Transcript
  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    1/18

    Co rrosion Scien ce, Vo l. 28, No. 6, pp. 603-6 20, 1988 0010--938X/88 $3.(~1+ 0.00

    Printed in Gre at Britain Pergamo n Press plc

    A M A T H E M A T I C A L M O D E L O F C R E V I C E A N D P I T T I N G

    C O R R O S I O N I . T H E P H Y S I C A L M O D E L

    S. M . SHARLANDan d P. W . TASKER

    T h e o r e t i c a l P h y s i c s D i v i s i o n , H a r w e l l L a b o r a t o r y , O x f o r d s h i r e O X 1 1 0 R A , U . K .

    A b s t r a c t - - A p r e d i ct i v e a n d s e l f- c o n si s te n t m a t h e m a t i c a l m o d e l i n c o r p o ra t i n g t h e e l e c t r o c he m i c a l ,

    c h e m i c a l a n d i o n i c m i g r a t i o n p r o c e s s e s c h a r a c t e r i z i n g t h e p r o p a g a t i o n s t a g e o f c re v i c e a n d p i t t i n g

    c o r r o s i o n i n m e t a l s i s d e s c r i b e d . T h e m o d e l p r e d i c t s t h e s t e a d y - s t a t e s o l u t i o n c h e m i s t r y a n d e l e c t r o d e

    k i n e t i c s ( a n d h e n c e m e t a l p e n e t r a t i o n r a t e s ) w i t h i n a n a c ti v e c o r ro s i o n c a v i t y a s a f u n c t i o n o f t h e m a n y

    p a r a m e t e r s o n w h i c h t h e s e d e p e n d , s u c h a s e x t e r n a l e l e c t r o d e p o t e n t i a l a n d c r e v i c e d i m e n s i o n s . T h e

    c r ev i ce i s m o d e l l ed a s a p a r a l l e l - s i d ed s l o t f i l l ed w i t h a d i l u t e s o d i u m ch l o r i d e s o l u t i o n . T h e cav i t y

    p r o p a g a t i o n r a t e s a r e f o u n d t o b e f a s t e r i n t h e c a s e o f a c r e v i c e w i t h p a s s iv e w a l ls t h a n o n e w i t h a c t iv e w a ll s.

    T h e d i s t r i b u t i o n o f c u r r e n t o v e r t h e i n t e r n a l s u r f a c e o f a c re v i c e w i t h c o r r o d i n g w a ll s c a n b e a s s e s s e d u s i n g

    t h i s m o d e l , g i v in g a n i n d i c a t i o n o f t h e f u t u r e s h a p e o f t h e c a v i ty . T h e m o d e l i s e x t e n d e d t o i n c l u d e a s ol i d

    h y d r o x i d e p r e c i p i t a t i o n r e a c t i o n a n d c o n s i d e r s t h e e f f e c t o f c o n s e q u e n t c h a n g e s i n t h e c h e m i c a l a n d

    p h y s i c a l e n v i r o n m e n t w i t h i n t h e c r e v i c e o n t h e p r e d i c t e d c o r r o s i o n r a t e s . I n t h is p a p e r , t h e m o d e l i s

    a p p l i e d t o c r e v i c e a n d p i t t i n g c o r r o s i o n i n c a r b o n s t e e l .

    N O M E N C L A T U R E

    i

    c o n c e n t r a t i o n o f c h e m i c a l s p e c ie s , i, m o l d m 3

    D i d i f f u s i o n co e f f i c i en t o f s p ec i e s i , m e s - 1

    F F a r a d a y ' s c o n s t a n t o f e l e c t ro l y s is , C m o l -~

    i cu r r e n t d en s i t y , A m - 2

    k c h e m i c a l r a t e c o n s t a n t

    K e q u i l i b r i u m c o n s t a n t

    l en g t h o f c r ev i ce , m

    R g m o l a r g a s c o n s t a n t , J m o V 1 K

    R , r a t e o f p r o d u c t i o n o f s p e c i e s i b y c h e m i c a l r e a c t i o n , m o l s

    T t e m p e r a t u r e , K

    U i m o b i l i t y o f s p ec i e s , m 2 m o l J - ~ - 1

    w w i d t h o f c r e v i c e , m

    z , c h a r g e n u m b e r o f s p e c i e s i

    c t e l ec t r o ch em i ca l p a r t i t i o n co e f f i c i en t

    q~ e l ec t r o s t a t i c p o t e n t i a l d r o p i n c r ev i ce , V

    ~0M e l e c , r o s t a t ic p o t e n t i a l o f c o r r o d i n g m e t a l , V

    a ch a r g e d en s i t y , C m -3

    I N T R O D U C T I O N

    A P A S S I V E m e t a l s u r f a c e e x p o s e d t o a c o r r o s i v e e n v i r o n m e n t m a y e x p e r i e n c e a t t a c k

    a t s e v e r a l i s o l a t e d s i te s . I f t h e t o t a l a r e a o f t h e s e s i t e s i s s m a l l c o m p a r e d w i t h t h e

    w h o l e s u r f a c e a r e a , t h e n t h e m e t a l i s s a i d t o b e e x p e r i e n c i n g l o c a l i z e d c o r r o s i o n . T h e

    r a t e o f m e t a l d i s s o l u t i o n i n t h i s s i t u a t i o n i s o f t e n m u c h g r e a t e r t h a n t h a t a s s o c i a t e d

    w i t h u n i f o r m c o r r o s i o n a n d s t r u c t u r a l f a i l u r e m a y o c c u r i n a v e r y s h o r t p e r i o d .

    S e v e r a l d i f f e r e n t m o d e s o f l o c a l i z e d c o r r o s i o n m a y b e i d e n t i f i e d a n d a r e d e p e n d e n t

    M an u s c r i p t r ece i v e d 1 5 J an u a r y 1 9 86 ; i n r ev i s ed f o r m 1 5 A u g u s t 1 9 87 .

    603

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    2/18

    604 S .M . SHARLAND nd P. W . TASKER

    o n t h e t y p e o f m e t a l u n d e r g o i n g c o r r o s i o n a n d i ts p h y s ic a l a n d c h e m i c a l e n v i r o n m e n t

    a t t h e t i m e o f a t t a c k . O n e o f t h e m o s t f a m i l i a r is p i t ti n g c o r r o s i o n w h i c h is

    c h a r a c t e r i z e d b y t h e p r e s e n c e o f a n u m b e r o f sm a l l, r o u g h l y h e m i s p h e r i c a l c a vi ti e s

    o n t h e e x p o s e d s u r f a c e . T h e g e o m e t r i e s o f t h e s e p it s d e p e n d o n m a n y f a c t o r s s u c h as

    t h e m e t a l c o m p o s i t i o n a n d t h e s u r f a c e o r i e n t a t i o n . A s im i l a r m o d e o f c o r r o s i o n is

    c r e v ic e a t t a c k w h i c h o c c u r s w h e r e t h e r e a r e t w o o r m o r e s u r fa c e s i n c l os e p r o x i m i t y ,

    l e a d in g t o t h e c r e a t i o n o f a l oc a l ly o c c l u d e d r e g i o n w h e r e e n h a n c e d d i s so l u ti o n m a y

    o c c u r . T h e r e a r e m a n y m e c h a n i s t i c s i m i l a r i t i e s a s s o c i a t e d w i t h t h e g r o w t h o f

    e s t a b l i s h e d p i t s a n d c r e v i c e s . O t h e r t y p e s o f l o c a l iz e d c o r r o s i o n i n c l u d e s t r e s s - c o r r o -

    s io n c r a c k i n g , c o r r o s i o n f a t i g u e c r a c k i n g a n d i n t e r g r a n u l a r a t t a c k b u t t h e s e w i ll n o t

    b e c o n s i d e r e d h e r e .

    T h e r a p i d i t y w i t h w h i c h l o c a l i z e d c o r r o s i o n c a n l e a d t o t h e f a i l u r e o f a m e t a l

    s t r u c t u r e h a s l e d to a g r e a t d e al o f s t u d y o f th is p h e n o m e n o n . T h e r e a r e m a n y

    d i ff ic u lt ie s a s s o c i a te d w i t h t h e e x p e r i m e n t a l m e a s u r e m e n t o f t h e e l e c t r o c h e m i c a l

    c o n d i t io n s w i t h in c a v i ti e s a n d a s a r e su l t a n u m b e r o f m a t h e m a t i c a l m o d e l s h a v e b e e n

    d e v e l o p e d . T h e a i m o f th is p a p e r i s t o p r e s e n t a m o d e l o f th e p r o p a g a t i o n o f a n a c t iv e

    c o r r o s i o n c r e v i c e o r p i t w h i c h i s e n t i r e l y p r e d i c t i v e a n d s e l f - c o n s i s te n t , u s i n g a s e r ie s

    o f ph y s ic a l ly b a s e d a p p r o x i m a t i o n s a n d a s s u m p t io n s . T h e m o d e l p r e d i c ts t h e s t e a dy -

    s t a te s o l u ti o n c h e m i s t r y a n d e l e c t r o c h e m i s t r y ( a n d h e n c e m e t a l p e n e t r a t i o n r a t e s )

    w i t h in t h e r e s t r i c t e d g e o m e t r i e s o f th e c a v it ie s . T h e i n p u t p a r a m e t e r s o f t h e m o d e l

    d e s c r i b e t h e p h y si c a l a n d c h e m i c a l e n v i r o n m e n t o f t h e c r e v i c e , e . g . m e t a l p o t e n t i a l ,

    p H o f th e e l e c t r o l y t e e t c. T h e m o d e l a ls o us e s e m p i r i c a ll y d e t e r m i n e d e l e c t r o d e

    r e a c t i o n r a t e s . I t is d e v e l o p e d i n a n u m b e r o f d is t i n c t s t a g e s , e a c h c o n s i d e r i n g a n

    a d d i t io n a l p h y s ic a l p r o c e s s o r c h e m i c a l e q u il i b r iu m r e a c t i o n . T h e r e l a t e d m a t h e m a t -

    i ca l a d d i t i o n s , j u s t if i c a t io n o f a p p r o x i m a t i o n s a n d m e t h o d s o f s o l u t i o n a t e a c h s t a g e

    a r e d e s c r i b e d f u l l y i n a n a c c o m p a n y i n g p a p e r . I t i s n o t i n t e n d e d t o p r e s e n t a d e t a i l e d

    c o m p a r i s o n o f t h e p r e d i c t i o n s o f t h e m o d e l w i th e x p e r i m e n t a l r e s u lt s in t hi s p a p e r ,

    b u t m o r e g e n e r a l a s s e s s m e n t s o f th e a c c u r a c y o f t h e m o d e l w i ll be m a d e b y

    c o n s i d e r i n g t he o r d e r o f m a g n i t u d e s o f t h e p r e d i c t e d c a v it y p r o p a g a t i o n r a t e s a n d

    q u a l i t a t i v e v a r i a t i o n in t h e s e w i t h t h e p a r a m e t e r s o f t h e s y s t e m . I n t h is w a y , t h e

    i m p o r t a n c e o f s o m e o f t h e a p p r o x i m a t i o n s a n d e m p i r ic a l i n p ut d a t a t o t h e p re d i c t i o n s

    o f t h e m o d e l m a y b e d e t e r m i n e d . A m o r e d e t a i l e d m o d e l v a li d a t io n w ill b e c a r r ie d

    o u t a t a l a t e r s t a g e . I n t hi s p a p e r , i n p u t d a t a a p p r o p r i a t e t o th e c o r r o s i o n o f c a r b o n

    s t e e l a r e u s e d , a l t h o u g h t h e m o d e l m a y b e a p p l i e d t o a w i d e r a n g e o f m e t a l s . ( I t h a s

    b e e n s h o w n e x p e r i m e n t a l l y t h a t c a r b o n s t e e l w i ll p a s s i v a t e ( a n d b e s u s c e p t i b l e t o

    p i t ti n g o r c r e v i c e c o r r o s i o n ) i n a w i d e r a n g e o f s o l u t io n s c o n t a i n i n g c h l o r i d e i o ns ~ ).

    I n t h e f ir st s e c t io n , t h e m a t h e m a t i c a l d e s c r i p t i o n o f a n a c t i v e c r e v i c e o r p it is

    d i sc u s se d . T h e s e m e t h o d s w ill b e c o m p a r e d w i th s e v e r a l m o d e l s o f th e s o l u t io n

    c h e m i s t r y a n d e l e c t r o c h e m i s t r y w i t h in c o r r o d i n g c a v i ti e s fr o m t h e l i t e r a t u re . I n t h e

    f o l l o w i n g s e c t i o n , d e t a il s o f a s im p l e m o d e l o f a c r e v i c e w h i c h i s c o r r o d i n g o n l y a t t h e

    b a s e a n d i n c l u d e s o n l y o n e h y d r o l y s i s r e a c t i o n a r e o u t l i n e d . T h e w a l ls o f t h is c a v i ty

    a r e a s s u m e d p a s s i v e , a l l o w i n g a s i m p l if i ed d e s c r i p t i o n o f t h e i o n i c m i g r a t i o n p r o c e s -

    s e s w i t h i n t h e c a v i t y . T h i s m o d e l is t h e n e x t e n d e d t o a m o r e r e a l is t ic d e s c r i p t i o n o f a n

    e s t a b l i s h e d l o c a l i z e d c o r r o s i o n s i te a n d i t is a s s u m e d t h a t c o r r o s i o n o c c u r s o n t h e

    c r e v i c e w a l l s a l s o . T h e p r e d i c t i o n s f r o m b o t h m o d e l s a r e t h e n d i s c u s s e d a n d

    c o m p a r e d . I n p a r t i c u l a r , t h e d i s t r i b u t io n o f c u r r e n t o n t h e w a ll s is c o n s i d e r e d a n d t h e

    e f f e c t o f p a s s i v a t i o n o n p a r t s o f t h e w a l ls , g i v in g a n i n d i c a t i o n o f t h e f u t u r e s h a p e o f

    t h e c a v i t y .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    3/18

    A m o d e l o f c r e v ic e a n d p i t ti n g c o r r o s i o n - - I 6 0 5

    Precipitation of solid hydroxide is monitored in both these models by checking

    the concentrations for appropriate excesses above the solubility limit of the solid. In

    the next section, the active and passive wall models are extended to include the

    precipitation reaction directly. The kinetics of the precipitation are assumed to be

    rapid compared with the migration processes and the ionic concentrations are

    constrained by the equilibria relation for the precipitation reaction. The results are

    compared with those from a crevice with no solid present. The sensitivity of the

    predictions to the diffusion coefficient in the crevice (reduced by the presence of the

    solid corrosion product) is tested. In the final section, limitations of the models and

    possible extensions to improve agreement with experiment are discussed.

    M A T H E M A T I C A L D E S C R I P T I O N O F C R E V I C E A N D P I T P R O P A G A T I O N

    The chemical environment within a localized corrosion cavity is often very

    different from that outside. The common aim of the mathematical models that are

    described here is the prediction of the solution chemistry and electrochemistry within

    the restricted geometries of the cavities as a function of the many physical and

    chemical parameters of the system, such as crevice dimensions and bulk solution

    composition. Such information yields metal penet ration rates. A full description of

    the problem should include an account of the complex solution chemistry within the

    crevice, the electrochemical reaction rates and their dependence on parameters such

    as electrostatic potential and solution pH, the migration of ions under both concen-

    tration and potential gradients, the advection of ions in flowing electrolytes, the

    effect of the changing shape and dimensions of the crevice as propagation proceeds

    and the effect of the blocking of the crevice with solid corrosion product. These

    processes are schematical ly illustrated in Fig. 1.

    Moving boundary

    Cathodic

    J processes

    dffusn

    . . . lu t lon J P r e c i p l t o t l o n

    I o n

    IT

    C o n c e n t r a t i o n g r a d i e n t s )

    [ C h e m i c a l r e a c t i o n ] E l e c t r o m u g r a t u o n

    p o t e n t i a l g r a d i e n t )

    Y

    l

    F IG . 1 . S c h e m a t i c i ll u s t r a t i o n o f t h e c re v i c e o f p i t m o d e l .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    4/18

    606 S.M. SHARLANDand P. W. TASKER

    T h e m a t h e m a t i c a l m o d e l o f c av i ty p r o p a g a t i o n is b a s e d o n t h e s e t o f f u n d a m e n t a l

    e q u a t i o n s g o v e r n i n g t h e m a s s t r a n s p o r t o f a q u e o u s c h e m i c a l s p e c ie s i n d i l u te

    e l e c t r o l y ti c s o lu t i o n s . T h e c o n c e n t r a t i o n o f c h e m i c a l s p e c i e s i, C i o b e y s t h e f o l lo w i n g

    m a s s - c o n s e r v a t i o n e q u a t i o n ( a s s u m i n g t h e e l e c t r o l y t e is s t a ti c ),

    O C i - D i V 2 C i + z i U i V C i ~ ) ) q- R i . (1)

    Ot

    D i i s t h e e f f e c t i v e d i f f u s i o n c o e f f i c i e n t o f s p e c i e s

    i , zi

    t h e c h a r g e n u m b e r , ~ i s t h e

    e l e c t r o s t a t ic p o t e n t i a l i n t h e s o l u t i o n , R i r e p r e s e n t s t h e r a t e o f p r o d u c t i o n o r

    d e p l e t i o n o f s p e c i e s i b y c h e m i c a l r e a c t i o n a n d U i i s t h e m o b i l i ty , g i v e n b y t h e

    e x p r e s s i o n

    D i

    U i - R T (2)

    T h e f ir st t e r m o n t h e r i g h t- h a n d s i d e o f th e e q u a t i o n r e p r e s e n t s t h e c o n t r i b u t i o n t o

    t h e o v e r a l l t r a n s p o r t r a t e f r o m i o n ic d if f u si o n a n d t h e s e c o n d t e r m i s t h e c o n t r i b u t i o n

    b y e l e c t r o m i g r a t i o n f o r t h e c h a r g e d s p e c i e s. T h e e l e c t r o s t a ti c p o t e n t i a l o f t h e s y s t e m ,

    is g o v e r n e d b y P o i s s o n ' s e q u a t i o n ,

    v2q~ = ~ , (3)

    w h e r e a is t h e c h a r g e d e n s i t y a n d e is t h e p e r m i t ti v i t y o f th e e l e c t r o l y t e . F o r w a t e r e

    i s 8 0 , a n d t h e m a g n i t u d e o f e -1 is s u f f ic i e n t l y l a r g e t h a t a n y d e p a r t u r e o f t h e s y s t e m

    f r o m e l e c t r o n e u t r a l i t y r e s u l t s i n a v e r y l a r g e e l e c t r i c a l r e s t o r i n g f o r c e . T h i s f o r c e

    t e n d s t o r e m o v e c h a r g e g r a d i e n t s o n a m u c h f a s t e r t i m e s c a l e t h a n t h o s e a s s o c i a t e d

    w i t h t h e d i f f u s i o n p r o c e s s e s . A s a n a p p r o x i m a t i o n t h e r e f o r e , P o i s s o n ' s e q u a t i o n i s

    o f t e n r e p l a c e d b y t h e e q u a t i o n o f lo c a l c h a r g e n e u t r a li t y

    ~ i z i C i x ) ~--- 0 (4)

    f o r al l x i n t h e c r e v i c e . T h e b o u n d a r y c o n d i t i o n s o f t h e p r o b l e m a r e a s f o ll o w s :

    ( 1) T h e c o n c e n t r a t io n s o f th e s p e c i e s a r e f ix e d at t h e c a v i ty m o u t h a n d a r e e q u a l

    t o t h e v a l u e s i n t h e b u l k s o l u t i o n o u t s i d e t h e c o r r o s i o n s i te .

    ( 2) T h e f lu x o f s p e c ie s e i t h e r p r o d u c e d o r c o n s u m e d i n th e e l e c t r o d e p r o c e s s e s a re

    p r o p o r t i o n a l t o t h e c o r r e s p o n d i n g e l e c t r o c h e m i c a l r e a c t i o n r a t e s o n t h e c r e v i c e

    w a l l s. T h e f lu x e s o f t h e o t h e r s p e c i e s a t t h e w a l l s a r e z e r o .

    S o l u t i o n s o f t h e p r o b l e m h a v e b e e n o b t a i n e d u s in g a v a r i e t y o f a p p r o x i m a t i o n s t o

    t h e e q u a t i o n s t h e m s e l v e s , t h e b o u n d a r y c o n d i ti o n s a n d t h e g e o m e t r y o f t h e c r ev i ce .

    T h e m o s t c o m m o n a p p r o x i m a t i o n s a r e a s f o ll o w s :

    ( 1) A d o p t i o n o f si m p l if ie d g e o m e t r i e s r e p r e s e n t i n g t h e p i t o r c re v i c e .

    (2 ) R e d u c t i o n o f t h e n u m b e r o f d i m e n s i o n s o f t h e p r o b l e m , u s u a ll y t o o n e , f o r

    e x a m p l e , b y a s su m i n g t h a t t h e b e h a v i o u r o f t h e c a v i t y i s d o m i n a t e d b y c h e m i c a l

    v a r i a t i o n s a l o n g t h e d i r e c t i o n p e r p e n d i c u l a r t o t h e o u t e r m e t a l s u r f a c e o r t h a t t h e

    c a v i t y w a l l s a r e p a s s i v e .

    ( 3 ) N e g l e c t o f d i f fu s i o n o f i o n ic s p e c i e s u n d e r c o n c e n t r a t i o n g r a d i e n ts .

    ( 4) N e g l e c t o f m i g r a t io n o f c h a r g e d s p e c i e s u n d e r p o t e n t i a l g r a d i e n ts .

    ( 5 ) N e g l e c t o f c o n v e c t i o n o f s p e c ie s b y a m o v i n g e l e c t r o l y t e .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    5/18

    A modelof crevice and pitting corrosion--I 607

    (6) Neglect of the effects of the retreating walls of the cavity, i.e. the convected

    electrolyte and the lengthening of the migration paths of the species.

    (7) Simplification of the chemistry and electrochemistry by consideration of a

    small number of chemical species and a limited number of equilibria and electrode

    reactions.

    (8) Neglect of the dependence of electrochemical reaction rates on solution

    chemistry and electrochemistry within the crevice.

    (9) Assumption of the steady state.

    The simplest models consider ionic migration by one transport mode only, but

    these are only strictly applicable to fairly narrow ranges of timescales and environ-

    ments. For example, models which neglect ionic diffusion are only valid at short

    times since any increase in electrostatic potential in the cavity implies some imbalance

    in ionic concentrations and subsequent diffusion. Similarly, models which neglect

    electromigration are also restricted; they are either specific to some experimental

    system in which the potential gradients have been shown to be small over the relevant

    timescales or they consider only the transport of a neutral species. The more general

    models are those which consider diffusion and electromigration (and convection for

    situations in which the electrolyte is flowing). There have been a number of such

    models reported in the literature.

    Some of the methods used in two literature models (Turnbull et al. 2-3 and Galvele

    et al. 4-6) are now compared and the importance of some of the assumptions and

    approximations to the general accuracy of the predictions are discussed. These

    models involve a parallel-sided corroding cavity and yield a steady-state solution for

    the chemistry and electrochemistry although the applications of the models do differ.

    Both models consider diffusion, electromigration and chemical reaction of at least six

    aqueous species within the cavity. This is the minimum number necessary to simulate

    the behaviour of a localized corrosion site. These species are metal ions from the

    dissolution process (MeZ+), hydroxyl and hydrogen ions from the water dissociation

    (O H- and H+), a metal hydrolysis product (MeOH ~z- l)+ as the simplest) and sodium

    and chloride ions to facilitate current flow within the crevice. Both models include

    some buffering reactions to obtain more realistic simulation of particular experimen-

    tal systems. However there are a number of differences; Galvele considers a cavity

    with passive walls, whereas Turnbull includes the effect of corrosion on the walls.

    Also, there are differences in the approximations made to the boundary conditions

    of the problem and in the range of parameters over which each model is applied. The

    models of Turnbull are applied to conditions of cathodic control [for metals polarized

    to potentials less than about -0 .5 V(SCE)]. The anodic dissolution of the metal is

    assumed to follow Tafel kinetics, i.e. the dissolution current is assumed to obey the

    following equation ,

    i = i0 exp - a E / R T ) , (5)

    with E the electrode potential and the parameters i0 and a obtained from polarization

    experiments. Two cathodic reactions are considered in this model; the reduction of

    water (also assumed to obey Tafel kinetics) and the reduction of hydrogen ions. The

    rate of the latter reaction is assumed to depend linearly on the pH, i.e.

    i = i0[H +] exp - a E / R T ) . (6)

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    6/18

    608 S .M . SHARLAND nd P. W . TASKER

    O n l y o n e m e t a l h y d r o l y s i s r e a c t i o n i s i n c l u d e d ,

    F e 2+ + H 2 0 ~ F e O H + + H + (7 )

    s i n ce n o h y d r o x i d e is a s s u m e d t o p r e c i p i t a t e a t l o w m e t a l p o t e n t i a l s .

    I n t h e m o d e l s o f G a l v e l e

    e t a l .

    t h e c a t h o d i c r e a c t i o n s w i t h i n t h e c r e v i c e a r e

    n e g l e c t e d . T h i s a p p r o x i m a t i o n l im i ts t h e r a n g e o f a p p l ic a t i o n t o h i g h e r m e t a l

    p o t e n t i a l s . T h i s c o n s i d e r a t i o n o f o n l y o n e e l e c t r o d e r e a c t i o n a l l e v i a te s t h e n e e d t o

    c o n s i d e r a d i r e c t r e l a t i o n s h i p b e t w e e n t h e c u r r e n t a n d e l e c t r o d e p o t e n t i a l . I f ,

    h o w e v e r , t h e k i n e ti c s o f t h e a n o d i c d i s s o lu t i o n r e a c t io n a r e a s s u m e d , t h i s m o d e l

    e f f e c t i v e l y y i e l d s t h e p o t e n t i a l o f t h e m e t a l a s a f u n c t io n o f th e c o r r o s i o n c u r r e n t

    d e n s i ty , w h e r e a s t h e m o d e l o f T u r n b u l l c a n b e u s e d t o p r e d i c t t h e c u r r en t f ro m t h e

    m e t a l p o t e n t i a l . T h e m o d e l o f G a l v e l e a l s o in c l u d e s t h e p r e c i p i t a ti o n o f a s o li d

    f e r r o u s h y d r o x i d e , s i n c e a t h i g h e r m e t a l p o t e n t i a l s t h e p r e d i c t e d i o n i c c o n c e n t r a t i o n s

    e x c e e d t h e s o l u b i l i ty p r o d u c t o f t h is p h a s e . T h e s o li d is t r e a t e d a s a m o b i l e s p e c i e s

    a n d t h e a p p r o p r i a t e m a s s - b a l a n c e e q u a t i o n i s d e r i v e d a n d s o l v e d . T h e h y d r o x i d e i s

    a s s u m e d t o b e p r e c i p i t a t e d a s c o l l o id a l p a rt i c le s a n d n o t t o i n f l u e n c e t h e m i g r a ti o n o f

    o t h e r m o b i l e s p e c i e s ( t h r o u g h s c al in g o f t h e d i f f u s io n c o e f f ic i e n t s, fo r e x a m p l e ) . T h i s

    m o d e l m a y b e r e g a r d e d , t h e r e f o r e , a s r e p r e s e n t i n g t h e v e r y e a r l y s t a g e s o f p r e c i p it a -

    t i o n i n a c o r r o d i n g d e v i c e .

    T h e p r e d i c ti o n s o f b o t h m o d e l s h a v e b e e n c o m p a r e d w i t h v a r io u s e x p e ri m e n t s .

    T u r n b u l l c o m p a r e d r e s u l ts f ro m h i s m o d e l w i th m e a s u r e d p o t e n t ia l s a n d p H v a l u e s

    i n an a r ti fi ci al c re v i c e . H e o b t a i n s g o o d q u a l i ta t i v e a g r e e m e n t w i t h e x p e r i m e n t a l d a t a

    b u t b o t h t h e p r e d i c t e d h y d r o g e n i o n c o n c e n t ra t i o n a n d t h e p o t e n t i al d r o p i n t h e

    c a v it y ar e s o m e w h a t l o w e r t h a n m e a s u r e d e x p e r i m e n t a l r e s ul ts . A l t h o u g h n o

    m e a s u r e m e n t s o f th e c a v i ty p r o p a g a t i o n r a te s a r e g i v e n, s o n o d i re c t c o m p a r i s o n m a y

    b e m a d e , t h i s w o u l d s u g g e s t t h a t t h e p r e d i c t e d r a t e s a r e h i g h e r t h a n i n r e a l i t y .

    G a l v e l e t e s t e d h i s m o d e l b y c o m p a r i n g a c a l c u l a t e d p it t in g p o t e n t i a l a g a i n s t e x p e r -

    i m e n t . T h e a g r e e m e n t w a s fo u n d t o b e g o o d f o r a n u m b e r o f d i f fe r e n t s o l u ti o n

    c o m p o s i t i o n s . H o w e v e r , i f t h e m e t a l p o t e n t i a l a s s o c i a t e d w i th a p a r t i c u l a r c u r r e n t

    d e n s i t y i s c a l c u l a t e d , u s i n g t h e p r e d i c t e d s o l u t i o n p o t e n t i a l i n t h e m o d e l ( a s su m i n g

    t h e k i n e t i c s o f t h e d i s s o l u ti o n r e a c t i o n ) t h e c a v i t y p r o p a g a t i o n r a t e i s f o u n d t o b e

    f a s t e r t h a n r e a s o n a b l y e x p e c t e d f o r s u c h a p o l a r i z a ti o n . T u r n b u l l s u g g e s t s t h a t t h e

    i n a c c u r a c y i n s o m e o f h i s p r e d i c t i o n s a r is e s c h ie f ly fr o m t h e a s s u m p t i o n o f n o s o l id

    p h a s e s i n th e c r e v i c e a n d s u g g e s ts t h a t a t s u c h l o w p o t e n t i a l s m a g n e t i t e ( F e 3 0 4 )

    w o u l d b e t h e s t a b l e p h a s e . G a l v e l e i n c l u d e s t h e s o l i d p h a s e i n h i s m o d e l a n d s t i l l

    p r e d i c t s h i g h c o r r o s i o n r a t e s . H o w e v e r , a c a v i ty w i t h p a s s iv e w a l ls is a s s u m e d i n t h is

    c a s e a n d i t w i ll b e s h o w n t h a t c o r r o s i o n o f t h e w a l l s in a r e a l s y s t e m i n c r e a s e s t h e

    p o t e n t i a l d r o p i n t h e c a v i t y , t h u s r e d u c i n g t h e c o r r o s i o n c u r r e n t .

    D E T A I L E D D E S C R I P T I O N O F M O D E L O F P R O P A G A T I O N

    O F C O R R O S I O N C A V I T Y

    T h e p i t o r c r e v i c e is m o d e l l e d a s a p a r a l l e l - s i d e d s l o t o f l e n g t h l , w i d t h w , a n d

    t h i c k n e s s d ( F i g . 1 ). T h e c r e v i c e i s a s s u m e d t o b e f il le d w i t h a d i l u t e a g g r e s s i v e

    s o l u t i o n , i n th i s c a s e N a C 1 , i n i ti a ll y a t c o n c e n t r a t i o n 1 0 - 3 m o l d m -3 . T h e f o l l o w i n g

    a s s u m p t i o n s a r e m a d e :

    ( 1 ) T h e m e t a l s u r f a c e o u t s i d e t h e c r e v i ce is a s s u m e d c o v e r e d w i th a p a s s i v e f il m

    a n d t h e r e is s u f fi c ie n t g e n e r a t i o n o f c a t h o d i c c h a r g e o n t h e o u t e r s u r f a c e t o d r iv e

    l o c a l i z e d c o r r o s i o n .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    7/18

    A model of crevice and pitting cor ros ion --I 609

    ( 2 ) T h e s u r f a c e a r e a o f th e s l o t is v e r y m u c h s m a l l e r t h a n t h e s u r f a c e a r e a o f th e

    m e t a l a n d c h a n g e s i n c o n d i t i o n s i n t h e c a v i t y d o n o t a f f e c t t h e p o t e n t i a l o f t h e w h o l e

    s p e c i m e n .

    ( 3 ) T h e t h i c k n e s s o f t h e s l o t , d is v e r y m u c h l a r g e r t h a n t h e l e n g t h , l a n d t h u s

    t r a n s p o r t o n t h e z d ir e c t i o n m a y b e n e g l e c t e d .

    ( 4 ) T h e e l e c t r o l y t e is s t a t ic .

    ( 5) C a v i t y p r o p a g a t i o n is s lo w c o m p a r e d w i t h io n ic m i g r a t io n r a t e a n d b o t h t h e

    m o v i n g b o u n d a r y a n d a n y i n d u c e d e l e c t r o l y t e m o t i o n m a y b e ig n o r e d .

    ( 6 ) T h e c r e v i c e s o l u t io n i s a n a e r o b i c .

    ( 7 ) D i l u t e s o l u t i o n t h e o r y is u s e d t h r o u g h o u t a n d t h e a c t i v it y o f w a t e r i s n o t

    c o n s i d e r e d s p e c if ic a l ly .

    I n o u r m o d e l , t h e f o l lo w i n g e le c t r o c h e m i c a l r e a c ti o n s a n d k i ne t ic s a r e a s s u m e d .

    F o r t h e o x i d a t i o n o f i r o n

    F e 2+ + 2 e - --~ F e , ( 8 )

    T u r n b u l l a n d G a r d n e r 7 f o u n d t h a t b e t w e e n p H 3 a n d 8 . 5 , a n e x p r e s s io n o f t h e f o r m

    il = i01 e x p

    [alFE/RgT]

    (9 )

    w i t h i01 = 2 . 7 l 0 II A m - 2 a n d a ~ = 1 d e s c r i b e s t h e c u r r e n t q u i t e a c c u r a t e l y . E i s t h e

    e l e c t r o d e p o t e n t i a l m e a s u r e d o n t h e S C E s c al e. T h e r e d u c t i o n o f w a t e r

    H 2 0 + e - ~ H + O H - , ( 10 )

    w a s f o u n d b y T u r n b u l l a n d T h o m a s 3 t o f o l lo w t h e r e l a t io n s h i p

    i2 = i02 e x p

    [a2FE/RgT]

    ( 1 1 )

    w i t h i02 a n d a 2 i n d e p e n d e n t o f p H b e l o w v a l u e s o f 1 0 a n d t a k i n g v a l u e s - 8 1 0-1 0 A

    m -2 a n d - 0 . 5 , r e s p e c t iv e l y . T h e h y d r o g e n d i s c h a r g e r e a c t io n

    2 H + + 2 e - ~ H 2 , ( 1 2 )

    w a s f o u n d b y T u r n b u l l a n d T h o m a s 3 t o s h o w a f irs t o r d e r d e p e n d e n c e o n h y d r o g e n

    i on c o n c e n t r a t i o n

    i 3 = i03[H +] ex p

    [a3FE/RgT]

    ( 1 3 )

    w i t h i03 = 2 1 0 - 4 A m o l e - l d m 3 m - 2 a n d a 3 = - 0 . 5 .

    I n i ti a l ly t w o c h e m i c a l r e a c t i o n s a r e c o n s i d e r e d i n t h e m o d e l :

    1 . F e 2+ + H 2 0 ~ - F e O H + + H + , ( 1 4 )

    2 . H + + O H - ~ H 2 0 . ( 1 5 )

    T h e f ir st r e a c t i o n i s s i m p l if i e d f r o m t h e m a n y - s t a g e h y d r o l y s i s t h a t is li k e l y t o o c c u r . 6

    T h i s s i m p l i f i c a t i o n i s q u i t e r e a s o n a b l e s i n c e t h e c h e m i c a l r e a c t i o n s a r e m u c h f a s t e r

    t h a n t h e d i f f u s i o n p r o c e s s e s s o t h a t t h e d e t a i l e d k i n e t i c s o f s e v e r a l p a r a l le l r e a c t i o n

    s c h e m e s c a n b e c o l l e c t e d i n t o o n e o v e r a l l s c h e m e : i t is o n l y th e e q u i l i b r i u m c o n s t a n t

    w h i c h r e a l l y m a t t e r s , a n d t h is is d e t e r m i n e d b y t h e f r e e e n e r g i e s o f t h e s p e c ie s . T h u s

    a n y s i m p l i f ic a t i o ns h e r e a r e l i k el y t o h a v e l es s e f f e c t o n t h e r e s u l ts t h a n t h e

    s i m p l i c a t i o n s m a d e i n t h e e l e c t r o d e k i n e t ic s .

    T h e e q u i l i b r i u m c o n s t a n t s o f th e r e a c t i o n s K ~ a n d K 2 c a l c u l a t e d u s i n g

    RgT

    In K l = G f ( F e 2+ ) + G f ( H 2 0 ) - G f ( F e O H + ) - G f ( H + )

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    8/18

    6 1 0

    S. M . SHARLAND an d P. W . TASKER

    TABLE 1 . GIBB SFREE ENERGIES OF

    FORMATION OF SPECIES

    S p e c i e s F r e e e n e r g y k J t o o l - l

    F e 2 - 7 8 . 8 7

    F e O H + - 2 7 7 . 3

    F e ( O H ) 2 ( s ) - 4 8 8 . 6

    H 2 0 - 2 3 7 . 1 8

    H 0 .0

    O H - - 1 5 7 . 3

    and

    RgTln/ (2 = Gf(H ) + Gf(O H-) - Gf(H20 )

    where G f ( S ) is the Gibbs free energy of format ion of species S, given in Table 1. The

    individual forward and backward reaction rates are denoted klF, klB and k2F, k2s

    where

    K 1 - k l F K 2 - k 2 F

    k l B ' k 2 B "

    The sodium and chloride ions are assumed not to take part in the chemical reactions

    but contr ibute to the transfer of current within the crevice.

    In the model, it is first assumed that the crevice walls are passive, so the

    steady-state mass-conservation equations for the aqueous chemical species become

    o r - / 7 ]

    [ dx 2 + RgT----dr. C i [- R i = 0. (16)

    The six equations and the boundary conditions at the crevice tip and mouth are

    specified fully in the accompanying paper.

    The equations describing corrosion in two directions are derived in a similar

    manner, i.e. with the electrode processes occurring on the crevice walls in addition

    to the crevice tip. An approximation derived by Turnbull 8 which averages the

    contributions from the walls across the width of the crevice, assuming a uniform

    transverse concentration profile, is used. This effectively adds a term involving the

    potential- (and hence position-) dependent currents and crevice width to the right

    hand side of the mass-balance equations of the species involved in electrode

    processes. The boundary conditions for this set of coupled differential equations are

    as before. These equations are also given in the accompanying paper. 9

    N u m e r i c a l s o l u t i o n

    An analytical solution of the two sets of equations would be extremely difficult

    since they are highly non-linear in nature. The non-linearity arises from the depen-

    dence of the flux boundary condition at the crevice tip on the electrode potential,

    which is one of the unknown variables of the system. However, by transforming to

    dimensionless coordinates, rearranging and integrating, a form suitable for numeri-

    cal integration may be obtained. Full details of this method are given in the

    accompanying paper. 9 However, in brief, solution of the equations involved making

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    9/18

    A m o d e l o f c r e v i c e a n d p i t t i n g c o r r o s i o n - - I 6 11

    a n i n i t ia l g u e s s a t t h e p o t e n t i a l a n d p H p r o f il e s, c a l c u l a ti n g th e v a r i o u s p a r a m e t e r s

    d e p e n d e n t o n t h e s e , so l vi n g t h e c o u p l e d e q u a t i o n s a n d c o m p a r i n g t h e r e s u lt a n t

    p o t e n t i a l a n d p H d i s t r ib u t i o n s w i t h th e e s t im a t e s . I f t h e s e d i d n o t c o in c i d e t h e n t h e

    c a l c u l a t e d p r o fi le s w e r e u s e d f o r t h e n e x t i t e r a t io n . T h i s p r o c e s s w a s c o n t i n u e d u n t il

    c o n v e r g e n c e . a n d h e n c e a s e l f - c o n s is t e n t s o l u t i o n w a s r e a c h e d . T h e s u b r o u t i n e

    c h o s e n f o r th e s o l u t i o n o f th e s y s t e m w a s a v a r i a b l e - o r d e r , b a c k w a r d - d i f f e r e n t i a t i o n

    f o r m u l a m e t h o d k n o w n a s G e a r ' s m e t h o d . S e v e r al t e c h n iq u e s i n v o lv i n g a v a r i et y o f

    m a t h e m a t i c a l a p p r o x i m a t i o n s w h i c h r e d u c e c o m p u t i n g t i m e h a v e b e e n d e v e l o p e d

    f o r s o l u t io n o f t h is s y s t e m o f e q u a t i o n s . T h e s e a r e d e s c r i b e d i n t h e n u m e r i c a l

    m e t h o d s s e c ti o n o f t h e a c c o m p a n y i n g p a p e r .

    C A L C U L A T E D R E S U L T S

    T h e e l e c t r o d e k i n e t i c a n d c h e m i c a l e q u i l i b r i a p a r a m e t e r s h a v e b e e n d e s c r i b e d

    p r e v i o u s l y . T h e d i f f u s io n c o e f fi c ie n t s o f a ll s p e c ie s e x c e p t H a n d O H - a r e t a k e n a s

    1 1 0 - 9 m 2 s - 1 . T h e d i f f u s i o n c o e f f i c i e n t o f H i s a s s u m e d 9 . 3 x 1 0 - 9 m 2 s -1 a n d o f

    O H - 5 . 3 1 0 - 9 m 2 s - 1. I n i t i a l ly a c r e v i c e o f le n g t h 2 m m a n d w i d t h 1 0 / z m i n a n e u t r a l

    s o l u t i o n o f N aC 1 o f s tr e n g t h 1 0 -3 M i s c o n s i d e r e d . T h e t e m p e r a t u r e is a s s u m e d t o b e

    25C

    F i r s t l y , a c re v i c e w i t h p a s s i v e w a l l s w a s c o n s i d e r e d . F i g u r e 2 s h o w s d e t a i l s o f t h e

    s o l u t io n c h e m i s t r y f o r a m e t a l p o t e n t i a l o f - 0 . 2 V . T h e p H o f t h e s o l u ti o n d e c r e a s e s

    r a p i d l y n e a r t h e c r e v ic e m o u t h f r o m a b u l k v a l u e o f 7 to a b o u t 4 a n d t h e n d e c r e a s e s

    s l o w l y t o a v a l u e o f 3 .4 a t t h e c r e v i c e t ip . L a r g e q u a n t i t i e s o f F e 2 a r e g e n e r a t e d w i t h

    c o n c e n t r a t i o n s r e a c h i n g m o r e t h a n 1 0 M a t t h e c r a c k ti p . ( A t s u c h h i g h c o n c e n t r a -

    t io n s t h e a s s u m p t i o n o f d i l u t e s o lu t i o n t h e o r y is n o t v a l i d .) T h e c h l o r i d e i o n

    c o n c e n t r a t i o n a ls o i n c re a s e s r a p i d l y w i th d i s t a n c e a l o n g t h e c r e v i c e e n s u r i n g c h a r g e

    n e u t r a l i t y is m a i n t a i n e d e v e r y w h e r e . F i g u r e 3 sh o w s t h e c h e m i s t r y f o r a m e t a l a t

    p o t e n t i a l 0 . 0 V . T h e [ C I - ] a n d [ F e 2 ] r is e a n d p H d r o p a l o n g t h e p i t a r e m o r e

    s ig n i fi c a n t f o r h i g h e r p o t e n t i a l s . F i g u r e 4 s h o w s a c o m p a r i s o n o f t h e p o t e n t i a l d r o p s

    21 Ct-

    ~r 0

    F e z

    ~ .

    c

    ~ -2 FeOH*

    . . . . . . . . . . . . . . .

    o -/

    o

    -6

    N o *

    _~

    0 3 0 6 0-9 12 1'5 1.8 2 0

    Dis tonce f rom eev i ty t ip , ram

    I

    1 i

    I

    I

    I

    ~bM =-O '2v , l=2 m m , [ C l '18ulk=10 3 M

    FIG . 2. C o n c en t r a t i o n p r o f i l e s a l o n g t h e cav i t y l en g t h f o r a c rev i ce w i t h p as s i v e w a l l s.

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    10/18

    6 1 2 S .M . SHA RL AN D an d P .W . T ASKE R

    2 . 5

    :C 0

    o

    :,7-

    2 .s

    o

    u

    - 5 . 0

    o

    o

    - 7 ' 5

    - 1 0 ' 0

    FIG. 3.

    C I

    F e O H 4

    I

    / '

    J

    N 0 ~ ' ~ ' ~ '

    l

    0 3 0 6 0 ' 9 1 2 1 5 1 8 2 ' 0

    D i s t a n c e f r o m c a v i t y t i p . t u r n

    ~ M = O ' O V , I = 2 r a m . [ E l ' ] B u l k = 1 0 3 M

    C o n c e n t r a t i o n p r o f il e s a l o n g t h e c a v i ty l e n g t h f o r a c r e v i c e w i t h p a s s i v e w a l ls .

    a l o n g t h e c av i t y l e n g th f o r m e t a l s a t p o t e n t i a l s - 0 . 4 , - 0 . 2 a n d 0 . 0 V . T h e c a l c u l a t e d

    c o r r o s i o n c u r r e n t s a s s o c i a t e d w i t h t h e s e e l e c t r o d e p o t e n t i a l s a r e e x t r e m e l y h i g h

    u n d e r t h e s e t h e o r e t i c a l c o n d i t i o n s . I t w ill b e s h o w n t h a t i n c l u s io n o f c o r ro s i o n o n t h e

    c a v i t y w a l l s r e d u c e s t h e c o r r o s i o n c u r r e n t d e n s i t ie s c o n s i d e r a b l y . F i g u r e 5 s h o w s t h e

    v a r i a ti o n o f c o r r o s i o n c u r r e n t w i t h c a v i t y l e n g t h ( w i th e a c h c a l c u l a t i o n c a r r ie d o u t

    i n d e p e n d e n t l y i n a s t at ic g e o m e t r y , i .e . n o m o v i n g b o u n d a r i e s a r e i n v o l v e d h e r e ) f o r

    t h e c a s e q~M = - 0 . 2 V o A l t h o u g h t h e m a g n i t u d e s o f t h e c u r r e n t s a r e p h y s i c a ll y

    u n r e a l i s ti c ( f o r r e a s o n s w h i c h w il l b e s u g g e s t e d l a t e r ) , t h e g e n e r a l t r e n d o f d e c r e a s i n g

    cur r en t wi th inc r eas ing d i f fus ion l eng th i s s ign i f i can t .

    > 0 / , ~

    -

    0 3

    0.

    o 0 2

    ' 6 0 - 1 -

    c

    e

    o

    Q.

    0

    0

    I I I I . . . . . I I

    0 ' 3 0 6 0 9 1 2 1 5 1 ' 8 2 0

    D i s t a n c e f r o m c a v i t y t i p , ra m

    I = 2 m m . [ C l ' ]B u t k = 1 0 3 M

    FIG . 4. E l ec t r o s t a t i c p o t en t i a l d r o p a l o n g cav i t y l en g t h f o r a c rev i ce w i t h p as s i v e w a l l s.

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    11/18

    A m o d e l o f c r e v i c e a n d p i t t i n g c o r r o s i o n - - I 6 1 3

    %

    x

    L

    0

    10

    g

    8

    7 -

    6 -

    5

    3 -

    2 L

    I I i I I

    2 . 0 4 0 6 - 0 8 .0 1 0 . 0

    C a v i ty l e n g t h . m m

    ~ M = 0 . 2 V . I C l ] B u t k = 1 0 3

    P a s s i v e w a l l s

    FIG . 5 , C o r r o s i o n cu r r e n t ag a i n s t cav i t y l en g t h .

    T h e m o d e l i n c l u d e s a n a c c o u n t o f c a t h o d i c r e a c t i o n s o c c u r r i n g a t t h e p i t b a s e .

    H o w e v e r , t h e s e c u r r e n t s a r e v e r y sm a l l a t s u c h a n o d i c e l e c t r o d e p o t e n t i a l s a n d it is

    c o n c l u d e d t h a t t h e s i g n i fi c a n t p r o p o r t i o n o f c a t h o d i c a c t i v i ty o c c u r s o n t h e m e t a l

    s u r f a c e o u t s i d e t h e p i t m o u t h .

    F i g u r e 6 sh o w s t h e s o l u t i o n c h e m i s t r y in a c a v i ty w i t h c o r r o d i n g w a l ls a n d b a s e , a t

    a p o t e n t i a l o f - 0 . 2 V . T h e s a m e b a s ic t r e n d s a s f o r th e p a s s iv e w a ll c a s e a r e o b s e r v e d ,

    i .e . i n c re a s in g c h l o r i d e a n d f e r r o u s i r o n c o n c e n t r a t i o n a n d d e c r e a s i n g p H t o w a r d s

    :E

    5

    c

    o

    o

    2 5

    5 C

    7 5

    I 0 C

    C I -

    2 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    F e 2 . L . . . . ~ \

    0 - t

    F e O H * I

    - H

    t

    I I I I I I I

    0 3 0 - 6 0 '9 1 2 1 5 1 8 2 0

    D i s t a n c e f r o m c a v i t y t i p , r a m

    q~M = - 0 2 V ' [ = 2 m m ' [ C l - ] e u l k = 1 0 -3 M

    FIG . 6 . C o n c en t r a t i o n p r o f i l e s a l o n g t h e cav i t y l en g t h f o r a c r ev i ce w i t h co r r o d i n g w a l ls .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    12/18

    614 S .M . SHARLAND nd P. W. TASKER

    0.35 I

    0 30

    o z 5

    o, 0 20

    c

    _o

    o

    , , 0 15

    1o

    0 ' 1 0

    _

    o

    a. 0.05

    0

    Fro. 7.

    A c t i v e

    w a l l s

    I I I I

    0.3 0.6 0.9 1.2 1-5 1.8 2 0

    D i s ta n c e f r o m c a v i ty t i p . r a m

    ~M = 0 '2 V . l=2 m m , [ C I - ]Bu lk = 10 -3 H

    Comparison of the potential drops along the crevice length for corroding and

    non-corroding walls.

    t h e c a v i t y t ip . T h e m a g n i t u d e s o f th e d e v i a t io n s f r o m b u l k v a l u e s , h o w e v e r , a r e

    s l ig h t l y l a r g e r w i t h c o r r o d i n g w a l ls . F o r e x a m p l e , t h e p H v a l u e a t t h e c a v i ty ti p is

    a b o u t 3 c o m p a r e d w i t h 3 . 4 fo r t h e p a s s iv e w a ll s. T h e p r o f il e s a ls o s h o w m o r e r a p i d

    v a r i a t i o n n e a r t h e p i t m o u t h . A c o m p a r i s o n o f t h e p o t e n t i a l d r o p s f o r a c t iv e a n d

    p a s s iv e w a l l s i n F i g . 7 i n d i c a t e s t h a t t h e c o r r o s i o n c u r r e n t s a r e r e d u c e d w h e n m e t a l

    d i s s o l u t i o n o c c u r s o v e r a la r g e r a r e a . I n t h i s c a s e t h e c o r r o s i o n c u r r e n t a t t h e p i t b a s e

    i s a p p r o x i m a t e l y 2 x 1 0 2 A m - 2 c o m p a r e d w i t h 3 x 1 03 A m - 2 f o r t h e p a s s i v e w a l l s .

    T h e s e c u r r e n t s a r e s ti ll p h y s i c a l ly u n r e a l i s ti c a n d a n u m b e r o f o t h e r p h e n o m e n a n e e d

    t o b e c o n s i d e r e d . O n e i m p o r t a n t a d d i t i o n i s t h e p r e c i p i t a t io n o f s o li d f e r r o u s

    h y d r o x i d e , s i n c e i n a ll t h e e x a m p l e s g i v e n t h e s o l u b i l i ty li m i t is e x c e e d e d . I t w i ll b e

    s h o w n t h a t c o n s t r ai n in g t h e r a ti o o f p H v a l u e t o F e O H re d u c e s t h e c o r r o s i o n

    c u r r e n t s s l ig h t ly a n d s c a li n g d o w n t h e d i f f u s io n c o e f f ic i e n ts t o s i m u l a t e t h e p r e s e n c e

    o f s o li d h y d r o x i d e r e d u c e s t h e m f u r t h e r t o p h y s i c a ll y r e a li s ti c v a l u e s.

    assivation of crevice walls

    T h e p o t e n t i a l d r o p a l o n g t h e c r e v ic e l e n g t h c a n b e u s e d t o c a l c u la t e t h e c u r r e n t

    d i s t r ib u t i o n o v e r t h e i n t e r n a l m e t a l s u r f ac e . F i g u r e 8 s h o w s t h e c o r r o s i o n c u r r e n t a s

    a f u n c t i o n o f p o s it i o n in a ca v i t y o f le n g t h 2 m m a t a p o t e n t i a l - 0 . 2 V . T h e c u r r e n t a t

    t h e c a v i t y m o u t h i s e x t r e m e l y l a r g e , b u t t h e m o d e l d o e s n o t a c c o u n t f o r a n y

    p a s s i v a t i o n o f t h e m e t a l . I n r e a l i t y , it s e e m s l i k e l y t h a t t h i s r e g i o n w o u l d r e p a s s i v a t e 1

    u n d e r c o n d i t i o n s o f h i g h e r p H v a l u e a n d l o w e r p o t e n t i a l d r o p i n t h i s r e g i o n .

    A l t h o u g h t h e p r e d i c t e d c u r r e n t s i n t h e r e s t o f t h e c a v i ty a re u n r e a l is t ic a l ly h ig h t h e

    d i s t r ib u t i o n g i v e s a n i n d i c a t i o n o f t h e f u t u r e s h a p e o f th e p i t ; t h e r a p i d b r o a d e n i n g o f

    t h e w i d t h c lo s e to t h e m o u t h w i th a m o r e e v e n b r o a d e n i n g o v e r t h e m a j o r i t y o f th e

    l e n g t h s u g g e s t s a n e v e n t u a l b o t t l e - s h a p e d c a v i ty . M o s t o f t h e c u r r e n t d i s t ri b u t i o n s

    g e n e r a t e d f o r th e r a n g e o f p a r a m e t e r s i n t h is p a p e r d i s p la y th i s s t u d i e d b e h a v i o u r .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    13/18

    A model of crevice and pitting corro sion --I 615

    6 5

    t~

    ' 6 C

    E

    c 5 ' 5

    g

    5 0

    ~ / .5 -

    o

    u

    ~ 4 0-

    o

    3 'C

    Fl~. 8.

    I

    0 3

    f

    ~ ' t - - - ' - - - - ~ ~ I I I

    0 '6 0 9 1 '2 1 5 1 8 2 -0

    D i s ta n c e f r o m c a v i t y t i p , r a m

    ~ M = ' 0 2 V , I = 2 m m . [ C L '] B u t k = 2 x 10 2 1.1

    Corrosion current against cavity length for a crevice with active walls.

    P R E C IP I T T I O N O F F E R R O U S H Y D R O X I D E

    I n a ll t h e e x a m p l e s g i v e n in e a r li e r s e c ti o n s t h e p r o d u c t s o f f e r r o u s a n d h y d r o x i d e

    i o n s h a v e e x c e e d e d t h e s o l u b i l i ty li m i t o f so l id f e r r o u s h y d r o x i d e .

    s a

    n e x t s t a g e i n

    t h e m o d e l t h e r e f o r e , t h e r e a c t io n

    F e O H + + H 2 0 ~ F e ( O H ) 2 + H ( 17 )

    is c o n s i d e r e d s p e c if ic a l ly . T h e e q u i l i b r i u m c o n s t a n t o f th i s r e a c t i o n is c a l c u l a t e d f r o m

    t h e f r e e e n e r g i e s o f t h e i n d iv i d u a l sp e c i es a s b e f o r e . I n a r e c e n t p a p e r , G r a v a n o a n d

    G a l v e l e 6 t r e a t t h e s o l i d a s a d i f fu s i n g s p e ci e s . T h e y i n c l u d e a t e r m D dC/dx)d i r e c t l y

    i n t h e i r m a s s - b a l a n c e e q u a t i o n s a n d s o l v e f o r th i s s o li d 'c o n c e n t r a t i o n ' , C i n t h e s a m e

    w a y a s f o r t h e o t h e r c o n c e n t r a t i o n s . T h e d i f f u s i o n c o e f f i c i e n t , D i s s e t t o 1 1 0 - 9

    m E s , t h e s a m e a s t h e o t h e r d i f f u s i n g i o n s ( e x c e p t H a n d O H - ) . T h i s d e s c r i b e s t h e

    s i t u a t i o n i n t h e p i t a f e w m i l l i s e c o n d s a f t e r a f l a w i n t h e p a s s i v e f i l m o c c u r s a n d

    a s s u m e s t h a t t h e h y d r o x i d e is p r e c i p i t a t e d a s c o l l o i d a l p a r t i c l e s i n t h e v e r y e a r l y

    s ta g e s o f t h e p r o c e s s . T h e m o d e l d e s c r i b e d h e r e c o n s i d e rs t h e e f f e c ts o f p r e c ip i t a t io n

    i n t h e c r e v i c e o v e r a l o n g e r t i m e s c a l e . I t d o e s n o t d i r e c t l y s o l v e f o r a s o l i d

    c o n c e n t r a t i o n a n d h e n c e a v o i d s t h e n e c e s s i t y to a s s ig n a d if f u s io n c o e f f i c ie n t t o a

    p o t e n t i a l l y n o n - m o b i l e s p e c i e s .

    T h e r e i s l it tl e k i n e t ic d a t a a v a i l a b l e o n t h e r a t e o f p r e c i p i t a t i o n . G a l v e l e 5 s u g g e s t s

    i n h i s o n e - d i m e n s i o n a l p a s s i v e - w a l l m o d e l t h a t n o p r e c i p i t a t e p a r t i c l e s w i l l f o r m

    a l o n g t h e c r e v i c e i n t h e o x i d e f i lm , a s t h e p r e c i p i t a t i o n p r o c e s s i s s l o w , b u t a t t h e

    m e t a l - s o l u t i o n i n t e r f a c e t h e p r o c e s s w i l l b e m u c h f a s t e r . F o r s i m p l i c i t y , i t w i l l b e

    a s s u m e d in th i s m o d e l t h a t t h e p r e c i p i t a t io n r a t e is f a s t e v e r y w h e r e c o m p a r e d t o t h e

    d i f f u si o n r a t e s a n d t h e m a s s - b a l a n c e e q u a t i o n s w i ll b e m o d i f i e d s o t h a t t h e s o l u b i li t y

    o f F e ( O H ) 2 is n o t e x c e e d e d .

    T h e g o v e r n i n g m a s s - t r a n s p o r t e q u a t i o n s a r e d e r iv e d a s b e f o r e b u t w i t h a n

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    14/18

    616 S .M . SHARLAND an d P. W. TASTER

    d

    _

    -

    8

    - / .

    9

    Fro. 9.

    I

    1 I I I I I

    0 6 0 ' 9 1 2 1 5 1 8 2 0

    D i st an c e f ro m c o v i t y t i p , m m

    C I

    2

    F e z ~ ~ .

    0 FeO H+ .....................................

    - 6

    : . _ . N o

    . . . . . ~ - ~ ~ ' ~ '~ x

    -~

    0 0.3

    ~b~4

    =

    -0"2

    V, I

    =2ram. [CI" Built=

    2

    x l 0 " 2

    M

    C o n c e n t r a t i o n p r o f i le s a l o n g t h e c a v i t y l e n g t h f o r a c r e v i c e w i t h p a s s i v e w a ll s ( w i t h

    a p r e c i p i t a t i o n r e a c t i o n i n c l u d e d b u t n o c h a n g e t o d i f f u s io n c o e ff i c ie n t s ).

    additional constraint fixing the ratio of the H and FeOH + concentrations. The

    boundary conditions at the pit mouth are modified slightly to ensure both charge

    neutra lity and chemical equilibrium here. The details of the modified equations and

    boundary conditions may be found in the accompanying paper. The equations are

    solved using the iteration techniques employed earlier. Figure 9 shows the predicted

    solution chemistry in a pit with non-corroding walls. The p r meters are the same as

    in the previous calculations except that the bulk chloride concentration is assumed 2

    10 -2 M. The diffusion coefficients are assumed 10 -9 m 2 s -1 (except those ofH + and

    OH -) for this calculation. Compar ison of Fig. 9 with a run with the solubility limits

    exceeded shows a much lesser degree of acidification, about pH 5 at the cavity tip

    compared with pH 3 (and a correspondingly lower [FeOH+]). However, the potential

    distributions in the crevices are very similar and the corrosion currents are only

    reduced by a few per cent by constraining the pH and FeOH + in this way. Figure 10

    shows the results of the 'active-wall' calculation using the same parameters as in

    Fig. 9. Again, it may be seen that the solution is more acidic when the crevice walls

    are corroding in addition to the base.

    In all the examples given the predicted rates of metal dissolution il, are very large.

    However, no account has been taken of the physical effect of the corrosion product

    restricting the migration of aqueous species. There are little available empirical data

    on the diffusion coefficients in porous iron solids, so the model is tested over a range

    of values. Figure 11 shows the variation of the corrosion currents with diffusion

    coefficients for the case of an active wall cavity. The reduction in the corrosion

    current is quite significant as the diffusion of both aggressive species and corrosion

    products becomes impaired. Figure 12 shows the solution chemistry with a diffusion

    coefficient of 1 0 - 1 3 m 2 s -1. Comparison with Fig. 10 shows a higher degree of

    acidification is obtained since the hydrogen ions produced in the hydrolysis reaction

    cannot diffuse out of the pit as easily.

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    15/18

    A m o d e l o f c r e v ic e a n d p i t ti n g c o r r o s i o n - - I 6 17

    2.5

    0

    ~ E

    d

    o

    "6

    , - - 2 E

    E

    tJ

    - 5 ' (

    o~

    -7 -5

    -10"0

    Fx6. 10.

    C l -

    F e 2 . . . . . . . . . . . .

    F e O H *

    H

    N a

    J

    I I I t I I

    0.3 0.6 0.9 1-2 1.5 1.8

    D i s ta n c e f r o m c a v i t y t i p , ra m

    q b N = - 0 2 V , l = 2 m m , [ C l - ] B u l k = 2 x 1 0 - 2 N

    2 0

    C o n c e n t r a t i o n p r o f i l e s a l o n g t h e c a v i t y l e n g t h f o r a c r e v i c e w i t h a c t iv e w a l l s ( w i th

    a p r e c i p i t a t i o n r e a c t i o n b u t n o c h a n g e t o d i f f u s i o n c o e f fi c i e n t s ).

    E

    x

    E

    L

    o

    t~

    o

    L

    o

    9 C

    8'C

    7 0

    6 0

    5 0

    4 0

    3 0

    2 0

    1 0

    I I I I ~ ~ - ~ - - T ~ I

    0 9 0 9 5 10 .0 10 '5 11 .0 11 .5 12"0 12 '5

    - I o g l o d i f f u s i o n oeffi ient o f F e z . e t c . , m z s - |

    ~ M = _ 0 . 2 V , I = 2 m m , [ C t ' ] B u l k = 2 x 1 0 -2 I~t

    1

    1s.O

    F IG . l l . C o r r o s i o n c u r r e n t a g a i n s t d i f f u s i o n c o e f f i c i e n t o f F e 2 , F e O H + , N a + a n d C I f o r

    a c r e v i c e w i t h a c t i v e w a l ls

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    16/18

    618 S .M . SHARLAND an d P. W . TASKER

    5"0

    .,~ 2'5

    ~

    C

    c - 2 " 5

    -5.o

    .7.~

    -10 (

    Fro. 12.

    C[-

    F e Z . . . . . . . . .

    FeOH *

    H

    Na* .~ . ----..-

    , ' - -

    ~ i ' - - I - - J ' - - I I I I

    0 0-3 0.6 0 -9 1.2 1.5 1.8 2.0

    Distance from cavi ty tip, ram

    ~M =-0.2V,I= 2mm,[Cl ]Butk = 2xI0 2 M ,D =I0 -13 m2 s -I

    C o n c e n t r a t i o n p r o f i le s a l o n g c a v i t y l e n g t h f o r a c r e v ic e w i t h a c t i v e w a ll s ( p r e c i p i-

    t a t i o n r e a c t i o n i n c l u d e d a n d d i f f u si o n c o e f fi c ie n t s r e d u c e d ) .

    L I M I T A T I O N S A N D F U T U R E E X T E N S I O N S T O T H E M O D E L

    The steady-state model described in this paper gives some reasonable qualitative

    predictions of the chemistry and electrochemistry within the corroding crevice but

    the quantitative comparisons with empirical cavity propagation rates and ionic

    concentrations are less encouragingl The inaccurate cavity propagation rates pre-

    dicted, however, seem consistent with other models in the literature. This would

    suggest that the approximations made in the construction of the model are not

    strictly valid and that physical processes have been oversimplified or the empirical

    input data is not sufficiently accurate. In many of the examples, the predicted

    solutions are highly supersa turated with respect to ferrous chloride. The addition of

    the equilibria reaction

    Fe 2+ + 2C1- ~ FeCI2 (18)

    would seem necessary in these cases. However, limitations with the numerical

    solving method of the mass-conservation equations restrict the addition of further

    chemical equilibria reactions. There is therefore a need to develop an alternative

    solving technique in the model to include a more complex description of the

    chemistry within the crevice.

    In most of the examples given, the effect of the moving boundary is negligible and

    the approximation of a static geometry is valid for a steady-state calculation.

    However, at a high potential, e.g. 0.0 V in pits with passive walls, the calculations

    produce currents of, the order of 105 A m -2 which is roughly equivalent to the metal

    interface retreating at a speed of 1 x 10 -2 mm s -1. This is fast compared with the

    diffusive speed of the mobile species and consequently the moving boundary and the

    induced electrolyte motion should be specifically considered for such sets of par-

    ameters.

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    17/18

    A m odel of crevice and pitting corrosion--I 619

    A n o t h e r p o s si b le e x t e n s io n o f t h e m o d e l m a y b e a c o n s i d e r a t i o n o f t h e e f f e ct o f

    l im i t i n g t h e c a t h o d i c c u r r e n t g e n e r a t e d o n t h e e x t e r n a l s u r f a c e . A l s o t h e e l e c tr i ca l

    r e s i st a n c e o f t h e b u l k s o l u t i o n , w h i c h m o d i f ie s t h e c h a r g e t r a n s f e r a n d m a y l im i t t h e

    c o r r o s i o n r a t e s , s h o u l d b e t a k e n i n t o a c c o u n t .

    C O N C L U S I O N

    A m o d e l o f th e p r o p a g a t i o n s t ag e o f c r e v ic e o r p i tt i n g c o r r o s i o n w h i c h is e n t i r e l y

    p r e d i c t i v e a n d s e l f - c o n s i s t e n t i s d e v e l o p e d a n d a p p l i e d t o c a r b o n s t e e l i n a d i l u t e

    s o d i u m c h l o ri d e s o l u t i o n . T h e s t e a d y - st a te e q u a t io n s g o v e r n i n g m a s s t r a n s p o r t a n d

    e l e c t r o d e p o t e n t i a l o f a s y s t e m o f m o b i l e s p e c i es i n a r e s t ri c t e d g e o m e t r y a r e s o l v e d

    t o p r o d u c e d e t a il s o f v a r ia t i o n s i n t h e s o l u t i o n c h e m i s t ry a n d e l e c t r o c h e m i c a l

    p o t e n t i a l . F r o m t h e s e r e s u l t s c o r r o s i o n r a t e s a r e c a l c u l a t e d . T h e m o d e l c o n s i d e r s

    s e p a r a t e l y a c ti v e c o r r o s i o n a t th e c r e v i c e b a s e o n l y a n d c o r r o s i o n o n t h e b a s e a n d

    w a l ls . A n e x t e n s i o n t o th e m o d e l i n c l u d e s a n a c c o u n t o f th e e f f e c t o f p r e c i p it a t io n o f

    s o li d fe r r o u s h y d r o x i d e . T h e m a i n c o n c l u s i o n s a r e a s f o ll o w s :

    ( 1) F o r b o t h a c ti v e a n d p a s s iv e w a l l s, t h e r e s u lt s s h o w d e c r e a s i n g p H v a l u e s a n d

    i n c r e a si n g F e 2 a n d C I - c o n c e n t r a t i o n s a l o n g t h e p i t t o w a r d s t h e t ip , w i th d e v i a t io n s

    o f i n d i v i d u a l sp e c i es f r o m t h e i r b u l k v a l u e s i n c re a s i n g w i t h in c r e a s in g m e t a l p o t e n -

    t ia l. B y v a r y i n g th e m a n y p a r a m e t e r s o f t h e s y s t e m it w o u l d b e p o s s i b le t o i d e n t i f y

    c r i t i c a l p h y s i c a l c o n d i t i o n s ( e . g . b u l k p H , b u l k C 1 - c o n c e n t r a t i o n ) w h i c h r e s u l t i n

    p i t t i n g o r c r e v i c e c o r r o s i o n .

    ( 2 ) I n t h e s i m p l e s t m o d e l , w i t h n o s o l i d c o r r o s i o n p r o d u c t s , t h e c a l c u l a t e d

    c o r r o s i o n c u r r e n t s f o r t h e p a s s i v e w a l l c a s e a re v e r y h ig h ( f o r CM = - 0 . 2 V , l = 2 m m ,

    i = 3 x 103 A m - 2 ) b u t a r e r e d u c e d b y t h e i n c l u s i o n o f c o r r o d i n g w a l l s (i --- 2 x 102 A

    m - 2 ) . W h e n a c c o u n t is t a k e n o f th e e f f e c t o f a s o li d p r e c i p i ta t e ( f e r r o u s h y d r o x i d e )

    o n t h e s o l u t i o n c h e m i s t r y , t h e p r e d i c t e d c u r r e n t s a r e r e d u c e d s l i g h t l y . H o w e v e r ,

    t h e s e v a l u e s a r e u n r e a l is t ic a l ly h ig h w h i c h w o u l d s u g g e s t t h a t s o m e o f t h e a p p r o x i -

    m a t i o n s m a d e i n t h e c o n s t r u c t i o n o f t h e m o d e l m a y n o t b e v a li d . T h e d e s c r i p t io n o f

    t h e s o l u t i o n c h e m i s t r y m a y s t i l l h a v e b e e n o v e r s i m p l i f i e d , p a r t i c u l a r l y i n t h e

    t r e a t m e n t o f th e s o l id p r e c ip i t a te s . F o r e x a m p l e , t h e p r e d i c t e d s t e a d y - s t a t e so l u t io n s

    w i t h i n t h e c r e v ic e a r e h i g h l y s u p e r s a t u r a t e d w i t h re s p e c t t o f e r ro u s c h l o r i d e . F u r t h e r

    m o d e l d e v e l o p m e n t is n e c e s s a r y t o i n v e s t i g a t e th i s ef f e c t.

    ( 3) T h e s o li d c o r r o s i o n p r o d u c t s h a v e a n e x t r e m e l y i m p o r t a n t e f f e c t o n t h e c a v i t y

    p r o p a g a t i o n r a te s t h r o u g h t h e i r l i m i ti n g e ff e c t o n t h e d i f f u s i o n io n i c sp e c i e s w i t h i n

    t h e c r e v i c e . T h e r e i s l it tl e a v a i l a b l e e m p i r i c a l d a t a o n d i f f u s i o n c o e f f ic i e n t s w i t h i n

    p o r o u s i r o n s o l id s a t p r e s e n t a n d t h i s m a y b e o n e o f t h e i n p u t p a r a m e t e r s t h a t n e e d s

    t o b e a c c u r a t e l y d e t e r m i n e d i f t h e m o d e l is to b e u s e d i n a p r e d i c ti v e r o l e in t h e f u t u r e .

    ( 4) F o r t h e r a n g e o f m e t a l p o t e n t ia l s c o n s i d e r e d ( - 0 . 4 4 ) . 0 V ) t h e s i g n if ic a n t p a r t

    o f c a t h o d i c a c t iv i t y o c c u r s o n t h e m e t a l s u r f a c e o u t s id e t h e c r e v ic e m o u t h .

    ( 5 ) B y c o n s i d e r i n g t h e p r o p o r t i o n o f t h e c r e v i c e l e n g t h a t w h i c h t h e p o t e n t i a l

    e x c e e d s t h e p a s s i v a t i o n p o t e n t i a l o f t h e m e t a l in t h e c r e v i c e s o l u t i o n , i .e . t h e n a r r o w

    r e g i o n n e a r t h e c a v i t y m o u t h w h i c h d o e s n o t c o r r o d e i n t h e s t e a d y s t a te , o n e c o u l d

    e s t i m a t e t h e e v e n t u a l s h a p e o f th e c r e v ic e . T h e m o d e l p r e d i c t s a ra p i d b r o a d e n i n g o f

    t h e w i d t h c lo s e to t h e p a s s i v a t e d r e g i o n w i th a m o r e e v e n b r o a d e n i n g a n d l e n g t h e n i n g

    o v e r t h e m a j o r i t y o f t h e l e n g t h . T h i s w o u l d s u g g e s t a n e v e n t u a l ' b o t t l e - s h a p e d '

    c r e v i c e .

    T h e m o d e l w i ll b e d e v e l o p e d f u r t h e r t o i n c l u d e a b e t t e r d e s c r i p ti o n o f th e s o l u t i o n

    c h e m i s t r y in t h e c r e v i c e .

  • 7/21/2019 A Mathematical Model of Crevice and Pitting Corrosion the Physical Model

    18/18

    620 S .M . SHARLAND an d P. W . TASKER

    A c k n o w l e d g e m e n t s - - T h i s

    w o r k w a s j o in t l y f u n d e d b y t h e D e p a r t m e n t o f t h e E n v i r o n m e n t ( D O E ) a s p a r t

    o f i t s r a d i o a c t i v e w a s t e m a n a g e m e n t r e s e a r c h p r o g r a m m e , a n d t h e C o m m i s s i o n o f t h e E u r o p e a n

    C o m m u n i t i e s . I n t h e D o E c o n t e x t , t h e r e s u l ts w il l b e u s e d i n t h e f o r m u l a t io n o f G o v e r n m e n t p o l ic y , b u t

    a t t h i s s t a g e d o n o t n e c e s s a r i l y r e p r e s e n t G o v e r n m e n t p o li c y .

    R E F E R E N C E S

    I. G . P. MARSH , K. J . TAYLOR, I . D . BLAN D, C. WESTCOTT, P. W . TASKER an d S . M . SHARLAND,Proc .

    M R S S y r u p . S c i e nt if ic B a s i s o r N u c l e a r W a s t e M a n a g e m e n t S t o c k h o l m , S w e d e n ( E d i t e d b y L . W ER N E,

    p . 421) (Sep t . 1985).

    2 . A . T U RN UU LL an d J . G . N . T HO M AS, N P L D M A R e p o r t ( A ) , 1 1 ( 1 9 7 9 ) .

    3 . A . T U RN BU LL an d J . G . N . T HO M AS, N P L D M A R ep o r t ( A ) , 2 3 ( 1 9 8 0 ).

    4. J . R. GALVELE,

    J . E l e c t roc he m . Soc .

    123, 1438 (197 6)

    5. J . R. GALVELE, Corros . Sc i . 2 1 ,5 5 1 ( 1 9 8 1 ) .

    6. S. M . GRAVANOan d J . R . GALVELE,

    Corros . Sc i .

    2 4 ,5 1 7 ( 1 9 8 4 ) .

    7. A . TURNBULL,Br. Co rros . J . 15, 162 (1980) .

    8. A . TURNBtJLLand M. R. GARDNER, Corros . Sc i . 2 2 ,6 6 1 ( 1 9 8 2 ) .

    9. S. M. SHARLAND,

    Corros . Sc i .

    2 8 ,6 2 1 ( 1 9 8 8 ) .


Recommended