118
AD-A093 584 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 15/5 AN EVALUATION OF THE EFFECT OF SPARES ALLOWANCE POLICY UPON SHI--ETC(U) UNCLASSIF1ED NL EEEEOOEEhE mEE ilEEllllllI mhmhllllllllll lllhElhllhEEEE IEEE..'...II

EEEEOOEEhE - CiteSeerX

Embed Size (px)

Citation preview

AD-A093 584 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 15/5AN EVALUATION OF THE EFFECT OF SPARES ALLOWANCE POLICY UPON SHI--ETC(U)

UNCLASSIF1ED NL

EEEEOOEEhE

mEE ilEEllllllImhmhlllllllllllllhElhllhEEEEIEEE..'...II

NAVAL POSTGRADUATE SCHOOLMonterey, California

CC

S :. THESIS,AN EVALUATION OF THE .9FFECT OF-SPARES ALLOWANCE _?OLrCY UPON

SHIP AVAILABILITY AND .kELIABILITY0

by

'. John Edward/Leather ;

Jjept~abov 1-98,0

Thesis Advisor: F. Russell Richards

Approved for public release; distribution unlimited.

,. . .

I-J- *@1 . ._../ _

j• .

UNCLASSIFIED

REPOR 0OCMENTATION PME suBAD tN3U rawllN

REPORT NMuEn"a GVT ACEM &.*GPET AT£.0w~

A. TIT L I mEu Sub~tow s. iVPKOF EPOR &ion ogfss Covengo

An Evaluation of the Effect of Spares Master's Thesis;Allowance Policy Upon Ship Availability caltmhall 1Qafand Reliability G. P"om em~m 01600TW101111

1AtjTMO(Aj 0. § 050

John Edward Leather

iPEUtronuawG ORGANIZATION NAME AMC A00016111 If. PROGRM aawaxMS. POjECT. T ASKNaval Postgraduate School AREA A30K KuMITNIsSMRS

Monterey, CA 93940

IC004T3LLING OPPICS N AME AMC ADDRESS 12. REPORT DATE

Naval Postgraduate School September 1980Is. Munson OF PAGES

Monterey, CA 93940 115s1.MONITORING AGENCY NAMIL 6 AOUESSO 40101issiin = CotWm 013 0 6 Ofle L SEUI T 7 CLAVIL (of M@ viloset

Naval Postgraduate School UcasfeMonterey, California 93940 Ucasfe

Uh gcAmeIICATIO16153WGRADIIG

IS. BiSTRIOUTIONs STATEMENHT (of this *GPM#)

Approved for public release; distribution unlimited.

17. DIT oilGUTIow6 STATYEMEN T fa1t. .awi e m d is Aft" IS. of AMMON ftm Aoupm)

Is. SUPPLgmENTARY NOTES

19. NET WORDS (CmEnfl An rawwo side Of .nsee i ss It~m"I OF 6000 amos)

Cosal AvailabilityProvisioningTigerRe iability

20. ASIACT (Conflonse m ,,wse side It in....mip -ws OdafI, Or al inmb

U.S. ships are provided onboard spare parts for equipment theship's force is capable of repairing while at sea. The range anddepth of spares provided has a pronounced effect on the availabil-ity of both ship and weapon systems. The spares suite for aparticular ship is the Coordinated Shipboard Allowance List pro-duced by the Ship's Parts Control Center. A mathematical model isused to produce this list, aiming to achieve stocking goals setby the Navy. This thesis examines the relationship between these_.

DO 1473 actiots ofP 1 Nov00s to oesoLETSNLSSFE(Paste 1) S/N 102014iiO UNCASSIFfi 0 D 111 @5fM Z=0

UNCLASSIFIEDsum,. &S-996&Yo,OU gW YW~S oa oe ftgIummE.

goals and the model in use. A simulation model developed by theNaval Sea Systems Command has been modifed so that it is compati-ble with the Naval Postgraduate School computer system, and thissimulation model is used to evaluate the provisioning models.This simulation model is capable of being used for a variety ofother projects at the Naval Postgraduate School._,-

By-r4 Ftr 1 /

Dist pc

~1

DD trps 1473 2 1IA TPT r/J lMcu"TV 6L4,MOAv OP V04 0&66Svm amon"""

Approved for public release; distribution unlimited.

An Evaluation of the Effect ofSpares Allowance Policy Upon

Ship Availability and Reliability

by

John Edward Leather

Lieutenant, Supply Corps, United States NavyB.S., Case Western Reserve University, 1971

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOLSeptember 1980

Author

Approved by: _ __ _ _ __

Thiesis Advisor'

Second Reader

Chairman, bepartment oOperati Research

Dean of Information and Policy Sciences

3

ABSTRACT

U.S. ships are provided onboard spare parts for equip-

ment the ship's force is capable of repairing while at sea.

The range and depth of spares provided has a pronounced

effect on the availability of both ship and weapon systems.

The spares suite for a particular ship is the Coordinated

Shipboard Allowance List produced by the Ship's Parts Control

Center. A mathematical model 's used to produce this list,

aiming to achieve stocking goals set by the Navy. This

thesis examines the relationship between these goals and the

model in use. A simulation model developed by the Naval Sea

Systems Command has been modified so that it is compatible

with the Naval Postgraduate School computer system, and this

simulation model is used to evaluate the provisioning models.

This simulation model is capable of being used for a variety

of other projects at the Naval Postgraduate School.

4

I.L .-

TABLE OF CONTENTS

I. INTRODUCTION -.-.-.-.--------------- 7

II. THE COORDINATED SHIPBOARD ALLOWANCE LIST (COSAL) - 10

A. NAVY POLICY FOR PROVIDING SUPPLY SUPPORT OFOPERATING FORCES - - - - ----------- 10

B. CURRENT COSAL MATHEMATICAL MODELS - -i- - --- 11

1. FLSIP Model - --------------- 12

2. TRIDENT Model - -------------- 14

3. Maintenance Criticality Oriented (MCO)Model - - - - --------------- 15

III. THE NAVAL SEA SYSTEMS COMMAND (NAVSEA) TIGERSIMULATION PROGRAM - --------------- 16

A. INTRODUCTION - ---------------- 16

B. PRESENT NAVSEA TIGER UTILIZATION - ------ 18

C. PROPOSED TIGER UTILIZATION FOR COSALPREPARATION - ----------------- 21

IV. BEST REPLACEMENT FACTOR (BRF) - ---------- 24

A. BRF - WHAT IS IT?--------------- 24

B. MEAN TIME BETWEEN FAILURE (MTBF) - - - - --- 25

C. DIFFERENCES BETWEEN BRF AND MTBF ------- 25a D. BRF AS AN INPUT TO TIGER - ---------- 27

* V. TIGER USED TO EVALUATE THE EFFECT OF SPARESALLOWANCE POLICY UPON RELIABILITY AND AVAILABILITY 29

J1 A. INTRODUCTION - - - ------------- -- z9

B. RELIABILITY (REL) - -------------- 29

C. AVAILABILITY (AVA) --- ------------- 30

..

D. READINESS (RED) - -------------- 30

E. RELIABILITY VS AVAILABILITY AS A MEASURE OFEFFECTIVENESS - ---------------- 31

F. ALLOWANCE POLICY EFFECT - ----------- 32

1. Reliability Block Diagram of System- - - 32

2. Proposed Allowance Policy Input ------ 33

3. Figure of Merit Results ---------- 33

VI. EXAMPLE OF TIGER ANALYSIS ..-..-.-.-.------- 3S

A. EQUIPMENT CONFIGURATION AND FAILURE RATES- - 35

1. Block Diagram and Operating Rules--- -- 35

2. Equipment Failure Rates - --------- 36

B. LOGISTIC SUPPORT (COSAL) MODELS USED ----- 36

C. RESULTS OF ANALYSIS - ------------- 37

1. Results of TIGER Simulation- - ------ 37

2. Interpretation of Results- -------- 38

VII. SUMMARY AND CONCLUSIONS - ------------- 39

APPENDIX A ACRONYMS - ----------------- 42

APPENDIX B TIGER PROGRAM VARIABLE LIST-- ---- - - 44

APPENDIX C SPARES SUBROUTINE VARIABLE LIST --------- 55

APPENDIX D MODIFICATIONS TO TIGER PROGRAM INPUT - - 56

TIGER COMPUTER OUTPUT (SAMPLE) ------------- 72

TIGER IBM/360 FORTRAN IV COMPUTER PROGRAM- ------- 78

LIST OF REFERENCES - ------------------ 114

INITIAL DISTRIBUTION LIST - --------------- 11S

6 -2

I. INTRODUCTION

The capability of a modern warship to be combat ready

and maintain this readiness over a deployment period depends

on logistics support. While this support includes such

necessities as food, fuel, medical supplies etc., a crucial

element in maintaining the sophisticated shipboard systems

is the availability of repair parts. More important, of

course, is the necessity of having a skilled technician

capable of diagnosing any problems and effecting the re-

quired repairs. This thesis will focus entirely upon the

'part' side of this two-way problem, knowing full well that

the desired technical expertise is not always available on

all ships.

To provide for the capability of repairing equipment

while away from port or support ships, each ship is provided

a quantity of spares designed to enable it to be self suf-

ficient for a period of 90 days. Budget and storage con-

straints prohibit stockpiling spares to cover all possible

requirements, therefore a choice must be made as to the

method to allocate the range and depth of spares to be

provided.

Chapter II discusses the way the Navy is currently

making this allocation. The method has been successful for

a number of years, but less so recently due to changes in

7

provisioning model parameters. These changes were dictated

by the 'high cost' of the allowance list generated by

previous parameters.

Chapters III, IV, and V describe the use of a reliabil-

ity block diagram simulation program to evaluate the effect

of changing the spares suite upon the reliability/availability

of a shipboard system over a 90 day period with no external

spares replenishment. To obtain an upper bound on the

spares effectiveness, the 90 day period was simulated with

all repairs being instantaneous; thereby placing the entire

burden of making the system available on the spares suite

and not upon the speed of the repair. From this technique a

measure of effectiveness of each given spares suite can be

derived.

As an example, a particular reliability block diagram is

analyzed in chapter VI using the simulation technique. The

nature/configuration of this block diagram has a large

effect on the figure of merit results. For example, three

different items connected in series would be less reliable

than the same three connected in parallel where only two are

required to be functioning at once and the third was in cold

standby. It is for this type of reason that a provisioning

process based on parts counting rather than reliability may

provide satisfactory results for one system and unsatisfac-

tory results for another when both systems possibly consist

of the same piece parts or perform the same function.

8

ILA

The simulation (called TIGER) is a general reliability

simulation model and is capable of many other uses besides

the one chosen for this thesis. With the help of the

appendices, the program listing, and the TIGER manual (Ref.

1) further use of this program on the Naval Postgraduate

School (NPS) computer system or any other FORTRAN IV com-

patible system with random number generation capability

should be feasible.

9

- /

II. THE COORDINATED SHIPBOARD ALLOWANCE LIST (COSAL)

A. NAVY POLICY FOR PROVIDING SUPPLY SUPPORT OF THE

OPERATING FORCES

The amount of logistic support required to support the

desired levels of fleet readiness are delineated in Ref. 2.

Of concern here are the sections on Shipboard Stock Levels

and Criteria for Shipboard Allowances.

All non-Fleet Ballistic Missile (FBM) self-sustaining

ships have a stockage objective of 90 days, which is equated

to the endurance for the ship. This objective is applicable

to repair parts, spares, and equipment related consumables.

The specific criterion for developing a COSAL from a list

of those items capable of being repaired by shipboard person-

nel is the subject of the next section of this thesis.

The measures of effectiveness for COSAL performance as

stated in Ref. 2, are to 'fill from onboard stocks 65% (gross

effectiveness) of all demands and to provide an overall

availability for items allowed to be carried of 85% (net

effectiveness)'. It is essential to note that no mention is

made of such terms as reliability, availability, or readiness

in the context of the supported ship as a measure of COSAL

effectiveness.

Net effectiveness is often called 'system' effectivenss,

in that it is the effectiveness of the entire logistics

10

I -'

system in replenishin, shipboard spares once they are used

and reordered. As this is not specifically related to the

COSAL provisioning document, but is a function of such

diverse items as order and shipping times, specific examina-

tion of this measure will not be attempted. Rather, certain

stated assumptions will be made regarding the percentage of

spares onboard when it is necessary to do so.

The objective of 65% gross effectiveness is the central

issue which this thesis will focus upon. As will be shown

in the next section, the COSAL mathematical model in no way

can be substantiated as a '65% gross effectiveness model'.

More important is the question of '65% gross effectiveness'

as a measure of effectiveness for shipboard support. One

could conceive of ways to fill 75% of the requisitions

received in 90 days from shipboard stock and never be able

to get underway. Alternatively, a low fill rate could

result in a highly successful deployment. The key, obvious-

ly, is to stock those items which are important to the ships

mission, and not to stock simply to maximize stock turn.

B. CURRENT COSAL MATHEMATICAL MODELS

Several mathematical models are currently being used to

generate COSALs. The Fleet Logistic Support Improvement

VT Program (FLSIP) model is used for surface ships and Fast

Attack Submarines (SSN) and is the most extensively used

technique. The TRIDENT model is used on Fleet Ballistic

/1

A II I II m i I I ml i i i I I - -- J ,w ... .. . : a m I m, • I J] . . ....

Missile Submarines (FBM) and is similar to the Maintenance

Criticality Oriented (MCO) COSAL being implemented on the

FFG-7 Lo-Mix class of ships.

1. FLSIP Model

The FLSIP model has been in use for many years and

has proven to be a rapid, workable, and understandable method

of generating the large quantity of COSALS that must be run

(approximately 50 per month). This model simply processes a

list of all repair parts applicable to the particular ship

and capable of being replaced by the ship's force. Each part

is individually totaled for its' entire installed shipwide

population and then is multiplied by its' Best Replacement

Factor (BRF) (explained in chapter IV). The resultant value

is called the 'mean', and this mean is used with the essenti-

ality of the parent equipment to determine the final allowance

quantity. A FLSIP logic diagram is shown in figure 1.

The attempt to incorporate essentiality into this

model has been negated by the migration of over 90 percent

of the parts on file into the 'vital' category. Technical

Overides (TORS) have been frozen by the Chief of Naval

Operations (CNO) as a cost reduction measure.

The currently used model is called a .25 FLSIP model

since the insurance cut point is .25 (one expected demand in

four years). As over 90 percent of the items stocked on-

board a ship are stocked at a depth of one, this cut point

is critical to the ability of the model to provide sufficient/"

wii 12

T /

FLSIP COSAL LOGIC

p=Item PopxBRF/ Pi l.0 Tr Stock this itemDetermine MRU to a depth ofDetermine PMR F max(s,MRU, PMR, TOR)Determine TOR (Demand based)

Item coded Stock this itemvital-vital to a depth of

max(MRU,PMR,TOR)(Insurance item)

PMR/TOR LT Stock this itemrequirement T to a depth of

F max(PMR,TOR)(Deep insurance item)

-ontstocid

Definitions:

Item Pop - Consolidated population of the item throughoutthe ship's systems

BRF - Best replacement factor

- minimum stocking depth such thatPr (Actual 90-day demand s)=.90(Assuming P6isson distribution)

MRU -Minimum replacement 'unit'quantity, if any

PMR -Required preventative maintenancequantity for planned maintenance

TOR - Technical override quantity, if any;determined by engineers/designersduring equipment provisioning review

Vital-Vital code - Item vital to its parentcomponent, and its component vitalto a primary mission

Figure I

13

,.

support. This cut point was changed from a previous value

of .15 due to various budgetary pressures.

Aside from the arbitrary nature of the value chosen

as the cut point the main problems which continue to exist

are the effectiveness criteria established in Ref. 2 and the

fact that the FLSIP model (Figure 1) has no mathematical

relationship to these criteria. If the FLSIP is to be

continued in use, and indications are that it will (Ref. 3),

meaningful effectiveness criteria must be established and a

means developed to justify the use of the FLSIP model to

meet these criteria.

2. TRIDENT Model

The TRIDENT model incorporates military essentiality

codes (MEG) assigned to the parent equipment into the stock-

age allowance decision. The more essential the equipment,

the better it will be supported. The following equation is

used to calculate the allowance quantity:

Allowance quantity = u +(Zxp)

Where V is the mean of the assumed Poisson distribu-

tion of repair part requirements in 90 days).

The multiplier Z is a function of essentiality and

to a lesser degree the unit price cf the part. As in the

FLSIP model each candidate part is processed individually and

is not subject to budget constraints (although the levels may

be adjusted through the manipulation of the various factors

which comprise Z).

14

This model is currently in use; takes essentiality of

equipment into account; and provides excellent support. But

as could be expected, the resulting COSAL provides generous

allocation of spare parts and its cost would be hard to

justify outside of the FBM arena.

3. Maintenance Criticality Oriented (MCO) Model

The MCO model is an allowance list to be implemented

on an increment of the new FFG-7 Lo-Mix class of ships. The

mathematical technique is very similar to the TRIDENT model,

the main difference being that essentiality is carried all

of the way to the part level. The documentation required to

achieve this is extensive and costly and must be maintained

throughout the life of the ship. The documentation required

to backfit the MCO model to older classes of ships does not

exist.

I

15

U . d •'

III. THE NAVAL SEA SYSTEMS COMMAND TIGER SIMULATION PROGRAM

A. INTRODUCTION

TIGER is the generic name for a family of computer

simulation programs which can be used to evaluate a complex

system in order to estimate various reliability, readiness,

and availability measures. This program was developed by

the Naval Sea Systems Command (NAVSEA) reliability branch.

The reliability block diagram of the system/component under

study is the foundation from which a TIGER simulation run is

constructed. This block diagram may be for a large system

(ship) with each block representing a component of the system;

or it may be for a single component with each block repre-

senting a lowest replacement unit part; or the block diagram

may be any type of combination of both. As an input for each

block the Mean Time Between Failures (MTBF) and Mean Time to

Repair (MTTR) must also be known.

The unique feature about TIGER is the flexibility in-

corporated into the program. Scenarios with block diagram

configurations which change duting the time period being

simulated are evaluated through a series of different time-

line 'phases' in the input. A phase is a specific reliabili-

ty configuration for the ship being studied. The simulation

will accept up to six different phases, and they may be

sequenced in any order and be of any interval of time. The

16

phases may be strung together until the simulation capacity

of 95 total phases is reached. MTBF, MTTR, and spares

multiplier factors may be entered to perform sensitivity

analyses on the system under study.

TIGER uses Monte Carlo random number methods to evaluate

the input block diagram. The random numbers are generated

through the use of the NPS LLRANDOM routine (Ref.4).

The TIGER simulation is a discrete event step simulation.

Exponential failure and repair times are generated using the

MTBF and MTTR input data. As equipments fail spares are

used; repairs effected (if allowed in the phase); standby

equipment turned on/off if required; and different block

diagrams initiated as the different phases are encountered

during the timeline. Statistics are collected as a result

of each event and change of configuration.

The TIGER output includes estimates of reliability,

readiness, availability, and critical components which caused

the most severe degredation of reliability and availability.

The user may change the random number seed and replicate a

timeline as many as 1000 times in a single TIGER run. TIGER

will calculate and provide a lower confidence limit for the

point estimate of reliability.

The inherent limitations to the use of this type of simu-

lation include both the problem of providing accurate input

data (MTBF, MTTR) and the exponential failure/repair rate

assumption used in the program. Under many scenarios and for

many types of equipment this exponential assumption is valid$ 17

but certainly many types of equipment exhibit wearout and

not all repair times are exponentially distributed.

In addition to the output mentioned above, spares usage

may also be displayed as well as several standard and

optional outputs of the progress of the simulation. The

detail can vary from every event being shown to a much

simpler management summary.

Two subroutines of TIGER were omitted in this thesis

research but may be useful in different types of analysis.

One of these, the GAMMA option, assumes that the system

being evaluated has a gamma failure distribution and calcu-

lates the two parameters (shape and scale) for the gamma

distribution which would exhibit the same mean and variance

of mission failure times as the system being modeled. The

DEMO option of TIGER provides the capability of generating

a sequential probability test ratio plan for the system as

prescribed in MIL-STD-781. Detailed information about TIGER

including GAMMA; DEMO; and a TIGER/MANNING personnel

requirements type program is found in Ref. 1.

B. PRESENT NAVSEA TIGER UTILIZATION

The TIGER program is being used by NAVSEA to evaluate

Reliability, Maintainability, Availability (RMA) performance

characteristics of new ship classes (Ref. 5). This analysis

is performed only on the major mission-essential systems:

Navigation, Auxiliary, Electrical, Ship Control, Propulsion,

18

IL

Exterior Communications, and Combat. Only these systems and

equipment which impact the operational readiness of the ship

and the ship's ability to perform its assigned primary

combatant mission are included in the analysis.

All surface ships constructed since 1970 have reliabil-

ity block diagrams available (in computer readable form).

This eliminates the major undertaking of having to construct

the reliability block diagrams prior to using TIGER. The

necessary MTBF and MTTR data for existing equipment is found

in the Reliability/Maintainability/Availability Design Data

Bank (Ref. 6), which is acompilation of data from both

engineering design and fleet feedback. Engineering estimates

must be used for the many new systems found on a new class of

ship, where no feedback data yet exists.

Along with the various reliability block diagram con-

figurations (steaming, in-port, ASW, etc.) and MTBF/MTTR

data, the operating rules for the equipment must also be

provided. These rules include allowable downtime, spares,

mission timelines, and maintenance policy.

A sample RMA timeline (Ref. 5) is shown in figure 2.

Timelines are tailored to the class of ship and its designed

usage in a period of combat.

Allowable downtime is the time that the system or equip-

ment can be down for maintenance without causing a mission

abort. During simulated combat periods this time is

usually zero for most mission essential systems.

19

P/

a, a Ia, a,~a, ~ c.~j.i.

U. ~ a, a C C - ~E~4

- B4.4 a - -4., - -a4.4 a4.4 - z~J

~ -4.4 ~

a,- a

U. fl.fl~- - :.ft =

C- a,

U.r..g

~' :a, ~0.

- 4.,

- H a,

ft ~ -K~a ai

.. 8 ~= U ~

-~ m -. -, a- a, -

- afta a

- 4.4 -=

4.4 ~ -. 4..- 4.4 ft a,

ft-4fta,

8 8a

i ~ ~

*1' 20

/

Maintenance policy limits certain equipment to being

capable of repair only during certain phases. For example,

repair of the main engine would not be permitted while

hunting a submarine, but would be permitted while in-port.

Spares are assumed to be available as needed for initial

TIGER analysis. Supportability tradeoff studies are con-

ducted separately to evaluate the effect of different spares

efficiency percentages and off-ship logistic delay times.

The results of the TIGER simulation are compared with

design specifications to see if any inherent (non-spares

related) reliability problems exist. Critical equipments

are then identified and closely monitored during the final

phases of design and construction.

C. PROPOSED TIGER UTILIZATION FOR COSAL PREPARATION

Reference 7 describes a methodology of using the TIGER

program to evaluate a COSAL with respect to reliability.

The inputs to the TIGER program would be the same as those

in the last section with the exception of the spares input

and the indenture level of the reliability block diagram.

The diagram must not stop at the equipment level, but be

carried out to the repair part level. MTBF/MTTR data must

also be provided at the repair part level.

As may be readily apparent, the block design for just

the essentail equipment of an entire ship would be very

cumbersome and unworkable. This type of TIGER analysis must

3 21

. . ..7I- ,. ... . . I I I | I I I~ i l l II I. . . .

be done on a system or equipment basis. The spares input

would be that generated by the COSAL model under evaluation,

usually FLSIP.

A deployment timeline is simulated and the resulting

reliability/availability figures are compared to the design

goals. If the goals are not achieved the 'bad apples' list

of repair parts indicates the particular parts which caused

the most degredation. Additional quantities of these parts

are added to the spares suite and the process is repeated

until the goal is attained. This method may also be used in

reverse, removing spares and observing the resulting changes

to reliability/availability.

While this methodology is feasible and would certainly

provide better support than an unaugmented FLSIP COSAL, it

has several drawbacks. One is the lack of reliability block

diagrams down to the repair part level. Although new equip-

ment procurement contracts may specify that this documenta-

tion must be provided, the task of assembling it for just

one ship's essential equipment would be awesome.

Another problem is the lack of MTBF/MTTR data for each

part. Reference 8 may be used to estimate the required

parameters, but again this is a large undertaking. As was

mentioned earlier in this thesis, current provisioning

i processes use a BRF vice MTBF to determine logistic support.

A further clarification of the differences between these two

and a proposed solution will follow in a later section.

22

A final problem results from the fact that repeated

computer runs on a vast network of reliability block dia-

grams are required to produce a single COSAL. The computer

system at the Ships Parts Control Center (SPCC) is saturated

and could not begin to process the large quantity of simula-

tion runs necessary to use this proposed method on all

COSALs. In addition, a significant number of manhours would

be required to review each run and decide which parts to

augment and in what quantity. Though this process would

undoubtedly produce a COSAL superior to the FSLIP model,

practicality prevents its adaption at the present time.

2

23

1.-."

IV. BEST REPLACEMENT FACTOR (BRF)

A. BRF - WHAT IS IT?

The BRF is the projected annual replacement rate for one

installed unit of a repair part. Only one BRF exists for

each part even if it is used in numerous applications

throughout a given ship or the fleet or ashore. The BRF is

found by dividing the annual reported usage in the fleet by

the total installed population. This yields annual failures

per installation. Before any calculations are made the in-

put data are adjusted for inaccuracies caused by bad

reporters and inactive ships in overhaul. The BRF is calcu-

lated annually for each item in the SPCC files. To prevent

rapid fluctuations from occurring the previous value on file

is updated with the new value by the use of exponential

smoothing.

To illustrate this process suppose that 105 ships in the

fleet were each recorded as having two of part 'A' installed.

Five ships were in overhaul for this particular year so

)their data is not used for BRF update. The remaining 100

ships reported a total of 400 failures for item 'A'. Since

there are 200 of 'A' installed and 400 were used, the un-

smoothed BRF is 400/200 = 2.0. If the BRF currently on

file is 2.4 and exponential smoothing with smoothing constant

.25 is used, the updated BRF would be 2.4k.75 + 2.0x.25 =2.3.

24

This BRF would be put on file for use in all COSALS which

contain part 'A'.

B. MEAN TIME BETWEEN FAILURE (MTBF)

MTBF is the expected value of the operating time between

failures of an item. It is estimated by dividing the total

time in service by the number of failures:

MTBF = total time in service/number of failures

Sometimes the expression Mean Time to Failure (MTTF) is used

for the expected value. Another related measure is the

failure (hazard) rate which is the conditional probability

that an item surviving to age t will fail in the interval

(t, t+dt). A constant failure rate is equivalent to having

a failure distribution which is exponential; and for an

exponential distribution the failure rate is the reciprocal

of MTBF.

C. DIFFERENCES BETWEEN MTBF AND BRF

A MTBF provides an expected value of the length of time

an item will operate until failure. It is based on operating

time; and failures are not possible while the equipment is

) not in use or turned on. A BRF is the average number of

times an item will fail in an average year in an average

installation. Since these differences and similarities are

crucial to the analysis in section VI of this thesis, the

following example taken from Ref. 9 provides an insight intothe MTBF/BRF relationship.

25

----- -

A piece of equipment (lamp) has four repair parts (bulb,

socket/switch, cord, plug). It is operated for 1000 hours

per year. An arbitrary MTBF and corresponding Failure Rate

(expressed in failures per year) are shown below:

ITEM MTBF FAILURE RATEE1g t Bulb -=U HRS 1.333Socket/Switch 10,000 HRS 0.100Electric Cord 15,000 HRS 0.066Plug 10,000 HRS 0.100TOTAL 7TS-

As shown, the lamp is expected to fail 1.599 times per year.

This would be a BRF for the lamp if the maintenance policy

were to replace the whole lamp no matter what the cause of

the failure. The following table shows how maintenance

philosophy can have a pronounced effect on the five BRFs.

The 'Replace Failed Part' column represents the way repairs

are usually accomplished at the shipboard level. Only

catastrophic failure would lead to the attempted replacement

of the entire item, usually unsuccessful because the entire

assembly would not likely be stocked due to the low BRF.

MAINTENANCE PHILOSOPHYFAILURE REPLACE REPLACE FAILEDRATE FAILED REPLACE BULB, OTHERWISE

ITEM PER YEAR PART LAMP REPLACE LAMP

LAMP 1.599 BRF=0. BRF=I.599 BRF= .266BULB 1.333 BRF=I.333 BRF=0 BRF=I.333

V CORD 0.066 BRF=0.066 BRF=0 BRF=0S/SWITCH 0.100 BRF-O.100 BRF=0 BRF=0PLUG 0.100 BRF=0.100 BRF=0 BRF=0

/i 26

D. BRF AS AN INPUT TO TIGER

When MTBF is used as an input to TIGER, various time-

lines are used to provide scenarios in which the equipment

configurations and usage rates are required. When equipment

is on, it fails exponentially with the given MTBF, unless

the duty cycle is less than 100 percent, in which case the

MTBF is divided by the duty cycle. The BRF has incorporated

the various reasons the timeline approach must be used with

the MTBF; equipment being turned off and on, duty cycles for

equipment with cycles of less than one; and the various

configuration dependent usage rates for an average instal-

lation in an average year.

Consider, for example, an equipment with a duty cycle of

one-half (operating 50 percent of the time) exhibiting five

failures in a ten year period. The MTBF is calculated as

before; total time in-service/failures = (10x.5)/5 = 1 year.

Since the duty cycle is one-half, we would expect to see a

failure every other year, or .5 per year. The BRF calcula-

tion yields the same result; 5 failures/10 years = .5

failures/year.

To use a BRF in TIGER requires that the entire block

diagram, in a typical configuration, be used and equipment/

parts be allowed to fail at an annual rate (BRF) which takes

the numerous operating scenarios into account. While the

results from this type of analysis would be very difficult

to defend as providing entirely accurate reliability/

27

availability measures; they should be suitable for deriving

a 'figure of merit' evaluation for the support provided by

different COSAL models.

28I

r1

'p

1 28

!/

V. TIGER USED TO EVALUATE THE EFFECT OF SPARES ALLOWANCEPOLICY UPON RELIABILITY AND AVAILABILITY

A. INTRODUCTION

The current utilization of gross effectiveness as a

measure of COSAL effectiveness has been studied in previous

sections. An alternative measure will now be proposed. The

TIGER program calculates reliability, availability, and

readiness figures for each simulation run. The definitions

for these three measures, as found in Ref. I, are summarized

below.

B. RELIABILITY (REL)

For a given timeline the reliability (REL), as estimated

by TIGER, is the probability that the ship will successfully

complete the entire timeline. For example, if the timeline

previously shown in figure 2 were used, REL would be the

probability of the ship completing all of the different

missions assigned during the 60 day period, in the sequence

shown.

Reliability is calculated by TIGER as follows:

REL (EST) = 1 - Number of mission failures (aborts)*Total number ot simulated missions

Note that this calculation incorporates logistics support

considerations.

29

.4.

C. AVAILABILITY (AVA)

TIGER calculates two AVA parameters: Instantaneous and

average. Instantaneous availability is the probability that

the system will be 'up' at a specific point in time. Average

availability is the probability that the system will be up

at a random point in time. Because of the way TIGER is used,

average availability is the relevant measure.

Average AVA is estimated as the ratio of total system

'uptime' to the total time simulated. These times are

totaled for the entire number of missions simulated (up to

1000). The calculation is made as follows:

AVA (EST) = Summation of uptime for allmissions simulatedSummation of total mission calendar timefor all missions simulated

= UptimeCalendar time

D. READINESS (RED)

RED, like AVA can be measured as instantaneous or

average readiness. It is a measure of the probability that

there is neither a mission abort nor a system down. The

* forthcoming methodology for the use of TIGER results in RED

r equaling AVA, so RED will not be considered any further as

an alternative measure of effectiveness.

30

.9

E. RELIABILITY VS AVAILABILITY AS A MEASURE OF EFFECTIVENESS

A very common measure of effectiveness in use by the Navy

today is 'Operational Availability' (Ao). Ao is defined as

the probability that an equipment is ready when you need it.

MIL-HDBK-217C (Ref. 8) dictates that it be calculated by:

Ao - MTBF

An alternative form of this equation results from

breaking the MTTR up into the repair time (MTTR) plus the

Mean Supply Response Time (MSRT); the time necessary to

provide the required repair part(s). This yields:

Ao - MTBFMTBF + MTTR + MSRT

There are problems with the use of this formula for

estimating system operational availability (Ref. 10). From

a mathematical point of view the formula yields the correct

result for the limiting value of operational availability

when one considers a single component that transitions

between up and down states as an alternating renewal process.

If one is interested in the operational availability after a

fixed period of time for a system whose components have

limited spares support, the formula does not yield correct

results. In fact, the formula makes little sense. A

simulation like TIGER is precisely what is needed to esti-

mate Ao for a complex system with limited spares support.

Since AVA implicitly considers component reliability,

maintenance, spare parts support, system configuration and

31

operational scenario, it is used in this thesis to evaluate

COSAL models.

F. ALLOWANCE POLICY EFFECT

1. Reliability Block Diagram of System

The effect of a parts-counting type allowance policy

upon reliability/availability is dependent on the configura-

tion of the system being supported. Parts counting is a

method of allocating spares in proportion to the number of

each specific repair part in the equipment. In an environ-

ment of limited budgets and storage space, a more 'critical'

spare (in terms of reliability/availability) may be sacri-

ficed to provide unwarranted depth for another spare.

Figure 3 shows a simple reliability block diagram with two

Figure 3

of part A in parallel with each other and then in series

with part B. Both A and B have a BRF of 1. If A cost the

same as B, and only one spare could be provided, provisioning

by parts counting would provide one spare of type A, since

there are twice as many A as B. However, the availability of

this system would be much greater (all other things consid-ered the same) if the one spare purchased were of type B, due

to the parallel redundancy.

32

.5WWW W.

2. Proposed Allowance Policy Input

There are two methods of entering the quantity of

spares for each part type into the TIGER simulation. One is

to input that quantity as part of the input data. For small

systems this may be the most efficient method. For larger

systems or for those systems requiring a complicated mathe-

matical model, a subroutine has been added to TIGER to

calculate the COSAL.

For the FLSIP COSAL, the cut point is input with the

other system data and the spares subroutine is used to

generate the COSAL for the system. The MTBF is derived from

the BRF in the following manner:

MTBF=(l/BRF)x8766 (yr/fail)x(hr/year) = hr/fail

This MTBF is used as the exponential failure rate input for

the simulation, and converted back to BRF when. necessary to

determine COSAL support.

3. Figure of Merit Results

Several simplifying assumptions are made by using

TIGER to obtain the output availability measure. The most

important are exponential failures; BRF converted to MTBF;

zero repair times; a full allowance of spares onboard at the

beginning of the mission; and the use of a 'typical' relia-U bility block diagram configuration for the duration of a

single mission. Because of these assumptions, the availabil-

ity figure provided by TIGER should not be considered as the

true value for system availability. However, this figure

I

should be useful as a 'Figure of Merit' for comparisons with

the figure derived for the same system using a different

methodology or level of logistics support. When used in

this context, the figure should provide an accurate assess-

ment of the relative effectiveness of two spares allowance

policies.

3

?l 34

1*-*j

VI. EXAMPLE OF TIGER ANALYSIS

A. EQUIPMENT CONFIGURATION AND FAILURE RATES

1. Block Diagram and Operating Rules

As an example of the use of TIGER proposed in this

thesis a hypothetical video display unit will be analyzed.

The unit consists of a power section; signal processing

section; and video display section. The required reliability

block diagram is shown in figure 4.

POWER SECTION

il/

SIGNAL PROCESSING SECTION

(1 COPLRCIRCUIT BOARD - BI FUSE -B 2)

VIDEO SECTION

(2) CIRCUIT BOR - R T- (3)

(3) CIRCUIT BOARD-AE S N

Figure 4

3S

POEjETO

The three sections are connected in series to form the

entire unit. Only one of circuit board A is required to be

'up' in the power section, and two of circuit board B in the

signal processing section. The failure of two of either

circuit board A or B or the failure of any other single part

will cause system failure.

2. Failure Rates

The following is a list of the BRF for each part and

corresponding MTBF:

ITEM BRF MTBFSwit- .-69 7W-0Fuse - A 2.50 3506Transformer .17 51565Circuit Board - A 2.10 4174Coupler .23 38113Circuit Board - B 2.50 3506Fuse - B 3.60 2435Rheostat .12 73050Circuit Board - C 1.20 7305Circuit Board - D 2.20 3985Circuit Board - E 1.70 5156Video Screen .20 43830

B. LOGISTIC SUPPORT (COSAL) MODELS USED

The COSAL models evaluated were the standard .25 FLSIP

and a modified FLSIP as proposed by the CNO Shipboard Parts

Allowance Policy Study (Ref. 3). This modification consists

of changing the FLSIP cut point to .1 (one demand in ten

years) and providing an allowance quantity of two (vice one)

for those items with a BRF between 2.0 and 4.0.

36

LA-~

C. RESULTS OF ANALYSIS

1. Results of TIGER Simulation

The following tables provide a summary of the rele-

vant output from the two TIGER simulation runs for 90 day

missions. The actual computer output is self explanatory and

a sample is included as a separate section of this thesis.

The percent unavailability column indicates the percent of

unavailability caused by each item.

.25 FLSIP (Availability .7229)

SPARES SPARES FAIL/ PERCENTITEM STOCKED USED MISSION UNAVASw-Itch o 7.02-5 3.5Fuse - A 1 .50 .637 14.54Transformer 0 .00 .042 6.42Cir Bd - A 2 .96 1.05 6.77Coupler 0 .00 .064 9.35Cir Bd - B 4 1.84 1.897 .81Fuse - B 1 .57 .793 24.01Rheostat 0 .00 .030 3.74Cir Bd - C 1 .27 .318 3.64Cir Bd - D 1 .43 .541 11.99Cir Bd - E 1 .34 .416 7.07V. Screen 0 .00 .052 8.29

.1 MOD FLSIP (Availability = .9064)

SPARES SPARES FAIL/ PERCENTITEM STOCKED USED MISSION UNAVASwTch 0 .- -.T=7 W.5

* Fuse - A 2 .59 .607 5.41Transformer 1 .05 .054 .75Cir Bd - A 2 .92 1.015 24.70Coupler 1 .06 .067 1.23Cir Bd - B 4 1.84 1.897 2.58Fuse - B 2 .79 .844 18.19Rheostat 1 .04 .044 .00Cir Bd - C 1 .27 .310 13.43

* Cir Bd - D 2 .53 .553 5.42Cir Bd - E 1 .35 .414 18.99V. Screen 1 .04 .046 .74

37

2. Interpretation of Results

As would be expected, the .1 Mod FLSIP provided a

greater depth and range of spares than the .25 FLSIP. The

addition of seven more spares resulted in an increase in AVA

frum .7229 to .9064, a significant increase. For the .25

FLSIP run, the item accounting for highest percentage of

availability is fuse - B, with 24.01 percent. Since FLSIP

provides a 90 percent confidence level of protection for

those items with a BRF '4.0 (- I/qtr), the BRF of 3.60

places the fuse just below this cut and therefore it is

allocated only one spare. For the .1 Mod FLSIP run fuse - B

no longer is the largest contributor to unavailability.

Circuit board - A is the largest, accounting for 24.70 per-

cent of the unavailability. If further incremental improve-

ments were to be made to the .1 Mod FLSIP COSAL, the first

additional spare should be circuit board - A followed by

circuit board - B, fuse - B, and so on down the list of

unavailability percentages.

The difference in AVA for the two COSALS is the most

important statistic. If availability in the range of .9

were required for the system, the .1 Mod FLSIP should be

used. If however, the system were not that essential, the

.7 availability provided by FLSIP should be used to enable

scarce spares funding resources to be used on more essential

systems.

'3

: 38

it

VII. SUMMARY AND CONCLUSIONS

This thesis focused on one basic problem; that of pro-

viding logistics support for Naval units afloat. Current

guidelines and measures of effectiveness were presented

along with several of the methodologies by which the policies

are being carried out.

The NAVSEA TIGER reliability block diagram simulation

program was introduced as a currently used method of evalu-

ating ship reliability and also as a proposed method of

generating allowance documents. A key input to any relia-

bility calculation is the MTBF. The use by the Navy of a BRF

vice MTBF was reviewed and a solution proposed to enable BRF

to be used as an input to the TIGER simulation.

A technique for using TIGER to evaluate the effect of

various spares allowance policies upon system availability

was introduced, followed by an example of such an analysis.

The Navy is interested in providing logistics support

so as to maximize the operational availability of its ships

)within given resource constraints. Mathematical models

designed to allocate spares while maximizing system availa-

bility require extensive amounts of data (much of which is

either not available or retrievable by computer). They are

computationally infeasible to implement on a Navy-wide basis.

Thus, it appears that the Navy will continue to use simpler

3

p 39

parts-counting models such as those described in this thesis.

No claim of optimality with respect to 'system availability'

can be made with such simple models that make no attempt to

consider the system as anything other than a collection of

parts.

The models that are being used are regulated by control-

ling the values of certain parameters such as FLSIP cut

points or essentiality codes. Since there is no way to

analytically relate these models to system effectiveness, a

tool such as the TIGER simulator is needed to evaluate the

future impact on system availability of a given provisioning

or support policy. The assumptions required to perform this

type of evaluation have been discussed throughout this

thesis.

The following are recommendations for additional work in

the topic of this thesis or for additional uses of the TIGER

simulation:

1. Use as an evaluation tool for various provisioning

models.

2. Use to evaluate maintenance policies and their

effect on required manning levels.

3. Use as a system design tool.

4. Use on new equipment being introduced into the fleet

to establish a FLSIP cut point. Code equipment with this

cut point instead of the vital/non-vital codes currently in

use, and use this cut point when preparing the COSAL.

40

2 ! " -

S. Evaluate the effect of the assumptions made in this

thesis and other problems such as the gradual degredation of

equipment (not simply up or down) and the effect of the

annual revisions to the BRFs.

)

i 41

...

APPENDIX A

ACRONYMS

Ao Operational Availability

AVA Availability

BRF Best Replacement Factor

COSAL Coordinated Shipboard Allowance List

CNO Chief of Naval Operations

EST Estimate

FBM Fleet Ballistic Missile

FFG Guided Missile Frigate

FLSIP Fleet Logistics Support Improvement Program

MCO Maintenance Criticality Oriented

MEC Military Essentiality Code

MRU Minimum Replacement Unit

MTBF Mean Time Between Failure

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NAVSEA Naval Sea Systems Command

NPS Naval Postgraduate School

PMR Preventative Maintenance Requirement

RED Readiness

REL Reliability

R N Reliability/Maintainability/Availability

'1

SPCC Ships Parts Control Center

SSN Fast Attack Submarine (Nuclear)

TIGER Simulation Program Name

TOR Technical Overide

4

,, 43?

Ai

]/

APPENDIX B

TIGER PROGRAM VARIABLES LIST

The following is a list of the variables used in the

TIGER program and their respective usage/definition. All

variables which were used in this thesis are included along

with some from other optional parts of the TIGER program.

Numbers at the right indicate the data card on which the

variable is input into the program.

A Subroutine DEMO producer risk 21A

ACMMH Average corrective manhours per mission

ADT Administrative delay time

AENDT1 Downtime in remainder of phase due to abort

AENDT2 Downtime in remainder of mission due to abort(up to current phase)

AFM Average failures per mission

ALDONE Sum of three DONE(I);if zero, skips spare printout

APPL Bad apple unreliability and

unavailability printout 21

AVA Average availability or availability

AVAINS Instant availability

AVAl Average availability

AVAL Average availability

AVGCST Avergae cost per hour of repairman 7M

B Subroutine DEMO consumer risk 21A

4

14

I II I I I I I I II I II I I I

BAPRIN Bad Apple printout indicator, when equals-1, print

BILL Temporary variable used to integerize the

number of spares

BLNK Four character alphabetic blank

COUNTB(1) Number of failures for equipment I

DAY(IX) Occupation symbol 1SA,M

DELT Time Difference

DEMO Probability ratio test plan for system 21

DMNO Same as DEMO

DNTl Total system downtime in phase

DNT2 Total system downtime in mission

DONE(I) Average number of spares used from ship,tender, depot(I=1,3)

DUM(J) Dummy variable to read Fl

DUMMY Skill types

ENDPHA End of phase time

EQUIP(I) Person type numbers of people who couldbe operating this type of equipment SG

ETIME Event time

EX(I,J) Administrative delay time (U,W)

F(I,J) Same as Fl

FCOUNT Real value of JCOUNT

* Fl Alphabetic equipment description 8

GMMA Alphabetic request for GAMMA subroutine 21

HAD DEMO X-axis accept intercept 21A

HRD DEMO X-axis reject intercept 21A

* I Various indices; equipment type number 8

45

IABC Index

IAUP Instant availability (up for entiresimulation)

IAUPl(I) Instant availability (up at beginningof sequence

IAUPZ(I) Instant availability (cumulative up atbeginning of sequence

IB(I) Group number and equipment and groups

which make up the group 18

IBLANK 14 alphabetic blank spaces

IBM Equipment type number

IBNUM(I,J) Number of configuration matrix cards inphase

ICHLD Child in reliability tree

ICRI Subsystems exceeding mission allowabledowntime (TAD2)

ID Alphabetic system name 16,17

IDIFF Total equipment failures (all types)

IDUM Same as IUT

IEQ Absolute value of IEQU(J)

IEQU(I) Equipment type array

IFF Number of failures

IFFEOP Same as ISW

IFLAG Repair option in each phase 6

IFR Number of repairs

IGRP Equipment group

II Spare location (ship, tender, depot)

III II-1

IIUSED(I,J) Spares used per equipment type from eachlocation

4: 46

L /

IK Phase indicator

IK2 Phase indicator

IK3 Phase indicator

ILB Counter for NEQ

ILL Phase subscript for VDC(IU,ILL)

IND Equipment type

INDEX Index; equipment number

INEWA Index used to rank equipment bynumber of failures

INMI(I) Number of missions run

INOABT(I) Number of aborts in the sequence

INREJ Not used

INUM Maximum number of mission repetitions (50)

IOR Number of equipment operating rules

IPTR Parent/Child index

IPRNT Parent reliability tree

IRULE Equipment operating rule card 19

ISEED Random number seed 2

ISO +=string; -=standby

ISPARE(I,J) Quantity of spares at ship, tender,depot is

ISS System/subsystem identification number 16,17

ISSA(I) Phase allowable downtime

ISTB(I) Equipment operating rules 19

ISUM Summation

ISW Subsystem status (l-up, -l-down)

ISSC Subsystems exceeding allowable downtime

/

ii 47

I- - / - ,

ISYS(K) System in phase K

ITEMP System status indicator

ITEMP2 Subsystem status indicator

ITIME Number of sets ZIA

ITER Number of simulations per set 21A

ITOTAL Integer value of total

IU Variable duty cycle (IUI(I))

IUI(I) Variable duty cycle indicator 8

IUNLIM Alphabetic 'unlimited spares'

IUT Same as IDUM

IUSED(I,K) Spares used from ship, tender, depot

IV Variable duty cycle indicator (IUI=IV) 9

IVALUE(I) Temporary variable for IB or ISTB

IX NUM+I

IXX Equipment type

IXXT Phase type

J Various indices; equipment type

JA Index for 1B

JB Index for IB

JBB Phase sequence number

JBB1 JBB-l

JC Current timeline

JCC Number of timelines

JCOUNT Number of failed equipments

JIND Equipment type

JNUM Integer of XNUM

4

, 48

!-.

K Various indices

KAA Mission number being simulated

KAB Mission number being simulated

KD Trucation line accept

KEQ Equipment number

KEQU(I) Number of failures for equipment type I

KID Dummy variable

KID1 Equipment group

KID2 Equipment group

KK Same as LL; index of equipment number

KKK Phase in mission

KKK2 Same as KKK

KOPT Printout option switch 5

KS(I) Output options for KOPT 5

KSS Index

KT IB( , ,l), or number required up in group

KI Equipment type; trail shape parameter

L Same as LL

LCL Lower confidence limit

LL Phase type number 16,17

LLL Duration of phase sequence

LOAD(I) Equipment numbers assigned to equipmenttype 12

MAXIB Maximum number of configuration matrixcards (300)

MAXNEQ Maximum number of equipments (500)

MAXNPH Maximum number of phases (6)

49

MAXRUN Maximum number of mission (1000)

NIAXSEQ Total number of phases

MAXSS Maximum number of subsystems (31)

MAXSTD Maximum number of equipment operating rulecards (49)

MAXTYPE Maximum number of equipment types (200)

MDT Estimator of MTTR

MKBA Bad Apple equipment vector

MM 0

MTBMF Mean time between mission failures

MUT Instanteneous MTBF parameter

Ml Trial scale parameter

N Counter; NSS+1

NEQ Equipment type counter

NLINE(l) Number of configuration cards in phase

NL NLINE(LL)

NN Index

NMAX Maximum number of missions 2

NOPT Optimal number of mission 2

NPH Number of phases 2

NRO Number required operating 18

NSS Number of subsystems in phase 16

NTY Last number of equipment types

NTYPE Equipment type 12

NTl Equipment type number

NUM Mission number counter

'so: 50

I

PERC Percent unreliable

PL Reliability specification 2

R Dummy variable used to find next eventtemporary variable used to calculate VDC;discrimination ratio 21A

RDT Running down time

RED Readiness

REDADl(I) Adjusted time for readiness calculationin phase

REDAD2 Adjusted time for readiness calculationin mission

RED Readiness

RED2 Readiness

REL Reliability

RELGA(JBB) Reliability (RELPY) for phase sequence

RELPY Reliability up to and including phasejust completed

REPOL Percent of repairs performed aboard ship 7

RN Random number

RIN3 Random number

RUNID Alphabetic program identification line 1

SLD Slope 21A

SPRS Alphabetic request for SPARES output 21

SR Intermediate value used to calculate ST

SSTINE(I,J) System/subsystem allowable sustaineddowntime 16,17

ST Intermediate time

STEPHAS Accumulated phase time

SUMX Total simulation time

51

SUMX2 Sum of SUMX squared (for variance

calculation)

SX Spares multiplier

T Duration of phase

TABORT Time of abort

TACMMH Total average corrective maintenancemanhours/mission

TAD1 Same as SSTIME

TAD2 Mission allowable downtime 7

TAFM Total average failures per mission

TDEOP Time down at end of phase

TDOWN Time system went down

TIMA(I) Cumulative phase time

TIME Simulation clock time

TITLE(K,N) Alphabetic subsytem title

TNMI Real value of INMI(JBB)

TOTAL Number of failed missions

TR Temporary variable used to find maximumunavailability/reliability

TRR Same as TR

TP Same as TIME

TTEMP Downtime

TTF Time for failure

TTR Time to repair

K TTl Phase length

TTZ(JBB) Cumulative time of phase lengths

TT3 Cumulative phase times

5

I - -

TYCOON(I) Downtime for equipment

TYCUM Unavailability

TYCUM2 Percent unavailability

Ti SSTIME( , ,l)

T3 Downtime

T3SUM Cumulative downtime

U Duty cycle utilization 8

UNAVA Unavailability

UNREL Unreliability

UP1 Time system up in phase

UP2(JBB) Cumulative system uptime

UP3 Cumulative system uptime

UP4 Cumulative system uptime

V Administrative delay time(tender to ship) 8

VAR MTBMF variance

VDC(I) Duty cycle utilization duringeach phase 9

VMTTR(I,J) Variable mean time to repair 10

W Administrative delay time (depot toship) 8

X Various; XMTBF; event indicator(+ fail; - repair)

XAV Instant availability

XAVI Instant availability

XCUM Successful missions in last 50

XDWN Number of mission failures (XNUM-XTCUM)

XIAUPP Real of IAUP

S3

I

XIAUPI Real of IAUPI

XID Alphabetic ID

XIFF Real of IFF

XIRR Real of IRR

XK Standard deviation for lower confidencelimit 2 2

XKAA Real of KAA

XLCLA Lower confidence limit of 90 percent

XM XMTBF Multiplier 7

XMDT System man down time

XMTBA Mean time between mission failures

XMTBF Mean time between failures 8

XMTTR Mean time to repair 8

XMUT System mean up time

XMl Same as XT

XNO Number of non aborts

XNUM Real of NUM (total missions run)

XPCAP Reliability

XPLCL Lower confidence limit

XT XMTBF multiplier 7

XTABT(I) Time of abort mission I

XTCUM Cumulative successful missions

XXT(I) Phase type (I odd); Duration (I even) 3

XXX XMTBF or VMTTR

X2 X squared

Y Same as XMTTR

YD Truncation line accept 21A

54

APPENDIX C

SPARES SUBROUTINE VARIABLE LIST

CUT FLSIP cut point

DUM Dummy variable

EX90DD Expected 90 day demand

ITMPOP(I) Number of equipment type Iin reliability block diagram

K Counter

KFACT K factorial

PRBSUM Poisson probability summation

SPRI-14 Various user defined input variables

55

!-

APPENDIX D

MODIFICATIONS TO TIGER PROGRAM INPUT

To use the GAMMA and DEMO options, the end of the main

section of the program must be changed to the following:

1210 IF (GMMA.EQ.BLNK) GO TO 1230

1220 CALL GAMMA

1230 CONTINUE

IF (DMNO.EQ.BLNK) GO TO 1240

CALL DEMO

1240 STOP

END

Subroutine GAMMA, function GAMF, subroutine DEMO, function

CHISQ, subroutine TGEN, and subroutine CKTP must be added to

the program deck (note: none of these have been utilized or

verified for use on the NPS computer).

The following changes were made to the original input

deck:

Card 2 - INREJ replaced by ISEED; the random number generator)

seed.

Card 14 - If spares subroutine is desired, enter 999. for SX.

Fourteen variables (SPRI,SPR2,...,SPRl4) may then be read

into the spares subroutine in F4.0 format starting in

column 25.

56

I. -

These changes are incorporated into the input require-

ments shown on the following pages. They should be used

when prepaxing the TIGER data input deck.

5

4r

57

LL,

4.)0 '0I

0 4) 4) *i( co44 >..C 4' U r- -4

:3 A42 X4 0 4 u4) 4)0

0 *tn 0 U0 10 U al0 C .' C: -4 10x

4J4)4 40+ 4) 4) 0 0 r0 $-.' ..oC 1~ *-4 44 tn W0n, 0 Udr n44 C 3 0 t

r.'-C 00 u .,4 r0 0 0 J -0 d4)'04) "0 44Lf 0 0 0 41 ) *-

4 9 $- -4 -q V)l -4.0 ,4+j u U041a+jn 4) Wf~- r= 0 44cd U u 4 sz tn v-4 V) 41 ..044) 4'0 '0- 04 0a . - 4J P-4

$-4 $*a 0 4 1*1 H) r=- .4 . 444 d 4 CU -4 4-) z -P- t 0 '4)

'0 6-L)Z.4 U q C Ml- a- 4 0.,-4 ) -0') U.4j+ . 4 r- 04: 0~ W. -)4 4 0 in.

$n Cd 0 '0 Er=4 4 4J +J (ro .0 1-4 $4-' - ci -40 U .

'4.I4 *4- r. 0dr r0 4 $4 04.' 'u Q u 0~ 0 u.$ 4) 0 -J"

4JC 4)~ 4) -4-4 0 .0 00C4 U= -0~- .0$44 D z 4 0 'U4) r 4)O 4

4-) 4J)4) > : -'0 0 r- *'- "0 .04/ c4 C

4-4 CO 0 Z4 4 -0 Cd 4- Cd -4 ES (44 r. "

010 000 CU r= Za r E--4 '0 0 0 0

M+C cd" - aoX U4J 5 00 ZU'- ZU- E-~ V)

4-) =) 0. 0O0 -1 s CUx "0- 044-J -H CU 0 Cfl4-J(/2 Z4) Cd 44 X- 0'-4)z V) Ln+4-) z .,

4-4

4)4 4)

.q 4 asuz0 4=cS-- .4) Z 0 9.

$4..4Cu x 0. 0r.z

4' '0 S.)X5-' .1 c D -4

L)4 IP 44 CD0 d -e<..) m C 4) 4)C

Ea a4- CU 0 *-4

4-)) II

- CU

r. ., n 4 )

4) 0. "- ('J-q r=E c 00 co -e 00 r-4 I I I

uJ E - Lf) Cl LI) 0)-4 4

r'4 0z

58

o 0 a

I4 .4 0

'-4 u C 4

4) ~ C

(n 0

=- 4 )* .4-J a) a) * 0aul 4) 0 u $4 C 4 U U 4) *F4u

.r CU CU 0*~ C:~(D W) 4-( 41 4) C0:s

0- (D 0~ 9 4.J 4)4 0 n4-4 4) 0 th

$- -O$.-4 4-4 0- )i4 0o V) a) tf 0r $-4 f44 4) 0Ud4- -4c o- 4 U :1 4

r= U - 4 d) 5 0 d A) . a) N 4- .4.

: (4-4 ~4) (Al 0 . 4-4 0 (4-4u 44 O: Ln

4- '44 *4 4 -4 4-4 u (n

010 4) 044)0 1) -'0 a) 0 4) 0

0.4 4 JU 0 +J 4) 0 4-lU 0 4J >0 4-' 0 4

N )) 4-) 4) 4-) 4)40 4-4 4) CO 4' d) CU 4-I Q

U t :3 cd tn CU cd tn CUM c fl CU 4) 4)V) C 0 -4 CU.0 N- c 1U-4 Cd4.4 $.N (U4.4 $" =$

=) ~) :3 = 4 3 = 2 = 4== z 0

C00

4)

UU

sC C

r-4 0 004 00 .C 0n t0 00 *

C1 1 E. - E N1 4-' CC c.r4 -, x x >

$4) z N Xx XX )

I' I4 4

0 59

.,-j L-- -

:3 0-+0 0j - 4-' ( -4 .- 0 wit 4-'0

s- '0n 0 r44) 44 00 0n p0, r44) 0 )U 4-) cs: J 0

04. O- 44-P4) 4).- 4 00C

*d .4) 0 4oal a 4 4-4 *4- 4-4 00U) P

F- Z~ .4-) --, 0 04 00 ra~*- 4)0-' 0 1 01- 4) r.U 3 0 4- '.4-d..04 '- 0 4) 10 4 0

.14 0 -4- -4 'U ) "00')'r, s: 4) *r

(n F, MA z ) 0 .4. A 04 .00 0 4-' P4 0 ' 4 19 o00-4: -

Q u = 0 4) 0 4)l W n ;4&Q .. 4 v) >. 4) 'A *4 4-' 4)( . 4

W I t ) 4 1: = m - - 4) = U) 10 10 LCIS ~ .- $ 4 L 0 4 -) m 0 0 X L

CF3 ~ ~ ~ 0 " 0.( 4) 4- - n 1 + 0 :3 :3 :14-0-rz ~ 1L 0. -4 )4)- r, 1,.4 : ) '4 A

01 + 0j a)-44 Z- -4 4-' 0 ) 1- 41 %. j L

.4 4- 0 0 0 0 0 0 0 04-W- 4.) 144"Z C )WZ Z Z W F

.d " f 4J 44J 44 444 0- +J 4 16. 4-1 -4 Z

u CS 44Z

CA -I4 " to LA) > C C-

00

0

00

* 0

U)~4 p4

rq 0. -4 4.44. "~f 0-4 k-4 q.4(' N -4"

ACV..

m -4

0) 0

.rq4-4

Cd) CD 0.0

Cd r-4 r-I $-4 d )

cr 4 0 m 4-eO r4 4 '-4

CU,-4 P.-4( Cd CU 0)U4 ) U -4 N if 4-4 4.)04o ti ~ C m 1-4 C*-4 0 4) 4)

-4)a. 0.L 0 "-0

r-40)n 0..0)0

r-4 V) $4 $4Cd 4) 0 C13

- zLH1 0"o 0 .0 $4CU $.4 0 0 kU -0 -q C Q

0 f 4)0 O'ICd1 O . 5-. 5404- 505. I= 0..- 4) 0 )

00) CUCU 0-) 4-)*m-

O 41 1- I* 1 -4 $.4 -4 r- 14 ..--4 0. . '4. ci C 41J -14.) 0 0 0 O H w -4 -4

4 - 0 1-4 =

uCU *-4 al U) a. gyt4 - 4 040-M 4e4 0 0 V) PQE

4) 0).0 *. E- -

-4 t.0 01 -4 -4 9 4C

CU z U Nd

CU 5-. CU

O4 04 u4J " 1-4 4 5-- u LL L 4 II U1 L. 4~

4J 4

if 0044 U (- o 4)% D e% (D

-44 I I I* I

61

II il /i l i

S -4 $4. 4Q- 4.) 4).0 4) u~ 0 4-1 4-) e-

m nU eCU 41) 4) 0 C 04.j4) -4 4).e4 Cd $. Ln~

.4 U u U$4 =) 4 0 =Cd cd 4C 0.,4 0 41) 4. ~

I; 5.q 10 44 $z~i .~

u +Pj. - 4 a O ~ m -% ~0-, 0 0)4)- 1 4 4 C " -4Cog l +.) &j cn~v 44 4-4 >4 4~

,- l 5...> *' *vI HU 0 -9~4 04) o).- 4- &" r. 0w Q. -4 CO

1 4.1 U 44 54E- 13 -I 41 ) F- 0U ' 0'~* 4)"C r-4 *.-4 UC .0 U- w- -4 4

-r4 U~- d) CO 0U*-~ N- 4 4) "0.U4.-4 $- ;: " ) .,4 H ~ U ' 010

4- I u 4 4) 4 .0 .0-1a -) Cd C $4- :3.,4 4) 0 1 5 - M NI~ - Q) 4-4()U4

-44 Clcfl m 4 4) CUj CU CU u-4) Q 44) 4)0 -- 4 0C 4 0~ C') =~ -44)

g >,4 4-4 001 ~4 4 r.-4 CU

-4 U 1 4J'4 *. ) (D 13 >U *.-40...+J0. C 44 >CU 10 4) r U E UO--U r=C (1 4. * ZrO14 cfQ) 1) 0) a) r4 r4 >EIS-d4) >,- 0 V) V) C j4

a- tn0 V Q Q 4 -4 -4lI 4 'Qr r

W- al+ 2 $C -4 c )CDU 44CU 0

4-4

.4 ;L4 1:4go E)

,$4 ) =4)t ZF ~ ~ c 0 J'0 0> %-W II I

om C) CD CDt CD. .4 Ir 44 n-R'

62

tnucf L4) =)

cis Cd ul99 1

00 4 ( 4-4) $-4L 4 ~ f

d) 41 4 Cd .,4)4 C Cd

l4) 0 3r U 0 Cd$.4 $ d k (7 0t 04O U0 P

+j~ 00 4) -H 0%0 -U$-k.4) .,4(L)41 41) o ~ I: CS ) P 4 4- Cd

tn -r i: ) Of-' 'o 04 p4=1 .u 4-fk 4 41 E- .4

0 -4 k0 9: U d) 0 4+.)

r0Ip -4 04 44 >1 4) k 5.-4 ;:co 0 +j z 4) m P1.0

$-cd 3:l -,4 0 -4 P4 4.4U -r -fZ

a .4 ~4J o~f~- t4)O*.4 0'

X. IO) *.4U r. 4 $_4".

4) 4 ( N 4-1 4) co al J= OhZ) C wU c 4 .. 4 jz E . j u4) +-) al

)U> $I = -*U *4) $ad~ 0-= = G a4u4) k) r.4 )*.0-4 H( U+)44

I-4 Q.Lf -. 4 44 4 a, P4 C4 0 -P% 4.4 0 O5-. 4 w~ C:V)

0 ' 4.)~44 rq 9: 0 -) 4 4)4)-94 0 0.-' 1 4-4) w-H~> 0 cr. = w"41 _: k u' 04 * w ~~~-1) a r4Cd 4)

ON - - I~ ) d > :3 4 11: Cd = U0 0 ' -) 1 d " 4) r-l)~ U 4 '4~

41 0 r4 P.~ 4 = U U U U (L CU -

k r-

CUd

$-4 > > >

Cd> 0 0 0 -

5.4j

$w4)

00

"4 W44 0J W4W 4

O, "-4 C 1 4 C-4 -

u > -4 IJn CA r--4 4 '. > -4

63

P. 0 10 UB4 A- mv- *.4 4 z 4-'

) .~co Cd Q v

Q > 04- = *4J 1 C4-) +J +J -4 4-JE-- 144 M

.0 4) 9 9 >1 0

4) *-' 4) .0 0r= a 0

0d 0- $24-4 0 d :3Q(D Q0 r=O .- 4 Z

00 'd r4 0 0$-4 0-CU4 41b4) 04-4 Wn C (flCU 3 + r

0 +- .0 111 =a jCD=0C4a +j 1-- 0 0 n.u00 =

o (J) c W = -'4- nL0 C: ~44 t34(1)-4 ~0 ' 4 :3Cu (1) *-0 O CI -o 1 a =%4)4 - 4j. Mnn .'a rz E- ( 04

_4 0d x (A E O m =*40T3 c 4 u

0; CD 4- 4-h) t4~o ZZ 0. m 4 -H Ln0 -0 0 . 41 0r 0. - = 4 0

4)CU a) tn C.0 4- c -. 4-u 4- laov4 0D -4=4 - ~ 0

-4 >- -4 00 41 4J OLA c Q) vIt ) - 0 I-' $- 4) $ 0

u u ia ~4-) *.4 0 4-) 9)a) 00w4- a 0V) Cl. 4) = :3-4 w> $O0 =-4 -

"o0 CUE 3S 0c $.5M

04

N-o *. t 4 V v n D r

., c 0s. 0 00C 0 0 0n

(.L CU CU CU- 4) -Z ~ 4.4-I-~4 -

0o 4c

>.0 4c 4

4c-

164 "4

0 -Itdtr 10

0d IS 4J.-4 00C

144 0~ '4-

0

a,1 u- CD 0

to -4 C:4~

'-4.4 -4a) a

Co cd

u . -4.

aca

CZ -

E- -

0= ~-4 c,43 t4 T Un '. r- tna -4 1-4 -4 -4 - -4 1-4 -4 '-4 1-4a

.. 0a gmgK z OsC o.

0d c -4 C) 0d

0 -K a

0 Cii x-4 *,,-W (n =

W.. cc 5.4 O rU

V0 +jU0 -

Cn a) KLn-K .,4 0(n 4

'o w4 %0~ CD'. W % C 1I I I I I I I I I I I I AK- d = c.4

o t4 tl- -4 L(n m~' to r -4 Lf m !nr- 4t 0 K- nV

-4 -4

65

0 4) E- U9 0 -4. > 4 Cx

$ - -,0 4J .4 -- 4 r-4 -4Cd 4) -44 Z44-) $4 ~ E $U Q (A~ =1 0Z .4 Co >1 .

$-.U 0- 41 ' 4)4 x- 1-4 '

4) CU 4) 0)_ Cd -4Ur

I-cEn C6. 0 ~ 4J r $. 4) rcd' lt l M -- 4) 0 4) 1I V) U 0

91 4u 4-' Co :3 -4(n C1 r-4 4 $04 - .4 '- 41

U Q)4)4 4)~ rt-4 -4 as CQ) > Z 4) u a CU310

a4) a)~ r- WU 4).-H 41) 4) z0u .- 44 4) CU 0)C coJ- 4J~ .0 00Q) 4-J .0'-.4 .4~4-

r-4 4-'J.4-4 4z= ) a) ul 9:

C) V C: .a Q 0 *-4 r0> n 0 5 4-J 4-) Q0) u

0 4)--' *P C3 * u 0

CZ r UZ CU4 4CU-4 U4) -

(A () "0 a* 0. to, +--4 COU4-)'VI~cl (n0. .4 ) (A fl >1 = T a) (n fl) uQ) Cd > r- 4) 0 44J * *..q -4 *r4

*-4 E- cs4) s4 5. = 5-4 0 U 40'+ 0'-'-r2 0 I- M P CU4-" -44 4) .4' *-4-4 cU. $-4- 4J Q .r CUU u Z -U 44-) 0 L.) 4-' Wf4 Q EU. ( -4 r. Q

0 d) CI .4 $.. e 4) 0 sz 0)' Q .0In.0 x t-0 'H4-d- I-44 co CU "o-42~

(n 044 0 = 0' >, 00 0 .-4Z.00 41) :3 3) CU .- "- -

r- $- s - 5 $-4 0' =04 Q -4-0 (D 4 0 )c 0) 0 4)4() 4-) Q. CU 0 524). 4) (A

S a.4-) -0 $- Q0.-4 .0 0. A : -0 > 4J-: Z12CU Cd 24r l rz: ) '4.4 cl -s CU 2-4 f0 5-

=44-J Cl =O Z0 = Z.: 0 ac 1 r.C >1 - co

t04 0. Z 1 - l )t

4-J ' -4 ( tCU ~ -4 IM. OU

.0~~. CU 4c -:

cis O'-4-u ) 0 u

-4. (fl 0- .. - - - -

-d C4- -4tnC:C

zCd.I:$

0 t C t d+ 4) '.0r

0 d 0 z (c 1 Cd0 -0

$-44J-

66

- d0 0 *

-z tA 0D0V).,4 r=- (A C 0 - 0~4 0 IZ CI) r.. Q) t 04- 4. = 0 4 Cfl 0. . co C)

3: >1 a)-~U u 4) () )0 CA 'n44 A.0 Q) 0 CD

>10 C r - V)- $-4 0)J * ~4) 0u4) ::$ ) D-

0C r0-4 11 ..- 4 D rCE4-

oD 0-4 ~ 4-) a. W- 4

*C~C Z )>- 0C~C U V) 0 44-) Cf 4- $- *4J $-4 -4

:1 V):3c U -4 .0 -) QD0

4) C13 D t') V) 0) L44 4-/ V) m -4 0 tAQ rI >u 14 0) -4-C $. mu~ r- c a

v-4 '- 0 - tn 4JO0 0 >W'mDU 41 IC ( 4J V -. / 0 t" PD.- 0 (AC .0 - 4 4J :s~f (1 CD +j :3-4 -4 tA 4+-j

:3 99 - : 0: ~- ~ cl c -4 -4 F.0 4-) -< 0 :3 =S r- - 4-4 M = f00

0-4 0 E- .0 ca -04 +.04 )0 = E ( .-4 Cu u ECu-C0E

r=4U *n-4 VC) t E il),- -4(1) (1 C-4 -1 4-) Cu. QD >~C*4 CD -4 -4.0

u - 0 ZC13 4 Cl) 44= : 4-J V)~Z elCO -4

Cuu

Cu

0 0 0

Cu "0-4-

0 I I

"7367

r-) c CU 0 ocd- CU V)%$- I:

(n 10 Q) 0 0~ 4- V) .r C -. 4)c c 0 *f V)r-r.Vs-, 0) 44 45 Z -0) 4) z.- a) 4

00 CO0 0) C O - 0 P-4 4J 4- =Cd F-r=

Cu 0O 4O0 r=-4 O U 44~ 00wc ) , ,4;. r.- 10 4) r.- r- 4 4.40 r:;U0 0).- *.*= -z

o) ooll 4-) i QU)~ O0 () $4-4 :3 c,4 c0VC) a) 05 rq F: 0 13" CO -4 4~) C )

$W4 -0 4- O -4 Q)4CO 4-4 4 0 : U 5 0.- -- CI4 I =) -~ U 4- d nM 4AJ c * cr >- A 4

0 IJ o CU -o 0 ) Cd0 0 ua:4 Woo 30 ) 0 co- cr- 0 00)E.-4 aH- 04UC U Z Cu'4) Q4 0~ 0 -1 r- fn u a) 0 1 .f

(A - j4- 0-4 I .9 Ecd +j 00)- 05-4U

CU q $- Cd V) 4- Q~ $>. r. 10 00 - j '0 C 4- ) tA- to4~ $0 0)l 1 >, -U 1.* 4- $- P .4+j

(AI -l E 4- CO ,.0E- 0 .0~$ CU)-l'. C 0 0)

4 a)cC-4)4~* r=~u r= 0- - C1 - - 4 0J=05en

t~4- 0 .0l = 4 P C - z 1 4. -H)~ -,4 En4 0..-

0 U 4c -,4O(1) 4-~-)4 Q Q) W - -~- V)0 .5-Ur 1

4Z 40)

-o - ) r l - 40 d0ar. z( 4) E5 .O ) c r T w 4

o- 0 E 0 9 .14 -I -4 0- $I-I d r--i

CU1

4.4- t . tr Ln e rsJ 00

0 0 II ~ - - :r 10, O I~~- -- 4 O-4 in.C. 'J CJ

r-4 rlt 9-4

68

'44 -4 (4

4-SO 4- 4 . 4

00 4- 4)-0 z4) :5-4):

4) -4 -4rrri 2 C13 z

P+. 4-) X

C : CU.- ~ f-4 (A cl

4) 0 )4() Q) 00 4- r.

N .C* -4 C: 2 - o r-

S-4 ) O M-444 0 "4-

010 ) v - .0 0 4 ) $) -. 0

r- Q-0O r- . P. 0 :3 :3S-.fl.4 -CU . - ".4 0 ,

4-) Cd 4-1 T 0 0 E W C.)0z4s 4)0. a 4 Q 13 N 14

o1 4)j( Du a 4) z V)- C00. ~4-A P 0 o~-c s-. >d 0 0

+-) 4-) - f in.l CU >1 ) 4-iNOP. = 04) - 4) *- = s

(1)~~~~ ~ ~ ~ ~ (1 V n r nC - -

Z4) 4- 3=> 3 " 0 ncV.C %Za4) 0$ *(V14 c

0* Z1 )C 0Q 0 E dC3A

0n 4)n %0 t 0 l -,--q..4 -, -- I - , 14 Q

> ~0

me 4

C> -t 00 C I I I

o 1 r- .4 Lu O7% t4)

4 Lii cn ~-4 -4 eq e4 t-' o)

69

4-,4J 4J -

4) A --4 4-i C

CU *.- *-4 bot

4) ( 14)O u : *Hd> ..+. *e-I l

CU '-4-4 0 Q- .r41 .

CUC. ~ P. 5..4 4 I4.Q4)r (A44d 0 Cis 4 tZ cd 4J=.4.0 -

u +j z C:: o *M -

44 -4 zs~ .,4 =4 5d 4-)j

Cd-4(1 04 COU *,44 V) -4..5 +p4.j L60 L-4.4J

'r) 00p 0C.4) crU $-4 +U

o $. G) 4)4J) 0)' 4C .-4) 1 E4 -4Z 4- '4 .- " 1 -

0) C-' -o r~*~o- "o -4ICI4Jm

HU p.. * d 0c hC d cU4o zH 4)'4 4-44-'99. $-.4- 5 C 4) r4C 14d 04

P.0 co. co T$0 tz0s.% 4. Q.-4

o) 1r4 > kcU Q)Qv- 0 >,,-0 t

41 :3 ( -(L la): j - r- A C:1)Q VP. Cd *e4 CUCU " C 4Cd t " CO -4 - CUCU- 4 ,4V d

-) u (z) v4.4 1

-44 U*,4 4) r44 A -4.C C ~ 4-j + fl u r

4)0 ) Q a h . 1 0 0 "o u .1 tn3-

0 4 u t > -ri u V)41f4 ., .U.-4C$) V ~-4 0 $-1)3C

(A. -,4 . C v4(A0-40 ~ Cd "d t C -A 0 4 41 .,4 q) 0, 4) -d) -4+-44 ) - t4 = r- Q - U -4 CC . 4-'+.' U

C 4 W+ ,4) 4 J C '1j M4+J 1 a 4 ) ) 0- 14 -4 M. u

r-4 4 -4

4).-4 as 44-'

c l zc 4C PQ.

cd 4c> 4C

4c as L4C L.)

Cd $A. 05 *d 4 00 C

$..d

0 P.0

-4

LK 49i 'Us 1-4- I

49 f0 r4. 1~.-4 .4 L

1-4 .c 4J tr 00 # I ~r 0

CC'4

70

4J +4

" Ia.

W) W 4-1 u- *. M rU 4

0 Q - ) a) - a)-cl j + 4J --' 4

o ~ ~ 2 U ta n C.14- a) .1 o 4 1

a1() d) +U a) X*n .

0 CU U-C -r- 4 =F..- S4 -4 a) 0- '

o +.~ - 4 -'4 4~E $V) U-1 cc1 a.,4

a)J a)4 a) Z4 Z.

CU 4r, w-= a) 2: a) 04 e-.cCU F- 0 Cd 100 w

.fl co u CU -4 - E-S.. Z4 *-4o CU 0) Z ) a

0a .-alCDC) C

~~.,4

0

0 4 0M CU 0 0 0 0 %0 CD'01~ '4 -e -I

04 *J t~ IOU I I? IU IU'UCU "1r)U 4 L 1) t

rn t

I-71

TIGER COMPUTER OUTPUT (SAMPLE)

t'

0

mm

in * 10=t 0 00 0 0 00 0

911 p

WA0 1IL

o 03

E-4I-rJ 00l 1 '0

1-40q 130 14

.4H

Ho

0(

u7

0 PQ

04

.4 o0100oo0Ow ...

pa 04O OO O

q04Do,

U, 0or73

cn E- as0O'Eq- 004

a =04

IN0

4- two ~ %~''~O O

Cd M E4 Q

C0424 Q OO0nn

in rH S E-4140- E46-

-74

94

CA U 0~'~~~

He HH w OOOOOOtm

C- 040 tni

4 W pau-

UH O=iHpN~~mD-O~a4~cfv 00b~

H%4(r-O *mUlN4 0AOdw-9- C

00

HH000 44 M in un

0 i4UnH I I I ig II I HM

m01 0 uI 0*500 00u E WL4=00 .4 00 m0f 1 II-H AWHHHI4=HHH

0 0 OwM==4u=== 0.4

75

------- -, - - - 1

1. 04In I In S. U) t. I-U 9 9 U n '4 U n I n I I f- I - fI I 0 4 I n IN I n

0 0 a0 0a 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0

.0000- 0 0 0 0 0 0 0 0 a 0 0 0' 0 0 0 0 0 0 0 0 0 0a

a a3 a I nC n= a a a a a a a n: I a WI Ina

o nI nI I n0 0 InI n 'A "M InC onI nI nA 2 0

ao .U . . UN UN . . . UN U N U N U 1 .. N .. . 4 U 4 . 4 U N N U00 UN . N U N U 4 U N . N U 4 U 4 .4 U 4 . 4 U 4 . N . 4 U N . 4 U* C 4 44 QUIn 4 4 C In. n n C 4 nC C n4 44 In. - I 4

a~~~~~ In 0 al a a a In 0 In P1 = In It = n 2 I n P S 2 I n I00000000 0000000 000,000 0000000

-- - 4 -- - SI - - - - - - - - SI - -I .r . .I-S

04 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0007 0 0 0 0 0 0. 0 0

0 0. 0 0 0 0 0 0 0 00 0 0 00a 0 000 0 00 000a 0 a000 a0

-- -W -4 -I - - - -W -W In -W -W -I -N - U- - - - - - - - - -I -N - - - -I - - -

SI I S S 21 SI i I U UN SI SI I U 4 I S I S N S I h I P I S I S N U n I

2o

US I . N.S I I SI S I I SI N S I SI S S I SI S S I I S S I I S76 I IS

40A &4C-4H H04r.

040

E-41. M HAHE4c

4vc4 44

Ha HH

C44MHlaw

MiwDO* 0

2a 23

00%O E-4 C-4 0 -

04~J2 -40%- 0 H HH

aw ~ ~ 03 -3 4 %

HHH 0 E44H O4. '-3 Hm m t

&I b. OWN40 0 W E

H004 HtM AA *AN . *

H4 CA A/ HHm HHU1mm1 4 -H f H/ P.W "" 24:

C/)H 2 uwww"H %a

"4m4A 0O HN H0.0 Q I-2f 0S4 % -4

mm fomH 0!414HH03(f40b4MA 4P4 MMA~3H

*~~~ m4 10 4 0 .awUwww NNW .44 4gUcIU

.JU 0 -01IHI4 M2 Hw .

H001 03. N4 077 0

TIGER IBM/360 FORTRAN IV COMPUTER PROGRAM

.ONM0 WN0P00 0%0 000 qt00P-(000000000000000000

NO.ONWL 4

000000000000000000000000000000000ZZZZZZZZZZZZZZZZZZ++0ZZZZZZZ

NOuj CCu- 0- - +0

8xn I.. 0#00 M f 0- Z +CC 04 1,-00 o + C.-NCO - X_ ftN - 4 +>.

Owf -N 4A . 0 4JXw- -0 M 0 44f

+ O 0-40-.0 N - + _+ W om%- 4 -6 - + <Cf

+ N4 -. 0 01- cps JI-4+ .-. -O0N - ++ LL4 0- 0~ X - 44c

4 "CEO. I-xO - N >X S. 0- X1-4_ 0 0 Z + 4-i

0XW_ * - rn 0 3 0 44

co ... c. -A- * ft eta,)0 b"NW 0 ~ W - 0. w

ui Z olp- 0f- Ma- 0 .:.

_j u.W-.- -- ' (40 m I.4+Wi-XD -W O-40 ~0 . X

41 M a0 - WO'-i" _X_' -Wz4,11 LLZm X- 0 0-404_.j 0U. 04-M -W- OXZO >-.b...,N ftI -4.JO N -4 -4 0%4 *WiL

>N 0 - W-0 -4 .- a-4 ->N If QzO - -6d L -40 -o 4...C4

w . -XO-0-2 CeXZW-0. +.4-O+aO W *-rLnoz -10 -C O-C-a+2l Z O.~- 11 CL C -0~ COI+411 :rzb-.4-:xno 4l~ -Awd 41'*Tzu La 04nCY41lO t-4.4z +l *++ I OOcy...WuiJO ft(>-D 0W(42w II J.- W - du. -. 4 w.-z . -. 4n.4Wj WZ 000- .-.- OX<WX - .% 4

*W20% S 4-t4Z'o-'~ WZ 0 am aO 4n Ol4.. r e%. *< 4+ W

4 _j O~-leo ;tl X( 4- +). L

*f'J -9-1 .. yz'- WZx~lcem0. .% -74- * 0 =00 X004-lU. X -... J%4W *- .- 0-W 04(~.'UA 4

.d mJo w x oZO%. 0 3t-.NIf0 .00Wu 01ni ft OO:0WIDq 4.~--Z0.4i0 0 00 000 .NQm .tfLC .XXO all If

ZW N < WZ.(0Z.,-'u0 0 0000 0-.-4* -- I 4.= *. O..*- .-4

0 i If N N mm~i If 11O.'4z;:W4A~ZOC. I0- z z Nz z-~m I-,.--Z MZ

>11 0 .. 000OQOO DdW.h~ WWWW4..9-

+ oxa00o o-ooooouo044444400Z0%~00

44 N0 00 O0tfl 04-4,11 -1lil~

78

ZZZZZZZZZZzZZZZZZZZZ zzzzzz zzzzzzzzzzzzzzzzzzzzzz

.444q%494444444q444z= z4z4-

zzxzzzzzzx~zzzxuzzzzzzzzzzzzzzxzz

w0

LU

x~I.-

0.1 LUV1 0.0.

:: 0 m-O N co 4LUc

W t4 0.4 N LU

t, x V)-y 4 X0 LU

I* N (fl LU i

O)L( - 3c4 4) a C

*4Z * 00-4 ..JN -00

(;aX- U)0%9--4 X O .00M% u4 -44 OX v(u r j- 4 It

Oo.,t "= Iop- -* 0 x N.*04 00L Z" Wi 0* dX

0 a XOAZ 0 N000 .%- x- -00 N 0.-4 .i4 WZ-. )(NZ 0-aO. N

(nx ftCU. rW-4 -or1.4 0w . 0-o -)-00 0 11 0 n -4 *, 4T -4O-44 NTO

0l 0 0-4-44If0 1 0 0 -. N-4 t 1 0 0 0. If -OL4 N.W .00 0 49aIfIf . -WO ( ZoO4 Z 0-4~ N 0w-a0 -0 0 1 LA~ M- go 6.~l90 0u- :)-.

'~ 0 0 ~ 91 0 0 00000 0 00 '-.0')0 uM 04w '0'4 - O0~~-s-I0 II U 44-Z M 0%-0 4r1-0-Xb-1 9.-

W0000 *IN~0-00W0. l0-4N4 44..4 4 ,,.NIQL N (4.-.W4

~ZI NJ~11 0 snw00~~4.~0I~9I-I-c0--IN79,-

zzzzzzzzzzzz Zzzzzzzzzzzzzzzzzzzzzzz

<44

C3*

z*NLA. C~j*tdx - e

(V LUte q^ a

O~*X 0%-*100 - xLU C 49

U. (;xx x ' I.L

-1 a 0 4L. O G I

-40 _-- 00 m ^4 O

cn a X O 004 49 1^ 00NO-COIN NNeD M -

ONk 1 -N "fa. 9aN 4- . e 0 o w .

NU.- N-O I- d2:: c M - o " I*d -4N N-*lxo LUQ Z Z N -- o 4o 4N -0 114 NO - I -44> N 0 '" fi -N " 10 ' 4- M IfN4 ."4 xo I IXI

~ N X LU X of

0. 0~ 0 0 0!l 0 cooo 0% 0- N MId, 3 00 Z l4ONJ N men md M 0 n a ""

a~~~U -OQ( UQQQQ Id

-N-.t4 a~a 0 4 Z I-80

**~4 4~.44- -44--~4-4-4"- .4..4- -*d. .4.. -A4 -4.4 -4 ..4.4

ZZZZZZZZZZZZZZZZzzzzzzzzZZZZZZZzZZ2zzzzzzzzz

z

4 cZI.- LU

M LU

M4z

iLU z

LU Z LZ LA.

oC0 N Mit0 - 4

Lu L '0i co I-

0t -L )n0 JL

0 0 Ln I.- coC; 1^ co.J0N .q O c

Nt w' z tQk 0 I- .J0. u+ Zr 0 4o ItU-o :

coa0 N aU LA 00 o

4- ry co 4t ZO0 WN 0 I -)( JOX -40 moi- j mO m4 xmwt0 mw

0-. '0 cc 00 M LU U<' - ) m $.4 0.W-.J04(/ LU '0 -r x X- -'o * -4=XN .

W4- x 0 +4 + o (Lo (A Z O4"* tI z Ol

Ltn -I o 4 3 P- '.3.I )(ZWZ -:D + -Z L- Dz'-l -=

I-- ft-4tZ 0 In .- '0-4. Ln OwO.- CZ )(TZM.-' -,- U 0-...J 4CAI Z-4='0-NW.JO +W+ wmf i-+ W<-4 XD.-n 1 0,-CU0-

M-N +<- -4N.J-f _.1 XLUu..-nl- X4LU4x I-NMCv34xz- DX. X(-J0-

'(.JN m)CWd0<Vn0 u Z-s--.- .Z:3,.-Xoo4<* N N'-i l s 4 llO..4. JJ4%

N0"-.j N -ow 0Z I- x U. Z(Anu-hi) wU XcwrT m M-mfd- ..J*

o 0 00 0 4 0 0 0 0 0 0 00 0000000000 000or 0 ( . - u0 'o ?- 0 - 0 0-4 N~t0,0Q'00-4 NM-t4. 4t t Ln It It 4 4 It. u~tA ALtMNU~tlo a 0 ,0'0

81

oOzoooozezooozoooozoOzozoozoOzoozooooooOzoOzozooO~~ ~~~ 4 = O0 0 OO"N N ~ 1 r

0

X

LL z

U.Z*z

LLU

>_ )w N XU

I~ x4 ). -4LO U.Z r 1 ox 0 LA-

x. _j N CL .. im

U) V)l U)4 aox z n

x -4 4 9 La C0 At*

U1 *j L M > f > U. U.. x * C 1.0C9 -0 % Z - NO - NZ W

U. ... .J LU U. I.U - t We'1 0 c X- i <( "4 Xd t. c 0 0 0Lu 4% 4U Cm4 N M- LU U) U. 0

o.LU > z I l^x< .0 Cox x WOm-94 0-- . ** - _J 4 X -- A-g

=4 0 N - C-.LlU W ~ -( (A OL 0JWU 4LL 4DL 0% ZO 0.J:-LJ~iO "XX~pC

ZZx 4_ 4U.:3 ZO3O 4 40

%.;XZxn (C Z % 0L m- UTt

4 0) I Z O U.O ft( MOM g.LU 11..

It- 0 If - 0:N 9 ZV:3ACX 4.LL UCL Ce ~-.OLU g 4 - IfW -oRi f LflU)0 I-~W .- f-O4N 0LL 0 - .f~

W 0 LU 4~w N ZZ 4 04x 11 >%u)4%Z40 I- 11 - 11 if- 0i 1 1 U O x WI-U)N ~ ~ ~ ~~~I 4 - - 0 ~ .J. cc I' -"U ~

0 4 1 0 N 3 ~I.WU ~ 'A uOW 0OW<I

.. JWWLU ~ ~ 0 >W 0> '>*- ZJ 0 0 %ZZZW0P- CU)

On O P goo 0O)0 * 0 -4 C-4OM oe% Q.0 P%.O0. 0-

'a '01 *.O~ '.4Z O * Z)Z I 0 l..?- P. %. C~O4 %.-oI S

*8

00000000000000000000lot-Go,000000000000000c000000000oP-ItI t I t- . nL ni NW nU ANo'. ''o 01 -1-t -r -F -1-0G oG oG oG

NNNNNNNNNNNNNNNNNNNNNN(%JNNNNNNNNNNNNNNNC'zJe.,JNN

2r C Z _z<Q(

LLU LU 0 LAJ .t

LM ZU0LUW>u~

(A mol -z

Uj U, LU

cu. 4uL b" 0-4

ce w L WMI)- C 4.LU 0 i Y" . U z4 LU Z

Sz z V) 3 6 w2 LU z LU WLJQ -= (n

x z ccUJ- LLL"2: wi x LU -c 2 LUJwcr

I - x P- VI) j. <U 0 M c 0m :D LM u 0 4 U..JW O'%

a. LU LU wU 00~ .I4 LU3o0 at z w -:Ib " x 20-41 .. 0 I- 4 4z 0 Z x.r 0

LU (l U LU. Xf (A L)L0

LU '-. 0 LLU LU CU..LLI- n 1u W. C3-J 4 LU j. Lui- 00< a cg.Ln (.3(L U. Ci CL Ic MO- cc 44 aOW ~ ZWX . 0:m--' Xx (7> _j ce -0

w WOwoo uw ) W200- (30 - 4C...J()0a- '0 -0'- I- '-Z ii-. 0 0- LLu.-- 0%4

AA 0% wZ0U,.4ZZ W"Z.4.j..j to) ui a-c9 .0 ) -j-ft 0- )' (Le -4010W M 0 1- CC CL IA. 4740 LLU

0--4 LAI 0 o a. 0"0 V) m. WWQ<J-4 .. -X 00

i.-a' M~ Xal- I.--I D 0 4 *0 C0 CL Uo -<. I4 ZO0 00c,4 zZtuA XO~ 0c.D 00 u(W.L-4 cc..j0 0 - 41 - I- l 0 W4L UInW~Ntv~) 9% WJZN * . I-

~l .0 00 Mp- &. Z>wwwI-in0OW -4- 0 x Mi -0 -1.-m 4 xq~l: T < .-.C. f4..I0..C -4th Z '. -IX-x

d 0 wU 0 -WWD '-0 wU W~-~ .vi Z 4 3~m0~m-w)

O= - -.-- OZ 2 0 N '-- Ln Go ui xM0N-0m MON.J-JOCN-OM 0 I- Z000-0 0 r '0 -00 -ay-%aY

WIOX Z~ I 01)74-4)( www ~ 0044 LU ... 0.-.zz N '.-*-4...JJ 0e .4 0 . O 4- M -~a'00o--a~-LU4C.CI0L-4 .. tflWvll 4 00,0-11-X ~Ul

M-~ WU- 4-.. .J.J- W n-4M"M<04 LdLAn WW W 0 * 11 - X( OI-aaz<)- I I.- x I1-CL0. 9- a I-c4DU.-OxO0. N -IQ.W J

0W4.jw<0Zww4.jW4- iylo1W'- 44</li fL U. NIW%~00011a-. U.11-Z)'- -4 -1 It xg

-d .04~ .-Z 0 cg-10f4 0.111W <<WW :D "LLUO"il 0 w MOM0~0U~00.~0U0U~~00W.Z~.C.ULUL00U.L 00<<0<0.0U.LLU.LLKJ

00 0000000000 000******* 000000 0 0 0

~ 'a Oa'a0O**46*000000 0) 0 0

83

ZZZZZzzzzzzzZ=Z-zZZZZZZzZZZzZZZtZZ

100

C)

(Al LU

0

ozzcl: 2:

V)'0 M 0

I U W 0 4S ~ c LU -d4

8 I 4 0.

:L. 0 U W WxI 1- 0n LU

Q'o I LL X :3c4-I xO -rujC

2:. 1 z CI zujUA.0 XT WU-4 M 0- uq.4 UO CO 0 . 0.- 0

x x D - L '0 -4 0.-0 Z XO N

LLI LU~u x: (A.-E 0 0(0- 41 = D 00

I-I- 4 x In Z -O4WP. NI- 0fS., w ?- - )C .4yU. -.4 .4

-10 LL LU - %.- 0.4. %.0 tnCy 0.- U.; > I^ X. -. utn OLD WU

X 0. .4 LL '~J -r ~ . .4%" f xX- al x~ Z t at . Z -4-.. cm' I.

* QC U 1 -4 4 W0L 0.40 wc1 .-4e"-.00 4 1 t (L a.).. -0 UI.. OX 4Z 0

-U -m - ..- 4fl-).- 03+ In -) " 0-i I-- OOz 0or oo o-z rMWW -4- . 0C1

Oe-+*LL 0-4.0 N -MO4E ft .^z -404' N 9 x(

00U.*U -4 0- 4M-44.-4'(aiIf'-'0 -.- 4C U *LU M-4.-4-x:.4 -MLL - % ftO- eb-dh4J .6"*.J L-a _j Z

~0LI-'0-(WOw,'-.O0 OAWZ -WW.J.JM 0. WLW

-I.-N I-ZZ o- .Z I-- I- I-r-WiA%"WZO-s-ZZ..0Z4 m. ZZZ

S0 ZOZw-*WZZ &.J Ill zzzoa

00 LU m - 0 01*M.

-44

oczooooooooooc 000000O0O0O00O0OzozzOO0O0OOO00000O

V. c - 0u

1. . 0-0 OIA

Wi -1- -- a

%OWU N- L/4o

C4-4mf -O no 4

CL 01- uL-i- OX( M I. -OWU ft (QW 0 * 04fto 1-Z * N- 4 Z wft O X0.- 110 1.- CL I-

zNW'- )4-0 M~O 4c:)OU.O -4AO --. 0 IZoru.-w a~l- - 0 Z W'"O-'W 0-W< 0- Z

O'W -Z 0.-4 V)X 0 *CC Wawem 00m M-0 0 u m 3.- LA. -m...J -dr'm '-.4- N 4/1 00(AlWnzZ - 04 .. - 0OJC

4Ct.LZ'- 3c- a. 00 4-LZL& 4-0 dW- 00 0.0- ft

4-~u-- - .JO Nj-4 ra aD 1~ 0 -0 I-- '--.4 > f)-

xm-M -I-- -- OW - .4 "0.4 Z4U)ZU. 4--0 W." IiJ-.J - 0 (A "r'- .)(O-4n-W (xw- 0 #Ai Wqf

*. -Mtu%,Oz <x N (A" )I0. 0..4'.w 0. 4.0 .- 49 -1

* ~cio =C.OI0

,C00..-W..i >- "-OWL -C 04CZw4I-0 -ICeL0 - M-1..0 4.-iL WoXZWZ 040- .."-4 04< - ..t L/W 0>

0 .4AO - OO4 'CON -WuON4yl-a 'NO--. Ni-I.-N 4-.C0.CIW4l-.u')Z-o.0~ ftxl 0-1c 0 u..u wa.LZ240.4/)11149 N)( e UADW * > Or

zln-j--O~d-tn wL 0 (Al- %M wN14J(A =t~ W4 -NXC -.j-4 0 0 4-A.) 4 Zz

Mx- .- %W *? %. 4UX->'.0. *i >-o woC -O -Wk 0in-Zg ZO 4mO 4-d .4

Z~. i W ) Zo4 in I-. )(O -D 4 0 ')" - of) .- i 00 0- 4e "

mzzd)-ZZZZZNZZZZZZZZ U0 z)4N Z Z a >0C 0..0030 O&O0)004CLOO000000 U. L.-ICl...U0s4W. Now

It 00"z)CzxNNW4-Mw 1- 0" w.I. -441W"44WNZWW qIZ -Z 0MOO td.t.00 -0000000 4- .4ux1 N--U.0MO 0-O 110 Z OW

-'N 4 4 j LL%4-0 0 00~U WCL 0UU) 4 N )d- 0a LA~

85

W -LU0w

WU 4 > 4 >b4939W 0- 49 4

> ALU -w

WV) .. 0 (m 0

r a- 0C 04LU4%a. 49 .. jL j

LU Cie U jtLUO M. -q . a

4 0v~

OW0 0L 4E.fl4

LU 0 z7WW

LL=. 4 ZZ Z L

WO &4>~~a0 0 WO 04I-WZ 0< Z Z L

U, * n.-. 0 1i u0 Cie 00-'0 UD 0 ZZ.W- X Z"LU '4Z U'- O0W 0% LU -:x4 'St. it7 xLUW

00no4 * 0 M ..mL" "0 Z "Z4 ZUl0.0 .VLU 0 LU W ~ wU WL LU N

OOP 0L ofl W eoz- Z14~ z0 Z<.L

0IO f~ui 0 W *0O W .-JW '-'8- u W=- An-...OgKkn~0*L .IeoU tiflLUZ MZLX ~Z3

03N'- IflLU o ..JO LUO-ij V)M nzw mz ,tt

-40' le W nw JNO. z Qob I.Wa aa- LUa A

-. -w4W: *-cc 10 0 WX &M ce 0oao8---s.

0LWW4I 4 LU 49 wwo ".94 4 (X)ZNLLIUW-LU(^ It -. 0fIO 6- N 'nleI D=~ . Co ft

-04 .m tWc~ao0 J _j W LU .jN 14 X4LWWtW.. UJF -1 I LU(%lLww 4 OZOLU . * w Ie O) N

mWawLUD W4 cohe CO0-f"U.ZqcW'4Zx)( Zl-Z 0 O.J O-:Izz 0 NdZ004WC7

1-$--. 0- WNX>)(LU0) 4 LLW.-.. u. "n in"l~s.1dU

ZzuW44La-ZU 4LXL-I- D NWU.D u.JI I- 4~~--N N WLLL

Un0 0 0 0000 000 .ofO Q'-N M4tt8 In

4-4.-4

86

fOwaOOO"O o or-OWO.*M0000lo--=0o0000 4 Or-0WOO*V0000m 0000m000004

000 P4-..4~ 4.4.44 -4.4.4.4 -44

Zzzzzzzzzzzzz2ZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

.4 L

CL'Jz

z Cnz

z (Lac~0 0u

M- 00Z.1

0 L44C IL. u

L. ) )WOKZ>. 00 DoD

Um 0 *z 0;W4 uc Z<b- 0

0 -N ui* - 4 0 - 0WAo Go (An G. .40f 1..1 IN W (A C31O -c00 x .JuJ LIN N .4W -4

= NM~ C.Z .3c NM X ZO-.Za 0 0.NN . 00 0 0 CL -

0 (6 I- a I- W-j 0 ()% - W-.IUN * Aa Wl0- :N~ M N q^

* 0 4NN rCCLZ.ief x 4 .0 m X~ 0 Zr a.3...J In am 0 Z -0-c.,

10 W-4 ..0.0- n96-c kn WN -.00. .04 I- 4 N-4aN(A ("No N N 4N0 Z Lu

.Nzc.4t WIVlaeIZ Z ..JN -- 0 . 0 .4.1.1 X ZU'3f..s- -40- 0 * 0 *UJ X3U.o4 - Or (A1

00 P- Q00--C. -. W oMC7 1-01 0-0- o0.4 a 0 w IOWU -4 -- 6 oI--U' atC omcw N~ MNN 1 0111.1. 111 z

fl -*Q O-OcACM 0g- al* -0% -(n- Xf* N e Lu-4- ol 0-001 O:ZZ.4 -0 Ow O00% aWOM -~ n0=1 t-I "40w-0 - ZLULUCL.0. 0'D r- I .40 0I-m a 0) 43 C00 -4- Nao-0rqfl XZLWWL ONY CM- eVlo0l LUC .4 90 Lu01W. -.1 N-OON4WL 0.0.~c~c 0 S0uJ -. 1 M- MWOMOW "~0.- -. J - W-WW &TV. 1,-M.aa 0 000 '-_j - LU V"wcnah. -

pw - 3 I jeo&-. Z=,MU.L.bi .4o. - - -- W ,-M3c 0- 4A w~* 'FlQQ I - --IA-nu WCv(y*..4z + Nun-uu I -- 4 C-oi,, M-. cO0m Z-0I0WJL0U~W - -- OW -at- j..0 4 )-CY4W<4 ..JWLWx I W< *. 0 94 0-4W4 -JWW $-0..I0-44X "4

-J 0 J 1464-N.-s.r -ILU..4NIII W00-1 0-.- .J ti z4wN I 0

W~iW.ZW.=eLuW pq - 3F lW00WMU=WJW0.0.-

ZIL~ZIZ-4o 0J40bdZZZII.. ZAX34e gZI--N )~p.-.WW~fl N I-'N W Me.u- IIN>~W 0. IW 0 ~ I

voca "W 04'-.z~ o0.O..- Z - wwW--. oz en

InC 00 000000 0 lio 00 00 00 P-40ino -m CO.4INM~r LA IC' 1%-Q 00 -404 (TIM

C44 ~ NNN NNN NN rN( M M

87

zzzzzzzzzzzzz~zzzzzz~ZZZZ72ZZZZZZZ2z~zzzzzzzzzzzz

LU 0

tn

VA 0 C

o In 94z LU In 0,.

Inu 04. z IIA 0 O-. L

:0 x- 0 0 IA 0% _0 404 4n O

z I.- LL &f*A 4U

4 '4 0 0:) aN - wOW

I" Q X 0 0 C ftl * 0 -a. N.40 i mf- toW 0. 0. N.J-p N 1i

4M4 w- -0. 0 '"-X N d Ozeq * - olLAM-~ I.- Z . 4 Q0 c 1p-2 -4 wa.ef 0. N

0. P44 No M o "Qt Ot. L* 1 .0 a

IA ZC At oI a4 (A Ifl 11--t M F0 i 0 N N Ift~

00 01-C~qn _J= O- 4 a- a"L * )C.4t 4 -~ W (t- Oi -. Oil4z Z Zob~ X LU,0%X wU-L(A% Z O

00 O _ji~, Moo -- I- U -N 2~ 0I IA Lu~uoC -CI.~ =0- L-dq/- cfO3 ~ N ~ 40fO

_I-C J Ufl- gJ4 "Co.- JA..J -4 0-_j .. 0I- 42-.--. -W - J X . 0 Z.-4Z M4wCLu-.4 wo."OO.JZ Z~ A.--LUI~O.~ 0 O~oOVw-.

L-t-x O0,' -- c * .. w4>- ~ o~s . I ~.jf IO W - ~nf Iwi*WI ~f ~lJLZA

00--CN 0- UO .~.W..o4 ~ 4V .J.J~~t~ z.--' W.d4~ z ~~w a -Z.W.~..J U ~ 0.0~

4 0QI 4OWOO WO0W00 000

88

0404(p()0 )(% 000 0000000 A-4-4.NNfNNN(-fl l""MrMcfl cnIC*-4.4NNN NNNNNNNN NNN NNNNNNNN NNNNN NNNN N"NN NNNNN

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzxzZZZZZ

10 I'0% In~

4n

LU ' uolA1- 1 0

LU (ALU (AN

Q X

fo LU U. L- tfa-, 0 0 X ?-

r- Wq co t0z* A MU .9 W

N A 0 ( 0 31 1NLA CL LU C 0 4l V UJ 1 P

a 0 8ic--4 3c LU '4 0% WONj a-t w aJ 0" W4 6If'- A t.4m -1 0 zo ml d 0nZ '

OZ- :p 03J- .cf z V)OQ6I - 4 .1-00 Zf O LA. N a"Ln 10 ujC

AWj -Oj w -00 W'O04 CA -N j ' 40 0 z0.LCU W0 OC~ tLA.0 10 %0 CAJ '0 0%-+*

-8 00 x~ D-. X*Q-'r ow 0" Z- L& (flU Q LU)4UUZ LIN I 0zi 20 - +- + LA )w xd 0 I.- X4eq)L-

ax8-wi ol*Z-O 0" '- 4LoO~ ZZ IO Ow b-dot U 4 x

N- II- NOZ LU-0 LLW 0.*U N. N..J-48 0~ "

0-U. 0~ >. 0WNN 0 In 0 NA.+ in0 LU

tnr n t n LM La410 C)4 10 so~-~ OW 24 L flL 0 a Q

WWZLAm.Z.LU.4 4+NZ ~.2 II 2~2flnWW89L

Zzzzzzzzzzzz~ZzzzZzZZZzzzzzzzzzzzZzzzzz

4x=.t

LL

0-CI

34.C00.-1W

404 0 0 07 -

P-- P.- 0 co LU WU

49 0 q 0 -I 0 adMW

4 ;2::0 -4 Ia- . P. - . 1%- co r.- coz -4(L>. r-. OD *. w * o 0 ft~ - -de 0co on~ 0(0WI-. 0. -0 zt- 0 P.- 0 - -I.- a +- 0"' " C)% .w. 0 O--Lnwgr- CO a . - N 0 -*a 0D- 0 W0-J-40

_.j O wl 0 0 *@ 9%-0 WS CY GOOW 4r 434n a-# 0D .M4. 6-"o-0 4 W 000, ic 0.J OW ..Wo 0o WOO 00 OOWUZVWuo - ,-W9p-o' '-...D 0 Ne .'"o0 P-9 *D~j 04 -I-4x 0 -.-- dW9-O(Y - - 0 mow [email protected]

tqjO 'm00 C .,' 7O I-(0 (j .04 - uJ3 0.0O tc inw r CY..JowWAC WWJ-.J I -1<0%4 1 W<-49-4 W w W i W-4 #9 cl wa'% 11 4LW

0IL - )e--Jxc) I ..- ol- of CY16f e =) lc.0- b" 00 I Z-

Z -wu--O0.-- O%- .~~ N- .J Vt... = 4 -+ 0W-

-CLXW~zw~1219-CI

09-0OW9-X0XZ-4N .)9 N etAgtO- zv~t0Q 1 4

<00

ZI-0 0-4U 10- N-0o-n.

33

P -0 a 0

- c~00-Jco

<- 4~=3t-MC - Z IQ .

14 tLn- -4-.JU.N -43~ I.-

4 -t '0 -

Z Ny (A .w Z 4A w3C 0 ~ZU)00 xo 4 -04- 0

z z -- 0 Xw

3c x1 P -W 3c

x -u - -Lj 1Wi WU '. 0 LU -to~ *)(1.- 0 -1 t'.0 _j *)( Mnw

tn so 1 0 - ui z'l 0 S- -*9

44CA.4 "1 I- 4 0 0A 1. 00 .~WI' 0

& 9 I-U'% 0 0 M- WIA 0 -

XO0 t0 co c. 0 ("-t X49 -40 NLu-aZ '0.0 < Cn0 10 4C (4 a 0 -40D a

w- -oG 1' - f0 '0 1.- .4 -. 4t -400-4A

Z4'.fX "V "040 2 ~ ~ 0-41wN 10 be .icy'o 0 je 0 4m A 0 -04 w..zz

08.1 000 ft wOtm 0 .4%J 4 WQ3 0% .-4.-40S..wo M .40 o Wi '0 0 co .wo 4.14 0 IL *0-4-1x

t-op- ~ ~ 1'Oco a- 4b 0 W-4nw 4044 .-4 0 a-IWO.-ZXI 0 -44w% 0 -wo0--Z ceI- o- tnoA 0-0~

-Jle -. Q vILO 4...J<. 4 = 00 0-400 a

-0 z< 00 1 U..Z0 4c .- 4.#)Z"..-.M4ft4-4Z 00--ocN=.4 LU WWLU~ -4 LU 1 '0 !) -40 .- I "Ma4-ren ii--- .qx)

01(n1w 00 X - -1.0.ix0LW gg 0 . - 4 N O - * P N .-. . 0 4 . 4 if "4O w - 4 o o U . U . c 0 ' 4u - ft O . Nj -

W4~~W -40 0 18.00~-01 OOW-4 .m4N-9-<a0s.=UJ4-W&00

-4N0 -4o -40 o 0<. Lf -L 4N-4N~ejodc CL1

0 N Orn 4U '0.0O4WO-1 1 O X0LO- 00 N O-tf0O-4NW4 4 0 'O 000000000-4 4

wojzw " gM -x -4 -4-4 4-44 -3xc~t 4 -4-4- -4-44UUU U

:RLA-0 9A.0- f91

00000000000000000000.300000CiOOOOOCCOOOOOOOzoOOOO

~~ .. ru ~~~~~~cf0.e'tsor c O re

U.f.v .~cr

ZZZZZZZZZZZZZZaZZZZZZZZZZZZ~z

LLJi

-x z 4=U 0 0

4m -Z *X

1-Cezz LL.

uj-:W W*

ccI .0 4c 0

4mL 4 z CL= LJL30 Li) (3 *iM z ) LJ1 4U 0 *L. L 44 m 0 <x

ouczWOlc * 0 0 i3EZC30 N 0%UZ0 t )_

0 -.44U. . -- 4LDC )-- LUZX WwU).Ln 4400N M.- w M-Li)1-Zx 10 0 0 S." -Jf~t 0 + *

C -wxp0 .4 0- 0 <-I LUUO .0Coca- W4 NN Ow(14 mJ t .D WM .W

UD.Wz 0 44 NO Mm Ib a M- m i

0W0ZLL Iz ( 00~ )1zQ 0- -. i< W4 0 o00Z-000 N4 nO. 0* 0LAN =_c OlA Z- 00SOC UU z < -4-4a0.3 no N .-4NZ)( -0 .t-fm 1Z

Z-J4Li-) 4A * C -'-00 N00_ CWl.- OW(L d

(A EA W ._04 ml w .. WO "D I- e-z--4 -:5 LA..J -ce -4CMO X

W1i Zc,. li -"*Z 0 if 04'-. go-* 0.0~a.O - 0

0 ZZ ZW 4WXJI wl"JJ NO- (nEVI z MO mo-.cy jLL* ZZ 0 0 00 -0 00 0 000Oa4 .-Ua .0 o--

0OUZww - InOr Ma40 -4 fl- WO 0-4NN.f M W LA(V) -w~ >'<<'1-b .4 m -440N 00 NNlZMMM M -Li Mm-0.I (n 4

Z ZOO 3 . .. 4)(-e +0.W ~ + '~ .WcIII92I

W00%0aw0%,700.70,,rG00-C0 0 0000 00 00. 0O -000ONNNN00000Ri

ZZZZZZZZZZZZZZZZZZZZZZZZZZ zzzzzzzzzzzzzzzzzzzzzz

w >

U.'U

N% (A >

x NUz 0 n

-t' a -

LA. n 10 10* .)N LL U.

am 1 0 M)( rn) LL. It(\I 0- 0 x (~

a - N N NU' -N I. - f.A x

>- 4 N= %%u. a49

-*otnO 04 n - 'SP >- 0-_jw *U *(V 0f W N- -n o C

a-a OUN'- .- 4- 00 c - _Cc -,UL N-4- w 1 -1) 0 .-

- n W- 09- - "' w0 ..94-4CIC oco 4c -4m) Cc 4-

m-- -MCAf -(3D Lnl Iq 09 40 -jo n a. 41.O'.- -1.- 4-.Ju -

-r <4Wl> 't 1 0-1 1 ~ CJ N-4 >4- 0 I.-4 -4r 0%-- - ~C('%J0 49>V) .4.+ tN 9-- *" ft 4-'m M *+Ow04- >4"-

.- *0- It ZC-JN -O .4 m M -- < t O*O <

Z- c 0-e .--- ,o S. 0-1- 00- - 00W-4Zt.- -.(.o4 4+ -) O>Vl ft 0-4 0<4 4d <ZWQ- - <x

4A- - . .94Z~5-e 041 U.'-z x oUw0 N >aN<(A>4m WONW LA -.. J.JW)I- Ox"- -4)(,-. '4 -W4J(V~lfl9-A- .4WL -(Z-X M.-&-2<-4 Z W/9. .40-0I- " I 9-- I-- mm I9I- W-.- > -#W&-7 - .O-4... <-+- 0-+ 4 m+-0-w -.. - -MCO-,. ;V<-4N~a..0NO0 =W 41 IN 0-- '")NWZOXX- OM 00*Q7N"i rdm mtmlm I umi9-- - 0 W l ON

)- ~--a- H~'%-.r-4-4 9 .-.- 0 -4flt 0 NN4-1Ln.-d)(fl-LAtN in

-4 OCOC-IJ9 -C.94d -9I-)C~CL 9.-N4f-(-49 oo -4 1-09-9 it m4N-I -N -4-- D1

OWW940WW0ULLWU.UW0W9 N.WWo 'rD)O1." 0-o 34 0 - 4 ifit u f 1 4U49couiq .

00 00 0000 000 0~l0 0o0 00 0 4000CD a 0-4 N~n-TW% '0P c %0 -4NC% fn- U.r W\ 1

-t t N, I 'tlt'JIt Lm4 LA. UU. Ii.'U. U.' tW.IL

93

zzzz

-L

~-494

:0000 000 N C *

NO -m

.O- 0.0tn 0-a On 0

C3 . N'*~ (X

c o- LL-0 -VwL n LO. t OW L . OVQ a.a:.

".j X - O (X

0"W XJ -0 M0A

DOL. , U-0 -" (A W (D W%Z<L- -Lwo 04'- 04Az .

0~ z-W -LL LM I,_ M.INW'- 0-"/) 0. i a- - LLAm.U.' M ~ _N u- M cm

Z-.. . - (A '- -0 tAm Z-0--.W 0-XC .u MU (mO 4- a-w-Z 0i,0- MX U.1

~ -~o- al- 39 (U._(1 0XV1~ VN'O u'a i-~ - 0

WO Ls- -o>-$ - 0 z jL--- 0 0-(-- na ZM -3- M 0 _

WI-n -4-c- ~-4 - )Wc. Ce0 3 -4 - -4 ia. -LJZQ -0 "Cw400 Qwc c0>.Zam-. 0-4 aZ 4 -4

*- -O-clrOO IMa Xi . n -411 (A Z 3E

-(..%j.. a - Q 2:, 0I-j M *A 11 4 ->.-4301 -4,0,0c rn 2:n.-iza to -I x :

a.M 041()F4'-I..03 f.a..- )..0u4A cl -, - 4 .~ 4

zw,- .tU.- "I:-$ -. 0owac > .~ - N 0LZ0 0- 0-m (,l ZI4-Z0W (Al v O w -. p.0. 4r- .(AMOl0 -0 -. oZOQC - %%b mz. (AZ jc -4 cc -0 .41.1.

NJ-4c 04%0-NCIF -t,.0a.N- 4^14JO W(A3 - 0 0.9 -.. -N-u'PZ0OO. (D'.-A0 0 WA-Wo -4- %n (A 4-.. b - .-

z4M- ALANZum M ct 4-d4 LUiLwwwI I-a - WJ _Al. co _.JO .00g0.J-~cA~, %ma-.- oz.1mm a-c 0 1.- U.- 4 0 %n U" i LA .

0(Ax ) e.4L)C AW(A0.,j: <-an 0 - 4 -%I- co .z a-CO-t .- w44-1. . (3z~uJ0<. -

4 ., LWZO.I00 4 _- Q.. -L 0 U. O - '0 cc

a-i .. J%<UW .%~e 4'0 Z<ZO(A)- --- -. 4 .- SUM M'(I i MX".Q0 4-1- OXWO -0--4 0 -0-4 a 0'4' M -

W.J..a,.I.~4)4u z O (Z ONO= Z 0em0 - *U - '0 0Z< ".WW>ZMa-X0a.I-qjaZZZ< k(A,-0 -4 NAJ-4 4.4 0- W 0.tOLn M' '0

mz~e.ZZZZZZZZZZ0(AV(A4 U--- . -- -0::00 -0.0000000000-4dZZZ -00"O. W44< (i A _<<X1 *X-4L

MOop~ ig 1-X O - 4 C33iI)-4)(ti'

If~00~ 0 A ~ 4. 11 11 ItH If UWO00 0 LLJ0 0 ..J LUaOC)L iX.XX'AtJ -4:3.J~.j'JJJ(Q 000 I-'--*4- ZLL. -4 CC3U- 0 QL -X-( 7

0000300 00 LA. 0 U. 0 0

(.Q L)JC)

95

AO-AG93 584 NAVAL POSTGRADUATE SCHOOL MONTEREY CA FIG 15/5

AEVALUATXON OF THE EFFECT OF SPARES ALLOWANCE POLICY UPON SHI--ETCCU)

UNCL7ASSIFIED SE 0 1ELOTE

:cc

0.L

z Iw

440 q o A-

4434 L -0 o 4bow :Iwo P4.4 -4"4

X(0 4 0 0 0 z NC NoI_o-Of" 0.o 4"EW 0 W "*a Nwl.*e

-w% #A -. 000"40000I.0 I40Nd4.4U4 I. u.-0-4.4000I- LU NIIIIUIIUIII No- IIU--%IINhhhU NN 4L O~oztfoXI'- 41) vo NN I Qr-Oh - wv 04. 4 f-ttf- 0OI- I.- N 4 ""

00 UJ UWtftnUK -UJ00

96

V- MCI% 00000 4f-000 04-4Nmtft0000k0 000000000000000fn

~c

~x

.4

a 41

N0 - a "%l

2 1 mc

X( L4 o *0 0

Z Op4e OMU. as -dI lf

9LNL~4 V* a mm>. 40obO - NX -L:,* %% . 4

coo 4.a. : 0 * mu.M-4 ~0 0 U-

N,20 w' ..Ja sw UtJ~4 .

- ~ ~ ~ O =*0 0 X4* -

lm'WC 3w -aOJ cy 0 oO 4 o

Ininw 4- Mal0-1 tw%%Opbc 00-N 1 NO P 000N m

NN-' NN 0-.@N . mmmm m4 ..m44n. #44

97

do*O*Cie

LU *4UL 4

-j 4A49 N

co3 cc No'4 0 at*

o x. 4

LL 0 U0 0r ccU

W IAU 09 0j 9

- 4U In 49 - V)

W0034U U w

I~l a. U a.

L*40 Oc- 4c W *o I 1;W .. UZ 0- ta 10 (P cca af

Q UL 0 U6 4 CL 0.-

t4 4b w-L ZU WinJ x( 60Z s- 4 cc Ia Luc _A N

W,- ".. J 0- CI x 42a~ eOW a I.- It0II I9

x *V Zdf .I 00 0 .4 4w b 10 0C4 0UOmflZ &WA . a Iwo 4a. 14 14b0

0.0 e. Ia44 wW~ K UW I .i~ms *oI4144w rta;.In W% 0i~ 4)' We L WIA a

aua 0 0.1 a.I f.

0u4) 0u 0.- 'oO 20 40- Geo 0,0 20d- %09 OX Ya;a...a-o W a@ 0 0 Z 0 #A 0 01.. .Ua d.

I)O*O*o"( us I-0 %0 .Ow iAIon 00 u W W~- .. 44 ca.0e4gi aI *%.4wLwI 0 .o so- CL0U1- We" s-a .- uis-0.*0

- -.20Lf M 4w0w 0 uI~ ~4w K eo- ZUX 6. & It440X1 ilt A4.w K~ kn(7IL oz )1- A 1- 0149

4J ~n w4w 8K- as-8-~8 W 4BS..4W0U;x$inm .JAV4 2%4mAtw otX X. o- "Of u 40. .. It

MOU 3e.Oe.2ILft e.2% L we 0 Z a 44.9 RILZO4Um40

X# 4 CLV~ kU.d W4P"lZ W "OX 0dod4o wrue u

-. 20 a =I In..4ol b'IOU iX%.

LU06

ft. t

4 4,ft. r~. -

I- UKLuj

4 4 2-

x 2U

CL 'oh. d , 3

4b P Z OKA. 6p. * O .4 a W 4Ag

'4 0o ftf. jPC WZ *.fw F- Ik.8ov4a. o I -j 4 w4 X2W I- g D .- 4

0.~~0 do o 9 .J-b- - ft c% q o Cmii..

Z- a 0 "4Zm 0 Z2 -N 0 r-m 4 oa _j %o4 Nbv" oorq0- .q0 "ad V. ft w.i. -f 0 h. .0 6 a 0, f-f e.I 0 4p * "44

Ij Itl.X- Ow"40-ojo4 " -In P24- C. "4..4"4wi "40144 -o f-

0 .Woca Zmw 4Ns v4496"..igc* s. 2 ~~~- 4 W4 ""s 4C wtON N .eW414*w

,*f- - p. -two,--! .0 4 #A s5-5o=:)= 4K2 %w -al,-o Imoa 0 tio 02-2e22 4zvloIZ RU12 Lu 1-0C-UIZZOJCIL22.IwImo

'@44'OO i 5-5AA-$vsc. 0 -5-5-5u-5-5-CUJ at F 5ll-vom5 R- ~lw

4 %s-a IL !R--i -z . z 79 Q 00-- z 4314 a '--4'

db

z ot4x

be. 0 a

In 0 4 0 x m

j z CL 0 4

3. -t1e e- Ifl4f 0~ mh~~ sW4 wo CieW0w.i 0 4

e- W OZ0%~us.O wZg.a-Z4 02 M int

MII0A40000

10

1! WWWWWIUWWWWWWWWWWWW

NN*o*4w

I C C

*~we

ow(

S.x 43*OU. -

O* 040

ft. c.4 a:

*4. ~

a0-:2- Z.

0-M - 0.-p.ZZO w z Z

SWwW

a0 - -AM-0 9PWAOo

I-2-p49.0 f102

WWWwWWWWLWWWWWUWWWWWWWWWWWWWWWUWWWWWWWW&UUWLuJUJWWWWJ

M.c - 0U

~@N00 W

W fl I- Lu

O s .fl- 4

00din ON .

%0- ~CL.-U. -.00 NX( L

mdcgcO.I- ZNy qcfa fQZ No s- -0 I

=04L - Vn..' '.- 0ZqCU.- VI O t

64" 0 -4 OzI. 0464 f"O" NO- 0 x0

d~S 0. a- - lb t "d= 1K0 ce-0tWU.=" .9.1WO 90 in W)0N

ML U .. s- LU 1.0 0j 0waul JN N- 0Ix 4% U.Za& n90 ULU IF -lb4 0. 0 4

b.03w a . 4.4 NA z 4 ~00 OXOP5dml ot" 00 -- ,N ** .L -

"Of M~l . I's -20 LU .- w i - 0,"W- i.-*c SO a -4*a a -60 1.-. +

N9L-40N- .9-w 0' " ~ 4 Z fto IM +-

LUZ0. -64 m ~ N ZL-s J* 0 J1f

0 4A40fo * ID 04 w 44 M *wIQ a6 f9Zi. ~Nw--~y-%y 64 ce cg ac * n"*, 0 OtA a -Mc - -

qw.J.1%b-Z.W3d tn ONw 94- t 04A 1000 Z 04 :impZ4W.-_5IWWP us CL 0% aWIN.-0M Kcon )n C

LU Z4i~ #A -%X : ;-o 0.u 4 0 0 0 0 0 0 0 "sdW is I u

0-q~jaaZLI. I N f *Wm- a '0 mx no 0oO-Z -jwq 400mm C p wm N -bc cmn"o X .4

103xe~ Nxt

wuwwwuWWWtuuauWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

C-Ot

40,0O x 40 N

(4C~ft#.a a4jn r

to f""-f" .J uJ% (

-d * 4 N "N

19 0P- e 4 j-OC afdf-4df U *w+ 0Z aa.0-W. WWO 00 o-c " ".Cz9*ce 6OowO'aegawc" 0w w

CC o- f -- 4 1- 0 N ""~-"qw -1 w-~)-t 0O a0 0 .041JI--- 0.000M X 1 Z

0 0. 0 U. N 0 .Z 0 WLOZ'?l-.~l.

a 0c c a 0 a. cc~ 00 0 0 c ooM *" 410 00 0 N M W%0 0Nc N p4*0.#~

-4i 0 - UJN Nae 0 NNw N 0" MM 2

* - fl* ..~~~14 0 1 a C~ n

0 * a ~ 0 a a~ N~.-4

1 100

zzzzzzzzzzzzzzzzzz

N

u C. 0

5-41-O00 eeN

CL.-U.OLw040

-OK0

aw sw0

U. 04-- LU

04C OLU

">tJO - L

oinf LU

xz,-:D z

2wI-be LUUJz* 0 b:

20c .. Jwi_ - U

CL...jo.- .J U ZMN

Z49 *UZ Z C41Nf---0 4WW LU

0 - I ZZw 0 wdom -og

C92 Oj -CW -

jxjwz 4co NWG106

00000000000000000000Ca000900000000000000000000

00000000N NNNN N~f~~M4,7344

N

NWc 0

~~C9.2

ftow. e

o $OaLU

CL e co

MOLL. v- -

2419.- WLU 3.490weO < .C e.O e

ILC4 Z LU q0 U.. z-:5 0. 0c -. 0

-M-U cc in4

U.04wo L LU .Ji 4zLI"LUO-09 " 0

2t3 SI- z 4 N 3c0"0 -0.0 ( LU -

U9--tL. X Z _j 9 49

"C0X 01- Ow aOZtn *Z2 LU m -i I-

40Q..W- S 2-L xU~ '^jo.0

0.ee ft0-7 0. 0 0 4% n "O-4 2 LUacr~ti ; 4* nt- in LULUIt ft 0 LU T

ZWIf- -. 61: 04 $- c 0-0 m~ x CLLUZ ae S OGF 04c 0 X-< WPll 0-400.-400a. 0-

94An- 0 .- 4Uj IWL -* ? 2-40 mUI*'. -f-0-O.Mwgo4 NO 0..j a - . 0-.--a cy

- _j 0 0 _40 1-00-4 - -- t - 'ACP- LUwZ4M.19 0 -_j 041.- -t I.- ZWo.0e wO00.j-.OI- -J< -N d Z-mJ-40 s.p-p -f'Z%%iOnxn J 4 e - LU _.j -4O.4-0.4-dZ 0 3.9'X4j -OX-0 AM 4-in 1 W6.404 er.... I I.. ft sq. . 00 1,0 Cio4Me4W%%%.4U 0 MO3dLU C..~A...00W< 00

*~B XNx Z O N0O~l0 U U C3U.-g O.Z0ae LU LUd LU 4

2o~tux NZC40 4 "o" I-IX . bw4 Oz.-Nc-oe

'3 uij UU i

107

OOOOOOOOOOOOeOeOO~o~oOOOOOOOOOr ~ .

du ccqOOOOOOaO00000040oAOO OOOO-Owo0 - 4-4 44 -4 44

NL O

a . W.

IL O- L.4

0w. zow

ZNW- )0.-

Z4IL -U)

.. W O-Z 0-WWM 0-4

U.Im O Ljj, 0..(

LL 9-Mw -I- U-J. ' o4 1-jSmZ .w4oIj LU *L

U)Q 0 ft :3-Iow NX0-0 IA atW

zw-Oo ceu cz z . 0XN -- M3 'NO' .0 0 . am

CL4 .GA7400 4. 04 m

W.Joam-N"-% N* UN 00'' ZN U Nt*u ~Z . w(O. IGmg Z S..W cc 0"a) . W

* ~ ~ ~ U 4s.W%. wo tu a.~ ZvW~-5- U.Jm.[O

cy("4N.4lP-49N-O 0Zt.Y u00 000 0o % 00 0 00

*ujj~f4*b 1080- Z -lm + 0

Z. a.IZL u t g JbruT -Us

Ad

Nau 001.ae4z -I -

0.4 00 n

eQc9LI- in 0 AQ0-0 ZZin 4

M-fO NA I- o

OL w.4 eAI. 2woe Ma w fNo -W

CCU *) 00 1- UJ09"WiO o22A 0 4o k w

ft &&.Z40 -Z v a.-a."CO

.ou e-.woa mn&&. 1- 0 w l&-* o -004 CA 040 Wo0s- o L

maox ~n e fwbf U~ 0 -w0 1~do c 0, a- 0 op 00 0I ow0I~$-- a0~i b--). ft 0 4n - 0

P"-Wt04 ~ a-Wir I 29 z 0 L6

& -A- - YZ -w 'A -- oipqco -

s-e- u(OC a, Ina -9 zz 040 W - 44I .P41 Cj 1fl -P-CIA ILL N aW N 0

PWL.-W W#%W a. C"A WIc - SWZO C No4zS h-Z 0.qd "A I~ u _V44 mOji-4 (a 4" U0

N- e~tq .4Aii-cxw 0e N391Z 0 -IA in .J OAftmed.ae lb 9" .i a1 C30Z i.W >$-do * N)

WZ4.wIAmR%&z . 0~ ZNJ 0. e j;:N 1.) W#.4 z N Q Nl.JI-O.J-0~ -l %% 0'CIK ILj c -04 _j~ N ~ .D.C .I

I-"@ $%.Ai 0x-va eb* 4 q I-U .~o~ ~ -. ae 0W L onn oee~ftmi=4nqujezzzpa. e Ci4 04. 0). QinA:- 4-I- 0Zg~3uu 05 Nz44a.Z a.J.4aZ I- "M ecON N I N

V~ ULU .JJ5s-ZZ4 ee 0020 N~t * ZZ* c 00 0=ZO40amWZIU-W 'O .U M 24 L64 Owl "1 OVDWLL6* WIW4ZI- 0UUOI.4W

lb0~ a004w .- a.ZJw4

0in2)'Z2IZ a 0s uwin r- wo 0e-coImD cc~Z Im-# a

uk Q1 00 0 t -000 0N4 N

41. 014041 .4 4P4.4 _ooWN NNN f

109

P, w

Z w

z I-.~

c. j W:

4c QI.- j c

oz xI-. m Nz 0 40

x m cc 49L

Z4 -UKL .J tL% t.j jU. . z Cie

x~ 49 4 --

-U 11 QxW%I- 1. -4 4 29

LU 4 + . 3

U. l Nu ob C- m t4i OIA cy4 w "Wae LL. lo ccz oN z 3CL z0- )I z~n* 3 2ic I- I.-.- .. j oz *-zU cc 2 3

04 Ncz( - 0 01f 1.-3 0- OW I.-

00 2. 0 w 24N0-0-u Ci :)-Zw oo I.03 13-Lu L% i. -N G00 N 1 423 0 . C9% ae zN '0e -4 1 CL G.L 0 U %0- V 4 w.&be V-.W44 +I. 0. Wuo *Vi0n W Zu. Zm -J

04U;POC 4 04L )Q -4 W~t C-NZ' ZU~b 4 0Q= I.V4 0 i LID u' 39r 0$. No- v ow-2 z SO Vi-4 0~ C.N~wl-~-3d 4 &--~."' A= U -4N42- 04 K .49 No 0 -4 0.-44x 4

IL.~ go p=+jc NN 0m.I ONK'40c Z2.40 U. 00 0XZ.#

UNo .J-C 0 0-0W4W=40. 44 IdmNb tfj a

a#-m-~Z-2' a.M& tqx -M o m w n 0(

04& ow *4 W-O1 0 u' o' ' 0 0 W Qz 0 I.- N -* *]C.V *004NN*N NNNNw 0 V

0U* UP-o U- UZJO-l- UUU - "0* s z

P- *%o~~~~~l 10* %)- Z. No "W C fte w

P. -

* Z N

a)I--

we- LU

4i xuj M(

z

C3 x - aez 0 Z 0

4w . x xz L

z - 0 cc9OK x % 10 -10

o tj 0 I% AU w P

* * 0 ~Z ZI.-0

W q4 WI rj 0

g 0 4 * j O'NO 0%4cc -c* ~ZN("~*~ N

I-M shU. obLU4 0ewOI.- at LU Wla 0 ". 4b- -. Ku n * x 16 -C c 0 .

C" I 's O* ::. -WO 0U2 C m 4*40 -%.'0. * a4 0~ UO "=a 0IFn I

Q0 o 0 U-bt C~0 = -%A 040W U in 0 ccC ZXZU. U. o C OC-*LU.MZ WI *K XP -3

0 0 "ftoo .OQZZWa T~ =w0 (RE " UL

0o UJI-S ;ZZZ- 4. I. ,L~vx Zu 4 I.- df Z W%dftZb O aaOx00"440 Ws, Z-+ )N-. 2-o "I-

4j.(- bNZO4bm(4z-4 0. 1-- S -LU I.- =40 0100IN .- uJNm-1SuI M4W w. 'ZZLWw 0f Z31940 V .1 "=I-I1Q 00~lJ 00- '- Qfo J 0 a 2Wz " 2 I

ZwwO RatwX.41- 9 w~%NO W *OZsJU Ke-OZw~n**" uj S z Wz I- AI300IL U.ZOI ry Z0L290 49 0uwz Lzz

-r W% - 0 -4 N A~* n Inmn 10

a C# p%04 cy111OCP a

-.----- ~~hj --- - w.--J OW

444444444444

2

It

z .

Au.xe

XCJ ~ I 0. 496OWZ.3 =- OIn

c00'.iL 2o0-4OZw)(Z -J6 0-

2 I41I-2 0NCJIx-f

4=1z 4" MW vQdC%owB@toZs Z~s %k.fo!.fu cc *00al%,

A~m 0ua Mo 00 00-mw

r- - U

112

coo 00OCCOCOOOOOOOOOOOOOOOO

CC@QCOCOOOCCCOOOCOCOCOOCCC@oCCOCOCO

% COC

z z

mOw ONO .40OIo

3f"M

4w.moxmo

o : =ft aC n0

m sw-.Q CL0.a. 4o IL

lj .a.mui4. - da0 ox son -

obO W4 jz o a* u d3rd &a 0 *tt 4. 0040au

Ofm f a. -o0

~e-4CONN 0- -4WsW j 44zcm) G" NO .2 z0 -cd

LU LU Z44S.U%rt (9 a xC LU 0 ~ O Uh

UXUJ a 0a .- C3I 3gIeCZOL ~ u a 2,

"o 0 1. -w -*u 4= ~4 * @~k Wins LSI

Coo0~o -L 04mmoo-i

SIL M00000JU 4.- -r w ag

O 0 a COc0 0

* 113

LIST OF REFERENCES

1. Naval Sea Systems Command Report TE660-AA-MMD-010,Tiger Manual, January 1980.

2. Chief of Naval Operations Instruction 4441.12A, SupplySupport of the Operating Forces, 9 August 1973.

3. Center for Naval Analysis Memorandum (CNA)80-0881,Third Advisory Committee Briefing on Shipboard PartsAllowance Policy Study, by Cdr. J. Bagby, 19 June 1980.

4. Learmonth, G. P. and Lewis, P. A. W., 'NavalPostgraduate School Random Number Generator Package',Naval Postgraduate School Report NPS5SLW3061A, June1973

5. Buckberg, M. L. and Vail, J. A., 'DDG-47 ReliabilityEngineering Analysis,' Naval Engineers Journal, v. 90,no. 3, p. 85-90, June 1978.

6. Naval Sea Systems Command Report 313-110-79, Reliability/Maintainability/Availability Design Data Bank, September1979.

7. Judge, S. D. and Luetjen, P., 'Determination ofShipboard Repair Parts Level,' Naval Engineers Journal,v. 91, no. 2, p. 37-43, April 1979.

8. Department of Defense Military StandardizationHandbook MIL-HDBK-217C, Reliability Prediction ofElectronic Equipment, 9 April 1979.

9. Straub, D. R., 'Differences Between Failure Rates andBest Replacement Factors,' Navy Supply Corps Newsletter,v. 42, no. S, p. 35-38, May 1979.

10. Esary, J. D. and Richards, F. R., Some Hostile CommentsAbout the Definition of Operational Availability, paperpresented at 44th Symposium of MORS, Vandenberg AFBCalifornia, 5 December 1979.

114

p

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2Cameron Station

Alexandria, Virginia 22314

2. Library, Code 01422Naval Postgraduate School

Monterey, CA 93940

. Department Chairman, Code S 1Department of Operations ResearchNaval Postgraduate SchoolMonterey, California 93940

4. Assoc. Professor F.R. Richards, Code 5Rh 1Naval Postgraduate SchoolMonterey, California 93940

S. Professor J.D. Esary, Code 55Ey1~Naval Postgraduate School~Monterey, California 93940

6. CDR. W.E. Daeschner, SC, USN, Code 04A 1Naval Supply Systems CommandWashington, DC 20376

7. CDR. James Bagby, USN 2Center for Naval Analysis2000 North Beauregard StreetAlexandria, Virginia 22311

8. Mr. Palmer Luetjen, Code 31331 1Naval Sea Systems CommandWashington, DC 20362

9. LT. J.E. Leather, SC, USN 262 Shongum RoadRandolph, New Jersey 07869

115