23
Perovskites-based Solar Cells The challenge of material choice for p-i-n perovskites thin-Film PV Akinola Oyedele

Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Embed Size (px)

DESCRIPTION

Perovskite-based PV have triggered widespread interest in the scientific community because these materials offer the attractive combinations of low cost and theoretically high efficiency. However, several challenges must be overcome for these relatively new PV materials. Among the many important challenges, one is the choice of materials to be used in thin film PV devices.. Based on fundamental principles of solar photovoltaics, this problem focuses on two aspects of the perovskite system: 1) Based on a planar p-i-n device structure, a potential list of p- and n-type charge collecting layers as well as the conductive contacts that could be used with a promising perovskite absorber material was identified, and a proper justification for the selection of each material in the device was given. 2) Three theoretical p-i-n type solar cells were made with the chosen materials and appropriate conductive contacts.

Citation preview

Page 1: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Perovskites-based Solar Cells

The challenge of material choice for p-i-n perovskites thin-Film PV

Akinola Oyedele

Page 2: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Outline

• Introduction• Background of Perovskites• Evolution of Perovskites• The p-i-n Perovskite Structure• Factors to Consider in Material Choice• Selected Materials• Design Consideration • Conclusion

Image Credit: solarsenergyprosandcons.com

Image credit: www.gatescambridge.org

Page 3: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Introduction-Why Solar?

Sun

HydroFossil

WindTidal

Bio-fuels

PV

Page 4: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Solar-Current State-of-the-Art Tech.

Image Credit: NREL, 2014

Page 5: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Solar-Current State-of-the-Art Tech.

Image Credit: Ossila

Page 6: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Solar-Current State-of-the-Art Tech.

Image Credit: G. Conibeer, 2007 Third-generation photovoltaics Material Today 10 11 44 50

Page 7: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Perovskite crystal

The Perovskite Material

• What is Perovskite? • Basic Structure• Other applications• The organometal halide perovskite

http://en.wikipedia.org/wiki/Lev_Perovski

Lev Perovski

(Bisquert, 2013) (Kim, Im, & Park, 2014)

Page 8: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Perovskite crystal

The Perovskite Material

Peng Gao Energy Environ. Sci., 2014, 7,2448

Page 9: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Structural Properties

• Highly crystalline structure (depends on mixed halide, annealing, processing)

• Size of crystallite• Crystallographic changes with temperature

C. W. Chen, Adv. Mater. 2014, 26, 6647–6652 C. W. Chen, Adv. Mater. 2014, 26, 6647–6652

Page 10: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Optical Properties

• High absorption coefficient• Optical absorption as a function of the metal halide • Band- tuning

M. A. Green, Nature Photonics 8, 50-514 (2014) Peng Gao Energy Environ. Sci., 2014, 7,2448

Page 11: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Electronic Properties

• Large Bohr radius Wannier-type excitons• Low binding energies• High dielectric constant • Allow for Charge accumulation • Ambivalent charge transport• Very high e- h+ diffusion lengths

𝐶=𝑘𝜀0 𝜀𝑟 𝐴

𝑑Image Credit: solarwiki.ucdavis.edu

Page 12: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Evolution of Perovskite Solar Cells

A. Hagfeldt, Chem. Rev. 2010, 110, 6595–6663

(Snaith H. J., 2013)

Dye-Sensitized Solar Cell

Page 13: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Achieving ɳ > 20% for Planar p-i-n Perovskites• Improve homogeneity • Narrow band-gap • Multijunction and tandem cells• Better materials for p & n layer to increase FF

Solar Spectrum

Image Credit: www.geog.ucsb.edu

TiOx

PEDOT:PSS

FTO

Perovskite

[60]PCBM

Aluminium

SEM ImageP. Decampo, Nature Comm 4, 2761 (2013)

Page 15: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Material Choice (1) - Transporters

• Charge carrier selectivity • Matching of energy levels• Degree of chemical interaction• Conductivity• Light absorption

Page 16: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Materials Choice (2) - Contacts

• Light absorption• Work function • Chemical contamination

Back Contact Electrode:

Gold; work function -5.1 eV

Silver; work function -4.26 eV

Aluminum; work function - 4.28 eV

 Transparent Conductive Front Contact:

Fluorine-doped tin oxide (FTO); work function: -4.4 eV (Abrusci,

Stranks, Docampo, Yip, Jen, & Snaith, 2013)

Indium tin oxide (ITO); work function: -4.8 eV (Seo, et al., 2014)

Page 17: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Design Consideration

A B C

Page 18: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Component ThicknessArchitecture A Architecture B Architecture C

Glass

700 nm-900 nm

Glass

700 nm-900 nm

Glass

700 nm-900 nm

ITO

550-700 nm

FTO

700 nm

FTO

700 nm

PTAA

60-70 nm

TiO2

50-90 nm

PC61BM

30-50 nm

CH3NH3PbI3-xClx

350-450 nm

CH3NH3PbI3:

250-300 nm

CH3NH3PbI3-xClx

350-450 nm

TiO2

50-90 nm

Spiro-MeOTAD

150-200 nm

Spiro-MeOTAD

150-200 nm

Ag

60 nm

Au

60 nm

Au

60 nm

Total Thickness

1.77- 2.27 μm

Total Thickness

1.91 - 2.25 μm

Total Thickness

1.99 - 2.36μm

Page 19: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Deposition Methods

One-StepSequential Deposition

Dual-Source Vapor Deposition

Vapor-Assisted Solution Process

Peng Gao Energy Environ. Sci., 2014, 7,2448

Page 20: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Conclusion

• Perovskite absorber: polycrystalline, higher abs coeff., & higher carrier LD

• Efficiency of > 20% can be achieved• There is a bright future for perovskites p-i-n solar cells if the problems

relating to stability and toxicity can be addressed • Proposed configurations guarantee better interface layer engineering

and charge transport.

H. Zhou, Science, 345, 542(2014)

Page 21: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV
Page 22: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Questions

Page 23: Perovskites-based Solar Cells: The challenge of material choice for p-i-n perovskites thin-Film PV

Selected References

• Boix, P. P., Nonomura, K., Mathews, N., & Mhaisalkar, S. G. (2014). Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today , 17 (1), 16–23.

• Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., & Cahen, D. (2014). Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nature Communications , 5, 1-8.

• Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature , 501, 395.

• Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. Journal of Physical Chemistry Letters (4), 3623-3630.

• Sum, T. C., & Mathews, N. (2014). Advancements in perovskite solar cells: photophysics behind photovoltaics. The Royal Society of Chemistry .

• Tanaka, K., Takahashia, T., Takuma, B., & Kondoa, T. (2003). Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications , 127, 619-623

• Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., et al. (2013). Long-range balanced electron- and hole- transport lengths in organic-inorganic CH3NH3PbI3. Science , 342, 344-347

• Yamamuro, N. O., Matsuo, T., & Suga, H. (1992). Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). Journal of Physics and Chemistry of Solids , 53 (7), 935-939.