32
Comparison of L and P band radar time series for the monitoring of Sahelian area P.-L. Frison, G. Mercier, E. Mougin, P. Hiernaux

frison.ppt

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: frison.ppt

Comparison of L and P band radar time series for the monitoring of Sahelian area

P.-L. Frison, G. Mercier, E. Mougin, P. Hiernaux

Page 2: frison.ppt

Context:• Better understanding Sahelian surface processes and their interaction with monsoon variability• Improve our understanding and documentation of long term trend in vegetation in response to climate change• radar data:

2 key parameters: soil moisture and vegetation

Goal:• Comparison of L band PALSAR and C band ASAR data

for Sahelian surface monitoring. Relation between radar vs surface parameter temporal evolution

Page 3: frison.ppt

Outline:

• Study site

• PALSAR and ASAR data

• change detection method

• Results and discussion

Page 4: frison.ppt

The Sahel

Semi-arid area

herbaceous layer (0-50 %) (annual grasses)

Dry season (Nov. – Apr.)

bare soil

Rainy season (May – Oct.)

shrub (0-20 %) trees (1-5 %)+

Page 5: frison.ppt

Region of study: the Gourma - Mali

Seno

Page 6: frison.ppt

PALSAR acquisitions: L band (Jan. 2007 - Apr. 2009)

DATASET

Mode # Polarization Resolution Incidence angle

Pass

Fine Beam 7 HH 15 m 40° Ascending

Fine Beam 5 HH / HV 15 m 40° Ascending

Wide Swath 6 HH 100 m 30° Descending

ASAR acquisitions: C band (Jul. - Dec. 2005)

Mode # Polarization Resolution Incidence angle

Pass

Wide Swath 41 HH 150 m 18-35° Ascending+

Descending

Page 7: frison.ppt

Gourma Region (MALI)ASAR –Wide Swath - HH

20th Dec 2005

Page 8: frison.ppt

GOURMA Region (MALI)PALSAR–WIDE BEAM- HH

1st Jan 2008

Page 9: frison.ppt

Gourma Region (MALI)ASARC-band

PALSARL-band

C-band (ASAR):Shallow sand and silt soils

L -band (PALSAR):Better discrimination of geological features

Remnant of alluvial systems and lacustrine depressions

Page 10: frison.ppt

Gourma Region (MALI)ASARC-band

PALSARL-band

C-band (ASAR):Shallow sand and silt soils

L -band (PALSAR):Better discrimination of geological features

Remnant of alluvial systems and lacustrine depressions

Page 11: frison.ppt

PALSAR Fine Beam – HH polarizationTemporal color composite image

GOURMA - MALI17 Jan. 200720 Oct. 200722 Jan.2009

Water pondsHombori mounts

Low-land (accacia forest)

Page 12: frison.ppt

Change detection methodConstraints:

Large dynamic range (high differences over bright patterns)Even after multi-looking, presence of noise (speckle) absolute or relative differences, ratios, rms,….. not

significant

Time series color composite image Relative differences

Page 13: frison.ppt

Temporally stable regions gray

Change detection colored areas

Case of 3 channels

Change detection methodConstraints:

Large dynamic range (high differences over bright patterns)Even after multi-looking, presence of noise (speckle) absolute or relative differences, ratio, rms,….. not

significant

Page 14: frison.ppt

Temporally stable areas gray areas (no saturation)

Change detection colored areas (saturation)

RGB space R

B

G0

HSV space

Case of 3 channels

Value

Saturation

Hue

Change detection methodConstraints:

Large dynamic range (high differences over bright patterns)Even after multi-looking, presence of noise (speckle) absolute or relative differences, ratio, rms,….. not

significant

Page 15: frison.ppt

17 Jan. 200720 Oct. 200722 Jan.2009

RGB Space

Page 16: frison.ppt

Value

Hue

Saturation

HSV Space

Areas that have changed

Page 17: frison.ppt

Color composite image Saturation image

17 Jan. 200720 Oct. 200722 Jan.2009

Change detection for a 3-date color composite image

PALSAR Fine BeamHH polarization

Page 18: frison.ppt

Change detection methodCase of N channels (N>3):

P iterations:1) random draw of 3 among the N available

channels2) Compute the saturation channel from HSV

space

Average of the P saturation channels

Example: 12 Finebeam acquisitions at HH pol.N=12 12! / (9! * 3!) = 220 possible random

draws

P =50 (arbitrary)

Page 19: frison.ppt

Color composite image Saturation image

17 Jan. 200720 Oct. 200722 Jan.2009

Change detection for a 3-date color composite image

PALSAR Fine BeamHH polarization

Page 20: frison.ppt

Color composite image Saturation image

Change detection for 12 FineBeam acquisitions (HH polarization)

17 Jan. 200720 Oct. 200722 Jan.2009

PALSAR Fine BeamHH polarization

Jan. 2007 – Apr. 2009

Page 21: frison.ppt

Temporal changes detected over 12 Fine Beam acquisitions

PALSAR dataHH polarisationJan. 2007 – Mar. 2009

Water ponds

Fields (millet) dep. Orientation!

Significant penetration depth over sandy soils

Page 22: frison.ppt

Changes in dry seasonChanges in rainy season

Temporal changes detected over 12 Fine Beam acquisitions

Water pondspermanent

PALSAR dataHH polarisationJan. 2007 – Mar. 2009

Fields (millet) dep. Orientation!

Page 23: frison.ppt

ALOS/PALSAR – FBD6th June 2008

HH HV

Sandy soils

Shallow soils

INFLUENCE OF POLARISATION

Page 24: frison.ppt

Change detection between HH and HV

PALSAR DUAL POLARIZATION

Shallow soils+

Water ponds

Page 25: frison.ppt

ALOS/PALSAR – WB1: HH Polarization

Water ponds discrimination

2008 dry season:1 Jan16 Feb2 Apr

3-date color composite image

Page 26: frison.ppt

Change detection (dry season)

ALOS/PALSAR – WB1: HH Polarization

Water ponds discrimination

• Main water resource • Hydrological indicator

surface runoffareas increase since begining of drought

period (50’s)

Page 27: frison.ppt

ASAR –Wide Swath – HH polarisation

41 acquisitions22 acquisitions in ascending pass

5 acquisitions same incidence angle (35°) – Jul. –Dec. 2005

Page 28: frison.ppt

ASAR –Wide Swath - HH polarisation

2nd Sept. 2005 change detection (5 dates)

low penetration over sandy soil upper surface changes

sandy soils

Page 29: frison.ppt

ASAR –Wide Swath - HH polarisation

2nd Sept. 2005 change detection (5 dates)

low penetration over sandy soil upper surface changes

sandy soils, water ponds

Page 30: frison.ppt

change detection (5 dates)PALSAR (L-band)

low penetration over sandy soil upper surface changes

sandy soils, water ponds

High penetration dpeth over sandy soilswater ponds millet fields

Comparison P band / L band temporal change detection

Page 31: frison.ppt

Conclusion

• RGB HSV simple but performant for change detection!

• Temporal change detection: penetration depth illustration

histogram must be the same across the hole image!

C band (low penetration over sandy soils)mix of upper surface changes

sandy soils (soil moisture + vegetation)water ponds

more difficult te discriminate special features

• L band: some variation over sandy soils (soil moisture?) Cross over with SMOS mission

L band (high penetration over sandy soils)Water pondsMillet fields

Page 32: frison.ppt

Thank you for your attention!