23
Experimental validation of a new adaptive control scheme for quadrotors MAVs Gianluca Antonelli , Elisabetta Cataldi , Paolo Robuffo Giordano , Stefano Chiaverini , Antonio Franchi University of Cassino and Southern Lazio, Italy http://webuser.unicas.it/lai/robotica CNRS at IRISA and Inria Bretagne Atlantique, France http://www.irisa.fr/lagadic Max Planck Institute for Biol. Cybernetics, Germany http://www.kyb.mpg.de/research/dep/bu/hri/ IROS 2013 Antonelli Cataldi Robuffo Chiaverini Franchi Tokyo, 5 November 2013

IROS 2013 talk

Embed Size (px)

Citation preview

Page 1: IROS 2013 talk

Experimental validation of a new adaptive

control scheme for quadrotors MAVs

Gianluca Antonelli†, Elisabetta Cataldi†,Paolo Robuffo Giordano⊕, Stefano Chiaverini†, Antonio Franchi≀

†University of Cassino and Southern Lazio, Italyhttp://webuser.unicas.it/lai/robotica

⊕CNRS at IRISA and Inria Bretagne Atlantique, Francehttp://www.irisa.fr/lagadic

≀Max Planck Institute for Biol. Cybernetics, Germanyhttp://www.kyb.mpg.de/research/dep/bu/hri/

IROS 2013

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 2: IROS 2013 talk

Trajectory tracking control for quadrotor

Adaptive with respect to

uncertainty in total massuncertainty in Center Of Mass (CoM)presence of 6-DOF external disturbances

Assumption: closed-loop orientation dynamics faster thantranslational one

Stability analysis & numerical simulations1

Experimental results

1Antonelli, Arrichiello, Chiaverini, Robuffo Giordano, “Adaptivetrajectory tracking for quadrotor MAVs in presence of parameteruncertainties and external disturbances”, AIM 2013

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 3: IROS 2013 talk

Kinematics

earth-fixed

O x

z

y

η1

body-fixed

Ob

xb

zb

yb

u, surge

w, heave

v, sway

p, roll

r, yaw

q, pitch η1 =[

x y z]T

η2 =[

φ θ ψ]T

ν1 = RBI η1

ν2 = T (η2)η2

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 4: IROS 2013 talk

Dynamics

Mathematical model expressed in body-fixed frame

Mν +C(ν)ν + τW + g(RBI ) = τ ,

beyond the common terms, we model

τW =

[

RBI O3×3

O3×3 RBI

]

γW

γW ∈R6 external disturbance constant in the inertial frame (wind)

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 5: IROS 2013 talk

Dynamics -2-

Exploiting the linearity in the parameters

Φ(ν,ν,RBI )γ = τ

and rewriting with respect to the inertial frame while separating thexy dynamics from z:

[

Φxy(η, η, η)φz(η, η, η)

]

γ = RIBτ 1

with γ ∈ R16:

mass (1 parameter)

first moment of inertia (3 p.)

inertia tensor (6 p.)

external disturbance (6 p.)

τ =

[

τ 1

τ 2

]

=

00Z

K

M

N

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 6: IROS 2013 talk

Thrust

Assuming CoM coincident with Ob

xy

z

O

xbyb zb

Ob

f1

f2

f3

f41

2

3

4

ωt,1

ωt,2

ωt,3

ωt,4

τt,1

τt,2

τt,3

τt,4

l

fi = bω2t,i

τt,i = dω2t,i

τ 1 =

00

4∑

i=1

fi

τ 2 =

l(f2 − f4)l(f1 − f3)

−τt,1 + τt,2 − τt,3 + τt,4

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 7: IROS 2013 talk

Mapping from the angular velocities to the force-torques

Assuming CoM of coordinates rC :

Z

K

M

N

= Bv

ω2t,1

ω2t,2

ω2t,3

ω2t,4

with

Bv=

b b b b

0 b(l + rC,y) 0 −b(l − rC,y)b(l + rC,x) 0 −b(l − rC,x) 0

−d d −d d

CoM influences the mapping from thrust generated from the

motors to the vehicle forces/moments

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 8: IROS 2013 talk

Inverse mapping

Any controller determines a control action[

Zc Kc Mc Nc

]Tfurther

projected onto the motor input u ∈ R4

u = B−1v

Zc

Kc

Mc

Nc

where B−1v ∈ R

4×4 is

B−1v =

l − rC,x

4bl0

1

2bl−l − rC,x

4dll − rC,y

4bl

1

2bl0

l − rC,y

4dll + rC,x

4bl0 −

1

2bl−l + rC,x

4dll + rC,y

4bl−

1

2bl0

l + rC,y

4dl

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 9: IROS 2013 talk

Current inverse mapping

When the CoM position estimate rC is affected by an error, the real

mapping becomes

Z

K

M

N

= Bv|rC B−1v

rC

Zc

Kc

Mc

Nc

=

1 0 0 0rC,y

21 0

brC,y

2drC,x

20 1 −

brC,x

2d0 0 0 1

Zc

Kc

Mc

Nc

wrong CoM estimate ⇒ a coupling from altitude and yaw control

actions onto roll and pitch dynamics

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 10: IROS 2013 talk

Controller block diagram

η1d

ψdφd, θd

Zc

posor

Kc

Mc

Nc

B−1

v

umotors

w2

t,iBv

Z

K

M

N

τW

η

plant

Classical MAV control architecture with adaptation wrt parametersand compensation of the CoM position

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 11: IROS 2013 talk

Altitude controller

error

z = zd − z ∈ R

sz = ˙z + λz z ∈ R

full version

Z =1

cosφ cos θ(φzγ + kvzsz)

˙γ = K−1γ,zφ

Tz sz

with γ ∈ R16

reduced version

Z =1

cosφ cos θ(γz + kvzsz)

˙γz = k−1γ,zsz

with γz ∈ R1

the reduced version designed to compensate only for persistent

terms ⇒ null steady state error wrt a minimal set of parameters!

(λz > 0, kvz > 0,Kγ,z > O, kγ,z > 0)

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 12: IROS 2013 talk

Horizontal controller

error

ηxy =[

xd − x yd − y]T

∈ R2

sxy = ˙ηxy + λxyηxy ∈ R2

full version

virtual input solutions of:

[

cφsθ−sφ

]

=1

ZRz (Φxyγ + kv,xysxy)

˙γ = K−1γ,xyΦ

Txysxy

with γ ∈ R16

reduced version

virtual input solutions of:

[

cφsθ−sφ

]

=1

ZRz

(

γxy + kv,xysxy)

˙γxy = k−1γ,xysxy

with γxy ∈ R2

again: the reduced version compensates only for persistent terms

⇒ null steady state error wrt a minimal set of parameters!

(λxy > 0, kv,xy > 0,Kγ,xy > O, kγ,xy > 0)

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 13: IROS 2013 talk

Orientation controller

The inputs are the desired roll, pitch and yawThe commanded forces map onto the real ones according to

K = Kc +rC,y

2Zc +

brC,y

2dNc

M = Mc +rC,x

2Zc −

brC,x

2dNc

N = Nc

Neither the altitude nor the yaw control loop are affected by rC , thus both Zc

and Nc convergence to a steady state valueRoll and pitch control can be designed by considering the estimation error asan external, constant, disturbance:

K = Kc +1

2

(

Zc +b

dNc

)

rC,y

M = Mc +1

2

(

Zc −b

dNc

)

rC,x

The disturbance value is unknown and its effect may be compensated by

resorting to several adaptive control laws well known in the literature

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 14: IROS 2013 talk

CoM estimation

PD control for roll and pitch =⇒ steady-state error because of thewrong CoM estimateA simple integral action can counteract this effect resulting a zerosteady-state error

[

˙rC,x

˙rC,y

]

= −krC

[

θd − θ

φd − φ

]

, krC > 0

As a byproduct, in absence of moment disturbance, the estimates(rC,x, rC,y) are driven towards the real CoM offsets (rC,x, rC,y)

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 15: IROS 2013 talk

Stability analysis

Altitude controller: let γ = γ − γ and consider the Lyapunov function

V (sz, γ) =m

2s2z +

1

2γTKγ,zγ

Along the system trajectories

V (sz, γ) = sz(

mzd −mz +mλz ˙z)

− γTKγ,z˙γ

= sz (φzγ − cosφ cos θZ)− γTKγ,z˙γ = −kvzs

2z ≤ 0

State trajectories are boundedAsymptotic stability can be further proven by resorting to Barbalat’sLemma as in classical adaptive control schemesSimilar machinery for the horizontal controller case

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 16: IROS 2013 talk

Experimental results

Experiments run at the Max Planck Institute of Tubingen, Germany

additionalweight

case weight adaptive

a) no nob) no yesc) yes nod) yes yes

gain a/c b/d

λz 3 3kvz 5.5 5.5kγ,z 0 1.5λxy 3 3kv,xy 3 3kγ,xy 0 1kv,ϕθψ 1 1kv,ϕθψ 1 1krC 0 .1

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 17: IROS 2013 talk

Experimental results

desired trajectory

0 20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

time [s]

η1,d[m

]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 18: IROS 2013 talk

Experimental results

Norm of the 3D position errors for the cases a) (green) and b) (blue)(no weight)

0 20 40 60 80 100 120 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

∥ ∥

η1,d−

η1

∥ ∥

[m]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 19: IROS 2013 talk

Experimental results

Norm of the 3D position errors for the cases c) (green) and d) (blue)(weight)

0 20 40 60 80 100 120 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

∥ ∥

η1,d−

η1

∥ ∥

[m]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 20: IROS 2013 talk

Experimental results

Roll (top) and pitch (bottom) angles for cases c) (green) and d) (blue)

0 20 40 60 80 100 120 140−4

−2

0

2

0 20 40 60 80 100 120 140−5

0

5

10

time [s]

time [s]

ϕ[deg]

θ[deg]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 21: IROS 2013 talk

Experimental results

Control forces for the cases c) (green) and d) (blue)

0 20 40 60 80 100 120 140

−16

−14

0 20 40 60 80 100 120 1400

0.5

0 20 40 60 80 100 120 140−0.4−0.2

00.2

0 20 40 60 80 100 120 140−0.03−0.02−0.01

00.01

time [s]

time [s]

time [s]

time [s]

Z[N

]K

[Nm]

M[N

m]

N[N

m]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 22: IROS 2013 talk

Experimental results

Time history of the parameters estimates for the case d). Top:parameter γz, center: parameter γxy, bottom: parameter rC .

0 20 40 60 80 100 120 140−18

−16

−14

0 20 40 60 80 100 120 140−1

0

1

0 20 40 60 80 100 120 140−0.05

0

0.05

time [s]

time [s]

time [s]

γz[N

]γxy[N

]rC[m

]

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013

Page 23: IROS 2013 talk

Experimental validation of a new adaptive

control scheme for quadrotors MAVs

Gianluca Antonelli†, Elisabetta Cataldi†,Paolo Robuffo Giordano⊕, Stefano Chiaverini†, Antonio Franchi≀

†University of Cassino and Southern Lazio, Italyhttp://webuser.unicas.it/lai/robotica

⊕CNRS at IRISA and Inria Bretagne Atlantique, Francehttp://www.irisa.fr/lagadic

≀Max Planck Institute for Biol. Cybernetics, Germanyhttp://www.kyb.mpg.de/research/dep/bu/hri/

IROS 2013

Antonelli CataldiRobuffoChiaverini Franchi Tokyo, 5 November 2013