088 3.05 1.49 0.72 0.18 5.44

Bunyala 5358 3.37 1.74 0.57 0.21 5.89

Kakamega Municipality 6634 2.65 0.96 0.69 0.32 4.62

Division Lurambi 20080 3.00 1.39 0.67 0.23 5.29

Location:

Isukha 15137 2.98 1.51 0.68 0.14' 5.31

Idakho 11787 2.84 1.43 0.70 0.10 5.07

Division Ikolomani 26924 2.92 1.48 0.69 0.12 5.21

Location:

South Kabras 8506 3.45 1.83 0.68 0.25 6.21

North Kabras 8132 3.35 1.72 0.75 0.19 6.02

Division Kabras 16638 3.39 1.80 0.71 0.22 6.12

Location:

Nzoia 2644 3.23 1.96 1.02 0.27 6.49

Lumakanda 4793 3.45 2.04 0.92 0.22 6.63

Soy 3223 3.20 1.72 0.77 0.30 5.99

Division Lugari 10660 3.32 1.93 0.90 0.26 6.40

Location:

Kisa 12169 2.81 1.42 0.54 0.11 4.87

Marama 13793 2.83 1.27 0.55 0.11 4.75

Division Butere 25962 2.82 1.34 0.54 0.11 4.81

Location:

North Wanga 12772 2.47 0.93 0.42 0.11 3.95

South Wanga 12084 2.57 0.89 0.48 0.13 4.08

East Wanga 7220 2.75 1.17 0.48 0.15 4.55

Division Mumias 32076 2.57 0.97 0.46 0.13 4.13

Location:

Kakamega Forest 771 2.72 0.62 0.33 0.25 3.92

Division Kakamega Forest 771 2.72 0.62 0.33 0.25 3.92

DISTRICT: KAKAMEGA 197882 2.39 1.42 0.71 0.16 5.18

a) Source: Central Bureau of Statistics (CBS)

b) Average figures, includes one und two persons per household as well.

373

KAK. 18

KAKAMEGA DISTRICT

TABLE 6: AEZ-LAND AREA AVAILABLE PER LOCATION, DIVISION

AND PER

HOUSEHOLD AND PERSON

in '00 ha = sqkm in '00 ha = sqkm in ha

Area

total

Non-agricultural land Agri­

cultu­

A r e a i n ag r o - e c o o g i c a l z o n e s Agric . land Area

total Unsuit. Forest Others

Agri­

cultu­

A r e a i n ag r o - e c o o g i c a l z o n e s Agric . land

Location/Division steep Res., (roads, ral A E Z per

without townships Census slopes lakes, home­ land house­

79 swamps steads,

rivers...)

LH 1 UM 1 UM 2-3 UM 4 LM 1 LM2 LM3-4 UM 0 hold person

North Maragoli 110 23 87 85 2 0.59 0.11

South Maragoli 88 F 4 18 66 59 7 0.61 0.11

East Bunyore 72 16 56 44 12 0.56 0.11

West Bunyore 97 20 77 61 16 0.63 0.13

Vihiga Division

Tiriki

367 F 4 77 286 249 37 0.60 0.12 Vihiga Division

Tiriki 106 22 84 83 1 0.70 0.12

Nyang'ori 48 10 38 36 2 0.75 0.14

Hamisi Division

Butsotso

154 32 122 119 3 0.73 0.13 Hamisi Division

Butsotso 191 32 159 2 155 2 1.96 0.36

Bunyala 160 F 7 26 127 43 84 2.37 0.40

Lurambi Division

Isukha

• 351 F 7 58 286 2 198 86 2.17 0.38 Lurambi Division

Isukha 204 1 42' 161 1 115 21 6 9 (9) 1.00 0.20

Idakho 139 28 111 13 98 0.94 0.19

Ikolomani Division

South Kabras

343 1 70 272 1 128 21 104 9 (9) 0.97 0.20 Ikolomani Division

South Kabras 264 5 42 217 4 47 14 152 2.54 0.41

North Kabras 186 4 32 150 2 109 20 19 1.84 0.31

Kabras Division

Nzoia

450 9 74 367 4 47 16 109 172 19 2.19 0.36 Kabras Division

Nzoia 96 13 83 83 3.13 0.48

Lumakanda 253 28 225 225 ' 4.69 0.71

Soy 185 19 166 166 5.13 0.85

Lugari Division

Kisa

534 60 474 474 4.32 0.68 Lugari Division

Kisa 143 29 114 114 0.94 0.19

Marama 201 38 163 163 1.18 0.25

Butere Division

North Wanga

344 67 277 277 1.06 0.22 Butere Division

North Wanga 268 48 220 218 2 1.72 0.44

South Wanga 148 30 11.8 118 0.98 0.24

East Wanga 152 26 126 126 1.75 0.38

Mumia's Division 568 104 464 462 2 1.48 0.35

Total rural area 3 111 10 11 542 >548 5 545 37 583 1 081 269 19 (9) 1.33 0.26

TABLE 7: LAND SITES IN FORMER SCHEDULED AREAS1)

C a d a s t r a l S h e e t

No

Land R e f e r e n c e

No

Area i n ha

11855/R II856 I I 8 5 5 / I 1087 1088

55-73 10.72

3 . 3 ^ 33*+.68

60.30

TOTAL DISTRICT ^6^.77

Compiled for Agricultural Extension and Planning work only ; not

to be used in any legal affairs.

Source: Survey of Kenya, December 1980

A G R I C U L T U R A L S T A T I S T I C S 1 )

About 85 % of the district area is covered with infertile Agrisols, but'the agricultural research station is situated in the small fertile Nitosols area; thus much of the research information gives a far too optimistic picture of the agricultural potential of the region. The high and well spaced rainfall and the subsequent generally lush vegetation support the erroneous general opi­nion that the whole district is of high agricultural potential.

Roughly 1,000 ha of coffee is planted yielding 150 kg of clean coffee per ha per year, while the tea area is approximately 2,000 ha in size and produces 1,400 kg of green leaves per ha/year. The productivity of both crops is among the lowest in the country. In addition some sugar cane is grown within the district, but as cane growing can be done only by larger farmers with surplus land, little or no positive effect for the average small-holder is achieved by promoting this crop.

KAKAMEGA DISTRICT

TABLE 8 a: TEA

AREA - PRODUCTION - GROWERS - YIELDS - RETURNS3)

Small Farmers

Division Item Unit Year Division Item Unit

1975/76 1976/77 1977/78 1978/79 1979/80

Central Area

Production

Value

Growers

Yield per ha

Value per ha

Area per Grower

Returns per Grower

ha

t

•000 Shs

No

kg

Shs

ha

Shs

440

361

473

1,797

820

1,075

0.24

263

450

431

1,326

1,842 »

958

2,950

0.24

720

450

548

1,135

1,347

1,218

2,535

0.24

614

460

575

. 1,598

1,852

1,250

3,474

0.25

863

475

632

1,560

1,898

1,331

3,234

0.25

822

Vihiga Area

Production

Value

Growers

ïield per ha

Value per ha

Area per Grower

Returns per Grower

ha

t

JOO Shs

No

kg

Shs

ha

Shs

1,043

1,010

1,324

3,264

968

1,270

0.32

4o6

1,181

1,464

4,454

3,522

1,225

3,770

O.34

1,265

1,226

1,633

3,382

3,747

1,333

2,758

0.33

902

1,388

2,003

5,569

3,976

1,443

4,012

0.35

1,401

1,437

2,087

5,155

4,075

1,452

3,587

0.35

1,265

a) Source: K.T.D.A.

Fairly exact statistics exist for industrial crops only; for more detailed and up to date information see FMHB Vol. Ill A

375

KAK. 20

KAKAMEGA DISTRICT

TABLE 8 b: COFFEE AREA - PRODUCTION - YIELDS3)

Co-operatives

Item Unit Year Item Unit

7V75 75/76 76/77 77/78 79/80

Area

Production

Yield

ha

t

kg/ha

930

280

312

930

1 3

15^

930

163

175

930

171

183

1028

142

a) Source: C.B.K.

S M A L L F A R M S U R V E Y ( S F S ) 1 )

The SFS was mainly carried out in the AEZs UM 1 and LM 1 which cover nearly two-thirds of the district area. The average land area of the farms included is 1.9 ha (UM 1) and 4.5 ha (LM 1 - UM 4), which is somewhat above average.2) Roughly half of the land area is used to produce food crops and one third is under pasture. The cropping intensity is high (1.9) in UM 1, while the above average size farms in LM 1 - UM 4 produce 1 crop p.a. The stocking rate in these farms is also influenced by the existence of grazing possibilities on commonly owned land and is actually lower. The high amount of fertilizer applied to annual crops reflects the low natural fertility of the soils in general (table 9 - 10). Practically all arable land is planted with food crops (table 11). The high maize yields recorded are achieved only on the small Nitosols soil area (table 13). Roughly 10 % of the cattle kept are of improved stock; sheep and goats account for 6 % of the grazing livestock units, the rest are cattle (table 12). The sale of 35 % of the harvested maize to the Marketing Board does not indicate that the district is a food exporter, but rather the high degree of urbanisation i.e. outside employment and purchases of processed staple food by part-time farmers (table 14). The distribution of farming activities for annual crops is a result of the high and well distributed rainfall, but also indicates the subsistence agriculture farming level practised (Graphs in table 15). The input/output table (16) shows that good yields require heavy dosages of nutrients, but large amounts of organic manure must be added if a lasting overall improvement in soil fertility is to be achieved.-*)

Due to the number of circumstances, agricultural production and rural development show accelerating negative tendencies which will eventually result in a totally impoverished rural population. Only major efforts centering around soil fertility improvement, expansion of labour-intensive horticultural crops, introduction of semi-zero or zero grazing methods, etc. will help to arrest this undesirable development.

' For more detailed and up to date information see FMHB Vol. Ill B 2) See also table 6: AEZ - Land Area 3) See also notes on farm management information, output and nutrient input, page 51

376

34°|3°'E 35°lE

KAKAMEGA

SMALL FARM SURVEY AREAS (1977) and AGRO - ECOLOGICAL ZONES

+ SOILS

345 B m,h

i4*u—cj^rvös 133 U m

1 3 National Number of Survey Area

Survey Area, sample size 30 per number

Forest Reserve

Unsuitable steep slopes

'4 (only marked outside Nat. Parks or Forest Res.)

AEZ R. Jätzold 81

20 25 km i i

Soils KSS

Belt of A £ Zones — • • •—-•

A E Zones

Subzones

C limatic datd for A£Z formulas see t,iblt> I and II

. Broken zonal boundaries rift' uncer ta in or

• m< , IM t ransi t ions s t rps

Min. of Agr., German Agr. Team

K A K . 22

eu D O ei o w N

5 at < tu

o u z

s o U U < z o H

< c/3 z < o (X O S ai «< ON

u - J oa < f -

<J • *

et: H ^ C/3

5 s < i

o • *

w s <: 3

« SJ

< l d

« <

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

i H

j - vt y* • IA O

O rg co

CO CO CO

* • • Ai O lA

•3 o

6H

rt CA O J H ft • • • CM CA -3-

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group i ir\ V I «

• vo O o -a-

rt rt 9i • • • CM O rt

• a CD

« a rt 0 « a M t l i « a a. 0 z

CN I N O O

• 1 • O o

e o co ï > , O - r - J - l A r H C O r A n , ï CO N H CO ( M J -

•a co CA rt . rH

rH ca O

Intensity, Labour/Persons on Farm

Home Consumption

Farm Size Group

î NO VI VI • vO O

o H -a-

CA H rH • • • C\J O rt

o

fa r> CO rt a rt

b , ÜH

J - LA IA IA H CM

• • • CM IA -3-

13 U rt

S J C ^ l N O O l A O O O . >. O »O K\ C M i - t r H I M

\ CO rt CM CA M 3 •"*

X o

* > c

i V I VI

CO c o to r r ti 0) c

IS) c 0 to : => Ü to o> a

U U c O U b Q t O c d c O X X X X X X X X

B 01 +» Ht

Farming Intensity:

Cropping Intensity

Portion of improved

cattle kept

Portion of Farmers

owning a Plough

Labour on Farm:

Family Adults

Perm. Hired Labour

Children > 1M years

Persons living on Farm

- average household size -

Adults > I1» years

Children < l't years

Subsistence Unite

Home Consumption of Major

Food produced on Farm

Maize

Beans

Fingerraillet

Sweet Potatoes

Cabbage

Sorghum

Groundnuts

Farm Size & Land Use

Livestock on Farm

Farm Size Group

&

1 lA i - l t N c M r - t r H r H K N

O O O r H O O O t N J

CM ' CM • • O O

J - rH V I O V I • CA

-3- CA

CA

O

O <M IA IA • • • • ^ rt O CA

Farm Size & Land Use

Livestock on Farm

Farm Size Group

1 I

CO r i M cTl rt IA CO • • • • ! • • • CA O O O O O H

1 H V I

1 • IA O

rA V I • J -

rt IA

NO • O

ON CM CM I A • • • • CM O O IA

Farm Size & Land Use

Livestock on Farm

Farm Size Group

1 O rH O H H O

c\i O O O O r t ' rt «

t • IA O

VO V4 • O

O IA

IA

O

NO IA rt O • t • •

rH O O CM

1 ca ( r f c a c d c o c a c o c a ca «a ca ca sx J= a a

ca ca co ca a s ja J3 v i

ca J= tA

ca 3 => => a •J i j , J >-)

I

rt a

o t i o

rH (B

rt 3 e» C -J E o •<:

0) N 4) •rt CO U3 E3

B 13 ti C ca cc

b. J

First Seasonßthers

Maize

Maize

& Beans

Beans

Cassava

Sunflower Total

Second Season-1'

Cassava

Total

rH UI ft O U

U

•W c 01 c co c t , tu

CU

Sugarcane

Bananas

portion of total

Grazing

H Forage

portion of total

Ol

co

• a c « ,-) t . 0) X

o

Livestock on Farm:

Cattle:

local

improved

Sheep & Goats

Total

>> (J

O r-W5 ON a. —• P r-

£ M

O

a. o U

ë 3

O CL.

I

KAK. 23

< ID

s 3

t/5

CL,

D O

O

N

< tt. O H O z 5 O u u < z g H

< t/î Z <: ü ei o S ei <; u.

«

y 5 H c/3

3 < o w s < <

D i

N

u

3 E O o Bi .D -H 3 Ü 4 J O

•J u U. E CJ>

» 3 >» l/l 0)

• P B « •H O -H O O CO B « J O E

P E U , c o d

H X Ui

3 E

•o u, c u e . CO U , 3

- 3 O B Ui

•1 o a OJ ü O N O N

•H O -H tO -P C.0

U E 01 E Ui > Ui « -H (0

fc, ,J [*

VO W: v£>

O H

VC H

rA

*A «

UI u, F £ B Q. Ui ba O E m 3

P • H u. C E 4J 1-4 H <H CU <M tt.

0 0) o t r i ü 03 B c B H 0 0) o bO

u • H H • H B u •P P AJ

o U, P U, B

u O S 0 « o C o Q. 0

Cv J -

O M

I A IA vO

CM

«

2 '

E ce

o o o o

rH IA H

• • • O O O

i-i 00

O o

H rA O O

0» E B 3 U

09 £ O N bf> w

• H Us B 01 0 • H

a: t o U .

B o. o

ui >>

S -H

S cet

m K\ IA J -

J - tA Os tA -a- I A

N K> 4-

u. m

B t j O H

O

• 3 I O

A V

10 a 3 :1

CM H iH • • t

O O O

ca . e

cd

B CS O « lu 03 0 <*><£ R O

t o 3 to _ • B « a ' " N bO M o »-•H U. • H o O g] O t"! s " S U3 £ u

J- Cv o J - ON Cv ON K\

co IA IA CM H rH

•O U H CC O Cu X >> 41

Û 3 .* o

o IA ON J - t >

rA CM O CO

b o b o b o b o b o b o t s b o

U 0

• o

ce Z E

<•-* a O t x S B C 0 O O p

«1 to p • p

• H o 3 Fi a. a> B a B U. bn 3 a •a

O m O . p « •C « E

s bO o A bc o. 3 •H cri E « Xi h » O

m 91 • H * a 0 0 Ui X 03 U . co u W o o

E 0 O O

3= U .

If. OC fA

IA W

O IM

CA *ft • O

O JA

ce Vi

- p 0 p

•«H u.

I M

O oS O

B ha B O E O H • H • H

P N P U, « Ui O Ui O U . CJ u.

CM O O

VO >A H

D & O J h) >4

>> U c as o Cv

O

a o

CQ

I u

!

c T)

O r . O

h O 3 S

O

O C/3 *

o

3 7 9

KAK. 24

KAKAMEGA DISTRICT

TABLE 10 a: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: UM 4 - LM 1-4 Survey Area 13

Range

Assets People on Farm

Range Land ha

Livestock head

Equipment pieces

Family Adults

Perra.Hrd. Labourers

Children > l 4 No.

Avg. 0

Avg. 1

Op. Qu.

Lo. Qu.

4.5

4.5

6.0

2.'t

9.1

10.1

12.0

4.0

0.9

1.4

1.0

2.4

2.4

3.0

2.0

0.4

1.7

2„4

3.4

4.0

Land Use

Hange Annual Crops ha *

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. Su.

Lo. Qu.

Total

1.7 38

1.7 31

2o4 53

0.9 31

51.0

0.3 6

0.5 9

0.3 11

8.0

2.1 45

2.1 39

2.7 50

0.6 19

61.6

1

0.5 8

0.9

0.3 6

0.5 10

0.4 13

3.2

0.2 4

0.2 . 4

0.2 8

0.1 2

5.0

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr.

Farn Land LU/ha

Pasture & Forage Lü/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. Qu.

Lo. ;.u.

0.9

1.0

0.8

0.8

1.4

C.5

1.8

1.3

5.9

0.9

17.3

65.3

Inputs Applied

Range Improved Seed Used % of area

AC

Fertilizer Applied Manure Applied t/ha

AC FC

Plant Pr jtection Range Improved Seed Used % of area

AC

Manure Applied t/ha

AC FC

Insecticide kg/ha

AC PC

Fungicide

kg/ha

AC PC

Range Improved Seed Used % of area

AC AC PC

p2o5

AC PC

:<2o

AC PC

Manure Applied t/ha

AC FC

Insecticide kg/ha

AC PC

Fungicide

kg/ha

AC PC

Avg. 0 57.3 2.5 - 8.5 - C.l - - - 0.1 - - -

A'g. 1 58.0 12.3 - 13.3 - 2.7 - 0.1 ' 0.1 1.8 - - -

Up. Qu. 100.0 - - 21.1 - - - - - - - - -

Lo. Qu. 69.0 - - - - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of farms, excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartile, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

3 8 0

KAKAMEGA DISTRICT

TABLE 10 b: ASSETS, LAND USE, FARMING INTENSITY, INPUTS

AEZ: (LM 1 ) - U M 1 Survey Area 14

Range

Assets People on Farm

Range Land ha

Livestock head

equipment pieces

Family Adults

Perm.Hrd. Labourers

Children > 14 No.

Avg. 0

Avg. 1

up. iu.

Lo. Su.

1.9

1.9

2.4

1.1

5.2

5.4

7.0

3.0

0.5

1.3

1.0

2.4

2.4

2.0

2.0

0.4

1.3

1.0

2.5

3.0

4.0

1.0

Land Use

Range Annual Crops ha %

Perm. Crops ha %

Pasture ha %

Forage ha %

Fallow ha %

Other Use ha %

Avg. 0

Avg. 1

Up. vu.

Lo. Qu.

Total

0.8 43

0.8 35

1.2 52

0.4 32

23-2

0.3 15

0.3 14

0.3 20

0.1 6

8.3

0.6 31

0.6 28

0.7 40

0.1 11

16.7

1

0.2 9

C.8

3

0.2 8

0.1 4

1.4

0.1 7

0.1 6

0.2 9

0.1 4

3.8

Farming Intensity

Range Cropping Intensity crops/yr.

Stocking Rate Improved Cattle % of total

Range Cropping Intensity crops/yr.

Farm Land LU/ha

Pasture & Forage LU/ha

Improved Cattle % of total

Avg. 0

Avg. 1

Up. C.u.

Lo. Zu.

1.9

2.0

1.5

1.1

1.9

0.7

3.7

3.4

6.6

1.3

10.1

57.0

Inputs Applied

Range Improved Fertilizer Applied Manure Plant Protection Seed Used % ctf area

pure nutrient kg/ha Apnlied t/ha

Seed Used % ctf area

pure nutrient kg/ha Apnlied t/ha

Insecticide kg/ha

Fungicide kg/ha

Seed Used % ctf area

N ?2o5 K20

Apnlied t/ha

Insecticide kg/ha

Fungicide kg/ha

AC AC FC AC PC AC. PC AC PC AC PC AC PC

Avg. 0 37.1 6.7 3.6 20.2 1.8 0.4 0.1 - - 1.2 0.4 - -

Avg. 1 39.5 16.4 9.5 23.2 6.0 12.5 3.3 0.2 0.2 3.3 1.1 0.5 l.l

ïïp o S.u. 37.0 9.1 6.3 30.8 - - - - - 1.9 0.2 - 0.7

Lo. ;_u o - - - 3.2 - - - - - - - - -

Notes: Avg. 0 = average of all sample farms

Avg. 1 = average of farms, excluding zero entries

Up. Qu./Lo. Qu. = Upper/Lower Quartilc, refers to individual farm,50 % of all sample cases lie between these points

AC = Annual Crops

PC = Perennial Crops

381

KAK. 26

KAKAMEGA DISTRICT

TABLE l i a : CROPPING PATTERN AEZ:UM4-LM 1-4 Survey Area 13

First Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average

ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average

ha

Upper Quartile

ha

Lower Quartile

ha ha % Maize Sorghum Fingermillet Beans Cowpeas IPC Groundnuts Bambara GNuts Sunflower Cabbage Arrow Roots Cassava Sweet Potatoes Sugarcane Maize & Beans

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 • 0.0 0.1 0.0 0.1 0.9

1.8 0.2 0.3 0.5 0.2 0.2 0.2 1.0 0.2 0.1 0.3 0.2 0.6 1.3 !

0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.12 0.12 1.40

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.C0

14.6 0.6 0.6 1.0 0.2 0.8 0.2 3.3 o.4 0.1 2.8 1.2 4.0

27.2

25.4 1.0 1.0 1.7 0.4 1.4 0.3 6.6 0.7 0.2 4.9 2.2 6.9

47.3 Total 57.6 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average '1 ha

Upper Quartile

ha'

Lower Quartile

ha

Total Sample Area Crop

Average 0

ha

Average '1 ha

Upper Quartile

ha'

Lower Quartile

ha ha % Sorghum Cowpeas IPC Groundnuts Bambara GNuts Sunflower Cassava Sugarcane

0.0 0.0 0.0 0.0 0.0 0.1 0.1

0.3 0.2 0.3 0.0 0.4 0.3 C o

0.00 0.00 0.00 0.00 0.00 0.20 0.12

O.CO 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.2 0.5 0.0 0.8 2.8 4.0

3.2 2.8 6.0 0.5 9.3

32.4 45.8

Total 0 .o 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha c£ Sweet Bananas Cookng 3ananas

0.0 0.0

0.1 0.2

0.00 0.12

0.00 0.00

0.1 1.4

3.1 91.9

Total 1.5 100.0

Avg 0 = average of all sample farms Avg 1 = average of all farms excluding zero entries Up.Qu./Lo. Qu. = Upper/Lower Quartile, SO % of all sample cases are in between these points % columns = % of total farm land

382

KAK. 27

KAKAMEGA DISTRICT

TABLE l i b : CROPPING PATTERN AEZ: (LM 1) - UM 1 Survey Area 14

First Rains Annual & Semipermanent Crops

Average Average Upper Lov/er Total Sample Crop 0

ha 1 ha

Quartile ha

Quartile ha

Area Crop 0 ha

1 ha

Quartile ha

Quartile ha ha %

Maize 0.1 0.5 0.00 0.00 1.6 6.7 Sorghum 0.1 0.2 0.12 0.00 1.8 7.4 Fingermillet 0.0 0.1 0.00 0.00 0.7 3.0 Beans 0.0 0.8 0.00 0.00 0.8 3.4 Beans IPC 0.0 0.3 0.00 0.00 0.3 1.2 Cowpeas 0.0 0.2 0.00 0.00 0.4 1.7 Groundnuts 0.0 0.1 0.00 0.00 0.2 1.0 Cabbage 0.0 0.1 0.00 0.00 0.4 1.8 Cassava 0.0 0.1 0.00 0.00 0.1 0.5 Sweet Potatoes 0.0 0.1 0.00 0.00 0.4 1.5 Sugarcane 0.0 0.1 0.00 0.00 0.3 1.2 Pyrethrum 0.0 0.1 0.00 0.00 0.1 0.5 Maize & Beans 0.5 0.6 o.8o 0.20 15.7 65.9 Maize & Others 0.0 0.8 0.00 0.00 0.8 3.4 FMlt & Sorghum 0.0 0.2 0.00 0.00 0.2 0.8 Total 23.8 100.0

Second Rains Annual & Semipermanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha %

Maize Sorghum Beans IPC Cowpeas Cabbage Cassava Sweet Potatoes Sugarcane Pyrethrum Maize & Beans

0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.3

0.6 0.2 0.3 0.2 7.2 0.1 0.1 0.1 0.1 0.5

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.4 1.1 0.3 0.4 7.2 0.1 0.1 0.3 0.1 9.5

11.2 5.0 1.3 1.9 33.5 0.6 0.6 1.3 0.6 44.2

Total 21.5 100.0

Permanent Crops

Crop Average

0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha

Total Sample Area Crop

Average 0 ha

Average 1 ha

Upper Quartile

ha

Lower Quartile

ha ha % Sweet Bananas Cookng Bananas Coffee Tea

0.0 0.0 0.2 0.0

0.0 0.2 0.2 0.3

0.00 0.08 0.20 0.00

0.00 0.00 0.08 0.00

0.0 1.2 5.0 1.4

0.5 16.1 65.6 17.7

Total 7.7 100.0

Avg 0 = average of all sample farms

Avg 1 = average of all farms excluding zero entries

Up.Qu./Lo. Qu. = Upper/Lower Quartile, 50 % of all sample cases are in between these points

% columns = % of total farm land

383

K A K . 2 8

O Z

V O H c/5 W >

O Z N < o* O

z o H 03 O o. S O u § X

w -J cc <

H

2 c/i

< O W S

<: <

D »J

1 e ^ D S -* 3 o si u w .=: < ; j

O 1-4 & 1 2 1 vO v r 1 c-\

v f 1 1

CA v f '~r. £ VA 0 ! 1 CA 'O O CA vO

Cl o CA

• « • * • • « • • • « e 4 * • • • • « • » +> O O o o O O O O O CAI <X CA UA •H rH CA 1 , - , r H • 0 T~i O r->.

• - ) E* r-i

Jd h O r- C - !> 4) o Ci I A -» cv O >n ta CV O m

j C -P m I A * Cv! i n • CA! •P w cr\ v i - i n V f UA

o \ H H H -i

3 co 5

CO

O o o O ü u 10 60 >» 1 | ! | 1 1 1 1 >, 1 1 1 1 >:

•H t l 1 ! 1 1

u t l A.

C8 • H <3

X I

• H CO

X I

• H <3

X I X I

£> <H CM 'M H4 0 0 O

» H & , °A 1 vq

1 ^ v f 1 1 >* CA

V f UA £ UA CV 1 CA & c CA •ïft vO ÇV

UA MD » » H

• • • • • • « • • • • • • O • • • fc •H +* O o o O O vO O O O O CAJ C\i CA i n H • r H CA UA r H f f )

8 M H 0 O vO r-i • 8 M v f vO rH o h CO o a

|| II II m

43 || CA CA t > II O II id o o

CA 1 UA r H vO W H ! VO •-0 r H 1 id o o

• • CV • CV • id o o CO O o O

CO O 10 t l

o t l o

t i t l

o t l o

t i

<H <H CH P. • H t - O r- • H o • H

cv CU v f r H O CV r H CA CV 1 CU rH CA CA! 1 CU

o £S • a V f * r~~i v f * •-r-l

Ä O O H r-l

w + + J.

00 "™~ co CO CO CO o CU •p CU 4J

ia CA

« 1 CA rH

3 •

1 1 cd CA O UA • CA 1

> •H C

3 °3 O H

CA rH >

H CC

•H

a

o O o o r H H O CA! O

o .* J«! ü O

o o

ü O

o o

w •P •p

CU CA CA t > <•£> l> O co CU

t > to o

<H r H 1 CA! 1 H c-\ ! 1 \ D r H N T H CA H CA! 1 > v f v f CA 1 > • H

• H

• • H * • •, CA • > v f • > • H

• H CO O O o O O H • H

• H H

> • H

• H te CC

cu O CC

0) H rH •H rH •H

c CA CA -P O c- O O -P H CA -P «1 4) 1 1 1 1 O 1 H O 1 1 •P O 1 rH 1 CA CAI WA I T . vf 1 ±J d \D UA s ' 1 •-> ca X • • CS • « • VT • * t i v f • <s t i O O ^

rH

o O r-n H O

rH

O

H

H ü

H

o H rH • •

O

rH

O

H

ü

H

o H

Cu -"o CK ro ca CO 1 •P •p 4-' •p •p (4 0 C~ t - 0 O S 0 0 4) 1 1 1 1 1 1 1 1 1 1 •P 1 I 1 1 O | CV O 1 1 •p - p Ol S 1 1 •4^ •p CU • « • +> tw o O ^ V-I Cs • r - l Vi

CO O o

•sa

0 0 O O o

•sa

0 0 O

CO CA ^ CA o o CA CA CA! < A r- i > o

H rH 1 1 1 1 1 ~ < t U r-l ' 1 1 • r-l rH CM 1 CV ! vO m CAI 1 • • o O Oi Î • • H « • O « « • vr • O l > i n • CA( O 3 m

o O H O O r-( i n H V j '

• • • i H • • 3 3 3 ffl

• • H • « 3 3 3 ä 3 3 3 3 3 ffl 3 3 « 3 3

« O 1 «) O 1 dl O " 4J cu.cy <y (U O " CU O" CU O " +> CU C Or' +> o o* o* tsO t o hO 0 to • • b a ho to o M •Ö O M cd dl 01 t l cö CH ÇH Ö t l ^ II ys « t i « t i (ö t i E-i d h Li il II CU Erl c3 U t i II II t i t i t i u b a p o o CJ ti cu ti o ti o t l O CU > t i cu o

.* cu p i CU A S P i ^ CU P i S o O P i CU P i CU P i CU P i 3 O CU P i 3 o > p , > P i > P , X I > ft O •p > p , > P i > p , ^-v > P i O t l l> P i O

o < & < O < S3 CU < & t-q ra < CD < 3 < D . < t = i-P P P i < ; 3 H a •p > CU P cu E X 0)

to o CU > E CU cu •H ü 0) cu 0) «• co ra t l rH • I- I - CO CO -H rH JZ c o H X > t i u u o.

CÖ Cï flj G

•P i-l t l t l t , G ca cd ai 3

-P W Ö 4-> 4J C/3 •H

t i u u o. CÖ Cï flj G •P

t l t l t , G ca cd ai 3 +> W 4J

• J : O 41 CU - H « n iy CU CU * - ^ C8 + + \ CS + >•> >» >s - - O <L> >> >> r>> O |J O

• o H > rH 10 n CO « H (8 CU 0 rH (8 4) +> O SC 4) + i

> CM +) H u CAI -P 3 ca > c H C8 O t i ftj 0 a c. M OJ O 3 0 O ' H a o t i CU U -P s E CU t i -P s o t , N s o P, •a i cu ,o •H •O 1 CU jD P . CÖ

e e > 3 a Si G > 3 » s e t i o a H O H O « 1-3 S3 S H O W r J •H H o rH r-l

t -H

3 8 4

KAK. 29

o Z

u (.; o H on w > - I e O UJ z ^ N o < ai n >

J 7: T3

O C P3

H T l

co 1)

O X o. g O 1

u Q

ai Ui X

< f -

H U

ai -1

H S C/2 D

O 1

<* ,—* o w w S S - J

< '—' « N < • W

^ <

CV C \ c^ CV f \ H o - T V A ( O H ö 1 O 1 H 1 I A C l l I C l i n en »r\ C ^ \ t> 1-1 O •vl- m V Ü r^ ^J v-r • Ö . • • • • • • • « • • • • • o » « • • O - P o o O v£> O o O o O r H O co r H O i r H ^ cv CV H • o I A N O

» j en

.* (4 U C - t > o <u o c- N Û on l > VA vO PA ^v_ Vf> \ 0

x : - p • c% • CV m • cv •p w c- i n l > VA I >

o v r-i t-\ H • J 10

5

IQ 3

O 3 O 0 0

O 3 O

O ü o (0 bo

t l 1 1 1 r 1 1 1 1 u I 1 1 1 t l P4 • H

CS

• H CS xf

• H cd

3

• H CS xf

• H cd

• H - O 0 O

tOt-i cv en t> cl vft en H O •<f "cft V A

d « o 1 o 1 H 1 vn cl t l cv u^ C \ I A r>-\ t> t-i 0 ^ -tf m v£> H vr C^ d « • • « • * « • • • • m • • • • • m

• r l - P o o O v D o O

• o O O O r-t o to l-\ CV r-\ « CB CV cv H

v Ü

( 4 8 I A • O

II n

VA

II ta 43 II t s c- c\ n m

VA

II

o o

vO rH v> H r- cv cv 1 t> CJ cv 1 o o • • m • m • o o 10 o o H w r H ia

u CU

t i o

t i u CU

t i o

t i

<H t H C M

P< • H c- c- • H t> • H 0) CU 1 | H 1 m I-\ 1 1 O VA r H 1 1 O 0) d • s X • S

Ä O o O

w + to

+ (0 a

+ CO

10

+ to

+ (0 a

+ CO

10 o CU 4-> O • P

(0 5 1 »A 1-1

• I I

> •3 • CV r H

\ 0 • cv r-t >

H CS

•H ß

CD vu CV

• cv r H

> H (S

•H

a 3 o o o o cv CJ O cv o

o O

o o O o o

a p - p t . ca ta

(H • H cu

• o

1 o

1 en q t—i • O

1 l en •

o

l - l « o

1-1 I A cn

r-i • H

cv ' cu

> •H

CO

m • r H

cv 1 eu >

•H M 5

BC bC C

te a cu CU

bC C CU

te a

H H •H H •r i C -P •P H P N A) 1 1 1 1 1 1 1 1 I I -P 1 f 1 1 1 1 1 1 1 | - P CS ! r 1 1 4-> ta X es cd t i (S t i

o u u

H

O

rH

o

H

Ü

H

u u

H

O

rH

o

H

Ü

H rt rt ei W es

10 -p p . i j P p h o o O O 0 4)

• P

1 1 1 1 1 1 1 1 l l •P 1 1 1 1 1 1 1 1 1 1 4-J • p 1 i 1 ! p • P 4)

• P - M VH VH CM <M

w o 0 c O

¥1

O

•à *

o 0 c O

¥1

O

•à *

(0 f \ er­ r- c- t > en \ I . ' A ! t > O V A (0

1 | o 1 1 1 r-\ es l I • C l r H o 1 1 1 O <*\ H | • • r H «•n r-i 1 • « rH • • c- • « H • v j t> r H • VA vO 3 o o O o O o

• • « H 1 • • • • H • • H • t 3 . 3 , 3 (0 3 3 3 3 3 <8 3 3 CS 3 3

O O * CU O * CU O * -P O ffff O O" O) ff (D O -P cu O O • P cu eye? hO bo bO o 60 •• M to b0 O M •ö O M is (4 es u rt t i en (S t i t l ii i ^ i « t i a u ol t i En (3 t i t i II II CU E - i cd t ; t i U II t i •:> t i ai t i o t i 'J O "G t i O t l o M CJ t l CU O > t l cu o

ü cu p< iu C i g P i ^ - . O » i 3 o O ft «1 ft CD P i O Pi > O cu P i 3 o >. O, > a< > P i - ö > P i 0 -P > P i > O. > P i ^ > P i o t l > P i O

o < s < Ö <; o tu < : Ö ^ I Ui < E3 < 3 < Ö • «< » r 4 ft P i < 3 r 3 P i •p > o P G S M CU

ra o CU > •• e CU CU • H O CU O

a> » m ta u i H •H ta CO H H .C C O rH X

> u u h ft o eB a e

- P • J M t i 3 3 • P OT O -P - P OT

•r l u u h ft o eB a e • P cd o 3 3 • P w •P

rH- tU O fl) ' H «S •o 9 ) CU cu *-^ cd + + V ed + >> S >» v^ o Ci) ;>> >» r* . o r H o

•o H > rH » •o 03 tl» rH tÖ cu O rH (S CU • P CU bC O -P

> <\1 -P H t l CM -P 3 CS > C H cd o t l CM O cd p- t i CM O 3 O O -r l cd o u .0) t l P E e. 4> t l - p 3£ Ü t i N s o p. • 3 | <D x . •H 'Ö 1 CU .o fti cS

s « > 3 Ö c fi t» 3 Ö Cl E t i » o

...

W H O OT M 1 o a H O OT »J r H M O Ml •H'

D

D _ l

Ö

o

D D - 1

ce

O o

a ><

( N ( N

O o D D

o

CN r-l S

J, -L 5 D 3

TJ TJ T3 C C3 C D D D

•M 2 o .SP CO IX

T l a

n .s M or) a F c O

D a

D

c

385

KAK. 30

KAKAMEGA DISTRICT

TABLE 13 a: INPUTS AND YIELDS OF MAJOR CROPS

A E Z : U M 4 - LM 1-4 Survey Area 13

Crop Inputs

Imp­roved Seeds

%

Nutrients N

kg/ha

P2°5

kg/ha kg/ha

Manure

t/ha

Chemicals Insec.

kg/ha

Fung­icide kg/ha

Y i e l d

F l r s t _ R a i n s

Maize

Groundnuts

Sweet P o t a t o e s

Maize & Beans Maize Beans Maize Beans Maize Beans

Second_Rains

Sunf lower

Cassava

Sugarcane

Ccokng Bananas

Avg. UpQu LoQu

Avg. UpQu LoQu

Avg. UpQu LoQu

Avg. Avg. UpQu UpQu LoQu LoQu

Avg. UpQu LoQu

Sweet Potatoes Avg.

Avg. UpQu LoQu

Avg. UpQu LoQu

Avg. UpQu LoQu

89 loo loo

26 34

loo 5

loo

loo

loo loo loo

31 77

33 4 6o

12

o.o3

o.o5 o.o4

o.6o

386

KAK. 31

KAKAMEGA DISTRICT

TABLE 13 b: INPUTS AND YIELDS OF MAJOR CROPS

AEZ: (LM 1) - UM 1 Survey Area 14

Crop Inputs Yield Crop

Imp­roved

Nutrients Chemicals

Yield Crop

Imp­roved N P2°5 K20 Manure Insec. Fung­

Yield

Seeds P2°5 K20

icide « kg/ha kg/ha kg/ha t/ha kg/ha kg/ha kg/ha

First Rains

Maize Avg. 83 8 32 - - 3 - 3,o71 UpQu loo - 58 - - - - 3,15o LoQu - - - - - - - 2,o25

Sorghum Avg. - - '- - - - - 761 UpQu - - - - - - - l,ooo LoQu - - - - - - - 45o

Maize & Beans Maize Avg. 87 13 46 - o.o3 2 - 2,511 Beans Avg. - 1 3 - o.o3 - - 493 Maize UpQu loo 24 6o - - 4 - 3,15o Beans UpQu - - - - - - - 6oo Maize LoQu loo - 9 - - - - l,95o Beans LoQu - - - - - - - 2oo

Second Rains

Sorghum Avg. - - - - - - - 863 UpQu - - - - - - - 95o LoQu - - - - - - - 45o

Maize & Beans Maize Avg. 52 6 38 - - 4 4 2,ol6 Beans Avg. - - - - - - - 411 Maize UpQu loo - 6o - - - - 2,5oo Beans UpQu - - - - - - - 5oo Maize LoQu - - - - - - - l,o5o Beans LoQu - - - - • - - - 175

Perennial Crogs

Cookhg Bananas Avg. - - - - • o.34 - - 2o,958 UpQu - - - - - - - 18,ooo LoQu - - - - - - - 6,75o

Coffee Avg. - 4o 29 1 o.53 5 7 3,82o UpQu - 94 - - - 3 13 5 ,ooo LoQu — "* — — — — "* 1,214

3 8 7

KAK. 32

KAKAMEGA DISTRICT

TABLE 14 a: DISPOSAL OF CROPS

AEZ: UM 4 - LM Survey Area 13

Crop Production

Marketing Board Local larket Home Consumption Crop Production

k« kg * kg i kg i First Rains

Maize 38,340 12,150 32 9,710 25 16,480 43 Maize & Beans 82,473 17,320 21 15,725 19 49,428 60 Beans 1,304 530 41 0 0 774 59 Fingermillet 675 0 0 415 61 260 39 Sorghum 6oo 0 0 135 23 465 78 Cowpeas 180 0 0 I80 100 0 0 Cowpeas IPC 22 0 0 0 0 22 100 Groundnuts 972 0 • 0 710 73 262 27 Bambara GNuts 280 0 0 210 75 70 25 Sweet Potatoes 2,870 0 0 1,500 52 1,370 48 Sunflower 450 450 100 0 0 0 0 Cabbage 2,400 0 0 2,000 83 400 17 Arrow Hoots. 2,250 0 0 9OO 40 1,350 60

Second Hains

Sorghum 90 0 0 0 0 90 100 Cowpeas IPC 22 0 0 0 0 22 100 Groundnuts 1,360 800 59 0 0 56O 41 Bambara GNuts 50 0 0 0 0 50 100 Sweet Potatoes 28,540 0 0 45O 2 28,090 98 Sunflower 1,400 1,400 100 0 0 0 0

Permanent Crops

Nil

KAKAMEGA DISTRICT

AEZ: (LM 1) - UM 1

TABLE 14 b: DISPOSAL OF CROPS

Survey Area 14

Crops Production

kg

Marketing Board Local larket Home Consumption Crops Production

kg kg % kg % kg *

First Rains

Maize 11,470 4,270 37 1,000 9 6,200 54 Maize & Beans 41,871 0 0 16,855 40 25,016 60 Maize 8. Others 2,870 0 0 98O 34 1,890 66 Beans IPC 640 270 42 I6O 25 210 33 Fingermillet 700 0 0 135 19 565 81 FMlt 8c Sorghum 990 0 0 0 0 990 100 Sorghum 1,475 0 0 40 3 1,435 97 Cowpeas 350 0 0 190 54 I60 46 Groundnuts 80 0 0 0 0 80 100 Sweet Potatoes 6,760 0 0 380 6 6,380 94 Cabbage 1,350 0 0 1,230 91 120 9

Second Rains

Maize 2,750 0 0 0 0 2,750 100 Maize it Beans 24,862 0 0 6,485 26 18,377 74 Beans IPC 640 36O 56 160 25 120 19 Sorghum 820 0 0 0 0 820 100 Cowpeas 120 0. 0 0 0 120 100 Groundnuts 200 0 0 0 0 200 100 Sweet Potatoes 5,000 0

Pe

0

rmanent Cj

0

»ops

0 5,000 100

Nil

3 8 8

KAK. 33

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 a: DISTRIBUTION OF FARMING ACTIVITIES TABLE IS b: DISTRIBUTION OF FARMING ACTIVITIES Crop 2 Maize & Beans Cases: 44^ Crop 24 Groundnuts Cases: 7

AEZ: UM 4 - LM 1-4 Survey Area 13 Sample Size: 30 AEZ: UM 4 - LM 1-4 Survey Area 13 Sample Size: 30

JJLL

NLand Preparation:

± jLi

100 ". ol the cases

S - - S »_ - - CO

Land Preparation:

11 Hi Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding: Seeding:

JLllllll L JUL 111 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing: First Fertilizing:

JLÜL 1 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing: Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

jjjiiiL i Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

JUL JLi Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jl ••»••• • I _!*_ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

J L U JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

• • I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. l l l l J J LW1L

Maximum 30 per crop and season 389

KAK. 34

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 c: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 d: DISTRIBUTION OF FARMING ACTIVITIES

Crop 30 Sweet Potatoes Cases: 8 Crop 56 Cooking Bananas Cases: 7

AEZ: UM 4 - LM 1-4 Survey Area 13 Sample Size: 30 AEZ: UM 4 - LM 3-4 Survey Area 13 Sample Size: 30

100% — i o ( , h e

Land Preparation: cases Weeding:

JLJ IL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

s--s ». - • n 1 I . . . . I I I .

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I I II II I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

I I I I I • • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

J _ l I I MM Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

U L Jl ILLL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

3 9 0

KAK. 35

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 e: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 f: DISTRIBUTION OF FARMING ACTIVITIES

Crop 63 Sugarcane Cases: 9 Crop 64 Cassava Cases: 10

AEZ: U M 4 - L M 1-4 Survey Area 13 Sample Size: 30 AEZ: UM 4 - LM 1-4 Survey Area 13 Sample Size: 30

100 \ ' of the

cases

T Weeding:

Jan. Feb. Mar. Apr. May Juh. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I • I • I I • I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting: Pruning/Cutting:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing: Fertilizing: T i X +

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: _ Harvesting:

J I I L ± Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

3 9 1

KAK. 36

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 g: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 h: DISTRIBUTION OF FARMING ACTIVITIES

Crop 2 Maize & Beans Cases: 60* ' Crop 18 Sorghum Cases: 16

AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30 AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30

100%

_____ ot (he - - . Land Preparation: cases Land Preparation:

lull _ J L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

Jl k J. ILILIL J_L

JUlL • Ï

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Seeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

L -I llll II Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Fertilizing:

ll_J__L III I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

i

j — i • • • ______ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I • ^ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

First Weeding:

• • • LL Jill JJL JL III ll L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

I .Hill .1 • Jill Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

J _ L _ ___ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Second Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Third Weeding:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvest:

1__J • - • • • ll.lill.lll , ...lillllil Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1) Maximum 30 per crop and season

ILL ji .1 I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

3 9 2

KAK. 37

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 i: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 j : DISTRIBUTION OF FARMING ACTIVITIES Crop 50 Tea Cases: 4 Crop 51 Coffee Cases: 25

AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30 AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30 100 \ of the

Weeding: Weeding:

1 I . I I I • I ± l u <5 + — i i i I • I i I • I •

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying:

1 _ L Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

I I • I • I • A Li

J L _ 1 I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

_J I • I • I I • I I I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

i • I • I • • I I • • Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: Harvesting:

u JL Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

393

KAK. 38

KAKAMEGA DISTRICT KAKAMEGA DISTRICT

TABLE 15 k: DISTRIBUTION OF FARMING ACTIVITIES TABLE 15 1: DISTRIBUTION OF FARMING ACTIVITIES

Crop 56 Cooking Bananas Cases: 8 Crop 63 Sugarcane Cases: 3

AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30 AEZ: (LM 1) - UM 1 Survey Area 14 Sample Size: 30

100 S of the cases Weeding: Weeding:

— . . co

I I • I • - • • - I Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dusting and Spraying: Dusting and Spraying:

J_L L

U Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

u Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Pruning/Cutting:

I I I I I I I I I • • . Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Fertilizing:

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Harvesting: _ Harvesting: T i T t LLJ LL

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

394

KAK. 39

CO Ui

Z O N < U O o J o w ó as o < a o. O OS u Bi a eu -J W > - I

z o H U. O O as CU

w « H

H U

5 H en S < o W S <: us < us

u z o ta

Z < U

« •* U

W

O

et

<

I M

CS3

<

r i

1

C

1

O

»H œ o <

> J

c 0

• * *

44 y 3

X I O l *

a.

-

3

O o o

H

I A i H r-t

o o o

m ru

IA r-* (M

VD i-t 1 O

IA (M

u z o ta

Z < U

« •* U

W

O

et

<

I M

CS3

<

r i

1

C

1

O

»H œ o <

> J

c 0

• * *

44 y 3

X I O l *

a.

r-4

o o co

o o o

0 0

IA •4- >A

r-

IA t ^

u z o ta

Z < U

« •* U

W

O

et

<

I M

CS3

<

4 C

•H £

>° TS r 4 T -

O

»H œ o <

> J

c 0

• * *

44 y 3

X I O l *

a.

~ o o

O O

" S

§ LA

u z o ta

Z < U

« •* U

W

O

et

<

I M

CS3

<

4 C

•H £

>° TS r 4 T -

O

»H œ o <

u 0

44 - H 3 i - l O •><

45 44 44 t l - H O 3 te.

o o

0 0

O o m 1

vu

Kl Z O

U Z < u

M

a z < a H r a u :* o

1-4

X

<

C

1

( L": r-i

C CT.

1 0 cc

W

o to M a: u <

> 0

c 0

44 o 3 -o 0 h

Û4

3 *-<

o o o

i H

I A • H

ru O O O

<\1

O H I IA I A

vO O O O

vo H

- 3 -o i H

ON Kl Z O

U Z < u

M

a z < a H r a u :* o

1-4

X

<

C

1

( L": r-i

C CT.

1 0 cc

W

o to M a: u <

> 0

c 0

44 o 3 -o 0 h

Û4

M h-t

o o

0 0

O o o 1-1 l-(

O ON

0 0

IA r-l

i-t rvi

O O O

rvj IA

0 0

Kl Z O

U Z < u

M

a z < a H r a u :* o

1-4

X

<

« 0

o s * 44 h

0

0 o P.r-1

W

o to M a: u <

> 0

c 0

44 o 3 -o 0 h

Û4

-o o I A

o o o

I A

o o o

I A

Kl Z O

U Z < u

M

a z < a H r a u :* o

1-4

X

<

« 0

o s * 44 h

0

0 o P.r-1

W

o to M a: u <

O

44 ' H 3 H 0 - H

4= 44

•H 0 3 te.

o o

0 0

o o c

I A

O O O

I A

O

<

"l

C u

1-4

X

• •

U

<

.H L I Ci ^D

J J ' I - l

0 JJ

un

•• 1 •3 0 C —

w ~J o w M ce O <

• H O

W

r4 0

O •J

a 0

• H 44 U 3

O U

a,

3 o o o o ftj

H

I A 8 o

i-(

I A

<-* Al O r H

O C

o

AI

VO

i H

AI IA i H

O

<

"l

C u

1-4

X

• •

U

<

.H L I Ci ^D

J J ' I - l

0 JJ

un

•• 1 •3 0 C —

w ~J o w M ce O <

• H O

W

r4 0

O •J

a 0

• H 44 U 3

O U

a,

S o o o

0 0

I A J - o o o Cv.

O O I A

O O O

Ov

VC IA

O

<

"l

C u

1-4

X

• •

U

<

O « U a « 44 t . v . o o e »

0 U o o

I A

•o

b -a <•• o a "Z. eu M o • + 0

4 1 Q 60 4J e o a

t » l - l - 4

w ~J o w M ce O <

• H O

W

r4 0

O •J

a 0

• H 44 U 3

O U

a, H

o o o

vu

o o o

(\1

O o o

J -

VO r-l

«M r-l

O

<

"l

C u

1-4

X

• •

U

<

O « U a « 44 t . v . o o e »

0 U o o

I A

•o

b -a <•• o a "Z. eu M o • + 0

4 1 Q 60 4J e o a

t » l - l - 4

w ~J o w M ce O <

• H O

W

1H

0 N

44 «H 3 i H O - H .a 44 •w h •M 0 •M te.

I A 8 o fvj

o o o

rvj

O

<

"l

C u

1-4

X

• •

U

<

O « U a « 44 t . v . o o e »

0 U o o

I A

•o

b -a <•• o a "Z. eu M o • + 0

4 1 Q 60 4J e o a

t » l - l - 4

w ~J o w M ce O <

• H O

W

44 • H

a Ifc ts to ta to « «0 X • # . S to (0 to « to to

X J? ^ Ä to

X to

X to

X tfi

• « . to 5 JP to

O

<

"l

C u

1-4

X

• •

U

<

O « U a « 44 t . v . o o e »

0 U o o

I A

•o

b -a <•• o a "Z. eu M o • + 0

4 1 Q 60 4J e o a

t » l - l - 4

w ~J o w M ce O <

• H O

W i H

(0 •o r4 e

- H X

z

h O

( H • H 4 *

« te.

1 A O

a«.

o (M

H

> V >-> a

w o W - H O 4J Ei u < 3

S ^ a. u

a. E-l

•Ji a u .. «

a. e O ti « a O te.

ID •O • H « • H »

z

u V

•H i H «H * J U V) te.

I A

o r i Q.

O M X

O

>

c 0

•H 4J U 3

•o O

•< u > a, < CO - H

< U o

Ui .. a) a. s O h OS 0) u u.

Z

u a> N

•M r H • H 4 J

V te.

I A O M

a.

O ni se

« !> 01 -> C

o • H 4 J U 3

TJ

M £ U a. •< CQ c m -H «< O 10

. . a> a. B O u ce m O te.

a •o 1-t V

• H X

z

u 9) N

>H • H 4 *

0> te.

I A O m a, S

• H a>

§ - H

ï! O te.

a •o M « •H X

z

h 0 N

• H i H • r i 44 k. 0

te.

I A

S o rg

r 4 0 > 0

o T l 4 * U 3

•o 0

a.

e - r . a u

. . 0 a. s o u os a U te.

a •o rH 0

<H X

z

0

f o

K O

C o

• H A ' U

W 3 H -a s o S >" a a, z O -ri as es a

h •• 0

OH S O t . oc as u u.

(0 •o r4 e

- H X

z

h O

( H • H 4 *

« te.

1 A O

a«.

o (M

H

> V >-> a

w o W - H O 4J Ei u < 3

S ^ a. u

a. E-l

•Ji a u .. «

a. e O ti « a O te.

ID •O • H « • H »

z

u V

•H i H «H * J U V) te.

I A

o r i Q.

O M X

O

>

c 0

•H 4J U 3

•o O

•< u > a, < CO - H

< U o

Ui .. a) a. s O h OS 0) u u.

Z

u a> N

•M r H • H 4 J

V te.

I A O M

a.

O ni se

« !> 01 -> C

o • H 4 J U 3

TJ

M £ U a. •< CQ c m -H «< O 10

. . a> a. B O u ce m O te.

a •o 1-t V

• H X

z

u 9) N

>H • H 4 *

0> te.

I A O m a, S

• H a>

§ - H

ï! O te.

a •o M « •H X

z

h 0 N

• H i H • r i 44 k. 0

te.

I A

S o rg

r 4 0 > 0

o T l 4 * U 3

•o 0

a.

e - r . a u

. . 0 a. s o u os a U te.

a •o rH 0

<H X

z

0

f o

K

395

K A K . 4 0

H D

H z H 3 Z O z

& 3 O

M Z O [SI

M Z < o

ce

< Ö w

o ce << s

CM

z »a

• •

H

0 r^ n i

c

en

r^

1

o M w ce

<

r-t

> 01

-J

c o

•H -*J

3 •o O U

a ,

•H

o o C\I

•A

00 -3-

o o

O C

(M (M (M

o o

o CM

CV 8 IA

H

CM - a -

LA CM

O O CM

r H

H LA CM

o o

LA

H

O rA <M

M Z O [SI

M Z < o

ce

< Ö w

o ce << s

CM

z »a

• •

H

0 r^ n i

c

en

r^

1

o M w ce

<

r-t

> 01

-J

c o

•H -*J

3 •o O U

a ,

=

o o

LA

(M

o IA

O o

VC

H

e o

- 3 -

O CM

CM

CT- VC O o oo

O LA 00

LA tN o o o

r H

LA -3»

M Z O [SI

M Z < o

ce

< Ö w

o ce << s

CM

z »a

• •

H

0 U 0

• - ! S

I» tn

\ . 0 c

^ LT)

o M w ce

<

r-t

> 01

-J

c o

•H -*J

3 •o O U

a ,

« O O u\

l - (

IA vu O O

O

ir\

o ers

' M CM

0 O r H

O O IA

8 8

M Z O [SI

M Z < o

ce

< Ö w

o ce << s

CM

z »a

• •

H

0 U 0

• - ! S

I» tn

\ . 0 c

^ LT)

o M w ce

<

u «1 N

* * - H 3 rH O - H

JC * > * > Cl • H © S h.

o o I A

r H

O O K\

CM

O o 8

oo

O O rv

O o ON

H

§ (S3

M Z < cj

M

Q Z < a

X

ce M » O - 3

r H

X J

Cd

<

0

ro I 0

m

0

1 C

ce CO H )

o M * H ce u <

01

> - J

c o

•H

u 9

• o 0 u

a .

»H

O o o

I N 00 O

O O

CM i n

CM

o o

o o

-3-

00 O i-t

VC ON

o o 00

H

O 00 rA

H

§ (S3

M Z < cj

M

Q Z < a

X

ce M » O - 3

r H

X J

Cd

<

0

ro I 0

m

0

1 C

ce CO H )

o M * H ce u <

01

> - J

c o

•H

u 9

• o 0 u

a .

>-< o o o

<M

o CM

O o

CM

CM

m J - -s-

o

8 CM

V £ ( A

O O CM

H

vu r H

LA H

H

§ (S3

M Z < cj

M

Q Z < a

X

ce M » O - 3

r H

X J

Cd

<

« o

0 B * 0

u 0 o

CO H )

o M * H ce u <

01

> - J

c o

•H

u 9

• o 0 u

a . M

o o CM

O O

0 O

O (M H

O O t v

H

§ (S3

M Z < cj

M

Q Z < a

X

ce M » O - 3

r H

X J

Cd

<

« o

0 B * 0

u 0 o

CO H )

o M * H ce u <

e

+» >H 3 H 0 -H

+> U •ri 01 3 Im,

O o CM

H

§ O

CM

O O CM

O o

CO

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

. H L I rO O

0

• • 1 n 0 c > -

fNJ CM

co

3 to M ce u

H • H O

CO

« J a o

•H

U

3

O

a .

M

M

o o 1A

o ( js

O O -s-

o o

-s-

• A r-l

0 0 H 8

LA l - l

- 3 -CM CM

o o LA

f H

0 0 H

LA H

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

. H L I rO O

0

• • 1 n 0 c > -

fNJ CM

co

3 to M ce u

H • H O

CO

« J a o

•H

U

3

O

a .

2 O o

CM

IA

IA o

o m CM

o m

CM

1A I A

O O

0 0

O o o

r H

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

O e u x a> *> u \ 0 o e

» O

h 0 O

I A D . i - 4

e a « i a. m o >> • + «

*> a te-w e a a

» r H . H

co

3 to M ce u

H • H O

CO

« J a o

•H

U

3

O

a . H

O O I A

CM

O CM

o ru

o

H

O CO

O I A CM

O O LA 1

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

O e u x a> *> u \ 0 o e

» O

h 0 O

I A D . i - 4

e a « i a. m o >> • + «

*> a te-w e a a

» r H . H

co

3 to M ce u

H • H O

CO

O N

+* * H 3 H 0 - r i

J3 • « •"-> h • H »

O O m

H

g O O 00

o o

H

H

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

O e u x a> *> u \ 0 o e

» O

h 0 O

I A D . i - 4

e a « i a. m o >> • + «

*> a te-w e a a

» r H . H

co

3 to M ce u

H • H O

CO

4« •rf a

s VI te

je co « te CO

j e • # .

to CO tO X

to x » to

je te

je to

j e te

je « te je

to je

te je

te je Ä te

je te

je to

je te

j e

5

< = H

i w w fc,

o u

X o

• CSJ

• u

<

O e u x a> *> u \ 0 o e

» O

h 0 O

I A D . i - 4

e a « i a. m o >> • + «

*> a te-w e a a

» r H . H

co

3 to M ce u

H • H O

CO

10 •o pH « • H »

Z

« H

• H i H • H 4>

O Cm,

1 A o rvj a .

O CM

se

H 4> > V

a o

• H 4J O 3

• o O

x u o a.

2 ° ce > H o C0 »

u .. o a. B O u ce a U Cm,

a •a r-l «> •H

Z

r-4 - H

O U ,

m o r i

a .

o (M

ri O > 01

- 3

B O

C0 - H Z * > •* o M 3 m -o

«2 a,

U co c M -H < x a . . ® a , B O b ce a U Cm,

D

O •H

z

r3 • H rH •rt

m o CM

a .

o

se

r4

> Cl

- 1

c 0

•H * > U 3 TJ 0 U

a . co

CQ (0 U

. . ai a. B O u ce e O Cm,

/ a

•o

M

•M

z

h 01 N

- H r H •H

U ,

I A O CM

a .

o ru

»e

r H

> a>

a 0

•H

U ~ 3 ce -o u o 2 *• o o.

Cm. C Z * H 3> CO 03

k . . ai a, E o u ce a O Cm,

a • o r H e

• H X

Z

C a N

•H f H •H 4« h ai

Cm,

IA o CM

a .

o CM

se

f H ai l> ai

B 0

•H **

* * o

s s co a,

s -co to

h . . o a, e O u ce a U Cm,

a T>

ai - H

z

kl a> N

• H f H •r* •»»

h ai

U ,

LA O CM 0 .

o CM

se • e o

•H +J O 3

•o O u a.

H t-3 a M -H

x a t * •• •

a. e o u ce a u u.

10 •o pH « • H »

Z

« H

• H i H • H 4>

O Cm,

1 A o rvj a .

O CM

se

H 4> > V

a o

• H 4J O 3

• o O

x u o a.

2 ° ce > H o C0 »

u .. o a. B O u ce a U Cm,

a •a r-l «> •H

Z

r-4 - H

O U ,

m o r i

a .

o (M

ri O > 01

- 3

B O

C0 - H Z * > •* o M 3 m -o

«2 a,

U co c M -H < x a . . ® a , B O b ce a U Cm,

D

O •H

z

r3 • H rH •rt

m o CM

a .

o

se

r4

> Cl

- 1

c 0

•H * > U 3 TJ 0 U

a . co

CQ (0 U

. . ai a. B O u ce e O Cm,

/ a

•o

M

•M

z

h 01 N

- H r H •H

U ,

I A O CM

a .

o ru

»e

r H

> a>

a 0

•H

U ~ 3 ce -o u o 2 *• o o.

Cm. C Z * H 3> CO 03

k . . ai a, E o u ce a O Cm,

a • o r H e

• H X

Z

C a N

•H f H •H 4« h ai

Cm,

IA o CM

a .

o CM

se

f H ai l> ai

B 0

•H **

* * o

s s co a,

s -co to

h . . o a, e O u ce a U Cm,

a T>

ai - H

z

kl a> N

• H f H •r* •»»

h ai

U ,

LA O CM 0 .

o CM

se

3 9 6

K A K . 41

co Ui z o N

< u o o - J o u w ó o: o < o z •«; o. o os u

o .

co - J cd > S z o p u a Q O ai e-

« 03 <

H

y 5 H co

S < o W

S <: <

z o

U Z < o

ce

< w

o er « X

Cvl

z J

« •

<

m 1

r i

LO

1

m t o

O CO M es o <

Ol > Ol

J

a 0

• H

u 3

• d o u

a .

t-« O O

V C

C\J

rq VC f A

z o

U Z < o

ce

< w

o er « X

Cvl

z J

« •

<

m 1

r i

LO

1

m t o

O CO M es o <

Ol > Ol

J

a 0

• H

u 3

• d o u

a .

z o

U Z < o

ce

< w

o er « X

Cvl

z J

« •

<

o

c

Il E

"à n "v. 0 E

-Tun

t o

O CO M es o <

Ol > Ol

J

a 0

• H

u 3

• d o u

a . M

z o

U Z < o

ce

< w

o er « X

Cvl

z J

« •

<

o

c

Il E

"à n "v. 0 E

-Tun

t o

O CO M es o <

u a»

*» -ri 3 r-l O H

j ; * >

• H O * Cv

O O

I A

H

§ S )

u z < o

Q Z << J Q M X

es u s o

X

u <

0 VD m 1 0 ui m

C 0-.

1 0

ce

CO

o co r-l es u «s

r-l V

0)

a 0

• H

U

3

0

o .

• H r-l

O O cv

IA

o o H

o I A

o o I A

t x

O co I A

VO I A

o o o I A rvj

O o

- 3 -

O vu H

8 o o V O

r A 0 0 r- l

I A 0 0 I A §

S )

u z < o

Q Z << J Q M X

es u s o

X

u <

0 VD m 1 0 ui m

C 0-.

1 0

ce

CO

o co r-l es u «s

r-l V

0)

a 0

• H

U

3

0

o .

r-l t - l

o o o I A

VO r-4 H

f A CM

I A O O

o o r - l

O o H

O O O o I A I A

O O H

O i-l rvl

§ S )

u z < o

Q Z << J Q M X

es u s o

X

u <

O O E >

O u 0 o

cv

CO

o co r-l es u «s

r-l V

0)

a 0

• H

U

3

0

o . •H

o o o

O

8 I A r- l

I A O t v

§ S )

u z < o

Q Z << J Q M X

es u s o

X

u <

O O E >

O u 0 o

cv

CO

o co r-l es u «s

t. e

+> * H 3 . H O - H

• r i «

ï tv

O O av

i - i

O O I A

H -

o o o I A I A

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

' H ^

c - P

i n

I N •• I

•V 0

CO j o CO

CS

o <

r - l • H 0

CO

i r i 0)

O J

a o

• r i +> O 3

O 1<

a.

M

o o

0 0

-3 -

I A I A H

O o o o 1-1

I A O rA

<\l I A i r i

O O

o o H

I A

-s-

C * C7N

ON O

8 V C H

O 1-1

I A r-l f A

O

8 Cv

O H -3-

O vO r-l

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

' H ^

c - P

i n

I N •• I

•V 0

CO j o CO

CS

o <

r - l • H 0

CO

i r i 0)

O J

a o

• r i +> O 3

O 1<

a.

M

8 o I A

I X H

Cv r-l 8

o # H

VO INJ 1-1

Ov 0 0 H

o o o

O I A i-t

O VO

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

« t i a. o> * » h \ O

o S *> u

0 t« 0 o

I A Q k r H

•S •• *> h f l » e 0 " - .

CU CM CO s>>

• + os <•> o

« a a

CO j o CO

CS

o <

r - l • H 0

CO

i r i 0)

O J

a o

• r i +> O 3

O 1<

a. H I

8 o rvl

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

« t i a. o> * » h \ O

o S *> u

0 t« 0 o

I A Q k r H

•S •• *> h f l » e 0 " - .

CU CM CO s>>

• + os <•> o

« a a

CO j o CO

CS

o <

r - l • H 0

CO

u 9

+» i - l 3 rri O - H

J C • » * > U • r i a> •» Cv,

O O

o ro

o o

- 9 -

O O i - l

M

8 o H-v.

• O O I A

VO

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

« t i a. o> * » h \ O

o S *> u

0 t« 0 o

I A Q k r H

•S •• *> h f l » e 0 " - .

CU CM CO s>>

• + os <•> o

« a a

CO j o CO

CS

o <

r - l • H 0

CO

44 T l C

5S

« cc X

to tu M

u tt cc to to I A

to je

to X

to to * L

to te X

to X

to X •?* .

to X

to X

to X

to X

« to X

CO

X to X

to

K 2 O

< a r-i 1

(w

o u r- l

X 3

• tsl •

U

<

« t i a. o> * » h \ O

o S *> u

0 t« 0 o

I A Q k r H

•S •• *> h f l » e 0 " - .

CU CM CO s>>

• + os <•> o

« a a

CO j o CO

CS

o <

r - l • H 0

CO r-l

co a>

u •o r-l

•ri X

Z

te V

• r i r-l f i • u h O

U .

I A O a.

O

»S

H

> to

s ° es o O -H

* J

< u 3 3 < TJ OQ o

࣠u M a CU i4 < z m . . ai a, B O t i

ce a

o 13 H CV

•r* X

z t l « H

f i f H • r i +» U O

Cv

I A O r»l

a.

o i-t

> o

c 0

• r i 4> O 3

T l O t ,

a,

E-i co h .. «

0. s O t i

ce a U t v

13

V •M X

z

V

•H H • r l

t l 0)

t v

IA O l \ l

o ' r-l

V t> 0)

- ) c 0

H - r i • H * J S O ? 3 Bv 13

0

S ^ O a, r-l CO 0 CO ' r i «< CU CO

t l . . a> a . B O c, ce « O Cv

0 13 r-\ V

•rl X

z t l

a H

•H r-l •ri *» t i a>

Cv

I A O rvj

CU

o rvl as

r - l

> O

J

s o

•r i

U 3

• o O

1 « Z *r i

m co

o. e O t i CS CO O Cv

•o r - l C

• r l X

z t l

co N

•ri rH •ri ** M Ol

tv

IA O ru O.

o rvl

SS

CO !» e

a 0

•ri 4* O

M 3 Z -O •< O O t ,

r* a '

cs 5 ö

O - r l

CO O t l

.. o o. e o t. CS • O Cv

ä e <-> \

œ 13 r^ 01

•ri X

Z

t . CO N

•ri rH •ri *> t i CV

t v

I A O rvl Cu

o A l H t>

w e ce o 9 - r i H * » co o

Cu 73 O

• J U < a. « s a H -ri < Z Q

t . .. c a. s O b es « U Cv

u •o r-l

•ri X

Z

te V

• r i r-l f i • u h O

U .

I A O a.

O

»S

H

> to

s ° es o O -H

* J

< u 3 3 < TJ OQ o

࣠u M a CU i4 < z m . . ai a, B O t i

ce a

o 13 H CV

•r* X

z t l « H

f i f H • r i +» U O

Cv

I A O r»l

a.

o i-t

> o

c 0

• r i 4> O 3

T l O t ,

a,

E-i co h .. «

0. s O t i

ce a U t v

13

V •M X

z

V

•H H • r l

t l 0)

t v

IA O l \ l

o ' r-l

V t> 0)

- ) c 0

H - r i • H * J S O ? 3 Bv 13

0

S ^ O a, r-l CO 0 CO ' r i «< CU CO

t l . . a> a . B O c, ce « O Cv

0 13 r-\ V

•rl X

z t l

a H

•H r-l •ri *» t i a>

Cv

I A O rvj

CU

o rvl as

r - l

> O

J

s o

•r i

U 3

• o O

1 « Z *r i

m co

o. e O t i CS CO O Cv

•o r - l C

• r l X

z t l

co N

•ri rH •ri ** M Ol

tv

IA O ru O.

o rvl

SS

CO !» e

a 0

•ri 4* O

M 3 Z -O •< O O t ,

r* a '

cs 5 ö

O - r l

CO O t l

.. o o. e o t. CS • O Cv

ä e <-> \

œ 13 r^ 01

•ri X

Z

t . CO N

•ri rH •ri *> t i CV

t v

I A O rvl Cu

o A l

397