53
Production of regenerated nanocomposite fibers based on cellulose and their use in all-cellulose composites Andrés García Vogel Materials Engineering, master's level 2017 Luleå University of Technology Department of Engineering Sciences and Mathematics

Production of regenerated nanocomposite fibers based on

Embed Size (px)

Citation preview

Production of regenerated nanocompositefibers based on cellulose and their use in

all-cellulose composites

Andrés García Vogel

Materials Engineering, master's level 2017

Luleå University of Technology Department of Engineering Sciences and Mathematics

Productionofregeneratednanocompositefibersbasedoncelluloseandtheirusein

all-cellulosecomposites

ATHESISSUBMITTEDTOLULEÅUNIVERSITYOFTECHNOLOGYANDUNIVERSITYOFOULUFORTHEDEGREEOFMASTER’SIN

COMPOSITEMATERIALS

Materialscience&engineeringdepartmentSupervisor:Prof.KristiinaOksmanAndrésGarcíaVogelLuleå,25.06.17

Acknowledgements

II

Acknowledgements

Iwouldliketotakethisopportunitytothankallthewonderfulpeoplethathavemadethecompletionofthismasterthesispossible.Infirstplace,IwouldliketoexpressmygratitudetomysupervisorProf.KristiinaOksmanforhergenerosity,constantadvice,encouragementandendlesshelp.IamhighlyindebtedtoyouandLuleåUniversityofTechnology.Moreover,Iexpressmythankstoallthepeopleinthewoodandbionanocomposites,aswellasmaterialsdepartmentwhowerealwayswillingtohelpme.Lastbutnottheleast,Iexpressmyheartfeltthankstomyfriendsandfamily.Thankyou!

Abstract

III

Abstract

Biobasedall-cellulosecomposites(ACCs),inwhichthematrixandthereinforcementaremadeoutofthesamematerial,havegainedanoticeableincreasedattentioninrecentyears.Theirsuccessful application would solve the commonly faced challenges with natural fibercompositesregardingtheirchemicalantipathybetweenthehydrophilicfiberandtheusuallyhydrophobic polymer matrix, while still keeping the advantages of being environmentalfriendly.Moreover, the use ofman-made continuous regenerated cellulose fibers for thispurpose could result in unidirectional all-cellulose composites with excellent mechanicalproperties. In this study, a new processing technique for unidirectional all-cellulosecomposites, reinforced with continuous regenerated cellulose nanocomposite fibers, hasbeendeveloped,where the fibersarewounddirectlyafter the coagulationbathand thenwelded together while still being swelled in order to form all-cellulose composite sheetswithouttheneedofaddinganyadditionalsolventorchemicals.Scanningelectronmicroscopyandtensiletestingwereusedtoinvestigateandcomparethemicrostructureandmechanicalproperties,ofareferencematerialwithoutnanoreinforcedfibersandtwovariantsreinforcedwith2%cellulosenanocrystals(CNCs)and2%halloysitenanotubes(HNTs).Analysisrevealedthattransparentall-cellulosecompositeswithahighcompactiondegreeandminimalwarpageduringshrinkage,showinghighmechanicalpropertiescouldbemade.However,theadditionofnanoreinforcementsdidnotleadtoanyimprovements.

Tableofcontent

IV

Tableofcontent

1. Introduction............................................................................................................................11.1. Backgroundoftheproject.....................................................................................................21.2. Objectivesandoutlineoftheproject....................................................................................2

2. Theoreticalbackground...........................................................................................................42.1. Cellulose...............................................................................................................................4

2.1.1. Cellulosestructure..............................................................................................................42.2. Cellulosedissolutionandregeneration..................................................................................5

2.2.1. Solvents...............................................................................................................................72.3. Naturalnanoreinforcements.................................................................................................8

2.3.1. Cellulosenanocrystals.........................................................................................................82.3.2. Halloysitenanotubes..........................................................................................................9

2.4. Cellulosefibers....................................................................................................................102.5. Fiberspinning......................................................................................................................12

2.5.1. Meltspinning....................................................................................................................122.5.2. Solutionspinning...............................................................................................................132.5.3. Electrospinning.................................................................................................................13

2.6. All-cellulosecomposites......................................................................................................152.6.1. Processingofall-cellulosecomposites..............................................................................152.6.2. Mechanicalpropertiesofall-cellulosecomposites...........................................................17

3. Materialsandmethods.........................................................................................................203.1. Materials.............................................................................................................................203.2. Preparationofthespinningsolutions..................................................................................20

3.2.1. Cellulosedopes.................................................................................................................203.2.2. Cellulose/CNCdopes.........................................................................................................213.2.3. Cellulose/HNTdopes.........................................................................................................21

3.3. Measurementandcharacterization.....................................................................................223.3.1. Thermogravimetricanalysis(TGA)....................................................................................223.3.2. Scanningelectronmicroscopy(SEM)................................................................................223.3.3. Tensiletesting...................................................................................................................22

4. ManufacturingPartI(KarlstadUniversity)............................................................................234.1. Introduction........................................................................................................................234.2. Wetspinning.......................................................................................................................234.3. ResultsandDiscussion........................................................................................................24

4.3.1. ProcessingoftheACCs......................................................................................................244.3.2. Microstructure..................................................................................................................264.3.3. Mechanicalproperties......................................................................................................26

4.4. Conclusions.........................................................................................................................27

5. ManufacturingPartII(LuleåUniversityofTechnology).........................................................285.1. Introduction........................................................................................................................285.2. Wetspinning.......................................................................................................................285.3. ResultsandDiscussion........................................................................................................29

5.3.1. ProcessingoftheACCs......................................................................................................295.3.2. Opticalproperties.............................................................................................................315.3.3. Microstructure..................................................................................................................315.3.4. Mechanicalproperties......................................................................................................315.3.5. Fracturebehaviour............................................................................................................33

5.4. Conclusions.........................................................................................................................34

6. Futurework..........................................................................................................................35

7. References............................................................................................................................36

Listofabbreviations

V

Listofabbreviations

ACC All-cellulosecomposite

BMIMAc 1-Butyl-3-methylimidazolium

CNC Cellulosenanocrystal

CNW Cellulosenanowhisker

DP Degreeofpolymerization

FRC Fiberreinforcedcomposite

HNT Halloysitenanotube

IL Ionicliquid

LiCl/DMAc LithiumchlorideN,N-dimethylacetamide

LTU LuleåUniversityofTechnology

MCC Microcrystallinecellulose

ML Middlelamella

NaOH Sodiumhydroxide

NMMO N-methylmorpholine-N-oxide

P Primarylayer

S Secondarylayer

SEM Scanningelectronmicroscopy

SIP Solventinfusionprocess

TGA Thermogravimetricanalysis

VARTM Vacuumassistedresintransfermoulding

Introduction

1

1. IntroductionAcompositematerialisbydefinitionamaterialconsistingoftwoormoredistinctivephases,withtheaimofgettingthebestpropertiesofbothmaterials.Usuallythereisaharderandstrongerdiscontinuouspart,alsotermedreinforcement,andacontinuouspartcalledmatrix[1].Themainadvantageoffiberreinforcedcomposites(FRCs)isthattheyofferlowdensitycombined with high mechanical properties. No wonder, they have been used in manyapplications,eveninthosewhichrequirehighperformance,suchasaircraftorautomobileindustry,andthatthemarketiskeepinggrowing[2].AgoodexamplethereforeisthenewAirbus A350 XWB,which structural components aremade up to 53% out of composites,resultinginafuelconsumptionreductionof25%comparedtopreviousmodels[3].However,asaresultofgreaterglobalenvironmentalawarenessandrunningoutfossilfuelsthedemandfor“greener”materialswithlowerenvironmentalimpactthantraditionallyusedFRCshasraisedinrecentyears.Consequently,theinterestinnaturalfibercomposites(NFCs),alsoreferredtoas“biocomposites”,hasreceivedasignificantlyincreasedattention.Naturalfibers,whichcanbeobtainedfromplant,animalormineralsources,are from inexpensivenature,environmentalfriendlyandcompetewellintermsofstrengthperweight,comparedtosynthetic fibers[4-6].Regardless,there isstilla lotofworktodo inordertobeabletocompeteonanequalfootingwithmostsyntheticfibers.Themainchallengewithnaturalfibersisprobablytobringouttheirfullpotential.Firstly,duetothefactthatnaturalfibersarecommonlyunevenandshort,whichmeanstheyneedtobetwistedintoyarnstoformcontinuousalignedlongfibers.Thistwistingresultsindecreasedmechanicalpropertiesoftheyarncomparedtothesinglefiberandmakestheimpregnation,aswellasthecompactionofthefinalcompositemorechallenging[7-8].Thisproblemcouldbesolvedbyusingregeneratedcellulosefibers,man-madecellulosicfibersthatcanbespuntocontinuousfiberswithuniformdimensionsandwithpropertiesintherangeofcommonnaturalfibers.Secondly,becauseofthechemicallybondingincompatibilitybetweenthehydrophilicnaturalfibers and the usual non-polar polymers, resulting in a bad interface and therefore lowermechanicalproperties,asaconsequenceofaninefficientloadtransfer[9].Therefore,therehasbeenanewtrendtowardssinglepolymercomposites,tobemoreprecisesocalledall-cellulosecomposites, conceptwhichwas reported for the first timebyNishinoetal. [10],wherematrixandreinforcementaremadeoutofthesamematerial,overcomingherebythebondingincompatiblyproblem.Inthepresentstudy,regeneratedcellulosenanocompositefibers,reinforcedwithcellulosenanocrystals(CNCs)andhalloysitenanotubes(HNTs)willbeusedasrawmaterialstoprepareall-cellulosecomposites.

Introduction

2

1.1. BackgroundoftheprojectWithin the scope of a project course carried out at LTU from 01.09.2016 till 12.01.17,regeneratedcellulosenanocompositefibersreinforcedwithcellulosenanocrystals(CNCs)andhalloysitenanotubes(HNTs)weresuccessfullymanufacturedviawetspinningtechnique.Bothnanoreinforcement materials lead to considerable mechanical properties improvements(Table1.1).Bestresultswereobtainedat2%reinforcementload.Byadding2%ofCNCs(w/w,in respect to the weight of dissolved cellulose), the stiffness and tensile strength wereenhanced by 36% and 30%, respectively. In the case of HNTs, elasticmodulus could beimprovedby57%andstrengthby45%at2%HNT.LiCl/DMAcwasusedassolvent.

Material

Young´smodulus

Tensilestrength

Strainatbreak Diameter

(GPa) (MPa) (%) (µm)

Ref 11.8 ±1.0 265 ±25 11.1 ±1.7 79 ±6

2CNC 16.0 ±0.8 345 ±11 9.3 ±2.4 61 ±3

5CNC 14.5 ±1.0 300 ±08 8.0 ±1.0 75 ±6

10CNC 9.7 ±1.4 204 ±28 8.6 ±1.6 82 ±9

20CNC 7.5 ±1.7 161 ±49 10.3 ±2.0 93 ±14

2HNT 18.5 ±2.1 384 ±33 8.3 ±1.4 55 ±3

5HNT 18.4 ±1.5 345 ±30 7.5 ±0.8 61 ±3

10HNT 17.8 ±3.0 364 ±44 8.2 ±0.4 66 ±4

20HNT 16.8 ±1.6 305 ±33 7.4 ±0.9 65 ±4

1.2. ObjectivesandoutlineoftheprojectTheaimofthepresentstudyistodeveloplightweightcompositeswithunidirectionalcellulosefiberswithoutamatrixpolymer,socalledall-cellulosecompositeswithexcellentmechanicalproperties.CellulosenanocompositefibersreinforcedwithCNCsandHNTs,willbepreparedbymeansofwetspinningasshowninthepreviousprojectcourseandusedasreinforcement.Theconcept,processingparameters,aswellasmechanicalpropertiesandcharacteristicswillbeprovide.

Table1.1Mechanicalpropertiesregeneratedcellulosenanocompositefibers

Introduction

3

Originalplan:

− Part 1 (Manufacturing):Wet spinningof the fibers at KarlstadUniversity (colla-boration)

− Part2(Manufacturing):FilamentwindingofdrypreformsatLTCSportinFinland(collaboration)

− Part 3 (Manufacturing): Compression moulding of the composites sheets atUniversityofOulu

− Part4:Studyofmechanicalproperties(tensiletesting),aswellasmorphologicalstructure(SEM)atLuleåUniversityofTechnology

DuetotimeandequipmentlimitationsatKarlstadUniversity,seechapter4“ManufacturingPartI(KarlstadUniversity)”,thewholemanufacturingpartwasmovedtoLuleåUniversityofTechnology. However, during the first try outs at Karlstad University a new possiblemanufacturing method of all-cellulose composites was found where fibers are pressedtogether right after the solvent removal while still being in a wet state, see chapter 5“ManufacturingPartII(LuleåUniversityofTechnology).Basedontheseresultsanewprojectplanwasdrawn.Newplan:

− Part1(Manufacturing):WetspinningofthefibersatLuleåUniversityofTechno-logy*.

− Part3(Manufacturing):Compressionoftheall-cellulosecompositestapesatLuleåUniversityofTechnology**.

− Part3:Studyofmechanicalproperties(tensiletesting),aswellasmorphologicalstructure(SEM)atLuleåUniversityofTechnology

*Carriageforthefibershastobebuildandproperspinningparametershavetobefound(extrusionanduptakespeed)**Hotpressmouldfortapeshastobemanufacturedandpropercompressionparametershavetobefound(pressure,temperature,time)

Theoreticalbackground

4

2. Theoreticalbackground2.1. Cellulose

Cellulose(Latin:richinsmallcells)isbyfarthemostabundantandusedorganiccompoundontheplanet[4][11].Itistheprincipalconstituentandstructuralcomponentinplants,whichmainfunctionistoprovidethemtheneededstrength,rigidityandmechanicalsupportinordertostanduprightandgrow.Celluloseisstillprimaryobtainedfromcotton,whichhasabout90%cellulosecontentandwoodwith40-50%cellulosecontent[11-12].However,themarketofbastfibers,suchashemp,sisalorflax,showingcellulosecontentsbetween70-80%,hasbeenwitnessingastronggrowinrecentyears[13].Besidesthementionedsources,cellulosecanalsobefoundinseveralbacterialspecies,fungi,algaeandtunicates[14].Itsapplicationrangesfromboard,paperandtextileoverpharmaceuticalpurposestofibersandcompositematerials[13][15-16].

2.1.1. Cellulosestructure

Bystartingwith lookingatamolecular level,cellulosereveals itselfasa linearsyndiotacticpolymercomposedofrepeatingD-anhydroglucopyranoseunitsconnectedtoeachotherbyß-1,4-glycosidicbonds.Dependingontheoriginofthematerialtheamountofmonomericunits,alsoknownasdegreeofpolymerization(DP),willalterbetween10000and15000[17][18].

Duetothepresenceofhydroxylgroupsandoxygensineveryrepeatingunit,hydrogenbondsareformedbetweenneighbouringmonomers,seeFigure2.1[19].This intrachainbonding,which promotes the stabilization of the network and allows a linear configuration of thepolymerchain,playsamajorroleinthephysicalpropertiesofcellulose[18].TogetherwithvanderWaalsbondsthestackingupofseveralcellulosechainswillbeenhancedduringthenaturalsynthesisprocessofcellulose,resultinginthecreationofelementaryfibrils[18].Theseelementary fibrils on the other hand will aggregate together, in order to form largermicrofibrils [18]. Both, disordered regions (amorphous) and regions with highly orderedstructure (crystalline) can be found within these fibrils [19]. The latter, are the mainresponsibleforthegoodmechanicalproperties,likehighaxialstiffness,ofcellulose.

Figure2.1Schematicmolecularstructureofcellulose[19]

Theoreticalbackground

5

Sofaronlythemolecularlevelofcellulosehasbeendescribed.However,Figure2.2showsthemultiscale hierarchical structure ofwood.Asmentionedbefore cellulose chains (i)will beattachedtoeachotherbyvanderWaalsandhydrogenbonds,andformmicrofibrils(ii).Thesemicrofibrils(5-50nmindiameterandseveralmicronsinlength[18])areagainhelicallywoundwithin the different layers of the cell wall (iv) [20]. The cell wall itself shows a complexcompositestructure,surroundedbymiddlelamella(ML)intheexterior,anintercellularregionwhichbindstheneighbouringcellstogetherandbylumen,avoidspace,intheinterior[21].Furthermore,fourcellwalllayersaredistinguished:Theprimarylayer(P)andthreesecondarylayers,S1,S2andS3.Alloftheseregionsarecomposedbycellulose,hemicelluloseandlignin.TheprimarylayerPpossessesarandommicrofibrilorientationandisjustabout0,1-0,2µm,makingitsometimesreallydifficulttodifferentiateitfromthemiddlelamella[21-22].ThefirstsecondarylayerS1isathin(0,1-0,3µm)andlignin-richlayer,witharrangedmicrofibrilanglesatabout50-70°tothelongaxisofthecell[21-22].Thenextlayer,S2-layer,iswithgenerally1-5µmbyfarthethickestlayerinthecellwall[21].Inaddition,ithasthehighestcellulosecontentandmicrofibrilsarearrangednearlyparalleltothecellaxis,withananglebetween10-30°[21].Asadirectconsequence,thislayerwillbeofvitalimportanceforthelongitudinalmechanicalpropertiesofthecellwall.ThecellwalliscompletedwiththeinnerS3layer.Thislayerisagainaverythinlayer,characterizedbyahighamountofhemicelluloseandalmostperpendicular(60-90°)arrangedmicrofibrils[21].

2.2. CellulosedissolutionandregenerationThe naturally produced crystalline structure of cellulose is known as cellulose I or nativecellulose.CelluloseIcanbefoundintwodifferentpolymorphicforms,celluloseIαandcelluloseIβ,whichusuallycoexisttogetherinavarietyoforganisms.Theproportionsofeachpolymorphdependson the cellulose structureof thedifferent organisms. It is said that cellulose Iα isprevailinginbacterialandalgae,whereashigherplants,suchastrees,cottonetc.,containabiggeramountofcelluloseIβ[14].Themaindifferencebetweenthesetwopolymorphsistheir

Figure2.2Thedifferentlevelsofthecellulosestructure:(i)themolecularstructureofacellulosepolymer,(ii)thepoly-mersorderedintomicrofibrilswithcrystallineandnon-crystallineregions,(iii)severalmicrofibrilsassembledtogethertoformamacrofibril,and(iv)thedifferentlayersinthecellwall.Numbers(ii)and(v)showcellulosemicrofibrils(CMFs)andcellulosenanocrystals(CNCs),respectively.Illustration:JariSundqvist.Reproducedfrom[4].

Theoreticalbackground

6

1GenerallyacceptedthatcelluloseIVisjustaslightlydisorderedformofcelluloseI[23]

dissimilar hydrogen bonding pattern, respectively the relative displacement of cellulosesheetsalonglatticeplanes[14][19].However,thereexistmorevariationsofcrystallinecellulose(II,III,IV1)(Figure2.3).Allofthemhavebeenexhaustivelyanalysedanddocumented.

As this work focuses on the production of all-cellulose composites based on regeneratedcellulose,onlyabriefinsightintocelluloseIIwillbegiven.CelluloseII,a“man-made”formofcellulose,canbeacquiredfromnativecellulosebytwokindofprocesses:regenerationandmercerization.Theregenerationprocess involvesthedissolutionofcellulose I inasolvent,succeededbytheprecipitation inananti-solvent,suchaswater, inordertocoagulateandarisetocelluloseII[14].MercerizationontheotherhandisreferredtotheswellingofcelluloseIinconcentratedsodiumhydroxide,priortotheremovaloftheswellingagent,toendupwiththefinalproductofcelluloseII[14].IthasbeenreportedthatcelluloseIIisenergeticallymorestable than cellulose I, since the anti-parallel chain arrangement of cellulose II isthermodynamically more favourable, than the parallel arrangement of native cellulose[14][24].Duetothisstablestructure,CelluloseIIisofbigindustrialinterestandrelevance,asalready demonstrated with cellophane (transparent films), Rayon and Tencel™ (synthetictextile fibers) [18]. Ofcourse, the conversion toanother crystalline formbringsalso somenegative consequences with it. As Table 2.1 shows, naturally produced cellulose I isremarkably stiffer than the “man-made” forms. The values in table 2.1 correspond to theresultsobtainedbyNishinoetal.,whomeasuredtheelasticmodulus(El)ofthecrystallineregionsofcellulosepolymorphsinthedirectionparalleltothechainaxis[25].

Figure2.3Interconversionofthepolymorphsofcellulose[14]

Theoreticalbackground

7

2.2.1. SolventsCelluloseisnotsuitableformelt-processing,butitcanbedissolvedinordertobeprocessed,eventhoughthisisratherachallengingandcomplexprocess,ascelluloseisinsolubleinwaterand inmost common solvents [26].However, still numerous solvents,withhighhydrogenbondingcapacity,ableofbreakingtheinteractionsbetweencellulosemolecules,havebeenfound [11]. Some of the most commonly used solvents areN-methylmorpholine-N-oxide(NMMO),lithiumchloride/N,N-dymethylacetamide(LiCl/DMAc),ionicliquids(Ils),andsodiumhydroxide(NaOH)aqueoussolution[9][11].Fromthesesolvents,NMMO,usedforexamplein the Lyocell process in order to produce regenerated cellulose fibers, is without doubtnowadaysindustriallythemostsuccessfulsolvent[11].Withinthescopeofthisproject,LiCl/DMAcwillbeused.LiCl/DMAcisawell-likedsolventinresearch,becauseofhisefficiencyandcapacityofdissolvinghighmolecularweightcellulose[9][11].Besidesthat,majoradvantagesarethatthesolutionsarecolorlessandcompatiblewith GPC columns [11]. One of the drawbacks of LiCL/DMAc is that Cellulose has to be“activated”priortobedissolvedinthesolvent[9].This“activationprocces”usuallyinvolvesasolventexchangeofthecelluloseordistillationoftheDMAc/LiCl/cellulose[11].Thisstepisvitaltoensuretheinteractionofthesolventwiththecellulosemolecules,asthepresenceofcelluloseboundwaterneedstobeavoid[11].Duetothefact,thatthe“activationprocess”requiresextratimeandadditionalsolvents,LiCL/DMAchasnotmadeityetuptoanindustrialscale [11].Moreover, the solubility of cellulose increaseswith bigger LiCl proportions, yetPotthastetal.havereportedthatthesolubilityislimitedto8.46wt%LiCL[9][27].

Table2.1E-Modulusfortheseveralpolymorphsofcrystallinecellulose[25]

Figure2.4InteractionbetweenDMAc/LiClandCellulose[11]

Theoreticalbackground

8

2.3. NaturalnanoreinforcementsThe interest in natural nanomaterials, one dimension at least between 1-100 nm, has in-creasedinrecentyears,speciallyasreinforcingmaterialforbio-composites[4].Duetotheirlargesurfacearea,theadditionofalittleamount(1-5wt%)ofnanomaterialisalreadyenoughtoenhanceconsiderablythemechanicalpropertiesofthereinforcedmaterial[4].Amongallthe alternatives, cellulose nanocrystals (CNC) and halloysite nanotubes (HNT) have beenconsideredforthisproject.

2.3.1. CellulosenanocrystalsCellulosenanocrystals(CNC)orcellulosenanowhiskers(CNW)arerod-shapedparticles,thatareobtainedwhennativecelluloseissubjectedtoacidhydrolysis,resultingintheremovaloftheamorphousregions(seeFigure2.5)[18][28].Sulfuricacidhydrolysis,whichresultsintheformationofnegatively charged sulphateester groupsduring theprocess, is probably themostseenCNCisolationmethod[7].

However,thefinalacquiredCNCstypicallyownawidthbetween3-5nmandalengthof50-500nm. In addition to this high aspect ratio, CNCs arehighly crystalline (54-88%),whichexplainstheirexceptionalmechanicalproperties,asshownintable2.2[18][28].Theoverallpropertiesandgeometricaldimensionwillstronglydependontheusedrawmaterial,aswellasonthehydrolysisprocessconditions[7][18].

Figure2.5Crystallineandnon-crystallineregions[4]

Table2.2CNCpropertiescomparedtoothermaterials[29]

Theoreticalbackground

9

2.3.2. HalloysitenanotubesRecently, halloysite nanotubes (HNTs), a novel 1D natural nanomaterial, has noticed anincreasedinterestasreinforcementforpolymers.Hallosyiteisadioctahedral1:1claymineralofthekaolingroupandcanbefoundinnatureinawhitestone-likeshape,asshowninFigure2.7 a) [30-31]. The chemical composition of HNTs is Al2Si2O5(OH)4·nH2O, in which n=2

describesthehydratedstate(HNTs-10A)withonelayerofwaterintheinterlayerspaces,andn=0thedehydratedformofhalloysite(HNTs-7A)[30].ThelatterstructuremaybeobtainedbyheatingHNTs-10Abetween30-110°C,leadingtothelossofthewatermoleculesbetweenthelayers[30-31].Furthermore,HNTsshowamulti-walledtubularstructure,wherealuminolsaremainlysituatedintheinterioroftheHNTs,andthesiloxanesandafewsilanols/aluminolsintheexteriorandedgesrespectively(Figure2.7b)[30].

Acloserlookatthepropertiesofthistubularnanoreinforcementrevealsahighaspect(ca.10-50),apromisingelasticmodulusof140GPaand lowdensity (2,14-2,59g/cm3),duetotheemptylumeninthecoreofthematerial[30].FurtherpropertiesareshowninTable2.3.Inaddition,HNTsshowratherfewtube-tubeinteractionswhichsupportuniformdispersionofthematerial anda relativelyhydrophobicbehaviour,whichenhances apossiblehydrogenbond formation between the nanotubes and the polymer matrix [30][33]. By taking intoaccountallthementionedproperties,itgetscleartoseewhyhalloysitenanotubeshavesuchabigpotentialasnanoreinforcement,speciallyalsoforcellulosecomposites.

Figure2.6Therawhalloysite[30](a);Schematicstructureofhalloysitenanotubes(HNTs)[32](b)

Table2.3TypicalanalysisdataofHNTsrelativetoformationofpolymernanocomposites[30]

Theoreticalbackground

10

2.4. CellulosefibersTwomaingroupsaredistinguishedamongfibers,naturalfibersandman-madefibers(Figure2.7).Naturalfibers,canbeobtainedfromplant,animalormineralsources,beingplantsthemostcommonchoice.Theiralmostunlimitedavailability,consideringrunningoutfossilfuels,theirlowenvironmentalimpact,alsointermsofeaseofrecycling,theirrelativeinexpensivenature,aswellasthefactthattheycompetewellintermsofstrengthperweightofmaterialhavemadethemarealcompetingalternativeinmanyapplicationstomostfrequentlyseensynthetic fibers, such as glass, carbon or aramid [5-6]. Their application field ranges fromautomotiveandaerospace,overconstruction,tillsportsindustries[34].

When it comes to mechanicals properties (Table 2.4) Flax, Ramie, Hemp and Ramie areamongst the best cellulosic fibers in terms of stiffness and tensile strength performance,comparabletothevaluesofglassfibersforexample[34].Lamentably,theoverallmechanicalpropertiesofthesebiocompositesarestillfarawayfromthoseofsyntheticfiberreinforcedcomposites.Variationsinthechemicalcomposition,givenbythegeographicallocation,exactmaturitywhenharvesting,climateintheregion,storage,inconsistentdimensionsetc.areallfactorsthatcanaffectthefinalqualityofthenaturalfibers[5][34][36].ThisalsoexplainsthebigscatteringofthemechanicalpropertiesvalueslistedinTable2.4.Thesedrawbacksaddedtothefactthatnaturalfibersusuallyneedtobetwistedintoyarnsinordertoformcontinuouslongfibers,whichontheotherhandgenerallyresultsindecreasedmechanicalpropertiesoftheyarncompared to the singlenatural fiberandmakes the impregnation,aswell as thecompactionofthefinalcompositemorechallenging,isabigconcernregardingtheiruseincompositematerials[7-8].

Figure2.7Fiberclasification[5]

Theoreticalbackground

11

However,therehasbeenanemerginggroupoffiberswhichtriestoovercometheseproblemsbycombiningthebestofbothworlds,naturalandman-madefibers.Thisman-madetypeofcellulosic fibers are also know as regenerated cellulose fibers. Spinning of regeneratedcellulose fibers usually involves first the dissolution of cellulose in some sort of solvent,followedbyprecipitationinacoagulationmediuminordertoformcontinuousfibers.Lyocell,ViscoseandRayon,allproducedfromwoodpulp,arethemostknowncommerciallyavailablefibers[5].Thebigadvantageofregeneratedcellulosefibersisthattheyarelong,continuous,with lessdefectsanddimensional variations, andgenerallyeasier toprocess compared tonaturalfibers.Theirmechanicalproperties(Table2.5)rangesfromViscose,9.4GPastiffness,tillBocell,anewhighlyorientedfibre,spunfromananisotropicsolutioninphosphoricacid,whichshowsaYoungmodulusof44.4GPa[39-40].

Material

Young´smodulus

Tensilestrength

Strainatbreak Diameter

(GPa) (MPa) (%) (µm)

CordenkaEHM 32.2 ±2.2 710 ±120 3.9 ±0.7 9.4 ±0.2

Cordenka1840 16.9 ±1.5 660 ±80 12.7 ±1.4 12.9 ±0.3

EnkaViscose 9.4 ±0.5 220 ±50 17.2 ±1.3 18.0 ±0.7

Cordenka700 20.0 ±6.1 660 ±10 10.7 ±0.4 13.1 ±1.3AlternativeCellulose

30.6 ±0.1 1010 ±70 4.9 ±0.3 15.6 ±1.1

Lyocell 15.2 ±2.9 540 ±10 7.0 ±0.3 12.3 ±0.9

LDRLyocell 15.1 ±1.5 311 ±25 27.9 ±4.5 27.8 ±0.5

HDRLyocell 26.3 ±1.9 544 ±35 9.4 ±1.6 11.7 ±0.3

Bocell 44.4 ±3.0 1201 ±124 4.3 ±0.5 12.3 ±0.5

Table2.4Mechanicalpropertiesofnaturalandsynthethicfibers.Remark:ND-Notdetermined.[35]

Table2.5Mechanicalpropertiesofmostcommonregeneratedcellulosefibers[37-38]

Theoreticalbackground

12

2.5. FiberspinningForcingadissolvedormeltedpolymerthroughadie,inordertocreateafiberisalsoknownasfiberspinning.Threemaincategoriesaredistinguishedwithinfiberspinning:meltspinning,solutionspinningandelectrospinning.

2.5.1. Meltspinning

Meltspinningisprobablythesimplestofallspinningtechniques,alreadyjustbecauseofthefactthattherearenoissuesregardingthe involvementofsolventsandthatareallystablemeltofthepolymercanbeensured[41].Anyway,theprocessischaracterizedbythreemainsteps: firstpolymergranulatesaremelted, thenextruded throughadieand finally cooleddownandsolidifiedintheairoranappropriateliquid[41-42].AtypicalmeltspundevicesetupisshowninFigure2.8.

Meltspun-fibers,whichcanalsobeproducedathighspeeds,aregenerallydenserandownlower fluxes than fibers made with solution spinning [42]. Still really thin fibers can beachievedbystretchingposteriorleavingthedie[42].Overall,meltspinningisthefirstoptionfortheproductionofpolymersthatwillnotundergothermaldegradationwhenheatingthegranulatestotheneededtemperatures, inordertogetastablemeltssolutionwiththerequiredviscosity[43].Commonfibersproducedinthiswayarenylon,polyethylene,polypropyleneandpolyester[43].

Figure2.8Meltspinningsetup[41]

Theoreticalbackground

13

2.5.2. SolutionspinningSolution spinning is oneof theoldestman-made fiber productionmethods, being alreadyintroduced at the end of the 19th century [7]. Two techniques are distinguished in thiscategory:wetspinninganddryspinning(Figure2.9).Inbothcasesviscouspolymerisforcedthroughaspinneret,followedbytheremovalofthesolvent, leavingafiber[44].Themaindifferencebetweenthetwoliesonhowthesolventisremoved.Thewetspinningprocessgetsrid of the solvent by coagulation with another liquid in a bath [45]. A well known fiberproducedwiththismethodisViscose.Ontheotherhand,thedryspinningprocessinvolvesaspinningtowerwherethesolventisremovedbyevaporationthroughtheapplicationofheat[46].Thesolidificationofthefiber is faster inthecaseofdryspinning.Furthermore,thereexistalsosomevariationsoftheprocess.Oneexampleisdry-jetwetspinning,whereanairgapisleftbetweenspinneretandbath[7].Lyocell,amoreenvironmentallyfriendlyman-madecellulosefibercomparedtoViscose,ismadewiththistechnique[7].

2.5.3. ElectrospinningElectrospinning,analreadyverywell knownprocess in thenonwoven textile industry, isamethodinwhichelectrostaticforcesareappliedinordertocreatefinepolymerfibersfrombothnaturalandsyntheticpolymers[47-48].Theresultingfibersaresaidtobeintherangebetweennanometers and a fewmicrometers, andwith a large surface area [48].Usually,electrospinningisperformedatroomtemperatureandatmosphericpressure.Theinstrumentsetupconsistsofthreemajorparts,asshowninFigure2.10:ahigh-voltagepowersupplier(DC),aspinneret(e.g.aplasticsyringe)connectedtooneoftheelectrodes,aswellasametalcollector,whichallowstheformationofanelectricalfieldduetoitsoppositepolarity[47-48].Assoonas thedissolvedpolymersolution leaves the tipof thespinneret, it isacceleratedtowardsthecollector.Onitswaythesolventisevaporatedintheair,leavingathinpolymerfiber.

Figure2.9Solutionspinning:(a)Wetspinningan(b)Dryspinnign.Adaptedfrom[46]

Theoreticalbackground

14

Itisaquitesimpleandcost-effectivetechnique,whichallowsthespinningofawiderangeofpolymers,whilegivingthepossibilitytomanipulatethespunfibercompositionandproducehighlyreproduciblefibermats[48].

Table 2.6 shows an overview of the latest results regarding continuous cellulosic fiberspinning. The Table includes data of just cellulose fibers, as well as biopolymers fibersreinforcedwithnanocellulose.Forfurtherinformation,thereaderisreferredtotheoriginalreviewworkbyOksmanet.al[49].

Figure2.10Schematicdiagramofsetupofelectrospinningapparatus(a)typicalverticalsetupand(b)horizontalsetupofelectrospinningapparatus.Reproducedfrom[47]

Reproducedfrom[38]

Theoreticalbackground

15

2.6. All-cellulosecompositesTheideaofalmostcompletelysubstitutingenvironmentalfriendlynaturalfibersforsyntheticfibersisarealambitiousgoal.Togetthere,somechallenges,likeincompatibilitybetweenthehydrophilic fiber reinforcement and the hydrophobic polymer matrix, still have to beovercome,speciallyonlargerindustrialscales[26].Thischemicallyantipathybetweenthetwophasesresults in lowmechanicalpropertiesof thecomposite,mainlyduetoaweak fiber-matrixbonding,whicharenotinaccordancewiththehighmechanicalperformancepotentialofthesinglenatural fibers[26].However,onewaytosolvethisproblemistoproduceall-cellulosecomposites(ACCs),wherethematrix,aswellasthereinforcementaremadeoutofthesamematerial[26].

2.6.1. Processingofall-cellulosecomposites

Thefirstconceptofall-cellulosewasreportedbyNishinoetal.,whoembeddedramiefibersinregeneratedcelluloseofcompletelydissolvedcraftwoodpulp[10].ThewayNishinoetal.producedtheirall-cellulosecomposite isalsoknownas the2-stepmethod (Figure2.11a),whichinvolvesthedissolutionofcelluloseinasolvent,priortotheregenerationtogetherwithanundissolvedcellulosereinforcement[10][26].Theothercommonpathwayforprocessingall-cellulosecompositesisthe1-stepmethod(Figure2.11b),inwhichasolventisaddedtoacellulosereinforcement,followedbyapartialdissolutionofthesurfaceofthecellulosicfibers[26].Thepioneersofthelattermethod,whichisalsotermedaspartialdissolution,surface-selectivedissolutionandnaturalfiberwelding,whereGindlandKecks[26][50].

Table2.6Overviewofthecellulose-basednanostructuredfibers,processandenhancedproperties.UnderlyingreferencedataispresentedinthereviewbyOksmanet.Al[49].

Theoreticalbackground

16

Since thenmany groups have beenworking on this exciting topic.Whereas it seems thatamongsolvents,LiCL/DMAcandionicliquidshavebeensofarthemostpreferredandusedsolvents,alsointermsofsuccess[51],thechoiceofcellulosesourceforreinforcementandmatrixhasbeenmoreopen.GindlandKeckeswerethefirstonesinprovingthatall-cellulosecompositescanbedoneinasingle step [50]. Therefore, they created nanocomposite films by partially dissolvingmicrocrystallinecellulose(MCC)powder(CelluloseI) inLiCl/DMAc.Differentproportionsofundissolved cellulose I and regenerated cellulose II were tested. Results, showed thattransparent filmswere obtainedwith enhancedmechanical properties compared to pureregeneratedcellulosefilms.Tensilestrengthandstiffnesscouldbeimprovedupto240MPa(43%)and13GPa(88%),dependingontheexactamountofMCC.OverallcrystallinityhasbeenshowntoincreasewithincreasingamountofundissolvedMCC.Furthermore,Gindl et al. have been also showing that the use ofman-made regeneratedcellulose fibers as reinforcement in all-cellulose composites could be a really promisingalternative to traditionalNFCsandmaybe thebetter choice [51].All-cellulose composites,usingILassolvent,andepoxy-matrixcompositesweremadeoutofneedle-punchedLyocellandflaxfibersnonwovenmatsandcomparedtoeachother.TheobtainedLyocellfibrebasedACCsperformedexcellentintermsofmechanicaltesting,havingpropertiesinthesamerangeascommonepoxybasedbiocomposites,whereasflaxbasedACCsperformedclearlylesswell.In addition, it was found that the studied all-cellulose composites showed more diffusethermalsofteningandasuperiorthermaldegradationresistance,speakingclearlyinfavourofACCsandtheirfurtherinvestigation.

Figure2.11Schematicofprocessingpathwaysofall-cellulosecomposites:(a)One-stepmethodand(b)Two-stepmethod[26]

Theoreticalbackground

17

Eventhough,bothprocessingmethodsarepossible,theone-stepmethodseemstobemorerealisticregardingafuture industrialupscaling[26].Themainreasonherefore isthattheoverall differential shrinkage, which causes internal residual stresses and dimensionalinstability,andisstillabigproblemwhenmanufacturingACCs,isusuallylowerforone-stepmethodmadeACCsthanforACCsproducedviathetwo-step-method.Huberetal.havebeenreallyactiveinthismattertryingtomanufacturethickerACCs(t>0,5mm),closertoreallifeapplications,withcommonlyknownindustrialmanufacturingmethods,suchascompressionmouldingorvacuuminfusion[52-53].Compression moulded composites were made by hand-impregnating dried man-maderegeneratedcelluloseCordenkaRayonfibertextileandlinenflaxfibertextilewithBMIMAc,anionicliquid[52].Inasubsequentstep,fourlayerswerestackedalternatingwarp-andweftdirectionrespectivelyandcompressedunderheat(110°C)withahotpress(1,5and2,5MPa)foratotalof80min,creatingamatrixphasebythepartialdissolutionofthefibersandthefollowing solvent exchange. The resulting all-cellulose composites turned out to have anaveragethicknessof1,66mm(flaxlaminate)and1,98mm(Cordenkalaminate)andbefullyconsolidatedwiththeadditionofpressure.Rayonbasedall-cellulosecompositesshowlessvoidsandmoreconsistencycomparetolinenbasedACCs,leadingtoastrongercomposite(70MPa vs. 46MPa ultimate strength). Even though, the laminateswere overall dimensionalstable,smallinter-andintra-laminarvoids,formedduringthedryingprocess,wereobserved.Huberetal.concludedthatregeneratedcellulosefiberswouldbegenerallythebetterchoicewhen solvent-processing, due to less variations in the shape of the fibers and morehomogenous dissolution, resulting in a stronger compositewith an improved fiber-matrixinterface.Inthesolventinfusionprocess(SIP),aslightlyvariationoftheknownvacuum-assistedresintransfer moulding (VARTM), Cordenka preform textile layers were first infused, henceimpregnatedwithBMIMAcandthenwithwaterinordertoweldthefiberstogether[53].Inbetween,duringthedissolutiontime,apressureof0,2MPaat95°Cforatotalof60minwasapplied for consolidation of the laminates. The obtained composites were dimensionallystable,nodimensionalshrinkageorwarpagewasobserved,andwithhighvolumefractions(>70%).Thefinalthicknessofthecompositesdependsonthetimeandtheamountofappliedpressureduringthemanufacturingprocess.Promisingmechanicalpropertieswithanultimatestrengthof91MPaandastiffnessof4,1GPawereachievedforthebestlaminate,asaresultofanimprovedfiber-matrixinterface.Thisimprovedbondingisbelievedtobecausedbytheincreasedpressureduringdissolution,aswellasacontrolledanduniformedpartialdissolutionofthefiberspossiblewiththesolventinfusionprocess.

2.6.2. Mechanicalpropertiesofall-cellulosecomposites

Anoverallevaluationofthemechanicalpropertiesgivenbyall-cellulosecompositesisverydifficult,astheydependonmanyfactorssuchasoriginofthecellulose,reinforcementtypeorprocessingconditions[26].Anyway,ageneraloverviewandfurthercomparisontootherbiocompositeswasdeliveredbyHuberetal. [9].Asshown inFigure2.12ahigherYoung´smodulushavebeenreportedforseveralisotropicall-cellulosecompositesincomparisonwithconventionalbiocomposites[9].Onepossiblereasoncouldbethehighmechanicalpropertiesof the regeneratedcellulosematrix [9][26]. Forunidirectionalall-cellulosecomposites, thestiffnesvaluesaresimilar totheonesofbiocomposites [9].This resultsontheotherhand

Theoreticalbackground

18

couldbeattributedtothesolventinteractingwiththefibersintheall-cellulosecompositeandthereforeloweringtheirmodulus,ortothemodulusofthebiocompositesbeingdeterminedbythefibersstiffness,leavingtheinterfacialstrengthoffibreandmatrixinthebackground[9]. In terms of tensile strength, all-cellulose composite show much better results thantraditionalbiocomposites(Figure2.12).

Table 2.7 shows an overview of recent development in all-cellulose composites and theirmechanicalproperties.Foranextensivereviewaboutthedifferentprocessingtechniquesandtheir possibleeffecton the finalmechanical propertiesof theall-cellulose composites thereaderisreferredtotheoriginalworkbyHuberetal.[9]

a) b)

Figure2.12Comparisonofmechanicalpropertiesof(a)isotropicand(b)unidirectionalall-cellulosecomposites(dashed)andtraditionalbiocompsites(dotted).UnderlyingdataispresentedinthereviewbyHuberetal.[9]

Theoreticalbackground

19

Table2.7Overviewofrecentdevelopmentinall-cellulosecompositesandtheirmechanicalproperties.ReproducedfromHuberetal.[9]

Materialsandmethods

20

3. Materialsandmethods

3.1. MaterialsDissolvingpulp,obtainedfromDomsjöFabrikerAB(Örnsköldsvik,Sweden),wasusedasbasematerial.Freeze-driedcellulosenanocrystals(2012-FPL-CNC-043),hydrolyzedfromcellulosepulp,were kindly provided byUSDA Forest Products Laboratry (Madison,USA). Halloysitenanotubes(HNTs)werepurchasedfromSigmaAldrich.Furthermore,N,N-dimethylacetamide(DMAc), as well as lithium chloride (LiCL) were acquired from Sigma Aldrich. In addition,distilledwater(H2O)andmethanol(CH3OH)wereusedduringtheexperimentalsection.

3.2. PreparationofthespinningsolutionsPriordissolvingthecellulosepulpanactivationprocesswasneeded,inordertoavoidcellulosebondwaterandweakenthepolymerchainintoarelaxedconformation[11][54].Withoutthispre-treatmentthe interactionbetweenthesolventandthecellulosemoleculescannotbeensured.Inthiscasetheactivationprocessrequiredasequenceofsolventexchanges.Atthebeginningcellulosewasplacedandholdunderwaterfor1h,followedbytheremovalofwaterviavacuumfiltration.Inasubsequentstepasolventexchangewithmethanolforanother1htookplacetogetridoftheleftwater.Aftervacuumfiltration,alastsolventexchangewithDMAcfor1hwasdone.Onceagainthecellulosewasfiltratedandthendriedat70°C.

3.2.1. CellulosedopesFirst,cellulosereferencedopeswithoutanyaddednanoreinforcementwereprepared(Figure3.1).Therefore,DMAcwasheatedupto105°Cunderlightmagneticstirringandholdfor10mintoensurethatanyremainingwaterwasevaporated.Next,DMAcwascooleddownto80°C and LiClwas added under constantmagnetic stirring until completely dissolved. Theproportionsinthiscasewere8gLiClper92gofDMAc.Oncedissolved,activatedcellulosewasaddedtothesolutionatroomtemperatureandsubjectedtomagneticstirringduringatleast12h,inordertoforma2%cellulosespinningdope.Inalaststep,thenewsolutionwasfilteredviavacuumthrougha80µmmeshtogetridofundissolvedpartsandforeignmatter.

Figure3.1SchemeofthepreparationofreferenceCellulosedopes

Materialsandmethods

21

3.2.2. Cellulose/CNCdopesToprepare2%CNCdopes(w/w,inrespecttotheweightofdissolvedcellulose),firstanexcessamountofCNCwasaddedtoDMAcunderconstantmagneticstirring,inthiscase2,5gto500g, and then stirred for at least 6 hours (Figure 3.2). In order to improve dispersion anddistributionofthenanoreinforcementsinthecellulose,nextthemixturewassubjectedtoalightsonicationbathfor1h,stirredforanother30minandthenholdfor2mininastrongersonicator(Cycle:0.5;Amplitude:50).Aftersonication,themixturewascentrifugedfor1minat 2000 rpm, in order to get rid of the bigger particles. This last centrifugation stepwasrepeatedasmanytimesasneededtillachievingaconcentrationatleast0,15%orsmaller.ThenewCNCconcentrationwasdeterminedviathermogravimetricanalysis(TGA).Basedonthat new concentration, the additional needed DMAc amount for the final dope wascalculatedandadded.Thefollowingstepsinvolvedtheheatingofthemixtureto105°C,beforeadding LiCl at 80°C and the activated cellulose at room temperature, as shown for purecellulosedopes.Finally, the2%CNCCellulose/CNCdopeswerepassedthroughthe80µmfilter.

3.2.3. Cellulose/HNTdopesSpinning dopes with HNT as reinforcement were prepared in the same way as theCellulose/CNCdopes,with theexception that in this case anUltra-Turrax® T25wasused,insteadofanormalmagneticstirrer,tomixtheHNTsandDMAc(Figure3.3).Inaddition,onlythestrongersonicatorwasapplied.Thereby,themixturewasfirststirredfor1,5h,thencooleddownfor10min,beforebeingstirredforanotherhour.Next,themixturewassonicatedtwicefor10min.Inbetween,itwasheldatthestirrerfor30min.InordertoobtainthefinalwishedHNTconcentrationseveralcentrifugationstepsat2000-7000rpmwereneeded.

Figure3.2SchemeofthepreparationofCellulose/CNCdopes

Figure3.3SchemeofthepreparationofCellulose/HNTdopes

Materialsandmethods

22

3.3. Measurementandcharacterization

3.3.1. Thermogravimetricanalysis(TGA)

Tomeasure the concentration after the centrifugation step when preparing the spinningdopes,aTAInstrumentsTGAQ500modelwasused.Theselectedmethodforthethermalstabilitymeasurementsconsistedofaninitialtemperatureof40°C,thenarampwithaheatingrateof10°C/mintillreaching250°C,followedbyanisothermalat250°Cfor2min.

3.3.2. Scanningelectronmicroscopy(SEM)

AJEOLJCM-6000NeoScopescanningelectronmicroscope(SEM)wasusedforstudyingthemorphologicalstructureandfracturebehaviouroftheall-cellulosecomposites.

3.3.3. TensiletestingAuniversaltensiletestingmachineSHIMADZUAG-Xwitha5kNloadcellwasusedtopredictthemechanicalpropertiesoftheall-cellulosecomposites.Thetestswererunataconstantcross-head speed of 2 mm/min. The thickness and width of the all-cellulose tapes weremeasuredbyopticalmicroscopyat3pointsforeachsample.5sampleswereperformedpereachfiberconfiguration(Cellulose,Cellulose/CNCandCellulose/HNT).SamplesmanufacturedatKarlstadUniversityhadagaugelengthof40mm,athicknessof0.75mm ±0.09(Ref);0.76mm±0.06 (HNT)andawidthof3.16mm±0.45 (Ref);2.17mm±0.28, respectively.ThesamplesmadeatLTUontheotherhand,hadagaugeof30mm,athicknessof0.78mm±0.09(Ref);0.77mm±0.07(CNC);0.84mm±0.08(HNT)andawidthof6.05mm±0.34(Ref);5.76mm±0.12(CNC);6.45mm±0.23(HNT),respectively.Furthermore,glassfiberreinforcedtabswereusedtoprotectthematerialfromdamageandreducelocalstressconcentrations.Beforecarryingoutthetests,allsampleswerestoredinaconditioningchamberat23°Cand50%RHforat least48hours.Themeasuredaveragetemperatureandrelativehumidityduringthetests were 21,3°C and 19,4 % respectively. Load and displacement were recorded untilspecimenfailure.Averagevalues,aswellasstandarddeviationswerereported.

ManufacturingPartI(KarlstadUniversity)

23

4. ManufacturingPartI(KarlstadUniversity)

4.1. IntroductionAccordingtotheoriginalplan,see1.2Objectivesandoutlineoftheproject,theideawastofirst manufacture enough nanocomposite fibers by means of wet-spinning at KarlstadUniversity,inordertobewoundedtogetherandcompressionmouldedinasubsequentstep(Figure4.1).Inthislastcompressionmouldingstep,fiberswouldbepartiallydissolved(one-stepmethod)and thenwelded together to form the final all-cellulose composites.Due tosomeunexpectedproblemsandlimitationswiththeequipmentatKarlstadUniversity,whichwillbementionedlaterinthissection,anewprocessingroutewasdevelopedtomanufactureall-cellulosecomposites,seechapter5.ManufacturingPartII(LuleåUniversityofTechnology).

4.2. WetspinningTospinthenanocompositefibersanAdityaBirlaScienceandTechnologyCompanyLimitedwet-spinningmachinewasused.Thismachinewhichwasmainlydesignedforitsuseintheviscoseprocess,consistsofapump,a250mlpiston,aspinbath,aspinneret,astretchingunitandatake-updrum(Figure4.2).Thespinningdopeisfedfromthepistonthroughaconnectingtubetothespinneret,whichisplacedattheendofaJ-tubeoutofglass.Thespinnerethasatotalof40holeswithadiameterof80µmrespectively.BetweentheendoftheJ-tubeandthespinnereta45µmfiltermeshensuresthatremainingdopecanbepressedthroughthespinneret.Afterleavingthespinneretthemultifilamentfiberiscarriedbythestretchingunit,threeidenticalrollswhichrotateatthesamespeed.Finally,abiggertake-updrumcollectsallthe spun fibers. The speed of the pump, stretching unit and take-up drum can be setindividuallyontherespectivemonitoringpanels.

Figure4.1Productionofall-cellulosecompositesbasedonregeneratedcellulosenanocompositefibers

ManufacturingPartI(KarlstadUniversity)

24

4.3. ResultsandDiscussion

4.3.1. ProcessingoftheACCsFirstaseriesoftry-outshadtobeperformedinordertomakethespinningmachineworkproperly.Thesetry-outsarelistedinTable4.1.Oncetheprocesswasrelativelyundercontrolthenext stepconsisted in findingappropriate speeds for thepumpand thedrums. Itwasfoundthatatapumprateof2,09ml/min,astretchingspeedof6,1m/minandatake-upspeedof9,7m/mintheprocesswasstable.Theseparameterswouldbethereforeusedfortherestofthetrials.However,someoftheproblemsfacedduringthetry-outs,suchasblockingofsome spinneret holes after a while, not enough solvent exchange and drying time, etc.,couldn´tbesolved.Regardlessitwasdecidedtocontinuewiththeprocessing.Themultifilamentfibers(Figure4.3a))werefirstcollectedwiththetake-updrum(Figure4.3b))andthenplacedfor24hinwatertoensurethatallthesolventwasproperlywashedout.Duringthespinningprocessthefiberswereguidedmanuallyalongthetake-updrum,duetoamissingtransversecarriageofthemachine.Nexttherollwasdriedforanother24hat60°C.Duringthisdryingprocessastiffercorewasplacedinsidethefibersrolltoavoidtheirradialshrinkage.ThefinalobtainedsamplecanbeseeninFigure4.3c).Itcanbeobservedthatthefibers stuck toeachotherandagglomeratedmore insomepartsof the roll than inother,formingalreadyunexpectedanall-cellulosecompositeforitself.

a) b) c)

Figure4.2SchematicviewspinningmachineatKarlstadUniversity

Figure4.3ProcessingKarlstadUniversity:a)Multifilamentfibers,b)Take-updrumwithstillswelledfibers,c)Finalall-cellulosecompositesample

ManufacturingPartI(KarlstadUniversity)

25

Try-out Test Problem Solution

1

2%Cell.dope=>Dopeisnotcomingoutofthespinneret

• Leakageononeendofthesilicontubecomingfromthepiston

• Sealingwithsomeducktape• Dilutedopetill1%Cellulose

2

1%Cell.dope=>Dopeisnotcomingoutofthespinneret

• Leakageontheothersideofthetube• Machinewasn´tproperlyassembledasgiven=>Missingofalltighteningrings

• Installingoftighteningrings• Newtryoutwithbiggernozzle=>Syringetip=>Singlefiber

3

1%Cell.dope=>Dopeiscomingoutofthespinneret=>Wet-spinningmachineisworkingproperly

• Seemsthatoriginalcoagulationbathistosmallforthisfiberthickness=>Notenoughtimeforapropersolventexchange

• Longercoagulationbath• Switchbacktooriginalspinneret

4 1%Cell.dope=>Dopeiscomingout

• Fiberfilamentsseemtobetoweak=>Multifilamentfiberbreaksjustafewsecondsafterbeingrolledup• Blockingofsomespinneretholesafterawhile• Coagulationtimestillnotenough

• Switchbacktooriginal2%Cell.dopes

5

2%Cell.dope=>Multifilamentfiberscouldbesuccessfullywoundupwiththefirstspinningdrum

• Blockingofsomespinneretholesafterawhile• Coagulationtimestillnotenough• Fibersarepartiallystucktoeachother,aswellastothedrumafterbeingdried=>Reallyhardtounwindthemasonecontinuousmultifilamentfiber• Dryingtimenotenough

-

Table4.1Try-outsKarlstadUniversity

ManufacturingPartI(KarlstadUniversity)

26

Thefactthatacompositewasformedwithouttheneedofpartiallydissolvingthefiberscouldresult inanew interestingprocessingroute forall-cellulosecompositeswheretheswelledfibers are wound directly after the water bath, and then welded together by means ofcompressionmoulding.Thiswouldmeanthatunidirectionalfibercompositesheetscouldbemadewithoutusinganyadditionalchemicals.Therefore, a preliminary evaluationof themanufactured compositeswas carriedout. Thebiggerstripsoftherolls(Figure4.3c))werecutinordertobeanalysedviascanningelectronmicroscopy(SEM)andtestedontheirlongitudinalmechanicalproperties.

4.3.2. Microstructure

Scanningelectronmicrographsofthecompositescross-sectionalview(Figure4.4)revealthat,speciallyforthereferenceandHNTcompositesagoodcompactiondegreeandthereforeagoodadhesioncouldbeachievedforthemajorityofthearea.However,stillsomevoidsandcracks canbe seen. In the caseof theCNC composite the amountof voids is bigger.OnepossiblereasoncouldbethattheamountofmaterialusedtoprocesstheCNCcompositewasless than theoneused for theother twocomposites,due to some lostofmaterialswhilespinningthefibers.

4.3.3. Mechanicalproperties

Theresultsof the tensile test for theACCsareshown inTable4.2.Noresults for theCNCcompositesaregivenastherewerenotenoughsamples,respectivelytheirdimensionsweretoinconsistentlyinordertogetsomereliabletensiletestingdata.Therefore,onlytheresultsforreferenceandHNTcompositesarelisted.Theresultsareconsiderablelowercomparedtotheirsinglefibers,seeTable1.1,butstillpromisingandintherangeofsomeotherpublishedpapersaboutACCs(Table2.7).Furthermore,theelasticmodulusoftheACCsreinforcedwithHNTnanocompositefiberswasincreasedby22%andthestrengthby26%comparedtothe

Figure4.4Scanningelectronmicrographsofthecross-sectionoftheall-cellulosecompositesmanufacturedatKarlstadUniversity

ManufacturingPartI(KarlstadUniversity)

27

referencewithoutanynanoreinforcement. The strain,on theotherhand, is similar to thereference. Theseaveragemechanicalpropertiesareprobablyrelatedtothefactthattherehas been not a proper stretching, either compaction of the fibers/composite during themanufacturingprocess.

MaterialYoung´smodulus(GPa)

Tensilestrength(MPa)

Strainatbreak(%)

Ref 4.7 ±0.5 100.1 ±16.9 11.3 ±2.3

HNT(2%) 5.6 ±0.5 126.2 ±07.5 11.4 ±0.6

4.4. ConclusionsEventhough,somelimitationsgivenbytheequipment,aswellasproblemsfacedduringthespinning process, could not be solved, somepreliminary all-cellulose composites could bemade. The scanning electron micrographs and the tensile test results showed that goodcompaction,respectivelymechanicalpropertiesintheaveragerangeofpriorpublishedworkwereachieved,inspiteofthefactthattherewasnotaproperstretching,eithercompactionofthefibers/compositeduringthemanufacturingprocess.Followingequipmentlimitationsorproblemscouldnotbeovercomeinthegivenperiodtime:

• Noautomatedtransversecarriage• Blockingofsomespinneretholesafterawhile=>PistonandJ-tubeneedtobe

completelyunassembledinordertobecleaned• Notenoughtimeinthewaterbathforapropersolventexchange• Not enough drying time before reaching the take-up drum => Fibers will

partiallysticktoeachother• O-ringsealantofthepumpandspinneretwilldecomposeafterawhilebecause

oftheLiCl/DMAc• Tube connectingpump to J-tubeof thepumpwill decomposeafter awhile

becauseoftheLiCl/DMAcHowever,duetothepromisingfactthatunidirectionalall-cellulosecompositesheetscouldbemadewithanewprocessingroutewithoutusinganyadditionalchemicals,bywoundingtheswelled fibersdirectlyafter thewaterbath,and thenwelding themtogetherbymeansofcompressionmoulding,itwasdecidedtocontinuewiththismanufacturingmethod.Furthertesting would be performed at Luleå University of Technology, because of the previousmentionedequipment,aswellastimelimitations.

Table4.2Mechanicalpropertiesall-cellulosecompositesKarlstadUniversity

ManufacturingPartII(LuleåUniversityofTechnology)

28

5. ManufacturingPartII(LuleåUniversityofTechnology)

5.1. IntroductionAfterthepromisingresultsobtainedatKarlstadUniversity,seechapter4.ManufacturingPartI(KarlstadUniversity),itwasdecidedtoslightlychangetheinitialmanufacturingplanandtrytomakeall-cellulosecompositeswithanewprocessingmethod.Thisnewprocessingmethodwouldbasicallyconsistinwindingtheswelledfibersdirectlyafterthewaterbath,andthenweldingthemtogetherbymeansofcompressionmoulding.However,inordertobeabletospinthefibersfirstasolutionhadtobefoundtosomeofthefacedproblemswiththespinningmachineatKarlstadUniversity,likefindingproperequipmentcompatiblewiththesolventoranautomatedtransversecarriage.

5.2. WetspinningAsimpleset-upwasused,inordertospinthefibersandovercomementionedchallenges.Theset-upconsistedofapump,a30mmsyringewithafinenozzle,alongwaterbath,aself-madeautomatedcarriageandacollectingdrum,seeFigure5.1.Assoonasthesolutionstartstoflowthetipofthejetisimmersedinthewater(Twater=roomtemperature)andthefibersarecarriedalongthewaterbathandmovingcarriagetillreachingthetake-updrum.Thedistancebetweenthecarriageandtake-updrum,aswellasthespeedofthecarriage,aresetinsuchawaythatthemisalignmentofthefibersonthemandrelisassmallaspossible.Duetosomelimitationsoftheautomatedcarriage,liketheminimumspeedoftheengine,thefiberswererecollectedinbatchesof2cmrespectivelyinordertodecreaseevenmorethemisalignmentof the final unidirectional composite, see Figure 5.2. Before starting the experiment, thespinningdopesaredegassedintheovenforafewhoursat35°Ctillnoairbubblesarevisible.Thespeedofthepump,aswellasthespeedofthetake-updrumcanbesetindividually.

Figure5.1Schematicviewofthewet-spinningset-up

Figure5.2Spacingintherecollectingproccessforaminimummisalignment

ManufacturingPartII(LuleåUniversityofTechnology)

29

5.3. ResultsandDiscussion

5.3.1. ProcessingoftheACCsFirstappropriatespinningparametershadtobedetermined.Atapumprateof70ml/hrandatake-upspeedof11m/mintheprocesswasfoundtobestable.Theseparameterswouldbeused for thewholemanufacturing.Figure5.3 shows the finalprocessing route inorder tomaketheall-cellulosecomposites.Fiberswerespunoutof400mldopes.Oncethefiberswererecollectedsuccessfullywiththetake-uptheywereplacedinwaterfor24htoensurethatallthesolventwasproperlywashedout.Nexttherollwascutinordertogetaflatfibersheet,which was then folded transversally to the longitudinal direction of the fibers. In asubsequentlysteptheswelledfibersheetwasstretchedandfurtheralignedwiththehelpofatensiletestmachine.Thestretchingratioherebywasabout1,12.Afterthisstretchingstepthe sheetwas folded onemore time, in this case in longitudinal direction, to increase itsthickness.Finally,thesheetwasconsolidatedinahotpressusingapropermouldandvacuumdried at 60°C for a few hours to get rid of all the leftmoisture. During the consolidationprocess,firstacoldpressingatroomtemperatureandunderaninitiallylightpressurewhichwouldbeincreasedtill2,1MPafor24hwasneededtoremovethebiggestpartoftheswelledwater,thenthefinalpressureof3,1MPaat60°Cwasappliedforanother24h.Theusedhotpresswasnotautomated,thereforethepressurehadtoberesetafterawhileasthepressurewoulddrop.Atotaloffourtimesthepressurewasresetduringtherespective24h.Theusedaluminium mould can be seen in Figure 5.4. A PET film ensures that the all-cellulosecompositeshaveanevensurfaceanddonnotsticktothemould.Previouslycarriedouttry-outsarelistedinTable5.1.

Figure5.3All-cellulosecompositesmanufacturingprocess

Figure5.4Hotpressmouldschematic

ManufacturingPartII(LuleåUniversityofTechnology)

30

Table5.1Try-oustall-cellulosecompositemanufactuing

ManufacturingPartII(LuleåUniversityofTechnology)

31

5.3.2. OpticalpropertiesAfirstvisualevaluationoftheall-cellulosecompositesshowsabetteropticaltransparencyforthereferenceandtheCNCreinforcedmaterial(Figure5.5).WhereasinthisbothcasesthewordCelluloseontheunderlyingpapercanbereadwithoutanyproblems,inthecaseoftheHNTreinforcedsampleitisreallyhard.Transparencyisusuallyanindicatorforgoodbondingas less light is scattered at their interfaces [55-56]. For the HNT reinforced all-cellulosecompositethetranslucencycouldbealsocausedbythehalloysitenanotubesnature,meaningthattherehasnottobeabadinterfacejustbecauseitisnottransparenttovisiblelight.

Furthermore,nobigwarpingwasobservedduringregeneration,speciallywhenusingmorematerial,400mlfinaltestcomparedtothe200mlofthetry-outs.Lessvoidsareformedduetoshrinkage,asaresultofthedryingprocess,withincreasingmaterialamount.

5.3.3. Microstructure

ScanningelectronmicrographsfromallcompositevariantsaregiveninFigure5.6.SEMcross-sectional views reveal that generally a good compaction degree and therefore a goodfiber/matrixinterfacewasobtained.Thebondingissoextensivethattheshapeofindividualfibers becomes indistinguishable. Nerveless, minimal voids and indicators for futuredelaminationcanbeseen.SEMsurfaceviewsshowthatonlyaminimalmisalignmentoftheunidirectionalall-cellulosecompositescanbeobserved.

5.3.4. Mechanicalproperties

Tensiletestresults fortheall-cellulosecompositesareshown inTable5.2.Stiffnessvaluescouldbealmostdoubled incomparisonwith thenumbersobtainedatKarlstadUniversity,howeverresultsarestillconsiderablelowertotheonesoftotheirsinglefibers,seeTable1.1.Moreover,noimprovementswereobtainedwithCNCsandHNTsnanoreinforcedall-cellulosecomposites.Severalfactorscouldhavecontributedtothedecreasedmechanicalproperties:

• Notenoughstretchingofthefibers,hencethereforealsonofurtherorientationofthenanoreinforcements

• Nolongitudinaltensionduringcompactionanddryingprocess• Fibers shape were indistinguishable in SEM pictures => To much pressure during

compactionprocessmayhavecausedfibredamage• Interfacetoostrongenablingcrackpropagation[34]

Overall,themechanicalpropertiesoftheall-cellulosecompositesarestillpromisingandintherangeofsomeotherpublishedwork,seeTable2.7.

Figure5.5Opticaltransparencyoftheall-cellulosecomposites

ManufacturingPartII(LuleåUniversityofTechnology)

32

MaterialYoung´smodulus(GPa)

Tensilestrength(MPa)

Strainatbreak(%)

Ref 8.4 ±1.4 125 ±16 5.8 ±2.6

CNC(2%) 8.4 ±0.9 125 ±14 5.0 ±1.6HNT(2%) 7.4 ±0.8 117 ±10 6.3 ±2.5

Figure5.6Scanningelectronmicrographsofthecross-sectionoftheall-cellulosecompositesmanufacturedatLuleåUniversityofTechnology

Table5.2Mechanicalpropertiesall-cellulosecompositesLuleåUniversityofTechnology

ManufacturingPartII(LuleåUniversityofTechnology)

33

5.3.5. FracturebehaviourScanningelectronimagesofthefracturesurfacesoftheall-cellulosecompositesareshowninFigure5.7.Thefracturessurfacesrevealdelaminationandseparationoffibrebundles.ThiseffectseemstobemoreextensiveforHNTreinforcedall-cellulosecomposites, indicatingapooreradhesionorcompactionandthereforemaybetheloweroverallmechanicalproperties.

Figure5.7Scanningelectronmicrographsofthefracturesurfaces

ManufacturingPartII(LuleåUniversityofTechnology)

34

5.4. ConclusionsUsingareallysimpleequipment,apump,asyringe,aself-madeautomatedcarriageandatake-up drum, andwithout any special optimization of themanufacturing conditions andparameters (spinneret geometry, distance water bath - moving carriage - take-up drum,spinning speeds, compression time and pressure etc.) all-cellulose composites withmechanical properties in the range of previously published work could be successfullymanufactured.Thereby,anewprocessingrouteformanufacturingall-cellulosecompositeswasdeveloped,wherethefibersarewounddirectlyafterthewaterbathandthenweldedtogether while still being swelled in order to form unidirectional fiber composite sheetswithout theneedof addinganyadditional solventor chemicals.Moreover, this techniqueshowed that “thick” (t > 0,5mm) ACCs can be easilymanufactured by just adjusting theamount of spinning material. The obtained all-cellulose composites were transparent tovisible light,at least inthecaseofthereferencematerialandtheCNCreinforcedsamples,indicatingagoodfibre/matrixbondingandonlyminimalwarpageandvoidcontentcouldbeobserved. This warpage and void formation, caused due to shrinkage during the drayingprocess,decreaseswiththerightquantityofspinningmaterial,aswellasappliedpressureduringconsolidation.However,noimprovementsinthemechanicalpropertieswereobservedforCNCandHNTnanoreinforcedall-cellulosecompositescomparedtoareferencematerial.

Futurework

35

6. Futurework• Optimizationofstretchinganddrawingconditions

− Introducingmoredrumsinthespinningprocess− Improvethestretchingofthefibersbybetterclamping− Stretchingofthetapesrightafterthecoldpressingstep,whileisstillinawetstate

toapreferredorientationofthenanoreinforcementinthedirectionofstretchingasshownbyGindletal.andPullawanetal.[57-58]

• Optimizationofthespinningspeeds

• Reducethespeedofthecarriageforanevenbetterfiberalignment

• Optimizationoftimeinhotpressaswellastheappliedpressure

• Make a mould already in the final sample size to avoid the need of cutting andthereforeintroducingadditionalcracks

• Trydryingthetapesatroomtemperaturewithoutpressuretillalmostallthewateris

beingremovedthenhotpress

• With Cellulose I fibers it is clear that a to good interface and therefore to muchdissolving of the reinforcement leads to a reduction of the overall mechanicalporperties. In this case it is not completely clear and it should be studied if theconservationoftheshapeofthefiberscanaffectthefinalpropertiesifthecomposites.

• Trydifferentdopesviscosities

• Developmentofamachinethatenablesstretchingandpressingatthesametime

• Gobacktopartiallydissolvingthefibersusingthesamespinningequipment

References

36

7. References[1] Bhagwan D.A., Lawrence J.B., Chandrashekhara K. Analysis and Performance of FiberComposites,3RdEd.WileyIndia,2012.[2] Kamal K.K. Composite Materials – Processing, Applications, Characterizations, 1st Ed.Heidelberg:Springer-VerlagBerlin,2017.[3]Airbus.http://www.a350xwb.com/eco-efficiency/.AccessedOctober3,2016[4] Börjesson M, Westman G: Crystalline Nanocelullose - Preparation, Modification, andProperties.In:PolettoM,LuizOrnaghiJuniorL,editors.Cellulose-FundamentalAspectsandCurrentTrends.InTech,2015.[5] Ramamoorthy S.K., Skrifvars M., Persson A. A Review of Natural Fibers Used inBiocomposites:Plant,AnimalandRegeneratedCelluloseFibers.PolymerReviews.2015;55(1),107-162.[6]Eichhorn,S.J.,Baillie,C.A.,Zafeiropoulos,N.,Mwaikambo,L.Y.,Ansell,M.P.,Dufresne,A.,Entwistle,K.M.,Herrera-Franco,P.J.,Escamilla,G.C.,Groom,L.,Hughes,M.,Hill,C.,Rials,T.G.,andWild,P.M.(2001).Review:Currentinternationalresearchintocellulosicfibresandcomposites.JournalofMaterialsScience.2001;36,2107-2131.[7] Hooshmand S. Processing of continuous fibers based on nanocellulose: Influence ofdispersion and orientation on mechanical properties. Doctoral Thesis, Luleå University ofTechnology, Department of Engineering Sciences and Mathematics, Division of MaterialsScience.June,2016.[8]MaH., Li Y., Luo Y. The effect of fiber twist onmechanical properties of natural fiberreinforced composites. 18th International conference on CompositeMaterials. Jeju, SouthKorea,2011.[9]HuberT,MüssigJ,CurnowO,PangS,BickertonSandStaigerMP:Acriticalreviewofall-cellulosecomposites,JournalofMaterialsScience.2011;47(3):1171–1186[10] Nishino T,Matsuda I, Hirao K. All-cellulose composite.Macromolecules. 2004;37(20):7683–7687[11] Olsson C, Westman G: Direct Dissolution of Cellulose: Background, Means andApplications.In:VandeVenT,GodboutL,editors.Cellulose-FundamentalAspects.InTech,2013.[12] Kaith BS,Mittal H, Jindal R,MaitiM, Kalia S: Environment Benevolent BiodegradablePolymers:Synthesis,Biodegradability,andApplications.In:KaliaS,KaithBS,KaurI,editors.CelluloseFibers:Bio-andNano-PolymerComposites.Springer,2011.

References

37

[13] Varshney VK, Naithani S: Chemical Functionalization of Cellulose Derived from Non-conventionalSources. In:KaliaS,KaithBS,Kaur I,editors.CelluloseFibers:Bio-andNano-PolymerComposites.Springer,2011. �

[14]O’SullivanAC:Cellulose:Thestructureslowlyunravels.Cellulose.1997;4(3):173-207

[15]ShokriJ,AdibkiaK:ApplicationofCelluloseandCelluloseDerivativesinPharmaceuticalIndustries. In: Van de Ven T, Godbout L, editors.Cellulose -Medical, Pharmaceutical andElectronicApplications.InTech,2013.[16]PullawanT,WilkinsonANandEichhornSJ:Orientationanddeformationofwet-stretchedall-cellulosenanocomposites.JournalofMaterialsScience.2013;48(22):7847–7855[17] JohnMJ,ThomasS.Biofibresandbiocomposites.CarbohydratePolymers. 2008;71(3):343-364.[18]MoonRJ,MartiniA,NairnJ,SimonsenJ,YoungbloodJ.Cellulosenanomaterialsreview:structure,propertiesandnanocomposites.ChemicalSocietyReviews.2011;40(7):3941-3994.[19]PolettoM,PistorV,ZatteraAJ:Structuralcharacteristicsandthermalpropertiesofnativecellulose.In:VandeVenT,GodboutL,editors.Cellulose-FundamentalAspects.InTech,2013.[20]Gibson LJ. Thehierarchical structure andmechanicsof plantmaterials. Journal of TheRoyalSocietyInterface.2012;9(76):2749-2766.[21]ButterfieldBG:Woodanatomyinrelationtowood.In:BarnettJ,JeronimidisG,editors.Woodqualityanditsbiologicalbasis.Oxford:Wiley-Blackwell,2009.[22]WiedenhoeftAC:Structureand functionofwood. In:RowellRM,editor.HandbookofWoodChemistryandWoodComposites,Secondedition.BocaRaton:Taylor&Francis,2012.[23]HöfteH,GonneauM,VernhettesS:BiosynthesisofCellulose. In:Kamerling JP,editor.ComprehensiveGlycoscience:Fromchemistrytosystemsbiology.Four-Volumeset,volume2,secondedition.Amsterdam:ElsevierScience,2007.[24]PuranenT,AlapuranenM,VehmaanperäJ:TricjodermaEnzymesforTextileIndustries.In:Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M, editors.Biotechnology and biology of Trichoderma. Edinburgh, United Kingdom: Elsevier Science,2014.[25]NishinoT,TakanoK,NakamaeK:Elasticmodulusofthecrystallineregionsofcellulosepolymorphs.JournalofPolymerSciencePartB:PolymerPhysics.1995;33(11):1647-1651.[26]SinghP,DuarteH,AlvesL,AntunesF,LeMoigneN,DormansJ,DucheminB,StaigerMP,Medronho B. From Cellulose Dissolution and Regeneration to Added Value Applications-SynergismBetweenMolecularUnderstandingandMaterialDevelopment.In:PolettoM,LuizOrnaghiJuniorL,editors.Cellulose-FundamentalAspectsandCurrentTrends.InTech,2015.

References

38

[27]PotthastA,RosenauT,BuchnerR,RöderT,EbnerG,BruglachnerH,SixtaH,KosmaP.Thecellulose solvent system N,N-dimethlyacetamide/lithium chloride revisited: the effect ofwateronphysicochemicalpropertiesandchemicalstability.Cellulose.2002;9(1):41-53.[28]Naseri N. Porous Structures Based on Nanopolysaccharides forMedical Applications.Luleå University of Technology, Department of Engineering Sciences and Mathematics,DivisionofMaterialsScience.December,2014.[29]KimJ-H,ShimBS,KimHS,LeeYJ,MinSK,JangD,AbasZ,KimJ.Reviewofnanocellulosefor sustainable future materials. International Journal of Precision Engineering andManufacturingGreenTechnology.2015;2(2):197–213.[30]LiuM,JiaZ,JiaD,ZhouC.Recentadvanceinresearchonhalloysitenanotubes-polymernanocomposites.ProgressinPolymerScience.2014;39(8):1498–1525.[31]YuanP,TanD,Annabi-BergayaF.Propertiesandapplicationsofhalloysitenanotubes:recentresearchadvancesandfutureprospects.AppliedClayScience.2015;112–113:75–93[32] Soheilmoghaddam M, Wahit MU. Development of regenerated cellulose/halloysitenanotube bionanocomposite films with ionic liquid. International Journal of BiologicalMacromolecules.2013;58:133–139[33] Soheilmoghaddam M, Wahit MU, Mahmoudian S, Hanid NA. Regeneratedcellulose/halloysitenanotubenanocompositefilmspreparedwithan ionic liquid.MaterialsChemistryandPhysics.2013;141(2-3):936-943[34] PickeringK., EfendyM.A., LeT. A review of recent developments in natural fibrecomposites and their mechanical performance. Composites Part A: Applied Science andManufacturing.2016;83,98-112.[35] Nirmal U., Hashim J. andMegat AhmadM. A review on tribological performance ofnaturalfibrepolymericcomposites.TribologyInternational,83.2015;77-104.[36] Bledzki A.K., Gassan J. Composites reinforcedwith cellulose based fibres.Progress inPolymerScience,24(2).1999;221-274.[37]EichhornS.J., Sirichaisit J. andYoungR.J.Deformationmechanisms in cellulose fibres,paperandwood.JournalofMaterialsScience,36.2001b;3129-3135[38]SoykeabkaewN.,NishinoT.andPeijsT.All-cellulosecompositesofregeneratedcellulosefibresbysurfaceselectivedissolution.CompositesPartA:AppliedScienceandManufacturing,40(4).2009;321-328.[39]Soykeabkaew,N.All-CelluloseComposites.DoctoralThesis,UniversityofLondon,QueenMary,DepartmentofMaterials.July,2007.[40]EichhornS.,YoungR.,DaviesR.andRiekelC.Characterisationofthemicrostructureanddeformationofhighmoduluscellulosefibres.Polymer,44(19).2003;5901-5908.

References

39

[41]GuotaVB.Melt-spinningprocess.In:GuptaVB,KothariVK,editors.Manufacturedfibretechnology.SpringerNature,1997.[42]BakerRW.Membranesandmodules. In:BakerRW,editor.Membranetechnologyandapplications,secondedition.Wiley&Sons,2004.[43] Textile Centre of Excellence. Fibre and filament production. http://www.tikp.co.uk/knowledge/ technology/fibre-and-filament-production/meltspinning/. Accessed October 2,2016[44] Gupta BS.Manufactured Textile Fibers. In: Kent and Riegel’s Handbook of IndustrialChemistryandBiotechnology.SpringerNature,2007.[45]GuptaVB. Solution-spinning process. In:GuptaVB, Kothari VK, editors.Manufacturedfibretechnology.SpringerNature,1997:124-138.[46]TuinSA,PourdeyhimiB,LoboaEG.Interconnected,Microporoushollowfibersfortissueengineering: Commercially relevant, industry standard scale-up manufacturing. Journal ofBiomedicalMaterialsResearchPartA.2013.[47] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique.BiotechnologyAdvances.2010;28(3):325–347.[48] Mohan T, Hribernik S, Kargl R, Stana-Kleinschek K. Nanocellulose materials in tissueengineeringapplicationsIn:PolettoM,LuizOrnaghiJuniorL,editors.Cellulose-FundamentalAspectsandCurrentTrends.InTech,2015.[49]OksmanK,AitomäkiY,MathewAP,SiqueiraG,ZhouQ,ButylinaS,TanpichaiS,ZhouX,HooshmandS.Reviewoftherecentdevelopments incellulosenano-compositeprocessing.CompositesPartA:AppliedScienceandManufacturing.2016;83:2–18.

[50]GindlW,KeckesJ.All-cellulosenanocomposite.Polymer.2005;46(23):10221–10225

[51]Gindl-Altmutter,W.,Keckes,J.,Plackner,J.,Liebner,F.,Englund,K.andLaborie,M.All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrixcomposites.CompositesScienceandTechnology,72(11).2012;1304-1309.

[52]Huber,T.,Pang,S.andStaiger,M.All-cellulosecompositelaminates.CompositesPartA:AppliedScienceandManufacturing,43(10).2012;1738-1745.

[53]Huber,T.,Bickerton,S.,Müssig,J.,Pang,S.andStaiger,M.Solventinfusionprocessingofall-cellulosecompositematerials.CarbohydratePolymers,90(1).2012;730-733.

[54] He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Deng Y. Uniaxially alignedElectrospunall-celluloseNanocompositeNanofibersreinforcedwithcelluloseNanocrystals:Scaffoldfortissueengineering.Biomacromolecules.2014;15(2),618–627.[55]Nishino,T.andArimoto,N.All-CelluloseCompositePreparedbySelectiveDissolvingofFiberSurface.Biomacromolecules.2007;8(9),2712-2716.

References

40

[56]QIN,C.,SOYKEABKAEW,N.,XIUYUAN,N.andPEIJS,T.Theeffectoffibrevolumefractionand mercerization on the properties of all-cellulose composites. Carbohydrate Polymers.2008;71(3),458-467.[57] GindlW,Martinschitz KJ, Boesecke P, Keckes J (2006) Changes in themolecular ori-entation and tensile properties of uniaxially drawn cellulose films. Biomacromole- cules 7(11):3146-3150.[58]PullawanT,WilkinsonAN,EichhornSJ(2013)Orientationanddeformationofwetstret-chedall-cellulosenanocomposites.JMaterSci48(22):7847-7855.