Upload
trinhhuong
View
337
Download
13
Embed Size (px)
Croatian Society of Chemical Engineers
Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek
European Federation of Food Science and Technology
European Association for Chemical and Molecular Sciences
European Hygienic Engineering & Design Group
International Scientific and Professional Conference
15th Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12th September 2014
Vukovar, Croatia
PROCEEDINGS
Hrvatsko društvo kemijskih inženjera i tehnologa
Sveučilište Josipa Jurja Strossmayera u Osijeku, Prehrambeno-tehnološki fakultet Osijek
European Federation of Food Science and Technology
European Association for Chemical and Molecular Sciences
European Hygienic Engineering & Design Group
međunarodni znanstveno-stručni skup
XV. Ružičkini dani
“DANAS ZNANOST – SUTRA INDUSTRIJA”
11. i 12. rujna 2014.
Vukovar, Hrvatska
ZBORNIK RADOVA
Osijek i Zagreb, 2015.
PROCEEDINGS 15th
Ružička days
TODAY SCIENCE – TOMORROW INDUSTRY
ZBORNIK RADOVA XV. Ružičkini dani
DANAS ZNANOST - SUTRA INDUSTRIJA
Published by/Izdavači Josip Juraj Strossmayer University of Osijek
Faculty of Food Technology Osijek
Croatian Society of Chemical Engineers
Sveučilište Josipa Jurja Strossmayera u Osijeku
Prehrambeno-tehnološki fakultet Osijek
Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI)
Editors/Urednici Drago Šubarić, Ante Jukić
Executive Editors/Izvršne urednice Mirela Planinić, Đurđica Ačkar
Technical Editor/Tehnička urednica Ivana Lauš
Proceedings Reviewers/
Recenzenti Zbornika
Igor Jerković, Darko Kiš, Maja Molnar, Ivica Strelec,
Rezica Sudar, Elvira Vidović
Proofreaders/Lektori Lidija Obad, Antonija Šarić
Cover page design/Dizajn naslovnice Ivana Lauš
Printing and Binding/Tisak i uvez Grafoprojekt, Virovitica, Hrvatska
Number of Copies/Naklada 200
Scientific and Organizing Committee
Znanstveno-organizacijski odbor
Drago Šubarić (predsjednik/chairman),
Ante Jukić (dopredsjednik/vice-chairman),
Srećko Tomas (dopredsjednik/vice-chairman),
Đurđica Ačkar, Jurislav Babić, Ljubica Glavaš-Obrovac, Vlado
Guberac, Mirjana Hruškar, Ivan Hubalek, Stela Jokić, Stjepan
Leaković, Ivanka Miličić, Slavko Marjančević, Jadranka
Mustapić-Karlić, Vesna Ocelić Bulatović, Ivana Lauš, Mirela
Planinić, Milan Sak-Bosnar, Nataša Srnić, Zvonimir Zdunić
Honorary Committee
Počasni odbor
Vladimir Andročec, Božo Galić, Marin Hraste, Zvonimir
Janović, Leo Klasinc, Filip Kljajić, Gordan Kolundžić, Ruža
Marić, Sandra Mrvica Mađarac, Ivan Penava, Vlasta Piližota,
Damir Skender, Nenad Trinajstić, Željko Turkalj, Ivan Vrdoljak
Osijek i Zagreb, 2015.
ISBN (PTF): 978-953-7005-36-8
ISBN (HDKI): 978-953-6894-53-6
A CIP catalogue record of this publication is available from the
City and University Library Osijek under 140114084
CIP zapis dostupan u računalnom katalogu
Gradske i sveučilišne knjižnice Osijek pod brojem 140114084
Publication of the Proceedings was approved by the Senate of the Josip Juraj Strossmayer University of
Osijek at the fifth session of the academic year 2014/2015 held on the 31st March 2015 numbered 12/15.
Objavljivanje ovog Zbornika odobrio je Senat Sveučilišta Josipa Jurja Strossmayera u Osijeku na 5.
sjednici u akademskoj godini 2014./2015. održanoj 31. ožujka 2015. godine, pod brojem 12/15.
Acknowledgement to reviewers
The Editors of the Proceedings of the 15th
Ružička days extend their deepest gratitude to the
following manuscript reviewers who maintained the professional standards of our Proceedings of
the 15th Ružička days:
Ačkar Đurđica, Babić Jurislav, Barukčić Irena, Bubalo Dragan, Bucić-Kojić Ana, Ćurko Natka,
Cvetković Dragoljub, Dabić Pero, Findrik Blažević Zvjezdana, Habuda Stanić Mirna, Herceg Zoran,
Ivanković Danijela, Jokić Stela, Jukić Marijana, Kezić Nikola, Komes Draženka, Koprivnjak
Olivera, Košmerl Tatjana, Kovačević Davor, Kraljević Roković Marijana, Krstanović Vinko,
Kurtanjek Želimir, Lisjak Miroslav, Madunić-Čačić Dubravka, Magdić Damir, Medić Helga,
Miličević Borislav, Pajin Biljana, Pavlović Hrvoje, Planinić Mirela, Plenković-Moraj Anđelka,
Poljak Milan, Popović Brigita, Pozderović Andrija, Prlić Kardum Jasna, Raić Malić Silvana,
Rogošić Marko, Sakač Nikola, Šarolić Mladenka, Škevin Dubravka, Smole Možina Sonja, Šumić
Zdravko, Tepić Aleksandra, Tišma Marina, Tomašić Vesna, Turan Jan, Vasić-Rački Đurđa, Velić
Darko, Velić Natalija, Vuković Marija
All pieces of information provided in this Proceedings are the sole responsibility of the authors of
the manuscripts. Publishers are not responsible for any use that might be made of the data appearing
in this document. Also, publishers shall not be liable for any errors, language mistakes and the like,
that are found in the works of authors.
Under the Auspices of: Pokrovitelj:
Croatian Academy of Sciences
and Arts
Department of Mathematical,
Physical and Chemical Sciences
Hrvatska akademija znanosti
i umjetnosti
Razred za matematičke,
fizičke i kemijske znanosti
Supported by:
Uz potporu:
Ministry of Science, Education
and Sports of the Republic of
Croatia
Ministarstvo znanosti,
obrazovanja i sporta
Republike Hrvatske
Ministry of Agriculture of the
Republic of Croatia
Ministarstvo poljoprivrede
Republike Hrvatske
Ministry of Economy of the
Republic of Croatia
Ministarstvo gospodarstva
Republike Hrvatske
Ministry of Environmental and
Nature Protection of the Republic
of Croatia
Ministarstvo zaštite okoliša i
prirode Republike Hrvatske
Croatian Academy of Engineering
Akademija tehničkih
znanosti Hrvatske
Josip Juraj Strossmayer University
of Osijek
Sveučilište Josipa Jurja
Strossmayera u Osijeku
Vukovar-Srijem County
Vukovarsko-srijemska
županija
City of Vukovar
Grad Vukovar
Dear Reader,
You hold in your hand the Proceedings from the International Scientific and Professional conference,
the 15th Ružička Days, traditionally held in Vukovar, dedicated to Lavoslav Ružička, the first Croatian
Nobel Laureate. The Conference was held under the slogan “TODAY SCIENCE – TOMORROW
INDUSTRY”, and it gathered scientists and experts from the fields of natural, technical and
biotechnical sciences, and also from the biomedicine and healthcare. The researchers presented their
researches as oral (25) and poster presentations (106). Due to the above mentioned facts the
Proceedings has interdisciplinary character, and contains research papers from all mentioned fields of
science. Conference organizers hold the opinion that these papers give great contribution to the
mentioned fields of science. Hereby I express my gratitude to all the authors of the papers for their
contribution for making their research accessible to public through oral and poster presentations,
scientific and professional papers.
All papers which you can find in the Proceedings, as well as the Proceedings in general, were
reviewed by reputable reviewers, to whom I express my gratitude for their hard work.
I also express my gratitude to everyone who contributed to the organization of the 15th Ružička Days,
especially to the international co-organizers (EFFoST, EuCheMS, EHEDG), as well as to those who
helped in making this Proceedings, and I invite all of you to participate at the 16th Ružička Days.
We are looking forward to meeting you all again in Vukovar, in 2016.
Chairman of the Scientific and Organizing Committee of the Conference
Drago Šubarić, PhD, Full Professor
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Sadržaj / Contents
I
Sekcija: Kemijska analiza i sinteza
Session: Chemical analysis and synthesis
Dajana Gašo-Sokač, Valentina Bušić, Mirna Habuda-Stanić, Marija Nujić
Spectrophotometric studies of novel derivatives of vitamin B6 ........................................................ 1
Marija Jozanović, Danijela Jakobović, Nikola Sakač, Milan Sak-Bosnar
Electroanalytical characterization and determination of imidazole dipeptides
carnosine and anserine ................................................................................................................... 12
Tatjana Kezele, Ivana Bačić
Forenzički pristup analizi boja u spreju primjenom svjetlosne mikroskopije
i vibracijske spektroskopije
Forensic approach to analysis of spray paints by the use of optical microscopy
and vibrational spectroscopy .......................................................................................................... 18
Anamarija Šter, Martina Medvidović-Kosanović, Tomislav Balić, Iva Ćurić,
Paula Mihaljević-Jurić
Electrochemical characterization of (1E)-1-N-{[4-(4-{[(E)-N-(4- aminophenyl)
carboxyimidoyl] phenoxy}butoxy) phenyl]methylidene} benzene-1,4-diamine .............................. 32
Renato Tomaš, Anđelka Vrdoljak
Thermodynamic study of CdCl2 in 2-propanol (5 mass %) + water mixture using
potentiometry ................................................................................................................................. 41
Sekcija: Kemijsko i biokemijsko inženjerstvo
Session: Chemical and biochemical engineering
Krunoslav Aladić, Stela Jokić, Goran Horvat, Mate Bilić
Supercritical fluid extraction laboratory plant design ...................................................................... 50
Irena Banovac, Matko Erceg, Dražan Jozić, Zorana Akrap, Sigrid Bernstorff
Strukturna svojstva i ionska vodljivost nanokompozitnih polimernih elektrolita
Structural properties and ionic conductivity of nanocomposite polymer electrolytes....................... 59
Mirjana Čurlin, Ana Jurinjak Tušek, Tamara Jurina, Irena Petrinić,
Želimir Kurtanjek
Local sensitivity analysis of integrated membrane bioreactor model ............................................... 70
Ana Jurinjak Tušek, Anita Šalić, Želimir Kurtanjek, Bruno Zelić
Effect of surface roughness on flow profile of liquid-liquid system in a
microreactor ................................................................................................................................... 81
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Sadržaj / Contents
II
Antonija Kaćunić, Lea Lokas, Marija Ćosić, Nenad Kuzmanić
Influence of the fluid flow patterns on borax nucleation mechanism and
nucleation rate in a single and dual turbine impeller crystallizer ..................................................... 91
Zlatka Knezović, Marina Trgo, Angela Stipišić, Davorka Sutlović
Impact of metals from the environment on chemical changes in olive oil ..................................... 104
Tomislav Penović, Antonia Giacobi, Andrija Hanžek
Kinetika sušenja katalizatora u sušioniku s fluidiziranim slojem
Fluid bed drying kinetics of catalysts ........................................................................................... 113
Jasna Prlić Kardum, Marina Samardžija, Štefica Kamenić, Marin Kovačić
Reološka i toplinska karakterizacija nanofluida
Rheological and thermal characterization of nanofluids ............................................................... 125
Marko Rogošić, Aleksandra Sander, Borna Ferčec
Ravnoteža kapljevina–kapljevina u sustavu ugljikovodik – piridin – C6mmpyTf2N
Liquid-liquid equilibrium for the system hydrocarbon – pyridine – C6mmpyTf2N ................... 140
Valentino Sambolek, Anamarija Slivar, Barbara Žuteg, Martina Hrkovac
Primjenjivost n-heksadekana pri regeneraciji ionskih kapljevina
The applicability of n-hexadecane in regeneration of ionic liquids ............................................... 154
Aleksandra Sander, Tomislav Penović, Dario Klarić
Uvećanje sušionika s fluidiziranim slojem
Scale-up of fluid bed dryer ........................................................................................................... 166
Aleksandra Sander, Mladena Dujmenović, Maja Žužić
Nova otapala za ekstrakciju tiofena iz smjese sa n-heksanom
New solvents for extraction of thiophene from the mixture with n-hexane ................................... 178
Sekcija: Prehrambena tehnologija i biotehnologija
Session: Food technology and biotechnology
Sara Bebić, Franko Burčul, Ivana Generalić Mekinić, Ivica Blažević
Isolation and characterization of volatile and non-volatile phytochemicals from
orange (Citrus sinensis L.) peel .................................................................................................... 190
Frane Čačić Kenjerić, Ana Jelinić
Measurement and level regulation with ultrasound sensor and Arduino microcontroller ............... 204
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Sadržaj / Contents
III
Eva Ivanišová, Helena Frančáková, Štefan Dráb, Silvia Benčová
Elderberry as important source of antioxidant and biologically active compounds ........................ 212
Daniela Kenjerić, Blanka Bilić, Ivan Tomas, Milica Cvijetić
Vitamin E in vegetable oils as determined by RP-HPLC with UV detection ................................. 222
Nebojša Kojić, Lidija Jakobek
Determination of polyphenolic compounds in red wines from Baranja vineyards ......................... 232
Petra Krivak, Lidija Jakobek
Antiradical activity of polyphenols from old apple varieties ......................................................... 242
Zvonimir Ladešić, Sandra Maričić Tarandek, Josip Cvetko
Određivanje teksture (čvrstoće) i SFC profila binarnih i ternarnih smjesa palminog ulja,
palminog stearina i sojinog ulja
Determination of texture (hardness) and SFC profile of binary and ternary mixtures
of palm oil, palm stearin and soybean oil...................................................................................... 253
Krešimir Mastanjević, Dragan Kovačević, Kristina Vidaković
Cryoprotective effect of oat β-glucans on beef myofibrllar proteins.............................................. 260
Josip Mesić, Valentina Obradović, Maja Ergović Ravančić, Brankica Svitlica,
Jelena Žilić
Utjecaj mikorize i kvasaca na kakvoću vina sorte merlot (Vitis vinifera L.)
Influence of mycorrhizae and yeast strain on quality of wine variety merlot
(Vitis vinifera L.) ......................................................................................................................... 268
Borislav Miličević, Drago Šubarić, Antun Jozinović, Đurđica Ačkar, Jurislav
Babić, Danijela Vuković, Ana Mrgan
Effect of the immobilized yeast cells fermentation on chemical composition
and biogenic amines content in wine ............................................................................................ 276
Radoslav Miličević, Borislav Miličević, Đurđica Ačkar, Svjetlana Škrabal,
Drago Šubarić, Jurislav Babić, Antun Jozinović, Dijana Miličević
Rheological properties of molten chocolate masses during storage - influence of
milk components .......................................................................................................................... 283
Ana Mrgan, Gordana Jurišić
Stanje i mogućnosti proizvodnje mlijeka u Požeško-slavonskoj županiji
Condition and possibility of milk production in Pozega-Slavonia county ..................................... 289
Ana Mucalo, Goran Zdunić, Ivana Tomaz, Luna Maslov, Irena Budić-Leto,
Edi Maletić
Influence of harvest date on the primary metabolites of ˝Plavac mali˝ (Vitis vinifera L.)
grapes .......................................................................................................................................... 297
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Sadržaj / Contents
IV
Tina Perko, Mojca Škerget, Željko Knez
Extraction of active compounds from alfalfa plant ....................................................................... 306
Martina Petljak, Đuro Tunjić
Implementacija zahtjeva IFS-a u prehrambenoj industriji – izbor ili uvjet opstanka
na tržištu
Implementation of IFS in food industry – option or condition of survival on the market ............... 311
Mirella Žanetić, Maja Jukić Špika, Renato Stipišić, Antonela Jukić,
Sandra Svilović
Influence of malaxation time and temperature on ‘Levantinka’ virgin olive
oil properties ................................................................................................................................ 317
Sekcija: Kemija u poljoprivredi i šumarstvu
Session: Chemistry in agriculture and forestry
Miroslav Lisjak, Vlatko Galić, Bojan Fališevac, Marija Špoljarević, Mark E. Wood,
Matthew Whiteman, Ian D. Wilson, John T. Hancock, Tihana Teklić
The role of hydrogen sulfide in salt stress tolerance in plants ....................................................... 325
Zlatko Puškadija, Marin Kovačić, Željko Kraljičak, Silva Wendling, Dinko Jelkić,
Nebojša Nedić, Ivan Pihler
Digitalna SMS vaga kao suvremeni alat na pčelinjaku
Digital SMS scale as a modern tool on apiary .............................................................................. 335
Marija Špoljarević, Ana Mihaljević, Ivna Štolfa, Dejan Agić, Rosemary Vuković,
Miroslav Lisjak, Tihana Teklić
Primjena polietilen glikola-6000 u istraživanju osmotskog stresa kod soje
(Glycine max (L.) Merr.)
Polyethylene glycol-6000 application in the research of osmotic stress in soybean
(Glycine max (L.) Merr.) .............................................................................................................. 341
Zvonimir Zdunić, Luka Andrić, Aleksandra Sudarić, Georg Drezner, Alojzije Lalić,
Josip Kovačević, Krešimir Dvojković
Use of farm-saved seed in modern agriculture .............................................................................. 352
Sekcija: Zaštita okoliša
Session: Environmental protection
Ivana Jakovljević, Gordana Pehnec, Vladimira Vađić
Koncentracije policikličkih aromatskih ugljikovodika u zraku na različitim
lokacijama u Hrvatskoj
Concentrations of polycyclic aromatic hydrocarbons in the air at different
locations in Croatia ...................................................................................................................... 356
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Sadržaj / Contents
V
Brankica Kalajdžić, Marija Nujić, Željka Romić
Natural organic matter degradation using heterogeneous Fenton catalysts on zeolite support........ 364
Ivona Nuić, Anka Sulić, Marina Trgo, Nediljka Vukojević Medvidović
Influence of the flow rate on lead and zinc removal from a binary solution on the fixed bed
of natural zeolite .......................................................................................................................... 375
Biljana Pavić
Kompostiranje u školi
Composting at school ................................................................................................................... 383
Sonja Rupčić Petelinc, Sanja Žužek, Iris Jurki, Bruna Vugrinec, Emanuel Gaši
Uklanjanje nitrata iz poplavom onečišćenih voda
Removal of nitrate from contaminated flood water ....................................................................... 391
Marjana Simonič
Drinking water quality assessment from private well.................................................................... 402
Monika Šabić, Lara Čižmek, Marija Vuković Domanovac
Biorazgradnja eritromicina s bakterijskom kulturom Pseudomonas
aeruginosa 3011
Biodegradation of erythromycin with bacterial culture Pseudomonas
aeruginosa 3011 .......................................................................................................................... 409
Mirko Štefančić, Mirna Habuda-Stanić, Natalija Velić, Marija Nujić,
Kristina Habschied
BIOCOS®
wastewater treatment plant Našice: from start-up to stable operation ........................... 417
Natalija Velić, Tihana Marček, Tamara Jurić, Katarina Petrinović, Damir
Hasenay, Lidija Begović, Vedran Slačanac
A survey of different bioadsorbents for removal of malachite green and methylene
blue dyes from aqueous solutions ................................................................................................. 424
Kazalo autora Author index ............................................................................................................................. 433
Sponzori Sponsors .................................................................................................................................... 436
Sekcija: Kemijska analiza i sinteza
Session: Chemical analysis and synthesis
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
1
Spectrophotometric studies of novel derivatives of vitamin B6
UDC: 543.645.5
Dajana Gašo-Sokač1,2
, Valentina Bušić1, Mirna Habuda-Stanić
1, Marija Nujić
1
1Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia 2Josip Juraj Strossmayer University of Osijek, Department of Chemistry, Cara Hadrijana 8/A,
HR-31000 Osijek, Croatia
Summary
Chemistry of vitamin B6 was intensively investigated for nearly a century, which is understandable
given the importance of the life processes in the body. In recent years research has focused on the
synthesis and spectroscopic studies of new analogs of vitamin B6, which can be used in human
medicine for recovery of the organism poisoning by organophosphorus compounds. UV/VIS
absorption spectra of the synthesized derivatives of vitamin B6 were recorded in aqueous solutions
of different pH values. Absorption spectra of aqueous solutions of the test compounds changed with
changing the pH of the solution. In acidic medium there are two peaks, one at about 279-293 nm and
the other at 330 nm. By increasing the pH the second peak is lost, and the first moves at about 270-
274 nm with the emergence of a new peak at about 378-380 nm.
Keywords: pyridoxal oxime, vitamin B6, UV/VIS spectroscopy
Introduction
Most pyridine derivatives, both naturally occurring and synthetic, show a wide range of
biological activity. Pyridine derivatives are widely used as herbicides, insecticides and
fungicides. The study of the oxime derivatives of (1-phenacyl)piridinium cation is of great
importance because of their versatile bioactivities. Some oximes are currently being used in
human therapy as antidotes against organophosphate poisoning. Oximes, particularly those
of the mono- and bis-pyridinium type, are capable of reactivating in vitro and in vivo the
cholinesterase inhibited by organophosphorous compounds (pesticides, chemical warfare
nerve agents) and have multiple pharmacological action (Reiner and Simeon Rudolf, 2006;
Primožič et al., 2004). Commonly used reactivators are characterised by the presence of
several structural features: functional oxime group, quaternary nitrogen group and different
length of linking chain between two pyridinium rings in the case of bispyridinium
reactivators (Primožič et al., 2004). Searching for compounds containing that structural
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
2
features that could be interesting for further studies and at the same time chemically related
to biologically and pharmacologically active molecules led to the synthesis of new
derivatives of vitamin B6.
In the earlier study, we synthesized new oximes, derivatives of vitamin B6, and tested them
as reactivators of AChE (Gašo-Sokač et al., 2010). The goal of this work was to carry out
further spectroscopic characterisation of prepared derivatives of vitamin B6 and in the
present work UV/VIS characteristic of the prepared compounds are presented.
Materials and methods
Solvents and reagents were purchased from Fluka and Aldrich and used without further
purification. Ultraviolet visible absorption spectra were recorded using Specord 200
spectrophotometer (Analytik Jena AG). The UV/VIS spectra were obtained at room
temperature (25 °C) using 1 cm optical path-lenght quartz cells. A pH-meter with a
saturated calomel-glass electrode system was used for pH measurements. pH readings were
fitted using the appropriate amount of hydrochloric acid (0.2 M), sodium hydroxide (0.2
M) and Britton-Robinson buffer. Britton-Robinson buffer was prepared by mixing
equimolar amounts of phosphorous (0.04 M H3PO4) acetate (0.04 M CH3COOH) and boric
acid (0.04 M H3BO3).
Results and discussion
The quaternary salts 1-6 were prepared according to the described procedures, Scheme 1.
(Gašo-Sokač et al., 2010; Gašo-Sokač et al., 2014).
Scheme 1. Synthesis of the oximes 1-6
The aqueous solution of compound 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-
hydroxymethyl-2-methylpyridinium bromide (3) and its 4’-chloro (1), 4’-bromo (2), 4’-
methyl (4), 4’-nitro (5) and 4’-methoxy (6) derivatives exhibit an analogues spectra.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
3
The absorption spectra of all compounds in aqueous solutions generally exhibited the pH-
dependent bands that were compatibile with the absorptions of the inherited chromophores.
At pH 2 an 3 the absorption spectra of compounds 1-6 were composed of an intense band
at 279-293 (λmax (1) = 280 nm, λmax (2) = 280 nm, λmax (3) = 282 nm, λmax (4) = 279 nm,
λmax (5) = 282 nm, λmax (6) = 293 nm) and weaker absorption at 330 nm, Fig. 1-6, Table 1-
6. These bands originated from the overlapped ππ* transition within the acetophenone
and the pyridinium chromophores and are in agreement with literature data (Beamish,
1990). Namely, non-substituted pyridine shows an electronic transition at 257 nm due ππ*
transition and this absorption band bathocromic shifts to longer wavelengths when substituents
are conjugated to the aromatic system also quaternization of pyridine caused bathochromical or
hypsochromical shift which depend on the substituents (Cetina et al., 2010).
Table 1. Spectral data of 1-(4’-chlorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-
2-methylpyridinium bromide (1)
max/ nm Absorbance pH / M-1cm-1
280
330
1.828
0.763 2
11425
4769
280
330
1.863
0.803 3
11644
5019
276
343 370
1.526
0.557 0.506
5
9538
3481 3125
275
371
1.362
0.782 6
8513
4888
274
371
1.374
0.829 7
8588
5181
274
371
1.361
0.847 8
8506
5294
274 375
1.429 1.047
10 8931 6544
273
378
1.442
1.246 11
9013
7788
273
315 379
1.343
0.639 1.309
12
8394
3994 8181
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
4
Fig. 1. Absorption spectra of compound 1 (c= 1.6 x 10-4
M, t = 25 °C) at different acidities
Table 2. Spectral data of 1-(4’-bromophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-
2-methylpyridinium bromide (2)
max/ nm Absorbance pH / M-1cm-1
280
330
1.603
0.547 2
10019
3419
280
330
1.588
0.563 3
9925
3519
276
343 370
1.357
0.379 0.339
5
8481
2369 2119
275
369
1.442
0.593 6
9013
3706
274
371
1.310
0.587 7
8188
3669
274
371
1.279
0.605 8
7994
3781
274 375
1.307 0.755
10 8169 4719
274
378
1.313
0.932 11
8206
5825
273
380
1.129
0.975 12
7056
6094
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
200 250 300 350 400 450
A
/ nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
5
Fig. 2. Absorption spectra of compound 2 (c= 1.6 x 10-4
M, t = 25 °C) at different acidities
Table 3. Spectral data of 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-
methylpyridinium bromide (3)
max/ nm Absorbance pH / M-1cm-1
282
330
1.103
0.636 2
6894
3975
282 330
1.138 0.652
3 7113 4075
281
335
372
0.775
0.472
0.393
5
4844
2670
2456
270
371
0.590
0.669 6
3688
4181
270 371
0.565 0.727
7 3531 4544
270
371
0.570
0.710 8
3563
4438
270
374
0.637
0.844 10
3981
5275
270
377
0.747
1.005 11
4669
6281
271 317
378
0.824 0.526
1.158
12 5159 3288
7238
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
200 250 300 350 400 450
A
λ/ nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
6
Fig. 3. Absorption spectra of compound 3 (c = 1.6 x 10-4
M, t = 25 °C) at different acidities
Table 4. Spectral data of 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4’-
methylphenacyl) pyridinium bromide (4)
max/ nm Absorbance pH / M-1cm-1
279
330
1.391
0.549 2
8694
3431
279 330
1.307 0.517
3 8169 3231
275
333
372
1.138
0.383
0.312
5
7113
2394
1950
273
371
1.032
0.534 6
6450
3336
273 371
1.068 0.564
7 6675 3525
273
371
1.016
0.562 8
6350
3513
273
374
1.101
0.683 10
6881
4269
273
376
1.095
0.790 11
6844
4938
273 315
377
1.144 0.472
0.901
12 7150 2950
5631
0
0,2
0,4
0,6
0,8
1
1,2
1,4
200 300 400
A
λ nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
7
Fig. 4. Absorption spectra of compound 4 (c = 1.6 x 10-4
M, t = 25 °C) at different acidities
Table 5. Spectral data of 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4’-
nitrophenacyl) pyridinium bromide (5)
max/ nm Absorbance pH / M-1cm-1
282
330
1.103
0.636 2
11030
3975
282
330
1.138
0.652 3
7113
4075
281 335
370
0.775 0.472
0.394
5 4844 2950
2462
270
371
0.590
0.669 6
3687
4181
270
371
0.565
0.727 7
3531
4544
270 371
0.570 0.710
8 3563 4438
270
374
0.637
0.844 10
3981
5275
270
377
0.747
1.005 11
4669
6281
271
317 378
0.824
0.526 1.158
12
5150
3288 7238
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
200 250 300 350 400 450
A
λ / nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
8
Fig. 5. Absorption spectra of compound 5 (c = 1.6 x 10-4
M, t = 25 °C) at different acidities
Table 6. Spectral data of 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4’-
methoxyphenacyl) pyridinium bromide (6)
max/ nm Absorbance pH / M-1cm-1
293 2.830 2 17688
292 2.842 3 17763
291
369
2.480
0.561 5
15500
3506
289 370
2.342 0.997
6 14638 6231
289
369
2.168
0.971 7
13550
6069
288
371
2.165
0.999 8
13531
6244
290
373
2.131
1.162 10
13319
7263
288 376
2.075 1.394
11 12969 8713
287
377
2.069
1.640 12
12931
10250
0
0,2
0,4
0,6
0,8
1
1,2
1,4
200 250 300 350 400 450
A
/ nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
9
Fig. 6. Absorption spectra of compound 6 (c = 1.6 x 10-4
M, t = 25 °C) at different acidities
At higher pH values ionization of keto-tautomers and the formation of the respective
enolates resulted in additional conjugation bands at 377-380 nm. The band at 279-293 loses
in intensity along with the appearance of a new one at 377-380 (λmax (1) = 379 nm, λmax (2)
= 380 nm, λmax (3) = 378 nm, λmax (4) = 377 nm, λmax (5) = 378 nm, λmax (6) = 377 nm). It
reaches maximal absorbance at pH 12 and it is attributed to the enolic form of the
compounds, Scheme 2. The intensity of second maximum is lower than the first maximum
except for compounds 3 (λmax = 271 nm, ε = 5159 M-1
cm-1
;λmax = 378 nm , ε = 7238 M-1
cm-
1) and 5 (λmax = 271 nm, ε = 5150 M
-1cm
-1;λmax = 378 nm , ε = 7238 M
-1cm
-1). The
formation of the enol form leads to the conjugation of the double bond with the pyridine
and the benzene nucleus. The hydrogen atoms of the α-methylene group are doubly
activated by carbonyl group and by the neighbouring positive charge of the pyridinium
nitrogen thus at higher pH solutions of compounds 1-6 contain considerable proportions of
enol form (Lovrić et al., 1999)
0
0,5
1
1,5
2
2,5
3
200 250 300 350 400 450
A
λ / nm
pH 2
pH 3
pH 5
pH 6
pH 7
pH 8
pH 10
pH 11
pH 12
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
10
Scheme 2. The acid-base equilibria of compounds 1-6
Foretić et al. (2012) performed electronic absorption spectral studies of 1-phenacyl and 1-
benzoylethyl-derivatives of the pyridinium cation in aqueous media and obtained similar
results. The spectra of aqueous solution of (1-phenacyl)pyridinium chloride and 2-methyl-
(1-phenacyl)pyridinium chloride were composed of intensive band at 250 nm and weaker
absorption in the 270-290 nm range. Ionisation of the keto-tautomers and formation of the
respective enolates resulted in additional conjugation bands at 400 and 390 nm (Foretić et
al., 2012).
Conclusions
The study of 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-
methylpyridinium bromide (3) and its 4’-chloro (1), 4’-bromo (2), 4’-methyl (4), 4’-nitro
(5) and 4’-methoxy (6) derivatives have been done using UV/VIS spectroscopy. The
aqueous solutions of all compounds exhibit analogous spectra. In acidic medium there are
two peaks, one at about 279-293 nm and the other at 330 nm with the predominance of
ketone forms. By increasing the pH the second peak is lost, and the first hypsochromically
move with the emergence of a new peak at about 378-380 nm that suggested a considerable
fraction of enols in aqueous solutions.
C N CH=NOH
O
C CH2 N CH=NO
O
OH-
OHH3C
CH2OH
OHH3C
CH2OH
R RCH2
C CH N CH=NOH
OH
OHH3C
CH2OH
R
C CH N CH=NO
OH
OHH3C
CH2OH
R C CH N CH=NO
O
OHH3C
CH2OH
R
OH-
OH-
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
11
References
Beamish, G.G. (1990): Practical Fluorescence, second ed., Marcel Dekker, New York.
Cetina, M., Trafnić, M., Sviben, I., Jukić, M., (2010): Synthesis, X-ray and spectroscopic analysis of
some pyridine derivatives, J. Mol. Struct. 969, 25-32.
Foretić, B., Picek, I. Damjanović, V., Cvijanović, D., Milić, D. (2012): The structures and stabilities
of biologically active 1-phenacyl- and 1-benzoylethyl-derivatives of the pyridinium cation, J.
Mol. Struct. 1019, 196-205.
Gašo-Sokač, D., Katalinć, M., Kovarik, Z., Bušić, V., Kovač, S. (2010): Synthesis and evaluation of
novel analogues of vitamin B6 as reactivators of tabun and paraoxon inhibited
acetylcholinesterase, Chem. Biol. Interact. 187, 234-237
Gašo-Sokač, D., Bušić, V., Cetina, M., Jukić, M. (2014): An efficient synthesis of pyridoxal oxime
derivatives under microwave irradiation, Molecules 19 (6), 7610-7620
Lovrić, J., Burger, N., Deljac, V., Mihalić, Z. (1999): Spectrophotometric studies of some novel
derivatives of pyridinium chloride, Croat. Chem. Acta. 72 (1), 123-133.
Primožič, I., Odžak. R., Tomić, S., Simeon-Rudolf, V., Reiner, E. (2004): Synthesis, interaction with
native and phosphorylated cholinesteerases, and antidotes against organophosphorus
compounds. J Med Chem Def, 2, 1-30.
Reiner, E., Simeon-Rudolf, V. (2006): Reactivation of phosphorylated cholinesterases in vitro and
protecting effects in vivo of some pyridinium and quinolinium oximes. Arh Hig Rada Toksikol
57, 171-179.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
12
Electroanalytical characterization and determination
of imidazole dipeptides carnosine and anserine
UDC: 543.645.6
Marija Jozanović, Danijela Jakobović, Nikola Sakač, Milan Sak-Bosnar
Josip Juraj Strossmayer University of Osijek, Department of Chemistry, Cara Hadrijana 8A,
HR-31000 Osijek, Croatia
Summary
Acid-base properties of imidazole dipeptides - carnosine and anserine were studied. Carnosine and
anserine were determinated and characterized, single and in binary mixtures, by direct potentiometric
titrations using aqueous and nonaqueous solvents. Before direct potentiometric titrations, carnosine and
anserine solutions should be pH adjusted to 3.00. The generated potentiometric data were used for
defining buffering capacities (buffer strength) and for determination of the corresponding species
distribution diagrams. Distribution diagram provided the qualitative information of the carnosine and
anserine species equilibria that are pH dependent. The buffer strength diagram of carnosine indicates
enhanced buffer effect at pH ca. 3.5 and 7.5. Binary mixtures showed no or some small difference in
potentiometric determination. Titration curve for titration in acetonitrile showed higher potential
change compared to that in methanol solutions. Further investigation should be carried out.
Keywords: dipeptides, carnosine, anserine, potentiometry, nonaqueous titrations
Introduction
Carnosine and anserine are dipeptides that are contained in the skeletal muscles or brains of
vertebrates in high concentrations. These substances may function to reduce muscle fatigue
and improve learning ability because of an anti-oxidative effect (Alpsoy et al., 2011) and
buffering capacity due to the presence of an imidazole group.
L-Carnosine (ß-alanyl-L-histidine) is a dipeptide composed of ß-alanine and L-histidine,
which performs multiple biological functions including pH buffering, anti-oxidation, anti-
glycation, anti-aging, and chelation of divalent metal cations (Hipkiss, 2009). Anserine (ß-
alanyl-N-methyl histidine) is an N-methylated analogue of carnosine found mainly in fish
and birds. Anserine has similar properties to carnosine in many aspects but is mainly found
in non-mammalian species.
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
13
Carnosine and anserine can be determined in biological materials by means of HPLC using
fluorescent (Aristoy et al., 2004) and electrochemical detection (Nardiello et al., 2004),
capillary electrophoresis (Huang et al., 2005) and microchip electrophoresis (Zhao et al., 2009).
In these investigations some acid-base properties of carnosine and anserine were
potentiometrically studied.
Materials and methods
Reagents and preparation of solutions
Aqueous solutions:
Carnosine (Sigma-Aldrich, USA) and anserine (Bachem, Switzerland) titrations were
performed using NaOH standard of the concentration 0.01 and 0.001 M (Kemika, Croatia)
as a titrant, 1 M HCl (Kemika, Croatia) was used for pH dipeptide solution adjustment to 3
and 4, respectively. All chemicals were of analytical reagent grade.
Nonaqueous solutions:
Carnosine solutions were prepared in a) 90% acetonitrile (J. T. Baker, Netherland) b) 90%
methanol (Carlo Erba, Italy), both in water.
Carnosine titrations were performed using 0.01 M tetrabutylammonium hydroxide
(TBAOH) in toluene/methanol (ACROS Organics, Belgium). All chemicals were of
analytical reagent grade.
Apparatus
The 765 dosing unit (Metrohm, Switzerland) combined with Metrohm exchange unit
(Metrohm, Switzerland), were employed for carnosine and anserine (single and their binary
mixtures) aqueous titrations and nonaqueous titrations for carnosine.
Electrode system used: a) for aqueous solutions 6.0253.100 glass combined electrode
(Metrohm, Switzerland) with Ag/AgCl/ 3 M KCl (Metrohm, Switzerland); b) for
nonaqueous solutions LL Solvotrode Easy Clean glass combined electrode LiCl/ethanol
(Metrohm, Switzerland). The solutions were magnetically stirred during titrations using the
801 Stirrer (Metrohm, Switzerland).
Procedures
Aqueous solutions:
The single dipeptide solutions were measured as following: a) 10 mL of carnosine (0.01
and 0.001 M) solution and b) 10 mL anserine (0.01 and 0.001 M) solutions were titrated
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
14
with NaOH solutions (0.01 and 0.001 M), respectively. The dipeptide solutions pH were
adjusted to 3 (for 0.01 M) and 4 (for 0.001 M).
The dipeptides binary mixtures were investigated as following: 10 mL of analyte solution
containing 0.001 M solutions of carnosine to anserine in ratios 1:1; 1:2 and 1:3, were
titrated with NaOH solutions (0.001 M).
Nonaqueous solutions:
The single carnosine solutions were measured as following: a) 90% acetonitrile-water
solvent system of carnosine (0.001 M) solution and b) 90% methanol-water solvent system
of carnosine (0.001 M) solution were titrated with 0.01 M TBAOH in toluene/methanol.
Results and discussion
Aqueous solutions
Single dipeptide solutions of carnosine and anserine were measured by potentiometric
titration (Fig. 1), by adding aqueous NaOH with and without pH adjustment. When pH was
adjusted to 3.0, potentiometric titration curve and it`s 1st derivative showed 2 sharp
inflexions, presenting equivalence points. When compared to titration curve with no pH
adjustment, it`s 1st derivative showed no sharp peaks. Anserine was studied with the same
methodology, presenting similar results.
Fig. 1. Potentiometric titration curve of carnosine with aqueous NaOH (c=0.01 M),
no pH adjustment (○), pH adjustment at 3.0 (▲) and corresponding 1st derivative:
for no pH adjustment (full line) and for pH adjustment (dashed line)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
15
A quantitative expression of the pH-stabilizing buffer action of a triprotic acid such as
carnosine is the buffer strength B. The buffer-strength diagram of carnosine, obtained on
the basis of data after the calculation and optimization, is shown in Fig. 2. The buffer
strength diagram of carnosine indicates enhanced buffer effect at pH ca. 3.5 and 7.5.
Fig. 2. Buffer strength diagram of carnosine (c=0.01 M)
The pKa values for anserine are pKa1=2.64; pKa2=7.04; pKa3 =9.49. The pKa values for
carnosine are pKa1=2.64; pKa2=6.87; pKa3=9.51. The pKa values for both dipeptides are
very close. Distribution diagram (Fig. 3) provides the qualitative information of the
carnosine and anserine species equilibria, that are pH dependent. The data obtained,
combined with data from buffer strength diagram, could be used to predict pH changes
during potentiometric titrations of pure and real sample systems.
Fig. 3. Distribution diagrams of carnosine (black lines) and anserine (dotted lines)
The dipeptides binary mixtures were investigated in solutions of carnosine and anserine in
ratios 1:1; 1:2 and 1:3, with NaOH solution (0.001 M) are shown in Fig. 4. There is no
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
16
difference in the shape of titration curves for 1:1 and 1:2 carnosine to anserine ratios, the ratio
1:3 is slightly shifted to higher NaOH consumption. Further investigation should be carried out.
Fig. 4. Potentiometric titration curves for binary mixture of carnosine and anserine
in ratios 1:1 (□); 1:2 (▲) and 1:3 (○), with NaOH solution (0.001 M)
Nonaqueous solutions
Potentiometric titration curve of carnosine in nonaqueous solvents: 90% acetonitrile and
90% methanol using TBAOH (c=0.01 M) and their corresponding 1st derivatives are
presented in Fig. 5. Titration curve for titration in acetonitrile showed higher potential
change compared to that in methanol solutions. Further investigations should be performed
on different organic nonaqueous solvents.
Fig. 5. Potentiometric titration curve of carnosine in 90% acetonitrile (□) and 90% methanol (○)
using TBAOH (c=0.01 M) with corresponding 1st derivative for 90% acetonitrile (full line)
and 90% methanol (dashed line)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
17
Theoretical model for the corresponding experimental data is a challenging issue, and will
be a part of further investigation.
Conclusions
In these investigations carnosine and anserine were potentiometrically studied, single and
in a mixture. Their acid-base properties were studied by use of potentiometric titrations that
were carried out in aqueous and nonaqueous solvents. The generated potentiometric data
were used for defining buffering capacities (buffer strength) and for determination of the
corresponding species distribution diagrams.
References
Alpsoy, L., Akcayoglu, G., Sahin, H. (2011): Anti-oxidative and anti-genotoxic effects of carnosine
on human lymphocyte culture, Hum. Exp. Tox. 30, 1979-85.
Aristoy, M. C., Soler, C., Toldra, F., (2004): A simple, fast and reliable methodology for the
analysis of histidine dipeptides as markers of the presence of animal origin proteins in feeds for
ruminants, Food Chem. 84, 485-491.
Hipkiss, A. R. (2009): Carnosine and its possible roles in nutrition and health, Adv. Food Nutr. Res.
57, 87-154. Huang Y., Duan J., Chen H. , Chen M., Chen G. (2005): Separation and determination of carnosine-
related peptides using capillary electrophoresis with laser-induced fluorescence detection,
Electrophoresis 26, 593-599.
Nardiello D, Cataldi TRI. (2004): Determination of carnosine in feed and meat by high-performance
anion-exchange chromatography with integrated pulsed amperometric detection, J.
Chromatogr. A. 1035, 285-289.
Zhao S., Huang Y., Shi M., Huang J., Liu J.M.V(2009): Quantification of biogenic amines by
microchip electrophoresis with chemiluminescence detection, Anal. Biochem. 393, 105-110.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
18
Forenzički pristup analizi boja u spreju primjenom
svjetlosne mikroskopije i vibracijske spektroskopije
UDC: 340.67
667.2 : 543.42
Tatjana Kezele1, Ivana Bačić
2
1Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, Kemijski odsjek, Horvatovac 102A,
10000 Zagreb 2Ministarstvo unutarnjih poslova, Centar za forenzična ispitivanja, istraživanja i vještačenja „Ivan
Vučetić“, Ilica 335, 10000 Zagreb
Sažetak
Forenzičari su često u prilici vještačiti uzorke boja u spreju kojima su, uglavnom na pročeljima
zgrada, ispisane poruke uvredljivog sadržaja. Kako se obično radi o tankim slojevima boje koji se
teško odvajaju od podloge na kojoj se nalaze, za njihovu analizu potrebno je primijeniti
instrumentne tehnike koje ne zahtijevaju prethodnu pripremu uzorka. Ukupno deset uzoraka crne i
plave sprej boje različitih nijansi naneseno je u tankom sloju na staklo, odnosno na podlogu od bijele
i žute fasadne boje. In situ kemijska analiza tako pripremljenih modelnih uzoraka provedena je
tehnikama infracrvene spektroskopije uz prigušenu totalnu refleksiju i Ramanove
(mikro)spektroskopije, dok je morfologija uzoraka okarakterizirana pomoću svjetlosnog
mikroskopa. Tehnikom infracrvene spektroskopije analiziran je sastav veziva, a vrsta pigmenata
određena je iz Ramanovih spektara pri pobudi 785 i 532 nm. U spektrima uzoraka na podlozi od
fasadne boje, nisu uočene dodatne vrpce koje bi ukazivale na utjecaj podloge. Provedena
istraživanja pokazala su da primijenjene nedestruktivne tehnike omogućavaju identifikaciju i
razlikovanje boja u spreju bez prethodne priprave uzoraka sve dok je debljina sloja boje dovoljna da
spriječi utjecaj podloge.
Ključne riječi: boje u spreju, forenzika, infracrvena spektroskopija, Ramanova mikroskopija,
svjetlosna mikroskopija
Uvod
Grafiti su kao sredstvo komunikacije postali nezaobilazni dio suvremene kulture koja je
posebno naglašena u urbanim mjestima. Kada grafiti prijeđu granicu ''umjetnosti'' i služe za
namjerno uništavanje javne imovine ili kada svojim sadržajem izražavaju predrasude i
mržnju prema drugima, postaju kazneno djelo. U otkrivanju počinitelja takvih kaznenih
djela značajnu ulogu imaju rezultati forenzičnog istraživanja. Uz pojam grafita najčešće se
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
19
povezuju boje u spreju, pa je zadatak forenzičara analizom materijalnog dokaza povezati
boju s grafita s eventualnim počiniteljem. Kako se obično radi o tankim slojevima boje koji
se teško odvajaju od podloge na kojoj se nalaze, za njihovu analizu potrebno je primijeniti
instrumentne tehnike koje ne zahtijevaju prethodnu pripremu uzorka.
Boje u spreju su, kao i druge vrste svježe boje, smjesa pet osnovnih sastojaka: veziva,
otapala, pigmenta, punila i aditiva (Caddy, 2001). S forenzičnog stajališta najveću
vrijednost za identifikaciju i usporedbu suhih uzoraka boja u spreju ima kemijski sastav
veziva, pigmenata i punila.
Forenzička identifikacija i usporedba boja u spreju provode se nizom analitičkih tehnika
koje slijedom primjene obuhvaćaju svjetlosnu mikroskopiju, infracrvenu spektroskopiju s
Fourierovom transformacijom (FT-IR) i Ramanovu spektroskopiju (Goavert i sur., 2001,
2003 i 2004). Svjetlosnom mikroskopijom karakteriziraju se fizikalna svojstva uzorka kao
što su nijansa boje, zastupljenost pigmenata, debljina sloja te sjaj i morfologija površine
(Nieznańska, 1999; Zięba-Palus, 2005). Kako u svojim radovima navode Goavert i sur.
(2001. i 2004.) boje mogu biti mat (M), saten (S) i sjajne (Sj), s time da se hrapavost
površine smanjuje od mat prema sjajnoj boji (M > S > Sj).
Infracrvena spektroskopija uz prigušenu totalnu refleksiju (ATR) rutinski se primjenjuje u
analizi boja najčešće za određivanje njihovih organskih komponenti (Zięba-Palus, 2003 i
2005). Primjena Ramanove (mikro)spektroskopije u analizi boja u spreju pokazala je veliki
potencijal posebno u identifikaciji organskih pigmenata koji zbog utjecaja veziva obično
nisu vidljivi u infracrvenom spektru, dok u Ramanovom spektru daju jake vrpce (Buzzini i
sur., 2003).
Poseban izazov predstavlja analiza crnih boja u spreju koje je osim metodama vibracijske
spektroskopije potrebno analizirati i nekom drugom tehnikom kao što su pretražna
elektronska mikroskopija spregnuta s energodisperzivnom spektroskopijom (SEM/EDX) te
pirolitička plinska kromatografija sa spektrometrom masa kao detektorom (Py-GC-MS)
(Ryland, 2010; Muehlethaler i sur., 2013).
U ovom radu, u svrhu vrednovanja razlikovne i identifikacijske moći tehnika svjetlosne
mikroskopije i vibracijske spektroskopije, istražen je niz od deset uzoraka crne i plave boje
u spreju različitih nijansi. U radu su optimizirani i analitički uvjeti Ramanove
spektroskopije, prvenstveno valna duljina i snaga lasera, broj snimaka i vrijeme
prikupljanja spektara te veličina pukotine kroz koju zračenje lasera upada na uzorak.
Također, provedena je identifikacijska analiza boja u spreju koja podrazumijeva
određivanje morfoloških karakteristika i kemijskog sastava uzoraka boje i to vrste veziva,
pigmenata i punila. Na uzorcima pripremljenim nanošenjem boje u spreju u tankom sloju
na staklo, odnosno na podlogu od bijele i žute fasadne boje na vodenoj i organskoj osnovi,
ispitan je utjecaj podloge na nijansu i morfologiju boje, kao i na rezultate spektroskopske
analize.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
20
Materijali i metode
Pet uzoraka crne i pet uzoraka plave boje u spreju proizvođača „Dupli-Color“ (Tablica 1)
naneseno je prskanjem na mikroskopska stakalca s udaljenosti oko 20 cm, u trajanju 5
sekundi. Prije nanošenja limenke s bojom su snažno protresene kako bi se dobila što
homogenija raspodjela pigmenata (Muehlethaler i sur., 2014).
Tablica 1. Uzorci boje u spreju
Table 1. Spray paint samples
Uzorak Naziv boje RAL* Opis
C1 Aerosol art sprej 9005 crna mat
C2 Aqua sprej 9005 crna mat
C3 Platinum sprej 9005 crna, sjajna
C4 Color sprej 9005 crna, sjajna
C5 Auto sprej 9005 crna, sjajna
P1 Aerosol art sprej 5002 ultramarin plava
P2 Aerosol art sprej 5010 gentian plava
P3 Aerosol art sprej 5012 svijetlo plava
P4 Aerosol art sprej 5013 kobalt plava
P5 Aerosol art sprej 5015 nebesko plava *oznaka u standardiziranom registru boja koji se koristi u
Europi
Uzorci boje u spreju naneseni su i na podloge od žute i bijele fasadne boje na organskoj i
vodenoj osnovi, proizvođača "Cromos Svjetlost'' d.o.o., Lužani. Pločice s nanesenom
bojom sušile su se 24 sata. Bez daljnje pripreme uzoraka, snimljeni su IR i Raman spektri.
Optička mikroskopija
Za mikroskopski pregled i određivanje morfoloških svojstava uzoraka boje u spreju
nanesenih na staklo i na podloge od fasadne boje korišten je stereomikroskop Olympus,
maksimalnog povećanja 120.
Infracrvena spektroskopija
Infracrveni spektri snimani su na infracrvenom spektrometru TENSOR 27 tvrtke Bruker,
tehnikom prigušene totalne refleksije s refleksijskim elementom od dijamanta. Područje
snimanja spektara bilo je od 4000 cm-1
do 600 cm-1
uz razlučivanje od 4 cm-1
. Spektri su
rezultat uprosječivanja 10 snimaka. Na svim spektrima, programom OPUS 7.0, provedena
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
21
je korekcija bazne linije (concave rubberband correction, CRC) i automatsko određivanje
valnih brojeva vrpci (peak picking).
Ramanova spektroskopija
Ramanovi spektri snimljeni su Ramanovim disperzivnim spektrometrom SENTERRA
tvrtke Bruker u konfiguraciji s mikroskopom Olympus s objektivima za povećanje 20, 50 i
100. Kao izvori zračenja korištena su dva lasera: Nd:YAG laser valne duljine 532 nm te
diodni laser (AlGaAs) valne duljine 785 nm. Raspršeno zračenje detektirano je pomoću
CCD detektora (charge-coupled device) koji je hlađen Peltierovim elementom.
Za sve uzorke zajednički uvjeti su bili: rešetka 1200 abc, pukotina 251000 μm, povećanje
50, spektralno područje 4400–100 cm-1
, razlučivanje 3–5 cm-1
, 20 snimaka i vrijeme
integracije 2 s. Snaga lasera, kao ograničavajući faktor, prilagođena je svakom uzroku kako
bi se izbjegao termički raspad uzorka (Tablica 2).
Programskim paketom OPUS 7.0 svim Ramanovim spektrima korigirana je bazna linija
(CRC). Identifikacija pigmenata provedena je programom „KnowItAll“ (Bio-Rad
Laboratories) usporedbom Ramanovih spektara uzoraka boje u spreju sa spektrima u
dostupnim zbirkama.
Tablica 2. Uvjeti snimanja Ramanovih spektara
Table 2. Raman spectra conditions
Uzorak
C1-C5 P1 P2 P3 P4 P5
785 nm / mW 1 1 10 1 1 10
532 nm / mW 5 2 0,2 0,2 0,2 2
Ramanovim spektrometrom određena je i debljina slojeva boje u spreju na fasadnim
podlogama. Fragmenti boje s podlogom izuzeti su skalpelom i u poprečnom presjeku
postavljeni u plastelin, a debljina sloja boje u spreju mjerena je pri povećanju od 50 ili
100. Za svaki uzorak napravljeno je pet mjerenja, a rezultat je njihova srednja vrijednost.
Rezultati i rasprava
Optička mikroskopija
U ovom radu naglasak mikroskopske analize je na određivanju morfoloških svojstava
uzoraka boja u spreju nanesenih na staklo i podloge od fasadne boje. Rezultati analize
prikazani su u Tablici 3.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
22
Tablica 3. Morfološke karakteristike boja u spreju
Table 3. Morphology of spray paints
C1 C2 C3 C4 C5 P1 P2 P3 P4 P5
staklo M S Sj Sj Sj Sj Sj Sj Sj Sj
fasadna
boja JM S M M M BM BM M BM BM
*M – mat, JM – jače mat, BM – blago mat, S – saten, Sj – sjajna
S obzirom na morfološke karakteristike uzoraka nanesenih na staklo moglo se razlikovati
tri vrste boja – mat (1 crna), saten (1 crna) i sjajna (3 crne i 5 plavih). Iste boje nanesene na
podlogu od fasadne boje okarakterizirane su kao jače mat (1 crna), mat (3 crne i 1 plava),
saten (1 crna) i blago mat (4 plave). Kod 9 od ukupno 10 istraženih uzoraka došlo je do
nekog oblika promjene morfoloških svojstava, koja se odražava kroz smanjenje sjaja
uslijed povećanja hrapavosti sloja boje. Hrapavost površine povećana je na način da se na
površini boje preslikala struktura podloge uz nastajanje brojnih sitnih udubljenja (Slika 1).
Slika 1. Mikroskopska slika crne boje u spreju (C5) nanesene na staklo (lijevo)
i na podlogu od fasadne boje (desno), snimljeno pri ukupnom povećanju 200
Fig. 1. Microscopic analysis of black spray paint (C5) on glass (left)
and facade paint (right). Magnification 200
Najznačajnije promjene zapažene su kod tri crne i jedne plave boje (C3-C5, P3), dok je
nešto manji utjecaj podloge uočen kod preostale četiri plave boje, (P1, P2, P4, P5). Kod C1
crne boje došlo je do pojačanja mat efekta, dok promjena morfologije nije uočena jedino
kod uzorka koji je opisan kao saten (C2). Primjeri različitih površina boje prikazani su na
Slici 2. Na gornjoj polovici slika su boje nanesene na staklo, a na donjoj polovici boje su
nanesene na podlogu od fasadne boje.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
23
Slika 2. Mikroskopske slike crnih boja C2 (lijevo) i C3 (sredina) te plave boje P3 (desno).
Snimljeno pri ukupnom povećanju 20
Fig. 2. Microscopic analysis of black (C2) (left), C3 (middle) and blue P3 paint (right).
Magnification 20
Dobiveni rezultati su pokazali da je mikroskopska analiza pogodna za određivanje
morfoloških karakteristika boja u spreju, ali i da je utjecaj podloge na morfologiju
značajan. Rezultati morfoloških svojstava boja nanesenih na različite vrste podloga mogu
dovesti do pogrešne procjene tijekom usporedbe uzoraka, pa ih treba uzeti s velikom
rezervom kada se donosi sud o sličnosti odnosno razlikama među uzorcima.
Infracrveni spektri
Svim uzorcima snimljen je IR spektar, a prema opaženim vibracijskim vrpcama određena
je vrsta veziva te eventualna prisutnost punila i pigmenta. IR spektri crnih i plavih boja
prikazani su na Slici 3 odnosno Slici 4, a rezultati su sažeti u Tablici 4.
Tablica 4. Sastav veziva, punila i pigmenata prisutnih u bojama u spreju
Table 4. Binder, filler and pigment composition of spray paints
Uzorak Vezivo Punilo Pigment
C1 nitroceluloza s o-ftalatom kao
plastifikatorom - -
C2 nemodificirani alkid talk -
C3 o-ftalat alkid modificiran nitrocelulozom
- -
C4 nemodificirani o-ftalat alkid - -
C5 nitroceluloza s o-ftalatom kao
plastifikatorom - -
P1
nitroceluloza s o-ftalatom kao
plastifikatorom
sulfati
P2 TiO2
P3 TiO2
P4 sulfati Prusko plavo
P5 TiO2
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
24
Na prisutnost alkida ukazuju vrpce antisimetričnog i simetričnog istezanja C−H veza
metilnih i metilenskih skupina u području 2960–2850 cm-1
. Također je prisutna jaka
vibracijska vrpca istezanja karbonilne (C=O) skupine oko 1720 cm-1
i vibracije istezanja
C–O veze pri 1274 cm-1
i 1120 cm-1
koje ukazuje na estersku skupinu. Dvije vrpce slabog
intenziteta pri 1604 cm-1
i 1580 cm-1
odgovaraju istezanju C=C veza u aromatskom prstenu.
Vibracije u području 1490–1375 cm-1
mogu se pripisati simetričnim i antisimetričnim
deformacijama metilne i metilenske skupine. Vrpca pri 740 cm-1
odgovara svijanju izvan
ravnine CH skupina u aromatskom prstenu. Da se radi o o-ftalatu ukazuju i vibracijske
vrpce pri 1119, 1064 i 740 cm-1
(Zięba-Palus, 2005).
U spektrima crnih uzoraka C1, C3 i C5 (Slika 3) te u svim uzorcima plave boje (Slika 4),
osim vrpci pripisanih o-ftalat alkidu prisutne su i vrpce karakteristične za nitrocelulozu.
Vrpca pri 1640 cm-1
i 1274 cm-1
odgovara antisimetričnom odnosno simetričnom istezanju
O−NO2 veze. Oko 830 cm-1
nalazi se vrpca koja potječe od istezanja C−O−NO2 veze
(Zięba-Palus, 2005; Muehlethaler i sur. 2014). Vrpca pri 1060 cm-1 rezultat je istezanja
C−O veze, a vrpcama u području 3480−3230 cm-1
doprinose istezanja O−H skupina u
celulozi.
Slika 3. IR spektri crnih boja u spreju nanesenih na staklo
Fig. 3. IR spectra of black spray paints on glass
Iz IR spektra ne može se odrediti radi li se o nitrocelulozom modificiranom o-ftalat alkidu
ili o nitrocelulozi kojoj je o-ftalat dodan kao plastifikator. Razlika između ova dva sustava
utvrđena je pomoću testa s acetonom, pri čemu se modificirani o-ftalat alkid nije otopio
dok se sustav s o-ftalatom kao plastifikatorom otapa u acetonu (Ryland, 2010). Temeljem
Tra
nsm
itan
cija
Valni broj / cm-1
1000 1500 2000 2500 3000 3500
C1
C2
C3
C4
C5
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
25
ovih rezultata, veziva u uzorcima C1, C5 i svim plavim bojama okarakterizirana su kao
nitroceluloza s o-ftalatom kao plastifikatorom, dok je u uzorku C3 o-ftalat alkid
modificiran nitrocelulozom.
U IR spektru uzorka C2, osim karakterističnih vibracijskih vrpci alkidnog veziva utvrđen je i
talk kao punilo. O prisutnosti talka može se zaključiti na osnovu slabe vrpce pri 3675 cm-1 koja
odgovara istezanju Mg−O−H veze, te vrpcama istezanja Si−O veza pri 1116, 1096 i 1010 cm-1.
IR spektri plavih boja u spreju prikazani su na Slici 4. Kao i kod crnih uzoraka (C1, C3 i
C5) i ovdje su uočene vrpce nitroceluloze i o-ftalat alkida. Osim veziva, kod uzoraka P1 i
P4 vide se vrpce karakteristične za sulfate. Područje 1185−1065 cm-1
i rame pri 983 cm-1
obuhvaća vibracije simetričnog istezanja SO42-
skupine, dok vrpce pri 835 i 808 cm-1
odgovaraju deformaciji SO42-
skupine sulfata izvan ravnine. Kod uzoraka P2, P3 i P5
očigledan je pad bazne linije oko 700 cm-1
što ukazuje na prisutnost titanijeva dioksida i u
skladu je sa svjetlijim nijansama tih uzoraka. U spektru uzorka P4 naglašena je dodatna
vrpca pri 2090 cm-1
koja odgovara simetričnom istezanju C≡N veze i može potjecati od
pigmenta koji u sastavu ima heksacijanoferate, a takav pigment je Prusko plavo
(FeIII
[FeIII
FeII(CN)6]3).
Slika 4. IR spektri plavih boja u spreju nanesenih na staklo
Fig. 4. IR spectra of blue spray paints on glass
Kako bi proučili utjecaj podloge snimljeni su i IR spektri fasadnih boja s organskim i
vodenim vezivom. U spektrima prevladavaju vrpce kalcijeva karbonata kao punila, za
kojeg je karakteristično antisimetrično istezanje veza CO32-
skupine pri 1395 cm-1
kao i
deformacije karbonatnog iona u ravnini i izvan nje pri 711 odnosno 871 cm-1
(Slika 5).
Tra
nsm
itan
cija
Valni broj / cm-1
1000 1500 2000 2500 3000 3500
P1
P2
P3
P4
P5
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
26
Slika 5. IR spektri bijele (BFO) i žute (ŽFO) fasadne boje s organskim vezivom
Fig. 5. IR spectra of white (BFO) and yellow (ŽFO) facade paints with organic binder
Stoga je bilo za očekivati da bi se eventualni utjecaj podloge na IR spektre crnih i plavih
boja u spreju trebao očitovati pojavom upravo jakih vrpci kalcijeva karbonata.
Usporedbom spektara boja u spreju na podlogama od fasadne boje sa spektrima boja
nanesenih izravno na staklo niti u jednom spektru nisu uočene dodatne vrpce koje bi
ukazivale na utjecaj podloge. Ovakvi rezultati izravna su posljedica debljine sloja boje u
spreju na podlozi, koje su većinom bile manje od 30 μm, dok je najmanja izmjerena
iznosila 10 μm, a najveća 41 μm.
Rezultati analize deset uzorka boje pokazali su da je infracrvena spektroskopija pogodna za
analizu, usporedbu i razlikovanje uzoraka boja u spreju na fasadnim podlogama. Prema
provedenim mjerenjima sloj boje debljine 10 μm i više je nego dovoljan da spriječi utjecaj
podloge. Vrpce u IR spektrima većinom potječu od polimernih veziva, temeljem kojih je
vrstu veziva bilo moguće utvrditi kod svih deset uzoraka. Unatoč sličnim vezivima svi IR
spektri pokazuju individualne karakteristike i mogu se međusobno razlikovati. Prisutnost
pigmenata i punila nedvojbeno je utvrđena kod 6 uzoraka, a radi se o talku, titanijevom
dioksidu i sulfatima. U samo jednom uzorku bilo je moguće odrediti i prisutnost plavog
pigmenta, Prusko plavo.
Ramanova spektroskopija
Snimljeni su Ramanovi spektri svih uzoraka boje, a identificirani pigmenti prikazani su u
Tablici 5.
Valni broj / cm-1
1000 1500 2000 2500 3000 3500
Tra
nsm
itan
cija
ŽFO
BFO
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
27
Tablica 5. Pigmenti identificirani temeljem Ramanovih spektara
Table 5. Pigment identified by Raman spectra
Uzorak 785 nm 532 nm Ukupno
C1-C5 pigment black (carbon) - pigment black (carbon)
P1 PB 15:3 ili
PB 15:4, PV 23
PB 15:3 ili
PB 15:4, PV 23
PB 15:3 ili
PB 15:4, PV 23
P2 derivat PB 15 - derivat PB 15
P3 derivat PB 15 derivat PB 15,
PV 23
derivat PB 15,
PV 23
P4 PB 60, PB 27 PB 60, PV 23 PB 60, PB 27,
PV 23
P5 PB 15:3 ili
PB 15:4, PV 23 PB 15:3 ili
PB 15:4, PV 23 PB 15:3 ili
PB 15:4, PV 23
Za sve crne uzorke, kao jedini određen je pigment black carbon koji je zapravo amorfni
ugljik. Spektar ovog pigmenta, opažen nakon pobude zračenjem pri 785 nm, je vrlo
jednostavan i ima karakterističan izgled koji se sastoji od dvije široke vrpce (Slika 6).
Ovakvi rezultati ukazuju da razlikovanje uzoraka crnih boja u spreju koji kao pigment
sadrže samo amorfni ugljik, nije moguće provesti tehnikama vibracijske spektroskopije,
posebno ako uzorci sadrže isto vezivo. U tom slučaju, za utvrđivanje mogućih različitosti,
neophodna je primjena kromatografskih tehnika (Py-GC/MS) (Muehlethaler i sur., 2013).
Slika 6. Ramanovi spektri crne boje u spreju C5 i pigmenta black carbon; Pobuda pri 785 nm
Fig. 6. Raman spectra of black spray paint (C5) and pigment carbon black, with 785 nm laser excitation
Kako se može vidjeti iz Tablice 5, ovisno o valnoj duljini primijenjenog zračenja
Ramanovi spektri omogućuju identifikaciju nekoliko organskih pigmenata. Kod većine
plavih uzoraka (osim P4) nakon pobude zračenjem valne duljine 785 nm u spektru
Valni broj / cm
-1 1800 1400 1000 600 200
Ram
anov i
nte
nzi
tet
Pigment black (carbon)
C5
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
28
dominiraju vrpce bakrovog ftalocijanina (PB 15, PB 15:3/4). S druge strane, u spektrima
tih istih uzoraka snimljenih pri 532 nm dominiraju vrpce potpuno drugog pigmenta, a
najčešće se radi o karbazol ljubičastom (PV 23). Ovaj fenomen pripisuje se pojavi koja se
javlja kada je energija pobudnog zračenja bliska ili se podudara s energijom elektronskih
prijelaza u molekuli čime se postižu rezonantni uvjeti mjerenja. Rezultat je povećanje
intenziteta raspršenog zračenja uslijed koje se i osjetljivost metode povećava te opažanje
različitih Ramanovih spektara (Slike 7 i 8).
Slika 7. Ramanovi spektri plave boje u spreju P1 te pigmenata PB 15:3/PB 15:4 i PV 23; Pobuda pri 785 nm
Fig. 7. Raman spectra of blue spray paint (P1) and pigments PB 15:3/PB 15:4 and PV 23, with 785 nm laser excitation
Slika 8. Ramanovi spektri plave boje u spreju P1 te pigmenata PB 15:3/PB 15:4 i PV 23;
Pobuda pri 532 nm
Fig. 8. Raman spectra of blue spray paint (P1) and pigments PB 15:3/PB 15:4 and PV 23,
with 532 nm laser excitation
Valni broj / cm
-1
1800 1400 1000 600 200
Ram
anov i
nte
nzi
tet
PB 15:3/4
P1
PV 23
Valni broj / cm
-1
Ram
anov i
nte
nzi
tet
3000 2000 1500 1000 500 2500
PV 23
P1
PB 15:3/4
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
29
Uzorak plave boje P4 u potpunosti se razlikuje od svih drugih istraženih plavih boja u
spreju. Naime, to je jedini uzorak u kojemu nije utvrđena prisutnost bakrova ftalocijanina,
ali su zato identificirana tri plava pigmenta. Temeljem Ramanovog spektra pri 785 nm
identificirani su pigmenti idantron plavo koji je derivat antrakinona (PB 60) te Pigment
blue 27 poznat kao Prusko plavo ili Berlinsko modrilo. Pobudom pri 532 nm već je
očekivano određen karbazol ljubičasto (PV 23), a potvrđena je i prisutnost pigmenta
Prusko plavo. Ovime je potvrđen i rezultat asignacije IR spektra uzorka P4, gdje je pigment
Prusko plavo predviđen temeljem vrpce na 2090 cm-1
.
FT-IR i Ramanova spektroskopija pogodne su za forenzičku analizu boja u spreju jer na
komplementaran način daju informacije o kemijskom sastavu uzorka i imaju jaku
razlikovnu moć. Infracrvenom spektroskopijom mogu se odrediti vrste veziva i punila, dok
je Ramanova spektroskopija bolja za identifikaciju pigmenata. Primjenom lasera različitih
valnih duljina omogućena je simultana identifikacija većeg broja različitih pigmenata
organskog i anorganskog porijekla prisutnih u jednom uzorku. Obje tehnike ne zahtijevaju
posebnu pripremu uzoraka i praktički su nedestruktivne te kao takve zadovoljavaju uvjet
forenzičke analize o očuvanju materijala vještačenja. Brzina tehnika uz dostupnost dobrih
zbirki spektara čine ih pogodnima za svakodnevnu rutinsku uporabu.
Zaključci
Mikroskopska analiza pogodna je za određivanje morfoloških karakteristika boja u spreju,
ali zbog značajnog utjecaja podloge na morfologiju ima samo informativnu, a ne i
razlikovnu vrijednost.
IR spektroskopijom uspješno su identificirana veziva u svim uzorcima boja, koja su po
sastavu nemodificirano alkidno vezivo, nitroceluloza s o-ftalatom kao plastifikatorom te
nitrocelulozom modificirani o-ftalat alkid. Unatoč sličnim vezivima svi IR spektri pokazuju
individualne karakteristike i mogu se međusobno razlikovati.
Pigmente nije bilo moguće odrediti infracrvenom spektroskopijom zbog niske
koncentracije i intenzivne apsorpcije zračenja veziva. Stoga je za detekciju pigmenata
primijenjena Ramanova spektroskopija uz pobudno zračenje pri dvije valne duljine.
Usporedbom Ramanovih spektara plavih boja u spreju s onima iz zbirke spektara, uspješno
je identificirano pet različitih plavih pigmenata, od kojih su najučestaliji pigmenti na bazi
bakrova ftalocijanina. Za razliku od plavih boja u kojima je najčešće prisutna smjesa
pigmenata, sve crne boje kao pigment sadrže samo amorfni ugljik što u tom slučaju
Ramanovu spektroskopiju čini slabo razlikovnom tehnikom. Crne boje u spreju, posebno
one sličnih veziva, moraju se analizirati dodatnim instrumentnim tehnikama.
Niti u jednom uzorku nije uočen utjecaj podloge na rezultate metoda vibracijske
spektroskopije, unatoč vrlo tankom sloju boje u spreju.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
30
Provedena istraživanja pokazala su da primijenjeni slijed nedestruktivnih tehnika svjetlosne
mikroskopije te infracrvene i Ramanove spektroskopije omogućavaju identifikaciju i
razlikovanje boja u spreju bez prethodne priprave uzoraka sve dok je debljina sloja boje
dovoljna da spriječi utjecaj podloge.
Zahvala
Autori zahvaljuju tvrtkama „Bauhaus“ iz Zagreba i „Chromos Svjetlost“ iz Lužana na
ustupljenim uzorcima boja.
Literatura
Buzzini, P., Massonnet, G., Mizrahi, S. (2003): Forensic Sci. Int. 136(1), 355-356.
Caddy, B. (2001): Forensic Examination of Glass and Paint, Analysis and Interpretation, London,
Taylor & Francis, London, str. 123-128.
Govaert, F., de Roy, G., Decruyenaer, B. (2001): Problems of Forensic Sciences XLVII, 333-339.
Govaert, F., Bernard, M. (2003): Forensic Sci. Int. 136(1), 354.
Govaert, F., Bernard, M. (2004): Forensic Sci. Int. 140, 61-70.
Muehlethaler, C., Massonnet, G., Deviterne, M., Bradley, M., Herrero, A., de Lezana, I. D., Lauper,
S., Dubois, D., Geyer-Lippmann, J., Ketterer, S., Milet, S., Bertrand, M., Langer, W., Plage,
B., Gorzawski, G., Lamothe, V., Marsh, L., Turunen, R. (2013): Forensic Sci. Int. 229, 80-91.
Muehlethaler, C., Massonnet, G., Buzzini, P. (2014): Forensic Sci. Int. 237, 78-85.
Nieznańska, J., Zięba-Palus, J., Kościelniak, P. (1999): ZZNS XXXIX, 77-94.
Ryland, B. S. S. (2010): JASTEE 1(2), 109-126.
Zięba-Palus, J. (2003): Forensic Sci. Int. 136(1), 358.
Zięba-Palus, J. (2005): J. Mol. Struct. 744-747, 229-234.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
31
Forensic approach to analysis of spray paints by the use of
optical microscopy and vibrational spectroscopy
Tatjana Kezele1, Ivana Bačić
2
1University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102A, HR-10000 Zagreb,
Croatia 2Ministry of the Interior, Forensic Science Centre „Ivan Vučetić“, Ilica 335, HR-10000 Zagreb, Croatia
Summary
Forensic experts are often in a position to analyse spray paint samples (graffiti) that are, as
an offensive messages, mainly written on building facades. Since the layer of spray paint is
usually thin and difficult to be separated from the substrate, for their analysis is necessary
to apply instrumental techniques that do not require prior sample preparation. A total of ten
black and blue spray paints with different hues were deposited on the glass surface as well
as on the layer of white and yellow facade paint. Chemical analysis of model samples
without previous preparation were performed by attenuated total reflection infrared
spectroscopy (ATR-FTIR) and Raman (micro)spectroscopy, while the surfaces
morphology were characterized by optical microscopy. Binder composition of all paints
was determined by IR, whereas the Raman spectra at excitation of 785 and 532 nm
provided the information about pigment contents. In the IR and Raman spectra of the paint
samples deposited on the facade paints any additional bands, which would indicate the
substrate influence, were not observed. The research showed that used non-destructive
techniques allow identification and differentiation of spray paint samples without previous
preparation, until the thickness of the paint layer is sufficient to prevent the substrate
influence.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
32
Electrochemical characterization of (1E)-1-N-{[4-(4-{[(E)-N-(4- aminophenyl)
carboxyimidoyl] phenoxy}butoxy) phenyl]methylidene} benzene-1,4-diamine
UDC: 543.55 : 547.532
Anamarija Šter, Martina Medvidović-Kosanović, Tomislav Balić,
Iva Ćurić, Paula Mihaljević-Jurić
Josip Juraj Strossmayer University of Osijek, Department of Chemistry, Cara Hadrijana 8/A,
HR-31000 Osijek, Croatia
Summary
Oxido-reduction properties of a novel synthesized Schiff base were studied by cyclic and differential
pulse voltammetry. The results of electrochemical study have shown that the oxidation of the
investigated Schiff base is reversible, diffusion controlled process and that the oxidation products
are adsorbed on the glassy carbon electrode surface.
Keywords: Schiff base, electrochemistry, voltammetry
Introduction
Schiff bases have been widely studied due to their pronounced biological and
pharmacological activity (Liang et al., 2014), optical (Fang et al., 2014), photochromical
(Zhao et al., 2001), thermochromical (Minkin et al., 2011) properties and other outstanding
material properties. Furthermore, they can easily form different types of polydentate
ligands and because their diversified donor groups (or atoms) are suitable as chelating
agents. Complex compounds of Schiff bases are considered to be a transition state between
simple coordination compounds and metalloproteins (Chandra et al., 2008).
Untill now, Schiff bases and their metal complexes were studied by XRD (Kianfar et al.,
2014a), EDX (Kianfar et al., 2014a), TGA/DTA (Kianfar et al., 2014a), SEM (Kianfar et
al., 2014a), TEM (Kianfar et al., 2014a), FT-IR spectroscopy (Booysen et al., 2014;
Grivani et al., 2014; Kianfar et al., 2014a; Novoa et al., 2014; Shafaatian et al., in press). 1H NMR (Grivani et al., 2014; Shafaatian et al., 2014), elemental analysis (Novoa et al., in
press; Shafaatian et al., 2014), fluorescence (Shafaatian et al., 2014), conductometry
(Booysen et al., 2014; Shafaatian et al., 2014) and EPR (Novoa et al., in press). Their
structure was determined by X-ray diffraction (Booysen et al., 2014; Grivani et al., 2014;
Novoa et al., in press; Shafaatian et al., 2014) and ab initio calculations (Novoa et al., in
press) and electrochemical characterization was conducted by cyclic voltammetry
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
33
(Booysen et al., 2014; Kianfar et al., 2013b, 2011c; Menati et al., 2012; Shafaatian et al.,
2014) and square wave voltammetry (Booysen et al., 2014). Biological activity and use of
Schiff bases as potentiometric sensors for metal cation determination was also studied
(Afkhami et al., 2013; Bandi et al., 2013).
In this study we have examined oxido-reduction properties of (1E)-1-N-{[4-(4-{[(E)-N-(4-
aminophenyl) carboxyimidoyl] phenoxy} butoxy) phenyl] methylidene} benzene-1,4-
diamine (Fig. 1) by cyclic and differential pulse voltammetry. Preliminary information
obtained from this research is very useful as indicator of potential application of this
compound (i.e. organic semiconductor, liquid crystal, potentiometric sensor etc.).
Fig. 1. Structure of synthesized Schiff base (1E)-1-N-{[4-(4-{[(E)-N-(4- aminophenyl)
carboxyimidoyl] phenoxy}butoxy) phenyl]methylidene} benzene-1,4-diamine
Materials and methods
All commercially available chemicals were of reagent grade and used as purchased from
commercial sources. Dialdehyde 4-[4-(4-formylphenoxy) butoxy]benzaldehyde was
prepared by previously reported method. All solvents were purchased commercially. N,N-
dimethylformamide (DMF) was purchased from Fischer Chemical and Lithium Chloride
(LiCl) from BDH Prolabo and were used without further purification.
Shiff base synthesis: Dialdehyde (0.6 g, 2 mmol) was dissolved in 40 ml of methanol and 2-
3 drops of acetic acid were added to this solution. The solution was brought to brisk reflux
and 0.49 g (4.5 mmol) of p-phenylendiamine dissolved in 25 ml of methanol was gradually
added. The mixture was heated at reflux temperature for 3 hours. After the reaction was
completed, the resulting mixture was left at room temperature for 24 hours. The red powder
product was filtered and washed with cold ethanol and diethyl ether. Yield: 76 %
IR spectrum was recorded on a Shimadzu FTIR 8400S spectrophotometer using the DRS
8000 attachment, in the 4000-400 cm−1
region. Thermogravimetric analysis was performed
using a simultaneous TGA-DSC analyser (Mettler-Toledo TGA/DSC 1). The compound
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
34
was placed in aluminium pan (100 L) and heated in nitrogen atmosphere (200 mL min−1
)
up to 550 °C at a rate of 10 °C min−1
. The data collection and analysis was performed using
the program package STARe Software 10.0. The
1H NMR and
13C NMR were recorded on
NMR (300 MHz) Bruker instrument, using deuterated dimethyl sulfoxide as solvent at
NMR Laboratory of the Ruđer Bošković Institute, Zagreb.
Electrochemical experiments were performed on PalmSens potentiostat/galvanostat
(PalmSens BV, Utrecht, The Netherlands) driven by PSTrace 4.2 software. A conventional
three-electrode cell was used with a glassy carbon as a working electrode, non-aqueous
Ag/Ag+ (and aqueous Ag/AgCl) as a reference electrode and a platinum wire as a counter
electrode. The glassy carbon working electrode was polished with coarse diamond polish
(1 µm, ALS, Japan) and with polishing α-Al2O3 (0.05µm, ALS, Japan) before each
measurement. Cyclic voltammetry scan rate was 100 mV s–1
. The differential pulse
voltammetry conditions were: scan increment 5 mV, pulse amplitude 25 mV, pulse width
70 ms and scan rate 5 mV s–1
.
Results and discussion
Cyclic voltammetry studies
A cyclic voltammogram of the investigated Schiff base is shown in Fig. 2. One anodic (A1)
peak at a potential of 0.4562 V and one cathodic (K1) peak at a potential 0.3962 V appeared
when the potential was scaned from -0.2 V to 0.8 V vs. Ag/Ag+ reference electrode. Obtained
Ep value was 60 mV, indicating that the oxidation reaction is reversible.
Fig. 2. Cyclic voltammogram of title compound (c = 1.1·10-4
mol dm-3
) at a glassy carbon electrode
(Ic = 0.1 M LiCl in DMF). Scan rate: 100 mV/s. A1 (anodic peak), K1 (cathodic peak)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
35
The influence of concentration of the investigated Schiff base on anodic peak current and
anodic peak potential was examined and the obtained data are given in Table 1. The effect
of scan rate on the oxidation of the Shiff base has been investigated as well (Fig. 3). The
obtained results have shown that both anodic peak potential and anodic peak current
increase with the increase in Schiff base concentration and scan rate.
Fig. 3. Cyclic voltammograms of title compound (c = 1.1·10-4
mol dm-3
) at a glassy carbon electrode (Ic = 0.1 M LiCl in DMF) obtained with: a) Ag/Ag
+ and b) Ag/AgCl reference electrode, at different
scan rates ( = 25, 75, 150, 200, 250 and 300 mV/s)
Table 1. Anodic peak potential (Ep,a) and anodic peak current (Ip,a) of the title compound as the
function of its concentration obtained with Ag/Ag+ and Ag/AgCl reference electrode.
Scan rate: 100 mV/s.
non-aqueous Ag/Ag+ electrode aqueous Ag/AgCl electrode
104 c / mol dm-3 Ep,a / V Ip,a / A Ep,a / V Ip,a / A
0.31 0.4164 0.1636 0.6314 0.2033
0.59 0.4184 0.1853 0.6383 0.2120
1.10 0.4509 0.2146 0.6579 0.2435
1.25 0.4519 0.2149 0.6692 0.2543
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
36
Fig. 4 shows that at lower concentrations of Schiff base (bellow c ~ 1.1 10-4
mol dm–3
)
anodic peak current is a linear function of the Schiff base concentration (the adsorption of
the investigated Schiff base oxidation products on the electrode surface occurs). At higher
concentrations of Schiff base (above c ~ 1.1 10 –4
mol dm–3
), the increase of peak current
slows down, which could be explained by increase of interactions between molecules
adsorbed on the electrode surface and by diffusion current (Medvidović-Kosanović et al.,
2010). The Schiff base oxidation is controlled by diffusion (Fig. 5) since linear dependence
was found between anodic peak current and the square root of scan rate (Medvidović-
Kosanović et al., 2010; Yagmur et al., 2013).
Fig. 4. Anodic peak current as a function of title compound concentration (Ic = 0.1 M LiCl in DMF). Scan rate: 100 mV/s
Fig. 5. Anodic peak current, I, as a function of the square root of scan rate, 1/2
, at a glassy carbon
electrode in solution of title compound (c = 1.1·10-4
mol dm-3
, Ic = 0.1 M LiCl in DMF)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
37
Differential pulse voltammetry studies
Differential pulse voltammogram in Fig. 6 revealed one oxidation peak of the investigated
Schiff base at the potential 0.415 V. The oxidation peak decreases with successive scans
which confirms adsorption of the Schiff base oxidation products on the glassy carbon
electrode surface.
Fig. 6. Differential pulse voltammogram of title compound (c = 1.1·10-4
mol dm-3
) at a glassy
carbon electrode (Ic = 0,1 M LiCl in DMF). Scan rate: 5 mV/s. First scan (a),
second scan, third scan, forth scan
Peak current and peak potential also increase with increasing Schiff base concentration
(Fig. 7) which could be explained by kinetic limitation in the reaction between the redox
sites of a glassy carbon electrode and the investigated Schiff base (Bandi et al., 2013). A
linear relationship could be established between peak current and Schiff base concentration
in the range of 0.3110-4
mol dm-3
to 1.25 10-4
mol dm-3
(the inset of Fig. 7). A linear
regression equation, Ip = 1.3592 c + 2.4628 with a correlation coefficient R2 = 0.9823, can
be obtained, where Ip is the oxidation peak current (10-2
A) and c is the Schiff base
concentration (10-4
mol dm-3
). It can also be seen from Fig. 8 that the results obtained by
non-aqueous Ag/Ag+ reference electrode show higher R
2 values compared to aqueous
Ag/AgCl electrode. Therefore, non-aqueous Ag/Ag+ reference electrode should be used for
experiments in non-aqueous medium.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
38
Fig. 7. Differential pulse voltammograms in the solutions of title compound with concentrations (c =
3.1 ·10-5
; 5.9 ·10-5
; 1.1 ·10-4
and 1.25 ·10-4
(d) mol dm-3
) at a glassy carbon electrode (Ic = 0.1 M
LiCl in DMF). Scan rate: 5 mV/s. The inset of figure 7: Anodic peak current, I, as a function of the
Schiff base concentration, c (data taken from Fig. 7)
Fig. 8. Anodic peak current, I, as a function of the title compound concentration, c,
at a glassy carbon electrode obtained with: a) non-aqueous Ag/Ag+ () and b)
aqueous Ag/AgCl (●) reference electrode (Ic = 0.1 M LiCl in DMF)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
39
Conclusions
The electrochemical results have shown that the oxidation of the Schiff base title
compound is reversible and controlled by diffusion at the investigated experimental
conditions. Adsorption of the oxidation products on the glassy carbon electrode occurs and
this process is kinetically limited. A linear relationship between peak current and Schiff
base concentration in the range of 0.3110-4
mol dm-3
to 1.25 10-4
mol dm-3
was established.
Comparison of the results obtained by non-aqueous Ag/Ag+ and aqueous Ag/AgCl
reference electrode has shown that for experiments in non-aqueous medium non-aqueous
Ag/Ag+ reference electrode should be used.
Acknowledgements
The authors thank J. J. Strossmayer University of Osijek, Croatia for financial support.
References
Afkhami, A., Soltani-Felehgari, F., Madrakian, T., Ghaedi, H., Rezaeivala, M. (2013): Fabrication
and application of a new modified electrochemical sensor using nano-silica and a newly
synthesized Schiff base for simultaneous determination of Cd2+
, Cu2+
and Hg2+
ions in water
and some foodstuff samples, Anal. Chim. Acta 771, 21-30.
Bandi, K. R., Singh, A. K., Upadhyay, A. (2013): Biologically active Schiff bases as potentiometric
sensor for the selective determination of Nd3+
ion, Electrochim. Acta 105, 654-664.
Booysen, I. N., Adebisi, A., Munro, O. Q., Xulu, B. (2014): Ruthenium complexes with Schiff base
ligands containing benz (othiazole / imidazole) moieties: Structural, electron spin resonance
and electrochemistry studies, Polyhedron 73, 1-11.
Chandra, S., Pundir, M. (2008): Spectroscopic characterization of chromium(III), manganese(II) and
nickel(II) complexes with a nitrogen donor tetradentate, 12-membered azamacrocyclic ligand,
Spectrochim. Acta A 69 (1),1-7.
Fang, Z., Cao, C., Chen, J., Deng, X. (2014): An extending evidence of molecular conformation on
spectroscopic properties of symmetrical bis-Schiff bases, J. Mol. Struct. 1063, 307-312.
Grivani, G., Tahmasebi, V., Khalaji, A. D. (2014): A new oxidovanadium(IV) complex containing
an O, N-bidentate Schiff base ligand: Synthesis, characterization, crystal structure
determination, thermal study and catalytic activity for an oxidative bromination reaction,
Polyhedron 68, 144-150.
Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Azarian, M. H., Khafri, F. Z. (2014a): Novel
nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural
determinations, Spectrochim. Acta A 127, 422-428.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
40
Kianfar, A. H., Ramazani, S., Fath, R. H., Roushani, M. (2013b): Synthesis, spectroscopy,
electrochemistry and thermogravimetry of copper(II) tridentate Schiff base complexes,
theoretical study of the structures of compounds and kinetic study of the tautomerism reactions
by ab initio calculations, Spectrochim. Acta A 105, 374-382.
Kianfar, A. H., Paliz, M., Roushani, M., Shamsipur, M. (2011c): Synthesis, spectroscopy,
electrochemistry and thermal study of vanadyl tridentate Schiff base complexes, Spectrochim.
Acta A 82, 44-48.
Liang, C., Xia, J., Lei, D., Li, X., Yao, Q., Gao, J. (2014): Synthesis, in vitro and in vivo antitumor
activity of symmetrical bis-Schiff base derivatives of isatin, Eur J. Med Chem. 74, 742-750.
Manzur, C., Carrillo, D., Hamon, J.-R (2014): Doubly Phenoxide-Bridged Binuclear Copper(II)
Complexes with ONO Tridentate Schiff Base Ligand: Synthesis, Structural, Magnetic and
Theoretical studies Polyhedron, in press, doi: http://dx.doi.org/10.1016/j.poly.2014.05.032
Medvidović-Kosanović, M., Šeruga, M., Jakobek, L., Novak, I. (2010): electrochemical and
antioxidant properties of rutin, Collect. Czech. Chem. C. 75 (5) 547-561.
Menati, S., Azadbakht, A., Taeb, A., Kakanejadifard, A., Khavasi, H. R. (2012): Synthesis,
characterization and electrochemical study of synthesis of a new Schiff base (H2cdditbutsalen)
ligand and their two asymmetric Schiff base complexes of Ni(II) and Cu(II) with NNprimeOS
coordination spheres, Spectrochim. Acta A 97, 1033-1040.
Minkin, V. I., Tsukanov, A. V, Dubonosov, A. D., Bren, V. A. (2011): Tautomeric Schiff bases:
Iono-, solvato-, thermo- and photochromism, J. Mol. Struct. 998, 179-191.
Novoa, N., Justaud, F., Hamon, P., Roisnel, T., Cador, O., Le Guennic, B., Manzur, C., Carrillo, D.,
Hamon, J.-R. (2014): Doubly Phenoxide-Bridged Binuclear Copper(II) Complexes with ONO
Tridentate Schiff Base Ligand: Synthesis, Structural, Magnetic and Theoretical studies,
Polyhedron, in press, doi: http://dx.doi.org/10.1016/j.poly.2014.05.032
Shafaatian, B., Soleymanpour, A., Oskouei, N. K., Notash, B., Rezvani, S. A. (2014): Synthesis,
crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base
ligand and its nickel(II) and palladium(II) complexes, Spectrochim. Acta A 128, 363-369.
Yagmur, S., Yilmaz, S., Saglikoglu, G., Sadikoglu, M., Yildiz, M., Polat, K. (2013): Synthesis,
spectroscopic studies and electrochemical properties of Schiff bases derived from 2-hydroxy
aromatic aldehydes and phenazopyridine hydrochloride, J. Serb. Chem. Soc. 78 (6), 795-804.
Zhao, J., Zhao, B., Liu, J., Xu, W., Wang, Z. (2001): Spectroscopy study on the photochromism of
Schiff bases N,N′-bis(salicylidene)-1,2-diaminoethane and N,N′-bis(salicylidene)-1,6-
hexanediamine, Spectrochim. Acta A 57 (1), 149-154.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
41
Thermodynamic study of CdCl2 in 2-propanol (5 mass %) + water
mixture using potentiometry
UDC: 544.632.4
Renato Tomaš, Anđelka Vrdoljak
University of Split, Faculty of Chemistry and Technology, Teslina 10/V, HR-21000 Split, Croatia
Summary
The potential difference (pd) measurements (E) are reported for galvanic cell without liquid
junction: Cd(Hg) (l, satd.)CdCl2(b) in ZAgCl(s)Ag(s) at different temperatures and various
CdCl2 molalities (b) in aqueous mixture of 2-propanol (containing 5 mass % 2-propanol), Z. From
these values and using literature data for stability constants of the chlorocadmium complexes, the
values of the standard pd of the cell were obtained at each temperature. These values served to
calculate the standard thermodynamic quantities for the cell reaction, and also mean molal activity
coefficients of CdCl2. The corresponding thermodynamic results are discussed and compared with
literature data.
Keywords: thermodynamic properties, cadmium chloride, 2-propanol + water mixed solvent,
potentiometry.
Introduction
Potentiometric method using a galvanic cell without liquid junction was found to be an
attracting experimental technique for studying the thermodynamic properties of electrolyte
solutions in aqua-organic mixed solvents. This paper is an extension of our systematic
investigation on thermodynamic properties of CdCl2 in various aqua-organic solvents using
potentiometry. Specifically, in previous works by our group, the bahaviour of the CdCl2
has been studied in water mixtures with alcohol co-solvent: containing 10, 30, and 50 mass
% 2-propanol (Višić Mekjavić, 1993) or 2-methylpropan-2-ol (tert. butanol) (Tomaš et
al., 2000), and also with 5, 10, and 15 mass % 2-butanol (Tomaš et al., 2005).
We have recently published data on the thermodynamic properties of CdCl2 in 2-
methylpropan-2-ol (5 mass %) + water mixture (Z) using a flow potentiometric method
(Tomaš et al., 2011). Namely, the potential difference (pd) measurements have been carried
out on the following galvanic cell:
Cd(Hg) (l, satd.)CdCl2(b) in ZAgCl(s)Ag(s) (1)
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
42
in the temperature range (293.15 K to 313.15 K) at 5 K intervals, for different CdCl2
molalities (b).
In this work, analogous investigations were performed in 2-propanol + water mixture of the
same content (ie., Z = 5 mass % 2-propanol), in order to determine the thermodynamic
quantities of the cell reaction, and the stoichiometric mean molal activity coefficients of
CdCl2. The results from this study are compared with similar systems.
Within the potentiometric data analysis, the concentrations of all ionic species was
calculated (Višić Mekjavić, 1989) using data for the thermodynamic stability constants
of chlorocadmium complexes in water medium, and for 10 mass % 2-propanol (Višić et al.,
1993).
Materials and methods
CdCl2 H2O and 2-propanol were p.a. purity (Merck). Before use, 2-propanol and water
were distilled. Solvent mixture (Z) and concentrated electrolyte solution in Z (stock
solution) were prepared by weight using CdCl2 H2O, water and 2-propanol. The molality
(bmax.) of the stock solution of CdCl2 in Z was 0.0503 mol kg–1
, with salt mass fraction, w =
0.01002. Density of Z was measured using oscillating U-tube densimeter (Anton Paar,
model DMA 4500 M) with precision of 1 10–5
g cm–3
(Bald et al., 2013).
In order to continuously obtain the pd (Ei) of the cell (1) at different molalities (bi) of
CdCl2, we change electrolyte concentrations by adding a stock solution in Z (mass, mi) to a
cell containing an appropriate mass of solvent mixture (mZ). The molality of CdCl2 in the
cell (1) after ith
addition (bi) is given by the expression (Zhang et al., 1993):
wmm
M wm b
i
i i
1
/
Z
i (2)
where M is the molar mass of cadmium chloride.
The preparation of electrodes, description of the cell, and of the equipment for pd
measurements, and the measuring procedure itself were explained earlier (Tomaš et al.,
2011).
Results and discussion
The potentiometric results (Ei) for the cell (1) in 5 mass % 2-propanol (Z) at the different
CdCl2 molalities (bi) and at all operating temperatures (T) are compiled in Table 1.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
43
Table 1. Experimental data for cadmium chloride in Z at different temperatures
103 b / mol kg–1 E / V 103 b / mol kg–1 E / V
T = 293.15 K T = 298.15 K
4.123 0.77699 4.224 0.77757
7.686 0.75940 7.800 0.76027
10.732 0.75037 10.720 0.75144
13.358 0.74445 13.390 0.74539
15.672 0.74023 15.724 0.74126
17.720 0.73704 17.784 0.73804
19.525 0.73450 19.610 0.73570
21.150 0.73250 21.151 0.73368
22.528 0.73082 22.641 0.73206
23.862 0.72940 23.894 0.73066
25.098 0.72823 25.122 0.72948
26.129 0.72721 26.232 0.72841
27.160 0.72631 27.177 0.72751
28.030 0.72552 28.117 0.72669
28.920 0.72490 28.998 0.72594
T = 303.15 K T = 308.15 K
4.161 0.78030 4.193 0.78143
7.699 0.76154 7.730 0.76344
10.755 0.75667 10.732 0.75417
13.382 0.74650 13.399 0.74810
15.684 0.74244 15.664 0.74382
17.730 0.73930 17.674 0.74057
19.530 0.73671 19.545 0.73803
21.107 0.73480 21.170 0.73597
22.559 0.73305 22.633 0.73428
23.878 0.73173 23.943 0.73288
25.049 0.73053 25.146 0.73169
26.175 0.72941 26.245 0.73066
27.194 0.72851 27.241 0.72977
28.100 0.72771 28.162 0.72896
28.953 0.72691 29.010 0.72822
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
44
Table 1. (Continued)
103 b / mol kg–1 E / V
T = 313.15 K
4.151 0.77440
7.682 0.76502
10.710 0.75575
13.346 0.74958
15.626 0.74545
17.667 0.74226
19.477 0.73965
21.106 0.73758
22.565 0.73593
23.866 0.73453
25.066 0.73328
26.179 0.73218
27.183 0.73127
28.108 0.73042
28.971 0.72964
The values of E from Table 1 were used to calculate the standard molal pd (o
bE ) for the cell
reaction:
Cd(s) + 2 AgCl(s) ⇌ 2 Ag(s) + Cd2+
(Z) + 2Cl–(Z) (3)
according to the relation,
))/(/(1)( ln(10)3
))/(Cl)()/(Cd(ln2
1/2o0
1/2o2oo2 bIBaI/bAF
RTbbbb
F
RTEE bb
oo / ln(10) 2
3(X)Σ1ln
2
3b I C
F
RTEb M
F
RTbxZ (4)
This relation was obtained using a combination of the Nernst equation and the Debye-
Hückel equation for the mean activity coefficient. Here I denotes ionic strength, and bo = 1
mol kg–1
. The following data are needed to solve Eq. (4):
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
45
a) a value for the ion-size parameter (a0); a0 = 0.45 nm (Višić et al., 1993),
b) the molar mass and mass fraction of water and of 2-propanol; these data are used to
determine the mean molar mass (M) of investigated mixed solvent Z,
c) Debye-Hückel constants (Ab, Bb); these constants were calculated using literature data
for the relative permittivity, r (Åkerlöf, 1932) and the density, d (from the present
study) of the solvent Z: the properties (r, d) at different temperatures are given in
Table 2.
d) the equilibrium molalities of all ionic species, given by the term xb(X), as well as the
cell pd (E) for each cadmium chloride molality.
Determination of the o
bE can be performed either by extrapolation of E' from Eq. (4) to
zero ionic strength or by the least-squares method. To calculate b(Cd2+
), b(Cl–), and b (of
the remaining ionic species) for each molality of CdCl2, it is necessary to consider the
complexation reaction in investigated mixed solvent Z (Višić Mekjavić, 1989):
Cd2+
+ nCl– ⇌ )(2CdCl n
n (n = 1, 2 i 3) (5)
Inasmuch as the iterative procedure has been described in detail in our previous papers
(Tomaš et al., 2004 and 2011), only a short ouline will be provided here. Namely, for a
given cadmium chloride molality, the stoichiometric ionic strength of the solution is first
calculated as I = 3 b d, and the concentration stability constants, nK , for the complex
forming reactions (5) are estimated at this ionic strength using next relation:
oo1/2o1/2o2
n /(ln10)Δln))/(/(1)/(Δln cICKcIaBcIAzK nn0ccn (6)
These stability constants are then served to calculate the concentration of each ionic
species. Initial concentrations thus obtained are used to calculate the new ionic strength and
stability constant values. The treatment is repeated until a satisfactory constancy of nK
values is obtained. In Eq. (6) Cn is an empirical constant, co = 1 mol dm
–3, and
2Δ nz = (2 –
n)2 – n – 4, where z is the charge of each ionic species. The parameters Cn and
o
nK
(thermodynamic stability constant) were determined experimentally for water medium, and
for 10 mass % 2-propanol (Višić et al., 1993). For the present study, Cn and o
nK , are
interpolated from literature data; values at different temperatures for mixed solvent Z are
reported in Table 2.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
46
The obtained equlibrium concentrations of all ionic species were then expressed as
molalities, and using Eq. (4) the standard molal pd, o
bE , and its standard deviation were
determined using the least-squares method. These values are listed in Table 3.
Regression analysis showed that dependence of o
bE on T can be adequately fitted by the
second-order polynomial.
2o )( cTbTaTEb (7)
Table 2. Parameters of Eq. (6) in Z at different temperatures
T / K 293.15 298.15 303.15 308.15 313.15
o1K
121 123 128 132 136
o2K
517 575 610 644 678
o3K
409 448 448 507 537
ΔC1 0.192 0.191 0.189 0.187 0.185
ΔC2 0.375 0.380 0.379 0.379 0.379
ΔC3 0.477 0.475 0.467 0.459 0.452
r 76.74 74.96 73.21 71.50 69.78
d / g cm–3 0.98962 0.98840 0.98692 0.98522 0.98330
Table 3. Standard potential difference (o
bE ) of cell (1) in Z at different temperatures
T / K Eb
o ± (Ebo) / V
293.15 0.56840 ± 0.00009
298.15 0.56579 ± 0.00008
303.15 0.56405 ± 0.00016
308.15 0.56149 ± 0.00012
313.15 0.55893 ± 0.00008
The polynomial coefficients a, b and c, obtained by fitting Eq. (7) to the experimental
results are presented in Table 4, together with their standard deviations.
Table 4. Adjustable coefficients a, b and c of Eq. (7) in system CdCl2–Z
a / V 0.5157 ± 0.282
104 b / V K–1 7.824 ± 4.32
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
47
106 c / V K–2 –2.057 ± 1.75
From the first derivate of Eq. (7), according to relation
rSo = d
o
bE /dT = z F (b + 2 cT), (z = 2) (8)
the standard entropy (rSo) of the cell reaction (3) in Z is obtained. The standard Gibbs
energy (rGo) is calculated according to the expression,
oo
rΔ bzFEG (9)
while the standard enthalpy (rHo) can be calculated from the relationship,
rHo = rG
o + T rS
o (10)
The standard thermodynamic quantities for the cell reaction (3) in Z at 298.15 K are given
in Table 5. The data for water medium are, for comparision, listed in the same table. The
deviations were calculated from the standard deviation for o
bE .
Table 5. Standard thermodynamic quantities for the cell reaction (3) in water medium and solvent Z
at 298.15 K
mass % rG
o / kJ mol–1 rHo / kJ mol–1 rS
o / J K–1 mol–1
0 (Višić Mekjavić, 1993) –110.66 ± 0.02 –134 ± 5 –78 ± 10
5 (present study, Z) –109.18 ± 0.01 –129 ± 13 –65 ± 25
As seen from Table 5 the standard Gibbs energy for both solvents has the negative sign,
which proves that the cell reaction (3) is spontaneous. The values for the standard enthalpy
and entropy change are also negative. It can be seen that the cell reaction (3) is exothermic
and lead to decrease in entropy. It can also be seen that the spontaneity (rGo) of reaction
(3) decreaces with adding 2-propanol in water. The same was reported for the aqueous
mixtures with 5 mass % 2-butanon, 2-butanol, or t-butanol (Tomaš et al., 2004, 2005, and
2011).
In this work, the stoichiometric mean molal activity coefficient () of cadmium chloride in
Z was calculated using the data for E and o
bE of the cell (see Tables 1 and 3), according to
the Nernst equation for the cell reaction (3):
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
48
3oo )/(4ln )/2( γbbFRTEE b (11)
provided that chlorocadmium complexes were not formed in the solution. Table 6 shows
the obtained values of CdCl2 in 5 mass % 2-propanol (Z) at each molality and at
different temperatures. Values of for cadmium chloride in 5 mass% 2-propanol (Z) were
not found in literature.
Table 6. Stoichiometric mean molal activity coefficients (±) of CdCl2 in Z at different temperatures
T / K
b(CdCl2) / mol kg–1
0.003 0.005 0.007 0.009 0.010 0.015 0.020
293.15 0.697 0.599 0.542 0.503 0.487 0.432 0.397
298.15 0.691 0.594 0.535 0.495 0.479 0.423 0.387
303.15 0.678 0.583 0.527 0.489 0.474 0.419 0.381
308.15 0.672 0.577 0.525 0.485 0.469 0.413 0.377
313.15 0.665 0.570 0.520 0.479 0.462 0.410 0.368
According to the values given in Table 6, activity coefficients decrease with increasing
CdCl2 molality, as well as decrease with increasing tempertaure. This result is expected
from Debye-Hückel theory. A corresponding behaviour has been found in our earlier
studies of the same electrolyte in aqueous ketone (Tomaš et al., 2004) and aqueous alcohols
(Tomaš et al., 2005 and 2011) at the same mass fractions. When comparing the values
from present study with those for water medium (Višić Mekjavić, 1993), it can be seen
that these values are higher in water. Obviously, this is related to the degree of
complexation. Analogy was established with aqueous mixtures with 5 mass % 2-butanone,
2-butanol, and t-butanol (Tomaš et al., 2004, 2005, and 2011). Furthermore, values of for
cadmium chloride at the same mass fraction (Z = 5 mass %) are similar; certain differences
are due to influence of relative permittivity and nature of organic component in the mixed
solvent.
Conclusions
The present investigation of thermodynamic properties of cadmium chloride in aqueous
mixture with 5 mass % 2-propanol (Z) can be summarised as following: For the present
system CdCl2 in Z, was determined standard molal potential difference for the cell reaction
at different temperatures: this value decreases with an increase in the temperature. At
constant temperature, the mean molal activity coefficient of cadmium chloride decreases
with an increase in the molality of solution. At fixed molality, the mean molal activity
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijska analiza i sinteza / Chemical analysis and synthesis
49
coefficient of cadmium chloride decreases with an increase the temperature. The cell
reaction is spontaneous, exothermic and leads to reduced in entropy.
References
Åkerlöf, G. (1932): Dielectric constants of some organic solvent–water mixtures at various
temperatures, J. Am. Chem. Soc. 54 (11), 4125-4139.
Bald, A., Kinart, Z., Tomaš, R. (2013): Volumetric studies of aqueous solutions of monosodium
salts of some aliphatic dicarboxylic acids at 298.15 K. A new method of data analysis, J. Mol.
Liq. 178, 94-98.
Tomaš, R., Višić. M., Mekjavić, I. (2000): Thermodynamics of cadmium chloride in t-butanol –
water mixtures (wt-BuOH = 10%, 30%, and 50 %) from electromotive force measurements,
Croat. Chem. Acta 73 (2), 423-433.
Tomaš, R., Tominić, I., Višić, M., Sokol, V. (2004): Thermodynamics of Cadmium Chloride in 2-
Butanone + Water mixtures (5, 10, and 15 Mass%) from Electromotive Force Measurements,
J. Solution Chem. 33 (11), 1397-1410.
Tomaš, R., Tominić, I., Višić, M., Sokol, V. (2005): Thermodynamic study of cadmium chloride in
aqueous mixtures of 2-butanol from potential difference measurements, J. Solution Chem. 34
(8), 981-992.
Tomaš, R., Sokol, V., Bošković, P. (2011): Thermodynamic properties of CdCl2 in tert. butanol (5
mass %) + water mixture. In Proceedings: International Scientific and Professional Conference
13th Ružička Days, Vukovar, September 2010, Šubarić, D. (Ed.), Osijek, pp. 95-106.
Višić, M., Mekjavić, I. (1989): Thermodynamics of the cell: Cd(s)+Hg CdCl2(aq, m)AgClAg, J.
Chem. Thermodynamics 21 (2), 139-145.
Višić, M., Jadrić, A., Mekjavić, I. (1993): The stability constants of cadmium chloride complexes in
2-propanol–water mixtures (0, 10, 30 and 50 mass per cent) from electromotive force
measurements, Croat. Chem. Acta 66 (3-4), 489-498.
Višić, M., Mekjavić, I. (1993): Thermodynamics of the cell: Cd(Hg)satd. CdCl2(m)AgClAg in
(10, 30 and 50 Mass per Cent) 2-Propanol – Water Mixtures, Croat. Chem. Acta 66 (3-4), 479-
488.
Zhang, L., Lu, X., Wang, Y., Shi, J. (1993): Determination of activity coefficients using a flow emf
method. 1. HCl in methanol–water mixtures at 25, 35 and 45C, J. Solution Chem. 22 (2), 137-
150.
Sekcija: Kemijsko i biokemijsko inženjerstvo
Session: Chemical and biochemical engineering
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
50
Supercritical fluid extraction laboratory plant design
UDC: 66.013.5 : 66.061
Krunoslav Aladić1, Stela Jokić
2*, Goran Horvat
3, Mate Bilić
2
1Croatian Veterinary Institute, Branch - Veterinary Institute Vinkovci, Josipa Kozarca 24,
HR-32100 Vinkovci, Croatia 2University of Josip Juraj Strossmayer in Osijek, Faculty of Food Technology Osijek, Franje Kuhaca 20,
HR-31000 Osijek, Croatia 3University of Josip Juraj Strossmayer in Osijek, Faculty of Electrical Engineering, Kneza Trpimira 2b,
HR-31000 Osijek, Croatia
Summary
A traditional solvent extraction method requires relatively large quantities of solvents, leaving toxic
solvent residue and causing degradation of unsaturated compounds. Due to this fact there is an
increasing demand for different extraction techniques which provide shortened extraction time,
reduced organic solvent consumption, and decreased pollution. Supercritical Fluid Extraction (SFE)
technique presents various advantages over traditional methods, such as the use of low
temperatures, reduced energy consumption and high product quality due to the absence of solvent in
extracts. In SFE process, environmentally friendly CO2 is primarily used as an extracting agent. The
aim of this work was the design and development of a supercritical CO2 extraction system used for
laboratory measurements based on existing commercial systems. Alongside with the developed
laboratory plant, an electronic system and PC application were developed for process control and
future automation to achieve most accurate extraction parameters for production of quality extracts.
Keywords: supercritical CO2 extraction, system construction, process control, automation,
PC application
Introduction
Supercritical CO2 extraction represents good and valuable alternative to classical extraction
process for many bioactive compounds with application in food and pharmaceutical
industry. Scientific researches in the field of SFE and application of supercritical CO2 for
extraction of variety of natural materials were significantly increased in the last few
decades. The advances have been made towards commercialization of supercritical CO2,
especially in the processing of fats and oils (Fang et al., 2008; Lack et al., 2006). SFE has
immediate advantages over the traditional extraction techniques such as time-saving, using
cheap and not organic solvent, not leaving toxic solvent residue, and do not causing
*Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
51
degradation of unsaturated compounds due to the heat (Reverchon and De Marco, 2006).
The main disadvantages of SFE are the high investment costs for equipment acquisition
and the high energy demand for the CO2 extraction unit (Brunner, 2005; Martínez et al.,
2008; Sahena et al., 2009; Temelli, 2009).
Handmade supercritical fluid extraction (HM-SFE) system enables the extraction in an
inexpensive way. The obtained extraction yields and composition are very similar to those
obtained by commercial SFE system (Castro-Vargas et al., 2011). Just like a commercial
SFE systems, HM-SFE system is composed of various components that need to be in tune
to achieve optimal extraction process.
In this work the construction of new laboratory HM-SFE system was demonstrated. A
detailed explanation of each part of the equipment as well as the description of the
supporting electronic system was given.
Handmade supercritical fluid extraction (HM-SFE) system
Many mathematical models, presented in the literature, describe the supercritical fluid
extraction process (Valle and Fuente, 2006; Oliveira et al., 2011). Beside the knowledge of
phase equilibria, the knowledge of mass transfer rates is essential for designing process
equipment. The extraction process from solid substrates can be divided into two steps
(Brunner, 1984): the first one is transport of the substances within the solid material to the
interface solid-gas and the second one is transition of the substances into the gas and
transportation with the bulk of the extracting gas. It is assumed that the extractor is
cylindrically shaped and the supercritical solvent passes axially through the layer of material in
the extractor, carrying out soluble substance from the solid phase. Under these assumptions, the
mass balance in both phases can be represented by the following Eqs. (1)-(2):
yxJ
h
YD
hh
Yu
t
Yayi
,
(1)
s
f
)1(
,
yxJ
h
XDu
ht
Xaxi (2)
where is:
x, y dimensionless concentration of solid and liquid phases (kg/kg)
ui solvent rate (m/s)
h axial coordinate in the layer of material in the extractor (m/s)
axD diffusion coefficient in solid phase (m2/s)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
52
ayD axial dispersion coefficient (m2/s)
f, s fluid phase density and particle density (kg/m3)
J(x,y) mass transfer flow at the interface (1/s)
As can be seen from Eqs. (1) and (2) transfer phenomena which exist in the supercritical
extraction process are follows: accumulation in both phase, convection and dispersion in
the fluid phase, the solid phase diffusion and surface mass transfer.
The schematic diagram of newly constructed apparatus used for supercritical fluid
extraction is given in Fig. 1.
Fig. 1. Handmade supercritical fluid extraction system
(1. Compressor; 2. CO2 tank; 3. Stainless steel coil; 4. Cooling bath; 5. Air driven fluid pump Haskel
MS-71; 6. Valves (B-HV); 7. Manometers; 8. Extraction vessel; 9. Separator vessel; 10. Water bath; 11.
Centralized system glass fiber heater; 12. Flow meter; TRC-Temperature Recording Control)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
53
Materials used for HM-SFE system
Materials used for the construction of HM-SFE system were stainless steel AISI 316Ti and
AISI 304. All additional connection tubing parts were also same grade of material.
Extraction and separator vessels were properly tested at safety factor of 1.5. Extraction
vessel was tested at working pressure 50 MPa and separator vessel at 3 MPa.
Construction of HM-SFE system
The construction and assembling of HM-SFE system was performed by Đuro Đaković
Aparati d.o.o. (Slavonski Brod, Croatia) which provided material durability tests and
pressure test for vessels. Working pressure calculations for extractor and seamless tubes
are given in Eq. (3):
𝑃 =2∙𝑆∙𝑇
(𝑂.𝐷.−2∙𝑇)∙𝑆𝐹 (3)
where is:
P – fluid pressure (MPa)
T – wall thickness (extractor and seamless tube) (m)
O.D. – outer diameter (m)
SF – safety factor (usually is 1.5)
S – yield tensile strength of material
Extraction and separator vessel
Extraction vessel was made from stainless steel bar (AISI 304) O.D. 100 mm and height
500 mm. Stainless steel rod is drilled (center hole) with a Ø 40 mm bore for a 400 mm, so
volume of extractor is 500 mL. Upper inside part of extraction cell was polished to plug
well gaskets. Cap of extraction cell was designed to hold plug and it is connected with
extraction cell trough trapezoidal thread. Plug was patented by company that assembled the
HM-SFE system and seals in two places with o-ring. Lower part of the extraction cell was
also drilled and prepared for quick connection with R ½” connector with o-ring seal.
Separator vessel is made from stainless steel seamless tube (AISI 304) Ø 50 x 5 mm. It has
two plugs at upper and lower side of separator. Plugs are sealed with o-rings to ensure gas
tightness. Lower plug is made like a holder of cuvette for collecting the oil sample. At
upper side part of separator is 1/4" NPT connection, which leads to flow meter. Extractor
is tested at working pressure 50 MPa with safety factor 1.5 and separator is tested at
working pressure at 4 MPa also with safety factor 1.5.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
54
Filter element
In extraction vessel's plug filter element is placed. The main role of the filter is to prevent
the withdrawal of material. Filter element has the ability to filter particles 2 µm nominal
and 10 µm absolute (Norman Ultraporous 4202T-6T-2M).
High pressure seamless tubes (HPS) and high pressure valves
HPS tubes are dimension 10 x 2 mm and are connected to each other by Ermeto couplings
(flat, knees, tees). Used high pressure valves were provided by the same company that
produces Ermeto couplings (model B-HV).
Pressure and flow control
Pressure in extraction cell is controlled by two WIKA manometers (model 212.20) 60 MPa
and one WIKA manometer (model 212.20) 4 MPa for pressure in separator. Flow of CO2
is controlled through Matheson FM-1050 (E800) flow meter. Maximum flow rate that
given flow meter can measure is 63.03 SLPM.
Pump
Pump used for pressurize liquid CO2 is Haskel® MS-71. Liquid CO2 is precooled trough SS
coil at temperature -18 °C cooled by ethylene glycol/ethanol cooling bath. Pump has ability to
pressure liquid up to 60 MPa. Maximum working pressure is 40 MPa. After pump check valve
is located to prevent eventually disorders of CO2 flow. After extraction vessel high pressure is
reduced by high pressure valve (B-HV) to desirable pressure (1.5 MPa) leading to the
separator. Valves and tubing’s are heated to a temperature of 0 °C due to high pressure drop.
Electronic control
In order to achieve quality extract it is of outmost importance to precisely control process
parameters such as temperature of the CO2, pressure and the solvent flow rate. To enable the
precise control of the aforementioned parameters an electronic control system must be designed
and developed accordingly (Boyes, 2010). In a standard industrial plant a classical industrial
automation approach is often an only choice for precise process control, however when designing
a laboratory based extraction plant a more cost effective approach can be undertaken in order to
mitigate the initial cost of the system. This approach includes using a custom built embedded
system with proprietary sensors and actuators, designed to monitor and control the process. A
block diagram of the designed electronic control system is shown on Fig. 2.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
55
Embedded System
T T T T T. . .
Sensors
User interface
PC
Actuators
Fig. 2. Block diagram of the electronic control system
As seen from Fig. 2 the main component of the electronic control system is the embedded
system, which is often based on a microprocessor and peripheral circuits. The idea behind
using this architecture as opposed to the classical PLC regulation is the cost effectiveness
of the system and the ability to design a custom system for a specific plant (Greenfield,
2013). This in turn complicates the design of a device from the start, but enables an easy
implementation in future solutions. By enabling the connection with a personal computer
(PC) the laboratory based SFE extraction plant can be easily monitored and controlled
remotely by using Internet as a global communication network. This also enables the use
of proprietary sensors (such as pressure, flow and temperature sensors) needed to deliver
the data from the process to the regulation loop.
Due to the fact that the electronic control system is designed as an embedded system
(digital) regulation control must be realized using a discrete regulator. A most common
type of regulator that can be effectively applied to variety of systems is a PID
(Proportional, Integral and Derivative) regulator (Smith, 1997). A discrete system model
that can be easily applied to any micro-processor unit is shown on Fig. 3 and a discrete
PID regulator is shown on equation (4).
Fig. 3. Controlling continues process by discrete regulator
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
56
𝑢[𝑘] = 𝐾𝑝𝑒[𝑘] + 𝐾𝑖 ∑ 𝑒[𝑘]𝑛𝑘=0 + 𝐾𝑑(𝑦[𝑘] − 𝑦[𝑘 − 1]) (4)
The resulting value of the PID regulator is transmitted to actuating modules that exhibit the
functionality of digital to analogue converter (DAC) in order to control continuous
processes in real life. In this form the actuators (such as heaters, valves etc.) are controlled
in order to achieve precise and efficient extraction process (Lehmann et al., 2012).
Next on, in order to disseminate the acquired data towards the end user, an application was
developed for PC (Fig. 4). The developed application has the ability to monitor process
parameters in real-time, enabling continuous supervision of the SFE extraction. Alongside
with the parameter supervision the developed application enables the control of the system
from two aspects: changing process parameters and controlling the extraction process
(starting and stopping of the extraction process). In this manner the process of laboratory
SFE extraction can be performed remotely, putting rigorous constraints on the safety of the
extraction and the overall process efficiency.
Fig. 4. Developed application for SFE system
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
57
Finally, the main advantage of using the embedded system approach is the ability to enable
interconnection of the laboratory SFE system using the existing communication
infrastructure (Ethernet, Local Area Network), enabling the monitoring of data from
various locations and remotely using Internet. This approach utilizes existing network
connection for the SFE system, where all the data are tunneled through the existing Local
Area Network (LAN) (Fig. 5).
Router-Firewall
Ethernet LAN
`
PC2
`
PC1
PrintersServer
Internet
SFE System
Fig. 5. Networking the SFE system
By using standard communication protocols and technologies such as Ethernet and Wi-Fi
future interconnection with mobile devices (such as tablets and smartphones) is enabled by
default and by developing proprietary applications, the concept of the remote supervision
and control can be extended to everywhere where Internet access is available.
Conclusions
SFE emerged in the last few decades as a promising green technology and a good
alternative in food and natural products processing. With the rapid development of SFE
technology next generation of extraction plants will begin to emerge in the upcoming
years, combining up-to-date technological advances in optimizing SFE process. The
proposed system offers a cost effective solution for the small scale research SFE systems
with the ability of detailed parametric analysis and remote process supervision, normally
not available in industrial grade SFE systems. By presenting uniform and simple guidelines
for the construction of laboratory SFE system an adequate scale-up from laboratory to
industrial design purposes becomes a simple task.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
58
Acknowledgements
The authors greatly acknowledge to the Josip Juraj Strossmayer University of Osijek and
Faculty of Food Technology Osijek for financial support in construction of supercritical
fluid extraction system. This work is also sponsored by Ministry of Science, Education and
Sports of the Republic of Croatia under project grant No: 165-0362027-1479.
References
Boyes, W. (2010): Instrumentation Reference Book. Amsterdam: Butterworth-Heinemann/Elsevier.
Brunner, G. (1984): Mass transfer from solid material in gas extraction, Ber. Bunsenges. Phys.
Chem. 88, 887-891.
Brunner, G. (2005): Supercritical fluids: technology and application to food processing, J. Food
Eng. 67, 21-33.
Castro-Vargas, H.I., Rodríguez-Varela, L.I., Parada-Alfonso, F. (2011): Guava (Psidium guajava
L.) seed oil obtained with a homemade supercritical fluid extraction system using supercritical
CO2 and co-solvent, J. Supercrit. Fluid. 56, 238-242.
Fang, T., Goto, M., Sakaki, M., Yang, D. (2008): Extraction and purification of natural tocopherols
by supercritical carbon dioxide. In: Supercritical Fluid extraction of Nutraceuticals and
bioactive Compounds, Martinez, J.L. (ed.), Boca Raton: CRC Press, Taylor and Francis
Group, pp. 103-140.
Greenfield, D. (2013): How Embedded Systems Are Changing Automation [Online]. February 12,
2013. Available from: http://www.automationworld.com/ embedded-control/how-embedded-
systems-are-changing-automation
Lack, E., Seidlitz, H; Sova, M. (2006): New industrial application of supercritical fluid extraction.
In: Proceedings of 8th International Symposium on Supercritical Fluids, Kyoto, Japan, pp. 5-8.
Lehmann, R.J. Reiche, R. Schiefer, G. (2012): Future internet and the agri-food sector: State-of-the-
art in literature and research, Comput. Electron. Agr. 89, 158-174.
Martínez, M.L., Mattea, M.A., Maestri, D.M. (2008): Pressing and supercritical carbon dioxide
extraction of walnut oil, J. Food Eng. 88, 399-404.
Oliveira, E.L.G., Silvestre, A.J.D., Silva, C.M. (2011): Review of kinetic models for supercritical
fluid extraction, Chem. Eng. Res. Des. 89, 1104-1117.
Reverchon, E., De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural
metter, J. Supercrit. Fluid. 38, 146-166.
Sahena, F., Zaidul, I.S.M., Jinap, S., Karim, A.A., Abbas, K.A., Norulaini, N.A.N., Omar, A.K.M.
(2009): Application of supercritical CO2 in lipid extraction - A review, J. Food Eng. 95, 240-253.
Smith, S.W. (1997): The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Publishing, San Diego, CA, USA.
Temelli, F. (2009): Perspectives on supercritical fluid processing of fats and oils, J. Supercrit. Fluid.
47, 583-590.
Valle, J.M. del, Fuente, J.C. de la (2006): Supercritical CO2 extraction of oilseeds: Review of
kinetic and equilibrium models, Crit. Rev. Food Sci. 46, 131-160.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
59
Strukturna svojstva i ionska vodljivost nanokompozitnih
polimernih elektrolita
UDC: 544.6.018.47-036.5
Irena Banovac1a
, Matko Erceg1a
, Dražan Jozić1b
, Zorana Akrap1a
,
Sigrid Bernstorff2
1Sveučilište u Splitu, Kemijsko-tehnološki fakultet, (
aZavod za organsku tehnologiju,
bZavod za
anorgansku tehnologiju), Teslina 10/V, 21000 Split, Hrvatska 2Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 km 163,5 in AREA Science Park, I-34149,
Basovizza, Trieste, Italy
Sažetak
U ovom radu istraživan je utjecaj dodatka litijevog montmorilonita (LiMMT) na strukturu i ionsku
vodljivost nanokompozita na osnovi poli(etilen-oksida) (PEO). PEO je često korišten polimer za
pripremu polimernih elektrolita zbog svojih dobrih elektrokemijskih i mehaničkih svojstava. Ipak,
visok stupanj kristalnosti PEO smanjuje njegovu ionsku vodljivost. Smanjenje stupnja kristalnosti
postiže se dodatkom anorganskih čestica PEO-u stvarajući polimerne elektrolite s poboljšanim
elektrokemijskim svojstvima. Utjecaj dodatka LiMMT na strukturu PEO ispitivan je primjenom
raspršenja X-zračenja pri malom kutu (SAXS) i infracrvene spektroskopije s Fourierovom
transformacijom (FTIR). Rezultati SAXS metode ukazuju na interkalaciju polimernih lanca između
slojeva montmorilonita, odnosno nastanak nanokompozitne strukture. FTIR analiza pokazuje da
dodatak punila narušava helikoidalnu strukturu PEO u nanokompozitima, odnosno njegovu
kristalnost. Diferencijalnom pretražnom kalorimetrijom (DSC) potvrđeno je da dodatak punila
smanjuje kristalnost PEO. Ionska provodnost nanokompozita određena je elektrokemijskom
impendancijskom spektroskopijom (EIS). EIS pokazuje značajan porast ionske vodljivosti pri
sobnoj temperaturi dodatkom LiMMT te je definiran optimalan udio LiMMT.
Ključne riječi: PEO/LiMMT nanokompoziti, diferencijalna pretražna kalorimetrija, IR spektroskopija,
elektrokemijska impendancijska spektroskopija, raspršenje X-zračenja pri malom kutu
Uvod
Poli(etilen-oksid) (PEO) je polimer koji je odigrao značajnu ulogu u razvoju polimernih
elektrolita. Sustavi čvrstih polimernih elektrolita bazirani na PEO su među
najproučavanijim sustavima polielektrolita (Loyens et al., 2005). Vodljivost kod ovih
sustava je povezana s migracijom iona i s pokretljivošću segmenata polimernog lanca. S
obzirom na njegovu visoku kristalnost, PEO pokazuje slabu provodnost (σ) pri sobnoj
temperaturi (σ = 10-8
do 10-7
S cm-1
). Stoga je važno smanjiti stupanj kristalnosti PEO uz
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
60
što niži negativni utjecaj na mehanička svojstva (Moreno et al., 2011). Dosadašnji pokušaji
smanjenja kristalnosti PEO dodatkom niskomolekulnih omekšavala, polarnih organskih
otapala pa čak i epoksidirane prirodne gume općenito su rezultirali povećanjem vodljivosti
PEO uz značajno smanjenje mehaničkih svojstava kompozita (Noor et al., 2010).
Poboljšanje vodljivosti PEO može se postići dodatkom slojevitih anorganskih materijala
nanometarskih dimenzija čestica u matricu PEO. U ovom radu za pripravu PEO
nanokompozita korišten je glineni mineral litijev montmorilonit (LiMMT) koji se dobije
ionskom izmjenom iz prirodnog, natrijevog montmorilonita, te je ispitan utjecaj dodatka
LiMMT-a na toplinska svojstva, kristalnost i ionsku vodljivost PEO.
Materijali i metode
Za pripremu uzoraka korišteni su prah poli(etilen-oksida) (Sigma-Aldrich, Inc., St. Louis,
USA; Mv=5 000 000), natrijev montmorilonit CloisiteNa+
(NaMMT) (Southern Clay
Products, Inc., SAD) i litijev klorid (Kemika, Zagreb, Croatia). LiMMT pripremljen je
postupkom ionske izmjene miješanjem NaMMT s otopinom LiCl koncentracije 1 moldm-3
magnetskom miješalicom u vremenskom intervalu od 48 sati pri 30 °C. Dobiveni LiMMT
je ispiran destiliranom vodom do potpunog uklanjanja kloridnih iona, zatim je sušen 5 sati
pri 120 °C u sušioniku te u vakuumskom sušioniku još 48 sati pri 100 °C.
Uzorci PEO/LiMMT sastava 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80 i 10/90
pripremljeni su metodom interkalacije iz taljevine. Polimer i punilo u određenom masenom
omjeru izmiješani su u tarioniku, te prešani u tabletice pod pritiskom od 5 t u vremenu od
jedne minute pri sobnoj temperaturi. Potom su uzorci zagrijavani pri 90 °C u trajanju od 8
sati (metoda interkalacije iz taljevine). Za vrijeme zagrijavanja polimerni lanci difundiraju
iz mase polimerne taljevine u silikatne međuslojeve, odnosno interkaliraju se između
slojeva silikata. Pri tome se samo povećava udaljenost između slojeva silikata, a zadržava
početna uređenost pa nastaje tzv. interkalirajući nanokompozit. Ova metoda je ekološki
prihvatljiva jer priprava nanokompozita ne zahtijeva upotrebu otapala (Mai et al., 2006).
Raspršenje X-zraka pri malom kutu (SAXS)
Raspršenje X-zraka pri malom kutu (eng. Small ange X-Ray Scattering (SAXS))
provedeno je na Austrijskoj SAXS liniji na Sinkrotronu Elettra. Energija korištenog
sinkrotronskog zračenja je 8 keV što odgovara valnoj duljini rendgenskog zračenja od 1,54 Å.
Udaljenost uzorka od detektora iznosila je 1132 mm što u ovom eksperimentalnom
postavu omogućava istraživanje u rasponu veličina od 70,00-0,83 nm. Korišteni detektor je
Image plate tip MAR300 (MarReserch) koji je za svaku sliku raspršenja eksponiran
zračenju u trajanju od 1-2 sekunde. Kalibracija q vrijednosti ali i uklanjanje sistematskih
pogreški korištenog eksperimentalnog postava provedena je primjenom vanjskog standarda
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
61
AgBeh-a. Intenzitet je naknadno korigiran za sve sustave za tzv. dark current, odnosno za
sva elektromagnetska zračenja koje detektor prikuplja u ekspozicijskom vremenu, a koji ne
potječu direktno od uzorka. Na normalizirane krivulje primjenjena je Lorentzova korekcija
(IL=Imq2, q=(4π/λ)sinθ, gdje je IL korigirani intenzitet, Im mjereni intenzitet raspršenja, λ je
valna duljina X zračenja i 2θ je kut raspršenja). Pozicije difrakcijskih maksimuma su u
direktnom odnosu s veličinom jedinčne ćelije ili međuslojnom udaljenošću u slučaju
slojevitih materijala koja je određena prema Braggovom zakonu d=2π/q.
Infracrvena spektroskopija s Fourierovom transformacijom (FTIR)
Spektri infracrvene spektroskopije snimljeni su Perkin-Elmer Spectrum One
spektrometrom HATR tehnikom (eng. Horizontal Attenuated Total Reflectance). Uzorci su
postavljeni na ravni kristal od ZnSe (kut upadne zrake 45 °) te snimljeni u području od
4000-650 cm-1
uz vrijednosti spektralne rezolucije od 4 cm-1
. Snimanje svakog uzorka je
ponovljeno 10 puta, a dobiveni spektri predstavljaju njihovu srednju vrijednost.
Diferencijalna pretražna kalorimetrija (DSC)
Diferencijalni pretražni kalorimetar Mettler Toledo 823e i STAR
e software su korišteni za
snimanje uzoraka i obradu podataka. Analizirani uzorci su najprije ohlađeni od 25 do -90 °C.
Na temperaturi od -90 °C držani su 10 minuta. Potom su zagrijavani do 120 °C i zadržani 5
minuta na toj temperaturi. Uslijedilo je hlađenje na temperaturu od -90 °C na kojoj su
uzorci bili 10 minuta. Na kraju, uzorci su ponovno zagrijani do 120 °C. Sva zagrijavanja i
hlađenja su provedena brzinom od 20 °C min-1
.
Elektrokemijska impedancijska spektroskopija (EIS)
Impedancijska mjerenja su rađena na mjernom sustavu Potenciostat Solartron
Electrochemical Interface SI 1287 u kombinaciji s fazno osjetljivim pojačalom Solartron
HF Frequency response analyzer SI 1255 pri 25 ºC. Sustav je vođen, a podaci analizirani
programom Zplot/Zwiew (Scribner Associates, Inc., SAD). Uzorak polimernog elektrolita
bio je smješten u posebno konstruiran držač, a ostvarivao je kontakt s mjernim uređajima
preko bakrenih ploča. Mjerenja impedancije su izvedena u području frekvencija od 1 MHz
do 1 Hz s amplitudom pobude od ± 20 mV. Vrijednosti ionske provodnosti (σ) su
izračunate iz otpora Rb koji je određen iz Nyquistovih dijagrama prema jednadžbi:
t
ARb
1 (1)
gdje je A površina uzorka, a t debljina uzorka.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
62
Rezultati i rasprava
SAXS
Profili krivulja raspršenja X-zraka pri malim kutovima (SAXS) korigiranih za Lorentzovu
korekciju na uzrocima pripravljenih kompozita PEO/LiMMT prikazani su na slici 1. Čisti
uzorak LiMMT, budući da je riječ o slojevitom alumosilikatu u smjeru kristalografske osi c,
pokazuje difrakcijski maksimum pri q vrijednosti 5,21 nm-1
što odgovara međuplošnoj
udaljenosti d001=1,204 nm. Za čisti uzorak PEO također se uočava prisutnost difrakcijskog
maksimuma pri q=7,15 nm-1
što odgovora d vrijednosti od 0,879 nm. Iz krivulja raspršenja
se uočava da dodatkom LiMMT u polimernu matricu PEO dolazi do promjene položaja
difrakcijskog maksimuma koji odgovara međuplošnoj udaljenosti LiMMT prema nižim
vrijednostima q. To znači da dolazi do povećanja međuplošne udaljenosti a time i porasta
d001 vrijednosti. Do povećanja d001 vrijednosti dolazi zbog ugradnje (interkalacije) PEO u
međuplošni prostor LiMMT-a, što ukazuje na nastanak interkalirane strukture
PEO/LiMMT nanokompozita.
Slika 1. Krivulje raspršenja X-zraka pri malim kutovima (SAXS) za LiMMT
i nanokompozite PEO/LiMMT
Fig. 1. SAXS pattern for LiMMT and PEO/LiMMT nanocomposites
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
63
Slika 2. FT-IR spektar izvornog PEO, LiMMT i PEO/LiMMT nanokompozita
Fig. 2. FT-IR spectra of pure PEO, LiMMT and PEO/LiMMT nanocomposites
FTIR
Interakcija između lanaca PEO i kationa unutar galerije LiMMT je određena primjenom
infracrvene spektroskopije s Fourierovom transformacijom. Snimanje uzoraka je
provedeno HATR tehnikom u području valnih brojeva od 4000-650 cm-1
jer se u tom
području događaju glavne molekulske vibracije pri kojima dolazi do rastezanja i savijanja
veza.
PEO je polimer visokog stupnja kristalnosti, a njegove makromolekule zauzimaju spiralnu
ili helikoidalnu konformaciju u kristalnom stanju (Gnanou et al., 2008). Helikoidalna
konformacija makromolekule PEO sadrži sedam –CH2CH2O- jednica koje su raspoređene
u dvije spirale koji čine tzv. uzvojnicu ili heliks. U području valnih brojeva od 1000-700 cm-1
nalaze se CH2 njihajne vibracije koje su posebno osjetljive na konformacijske promjene.
Prisutnost dviju apsorpcijskih vrpci blizu valnih brojeva 945 i 840 cm-1
kod čistog PEO
pripisuje se njihajnim vibracijama CH2 skupina koje se nalaze u tzv. gauche konformaciji
(Arranda i Ruiz-Hitzky, 1992). Intenzitet tih apsorpcijskih vrpci smanjuje se s dodatkom
Li-MMT. Vrpca pri 945 cm-1
potpuno isčezava kod nanokompozita s udjelom punila
većim od 60 mas. %, dok se vrpca pri 840 cm-1
gubi kod nanokompozita s udjelom
LiMMT većim od 70 mas. %. Međutim, pri udjelima LiMMT većim od 70 mas.%
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
64
pojavljuje se vrpca pri 847 cm-1
. Sve navedeno vodi ka zaključku da je narušena helikoidna
konformacija PEO koja je preduvjet kristalnosti PEO.
DSC
Normalizirane DSC krivulje drugog zagrijavanja svih analiziranih uzoraka prikazane su na slici 3.
Iz njih su očitane sljedeće toplinske karakteristike: talište, staklište i toplina taljenja (ΔHt).
Talište se izražava preko ekstrapolirane početne temperature taljenja (Tp,t), temperature u
minimumu endoterme taljenja (Tm,t) i ekstrapolirane konačne temperature taljenja (Tk,t).
Staklište se izražava preko ekstrapolirane početne temperature staklastog prijelaza (Tep,g),
ekstrapolirane konačne temperature staklastog prijelaza (Tek,g) i temperature na polovini ukupne
promjene toplinskog toka u području staklastog prijelaza (Tm,g). Iz vrijednosti ∆Ht primjenom
izraza (2) izračunat je i stupanj kristalnosti, Xc, PEO-a (tablica 1) prema izrazu:
100(%)0
wH
HX t
c (2)
gdje je ∆Ht toplina taljenja PEO određena DSC analizom, ΔH0 toplina taljenja 100 %
kristalnog PEO, w maseni udio komponente kojoj se određuje postotak kristalnosti. ΔH0 za
100 % kristalni PEO iznosi 205 J g-1
(Zheng et al., 2004).
Slika 3. Normalizirane DSC krivulje zagrijavanja PEO, LiMMT i PEO/LiMMT nanokompozita
Fig. 3. Normalized DSC heating curves of PEO, LiMMT and PEO/LiMMT nanocomposites
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
65
Tablica 1. DSC podaci PEO, LiMMT i PEO/LiMMT nanokompozita
Table 1. DSC data for PEO, LiMMT and PEO/LiMMT nanocomposites
PEO/LiMMT Tp,t
/
o
C Tm,t
/
o
C Tk,t
/
o
C -ΔHt
/ Jg
-1
Tep,g
/
o
C Tm,g
/
o
C Tek,g
/
o
C Xc
/ %
100/0 58 73 81 127,3 -57 -52 -48 62,1
90/10 48 67 74 108,3 -53 -48 -48 58,7
80/20 52 64 74 91,19 -60 -56 -49 55,6
70/30 44 58 64 63,69 -63 -59 -54 44,4
60/40 40 51 56 11,22 -63 -60 -56 9,1
50/50 40 52 56 26,45 -65 -62 -58 25,8
40/60 45 57 64 23,51 -57 -55 -38 28,7
30/70 43 58 65 7,62 -58 -51 -35 12,4
20/80 - - - - - - - -
10/90 - - - - - - - -
0/100 - - - - - - - -
Slika 3. prikazuje da se kod uzoraka s udjelom do 70 mas.% litijevog montmorilonita
pojavljuje jedno talište, što predstavlja taljenje kristalne faze PEO. Daljnjim dodatkom
litijevog montmorilonita ne uočavaju se endoterme taljenja što upućuje na nepostojanje
kristalne faze u PEO. Vrijednosti Tp,t, Tm,t i Tk,t su niže u svim PEO/LiMMT
nanokompozitima u odnosu na izvorni PEO (tablica 1). Općenito, niže talište PEO u
nanokompozitima PEO/Li-MMT se može pripisati ometanju procesa kristalizacije u
prisutnosti litijevog montmorilonita. Toplina taljenja (ΔHt) se također smanjuje
povećanjem udjela litijevog montmorilonita i niža je od topline taljenja izvornog PEO za
sve uzorke PEO/Li-MMT (Tablica 1). Iz vrijednosti ΔHt je primjenom izraza (2) izračunat
stupanj kristalnosti Xc PEO u svim uzorcima (Tablica 1). Dodatak litijevog montmorilonita
do 40 mas.% značajno snižava stupanj kristalnosti PEO (uzorak sa 40% Li-MMT pokazuje
smanjenje stupnja kristalizacije za 53% u odnosu na uzorak 100/0). Daljnji dodatak punila
do 70 mas.% rezultira nešto većim vrijednostima stupnja kristalizacije, dok se pri udjelima
LiMMT-a većim od 80% kristalnost PEO potpuno gubi.
Vrijednosti staklišta izražene kao Tep,g, Tm,g, Tek,g dodatkom Li-MMT pokazuju niže
vrijednosti u odnosu na čisti PEO (Tablica 1).
EIS
Elektrokemijska impedancijska spektroskopija korištena je za ispitivanje utjecaja dodatka
LiMMT na ionsku provodnost PEO. Nyquistov prikaz impedancijskih spektara polimernog
elektrolita na bazi PEO prikazan je na slici 4. Nyquistov prikaz za polimerni elektrolit
pokazuje kapacitivni polukrug s centrom ispod realne osi što je posljedica neidealnog
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
66
kapacitivnog ponašanja. U nižem frekvencijskom području kapacitivni polukrug prelazi u
pravac s nagibom od oko 45° karakterističan za difuzijske procese. Dobiveni spektri su u
skladu sa spektrima za nanokompozite PEO u prethodno objavljenim radovima (Ratna et
al., 2007; Kim et al., 2008). Radijus polukruga ovisan je o sastavu elektrolita (udjelu
LiMMT u elektrolitu). Mjesto gdje kapacitivni polukrug siječe realnu os impedancije
predstavlja otpor elektrolita Rb (Slika 4).
Slika 4. Elektrokemijski impedancijski spektar nanokompozita PEO/LiMMT 10/90
Fig. 4. Electrochemical impedance spectra of nanocomposite PEO/LiMMT 10/90
Rezultati pokazuju da dodatak LiMMT povećava ionsku provodnost uzoraka (Slika 5).
Maksimalna izračunata provodnost iznosi 8,9∙10-7 S cm
-1, a javlja se kod uzorka s 40 mas. %
LiMMT što je 649 puta veće od ionske provodnosti izvornog PEO (1,4∙10-9
S cm-1
).
Daljnjim povećanjem mas. % LiMMT u nanokompozitima, vrijednosti provodnosti
pokazuju blagi pad, no i dalje su veće od izvornog PEO. Poznato je da ionska vodljivost
raste smanjenjem udjela kristalne faze polimera obzirom da se transport Li+ iona odvija
kroz amorfnu fazu. Do poboljšanja transporta slobodnih Li+ iona dolazi i jer Lewisova
kisela mjesta na površini punila reagiraju s kisikovim atomima iz PEO čime slabi
interakcija kisikovih atoma i Li+
oslobađajući veći broj Li+ iona (Xi et al., 2005). Ipak,
nakon što je optimalni udio LiMMT postignut, ionska vodljivost opada iako udio i amorfne
faze i broj slobodnih Li+ iona rastu s porastom udjela LiMMT. To je stoga što disperzija
LiMMT u polimernoj matrici utječe na ionsku vodljivost. Pri nižim udjelima LiMMT je
dobro dispergiran u matrici PEO stvarajući povoljno okruženje za mobilnost Li+ iona.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
67
Dodatak LiMMT iznad 40 mas. % dovodi do samoagregacije silikatnih slojeva koji čvrsto
drže Li+ ione ograničavajući njihovu mobilnost posljedično smanjujući vodljivost
PEO/LiMMT nanokompozita.
Slika 5. Ionska provodnost PEO, LiMMT, PEO/LiMMT nanokompozita
Fig. 5. Ionic conductivity of PEO, LiMMT, PEO/LiMMT nanocomposites
Zaključci
Analiza krivulja raspršenja (SAXS) ukazuje na nastanak interkalirane nanokompozitne
strukture PEO/LiMMT. FTIR analiza je pokazala da izvorni PEO ima spiralnu
konformaciju u kristalnom stanju te da dodatak LiMMT mijenja konformaciju i
posljedično smanjuje kristalnost PEO. Primjenom diferencijalne pretražne kalorimetrije
utvrđeno je da se dodatkom LiMMT smanjuju vrijednosti tališta, staklišta te je dokazano
smanjenje kristalnosti PEO. Kod uzoraka s dodatkom LiMMT u količinama većim od
70 mas. % kristalnost PEO potpuno isčezava. Elektrokemijska impedancijska
spektroskopija pokazala je da ionska provodnost raste s povećanjem udjela LiMMT te
doseže maksimalnu vrijednost od 8,9∙10-7
S cm-1
za uzorke s 40 mas. % dodatka LiMMT.
Na povećanje ionske vodljivosti povoljno utječu povećanje udjela amorfne faze polimera i
poboljšanje transporta Li+ iona Lewisovim kiselo-baznim interakcijama u polimernom
elektrolitu. Efekt disperzije LiMMT postaje vidljiv nakon prekoračenja optimalnog udjela
nanopunila kada dolazi do samoagregacije silikatnih slojeva što ograničava mobilnost
Li+ iona s posljedicom pada ionske vodljivosti.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
68
Literatura
Arranda P., Ruiz-Hitzky E. (1992): Poly(ethylene oxide)-silicate intercalation materials, Chem.
Mater. 4, 1395-1403.
Gnanou, Y., Fontanille, M. (2008): Organic and Physical Chemistry of Polymers, New Jersey, John
Wiley & Sons, Inc. Hoboken, pp. 554.
Kim, S., Hwang E. J., Jung Y., Han M., Park, S. J.(2008): Ionic conductivity of polymeric
nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials, Colloid
Surface A 313-314, 216-219
Loyens, W., Jannasch, P., Maurer, F.H.J. (2005) : Effect of clay modifier and matrix molar mass on
the structure and properties of poly(ethylene oxide)/Cloisite nanocomposites via melt-
compounding, Polymer 46 (3), 903-914.
Mai, Y.W., Yu Z.Z. (2006): Polymer nanocomposites, New York, CRC Press LLC, pp. 61.
Noor, S. A. M., Ahmad A., Rahman M.Y.A., Talib I. A. (2010) :Solid polymeric electrolyte of
poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3),
Natural Science 2, 190-196.
Moreno, M., Quijada, R., Santa Ana, M. A., Benavente E., Gomez- Romero P., Gonzáles, G.
(2011): Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer
electrolyte, Electrochim. Acta 58, 112-118.
Ratna D., Divekar S., Patchaiappan S., Samui A.B. Chakraborty B. C. (2007): Poly(ethylene
oxide)/clay nanocomposites for solid polymer electrolyte applications, Polym Int 56 ,900-904
Xi, J.Y., Qiu, X.P., Ma, X.M., Cui, M.Z., Yang, J., Tang, X.Z., Zhu, W.T., Chen, L.Q. (2005):
Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer
battery, Solis state ionics 176,13-14
Zheng, S., Nie K., Guo Q. (2004): Miscibility and phase separation in blends of phenolphtalein
poly(aryl ether ketone) and poly(ethylene oxide): a differential scanning calorimetry study,
Thermochim. Acta 419, 267-274.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
69
Structural properties and ionic conductivity of nanocomposite
polymer electrolytes
Irena Banovac1a
, Matko Erceg1a
, Dražan Jozić1b
,
Zorana Akrap1a
, Sigrid Bernstorff2
1University of Split, Faculty of Chemistry and Technology, (
aDepartment of Organic Technology,
bDepartment of Inorganic Technology), Teslina 10/V, HR-21000 Split, Croatia
2Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 km 163,5 in AREA Science Park, I-34149,
Basovizza, Trieste, Italy
Summary
In this work the effect of addition of lithium montmorillonite (LiMMT) on the structure and ionic
conductivity of poly(ethylene oxide) based nanocomposites was investigated. PEO is widely used
polymer to prepare polymer composite electrolytes due ti its good electrochemical and mechanical
properties. However, high degree of crystallinity reduces its ionic conductivity. The decrease in
crystallinity can be achieved by adding inorganic particles to PEO thus creating polymer
electrolytes with improved electrochemical properties. The effect of addition of LiMMT on stucture
of PEO was investigated by small-angle X-ray scattering (SAXS) and Fourier transform infrared
spectroscopy (FTIR). SAXS results indicate intercalation of polymer chains in the interlayer of
montmorillonite, i.e. formation nanocomposite structure. FTIR analysis shows that the addition of
filler disrupts helical structure of PEO in nanocomposites, i.e. its crystallinity. Differential scanning
calorimetry (DSC) confirmed that the addition of filler reduces the crystallinity of PEO. Ionic
conductivity of nanocomposites was determinated by electrochemical impendance spectroscopy
(EIS). EIS shows significant increase of ionic conductivity at room temperature with addition of
LiMMT and optimum LiMMT content was defined.
Keywords: PEO/LiMMT nanocomposites, differential scanning calorimetry, IR spectroscopy,
electrochemical impedance spectroscopy, small angle X-ray diffraction
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
70
Local sensitivity analysis of integrated
membrane bioreactor model
UDC: 66.023
Mirjana Čurlin1
, Ana Jurinjak Tušek1, Tamara Jurina
1,
Irena Petrinić2, Želimir Kurtanjek
1
1University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000
Zagreb, Croatia 2University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000
Maribor, Slovenia
Summary
Membrane bioreactors (MBRs) consist of the combination of biological processes (typically
activated sludge processes) with membrane technologies and are being applied when high quality
effluents are required. Over the last decades, membrane technologies alone or in combination with
biological processes (i.e. MBRs) have been successfully applied for municipal and industrial
wastewater treatment. MBR-based technology is a complex physical-chemical and biological
system with numerous interactions between the process variables. For design and better
understanding of this complex system mathematical modelling is a very useful tool. According to
literature there are several integrated models describing the both physical and biological processes
taking part in MBRs with some simplifications. But there is still a big challenge in developing of an
integrated model able to describe the biological nutrient removal, formation/degradation of soluble
microbial products and physical separation. In this work, one-to-one local sensitivity analysis was
applied to define the most important parameters of integrated activated sludge model 2d and soluble
microbial product (ASM2d-SMP) model proposed by Cosenza et al. (2013). Model includes 19
biological state variables and 79 parameters (kinetics, stoichiometric, physical and fraction-related).
By simulating described mathematical model with one and three percent parameters value
increase/decrease the key regulation points of the model are detected. Obtained results facilitate
future experiments planning and can be a good starting point for model reduction.
Keywords: membrane bioreactor, activated sludge model, local sensitivity analysis, FAST method
Introduction
Since the regulation of wastewater has been noticeably increased in many countries,
membrane bioreactors (MBRs) can be an attractive option for municipal as well as
industrial wastewater treatment. MBRs have become a popular biological wastewater
treatment technology as one of the next generations of wastewater treatment processes to
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
71
be developed from either clasical activated sludge (CAS) or trickling filter systems.
Among the other benefits, MBRs (compared to CAS) provide lower footprint, lower
sludge production, rapid start-up of biological processes, and high-quality effluent
production (Judd et al., 2010). Besides membrane fouling and the high cost of membranes
identified as main obstacles for wider application of MBRs, recent studies have reported
several crucial specificities of the treatment system. MBR is a complex physical-chemical
and biological system in which activated sludge treatment is directly combined with
membrane technology.
Due to the higher number of interaction between the process variables in the system,
mathematical modelling plays a key role in order to design of the system and context of “MBR
knowledge upgrading”. Well known activated sludge models (ASM 1-3, 2d) (Henze at al.,
2000) originally developed for CAS system, have been applied in their original form or adapted
(hybrid model) in order to simulate the bioprocesses occuring in MBR system (Jiang et al.,
2008). The main adaptation of ASM models for MBR is inclusion of formation and
degradation of soluble microbial products (SMPs). SMPs are defined as soluble cellular
components or debris that are released during cell lysis, diffused through the cell membrane,
lost during synthesis, or excreted for some purpose. Substrate utilization, biomass decay, and
hydrolysis of extracellular substances are the major processes contributing to SMPs formation.
According to many authors (Cho et al. (2005), Judd (2010), Drews et al. (2010)) SMPs have a
significant influence on membrane fouling and reducing membrane permeability which are the
main problem for properly operating of MBR. Therefore, integrated model which includes key
biological processes and physical processes on membrane have been proposed to improve the
knowledge about the correlation between the biological processes and various membrane
fouling phenomena. These models are needed for design and better understanding of complex
MBR process. Many authors have proposed integrated models (Zarragoitia-Gonzales et al.
(2008), Mannina et al. (2011), Lu et al. (2001)) which are focused only on few targeted aspects
of steady-state biological processes linked to membrane fouling models, leaving many
unresolved issues in model calibration. For this reason, integrated models are not yet fully
available and have yet to be developed (Zuthi et al., 2012).
The objective of this study was to apply one-to-one local sensitivity analysis in order to identify
the key parameters of microbiological reactions included in integrated activated sludge model
2d and soluble microbial product (ASM2d-SMP) model proposed by Cosenza et al. (2013).
Materials and methods
ASM 2d-SMP model of MBR
ASM2d-SMP is a modified version of activated sludge model 2d (ASM2d) and takes into
account SUAP (soluble utilization associated product) and SBAP (soluble biomass associated
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
72
product) and six reactions including these components. ASM2d model allows dynamic
simulation of combined biological processes for chemical oxygen demand (COD), nitrogen
and phosphorus removal in activated sludge systems. The kinetics and stoichiometry are
mainly based on Monod kinetics. Model describes anaerobic, anoxic and aerobic
processes. Model includes 19 biological state variables (SO2 (dissolved oxygen), SF
(fermentable readily biodegradable organic substrates), SA (fermentation products), SBAP
(soluble biomass associated product), SUAP (soluble utilization associated product), SNH4
(ammonium plus ammonia nitrogen), SNO3 (nitrite plus nitrate nitrogen), SPO4 (inorganic
soluble phosphorus), SI (inert soluble organic material), SALK (alkalinity of wastewater), SN2
(nitrogen), XI (inert particulate organic material), XS (slowly biodegradable substrates), XH
(heterotrophic organisms), XPAO (phosphate-accumulating organisms), XPP (poly-
phosphate), XPHA (a cell internal storage product of phosphorus-accumulating organisms),
XAUT (nitrifying organisms) and XTSS (total suspended solids) and 79 parameters (kinetics,
stoichiometric, physical and fraction-related). In this work, 44 kinetic parameters were
analysed (KX (half saturation parameter for XS/XH), KNO3,H (half saturation parameter for
SNO3 for XH), ηNO3,H (reduction factor for anoxic growth of XH), KI (hydrolysis rate for XI),
kH (maximum specific hydrolysis rate), ηFe (correction factor for hydrolysis under
anaerobic conditions), KO,HYD (half saturation/inhibition parameter for SO2), KNO3,HYD (half
saturation/inhibition parameter for SNO3), μH (maximum hydrolysis rate of XH), qFe (rate
constant for fermentation/maximum specific fermentation growth rate), ηNO3,H (reduction
factor for anoxic growth of XH), bH (decay rate for XH), KF (half saturation parameter for
SF), KFe (half saturation parameter for fermentation of SF), KA (half saturation parameter for
SA), KNH4,H (half saturation parameter for SNH4 for XH), KP,H (half saturation parameter for
SPO4 for XH), KALK,H (half saturation parameter for SALK for XH),qPHA (rate constant for SA
uptake rate), qPP (rate constant for storage of polyphosphates), μPAO (maximum growth rate
of XPAO), ηNO3,PAO (reduction factor for anoxic growth of XPAO), bPAO (endogenous
respiration rate of XPAO), bPP (rate constant for lysis of polyphosphates), bPHA (rate constant
for respiration of XPHA), KPS (half saturation parameter for SPO4 uptake), KPP (maximum
ratio of XPP/XPAO), KMAX (half saturation parameter for XPP/XPAO), KIPP (half inhibition
parameter for XPP/XPAO), KPHA (saturation constant for XPHA/XPAO), KO,PAO (half saturation
parameter for SO2 for XPAO), KNO3,PAO (half saturation parameter for SNO3 for XPAO), KA,PAO
(half saturation parameter for XA for XPAO), KNH4,PAO (half saturation parameter for SNH4 for
XPAO), KP,PAO (half saturation parameter for SPO4 as nutrient), KALK,PAO (half saturation
parameter for SALK for XPAO), μAUT (maximum growth rate of XAUT), bAUT (decay rate for
XAUT), KO,AUT (half saturation parameter for SO2 for XAUT), KNH4,AUT (half saturation
parameter for SNH4 for XAUT), KALK,AUT (half saturation parameter for SALK for XAUT), KP,AUT
(half saturation parameter for SPO4 for XAUT), kH,BAP (hydrolysis rate coefficient for SBAP)
and kH,UAP (hydrolysis rate coefficient for SUAP)). Kinetic rates of analysed model are given
in Table 1.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
73
Table 1. Kinetic process rates for the analysed model
Aerobic hydrolysis of BAP:
HBAP
OHYDO
OBAPH XS
SK
SK
2,2
2,
Anoxic hydrolysis of BAP:
HBAP
NOHYDNO
NO
OHYDO
HYDO
HYDNOBAPH XSSK
S
SK
KK
3,3
3
2,2
,2
,3,
Anaerobic hydrolysis of BAP:
HBAP
NOHYDNO
HYDNO
OHYDO
HYDO
FeBAPH XSSK
K
SK
KK
3,3
,3
2,2
,2
,
Aerobic hydrolysis of UAP:
HUAP
NOHYDNO
NO
OHYDO
HYDO
HYDNOUAPH XSSK
S
SK
KK
3,3
3
2,2
,2
,3,
Anoxic hydrolysis of UAP:
HUAP
NOHYDNO
NO
OHYDO
HYDO
HYDNOUAPH XSSK
S
SK
KK
3,3
3
2,2
,2
,3,
Anaerobic hydrolysis of UAP:
HUAP
NOHYDNO
HYDNO
OHYDO
HYDO
FeUAPH XSSK
K
SK
KK
3,3
,3
2,2
,2
,
Aerobic hydrolysis:
H
HSX
HS
OHYDO
OH X
XXK
XX
SK
SK
/
/
2,2
2
Anoxic hydrolysis:
H
HSX
HS
NOHYDNO
NO
OHYDO
HYDO
HYDNOH XXXK
XX
SK
S
SK
KK
/
/
3,3
3
2,2
,2
,3
Anaerobic hydrolysis:
H
HSX
HS
NOHYDNO
HYDNO
OHYDO
HYDO
FeH XXXK
XX
SK
K
SK
KK
/
/
3,3
,3
2,2
,2
Aerobic growth on SF:
H
ALKHALK
ALK
POHP
PO
NHHNH
NH
AF
F
FF
F
OHO
HO
H
XSK
S
SK
S
SK
S
SS
S
SK
S
SK
K
,
4,
4
4,4
4
2,2
,2
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
74
Table 1. (Continued)
Aerobic growth on SA:
H
ALKHALK
ALK
POHP
PO
NHHNH
NH
AF
A
AHA
A
OHO
OH
XSK
S
SK
S
SK
S
SS
S
SK
S
SK
S
,4,
4
4,4
4
,2,2
2
Anoxic growth on SF:
H
ALKHALK
ALK
POHP
PO
NHHNH
NH
AF
F
FF
F
NOHNO
NO
OHO
HO
HNOH
XSK
S
SK
S
SK
S
SS
S
SK
S
SK
S
SK
K
,4,
4
4,4
4
3,3
3
2,2
,2
,3
Anoxic growth on SA:
H
ALKHALK
ALK
POHP
PO
NHHNH
NH
AF
A
AHA
A
NOHNO
NO
OHO
HO
HNOH
XSK
S
SK
S
SK
S
SS
S
SK
S
SK
S
SK
K
,4,
4
4,4
4
,3,3
3
2,2
,2
,3
Fermentation:
H
ALKHALK
ALK
FFe
F
NOHNO
HNO
OHO
HO
Fe XSK
S
SK
S
SK
K
SK
Kq
,3,3
,3
2,2
,2
Lysis of XH: HH Xb
Storage of XPHA:
PAO
PAOPPPP
PAOPP
ALKPAOALK
ALK
APAOA
APHA X
XXK
XX
SK
S
SK
Sq
/
/
,,
Aerobic storage of XPP:
PAO
PAOPPIPP
PAOPP
PAOPHAPHA
PAOPHA
ALKPAOALK
ALK
POPS
PO
OPAOO
OPP
XXXKK
XXK
XXK
XX
SK
S
SK
S
SK
Sq
/
/
/
/
max
max
,4
4
2,2
2
Anoxic storage of XPP:
4
4
2,2
,2
3,3
3
max
max
,
,3/
/
/
/
POPS
PO
OPAOO
PAOO
NOPAONO
NOPAO
PAOPPIPP
PAOPP
PAOPHAPHA
PAOPHA
ALKPAOALK
ALKPAONOPP
SK
S
SK
K
SK
SX
XXKK
XXK
XXK
XX
SK
Sq
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
75
Table 1. (Continued)
Aerobic growth of XPAO:
PAO
PAOPHAPHA
PAOPHA
ALKPAOALK
ALK
POPAOPS
PO
NHPAONH
NH
OPAOO
OPAO
XXXK
XX
SK
S
SK
S
SK
S
SK
S
/
/
,
4,
4
4,4
4
2,2
2
Anoxic growth of XPAO:
PAO
PAOPHAPHA
PAOPHA
ALKPAOALK
ALK
POPAOPS
PO
NHPAONH
NH
NOPAONO
NO
OPAOO
PAOO
PAONOPAO
XXXK
XX
SK
S
SK
S
SK
S
SK
S
SK
K
/
/
,4,
4
4,4
4
3,3
3
2,2
,2
,3
Lysis of XPAO: PAO
ALKPAOALK
ALKPAO X
SK
Sb
,
Lysis of XPP: PAO
PAO
PP
ALKPAOALK
ALKPP X
X
X
SK
Sb
,
Lysis of XPHA: PAO
PAO
PHA
ALKPAOALK
ALKPHA X
X
X
SK
Sb
,
Aerobic growth of XAUT:
PAO
ALKAUTALK
ALK
POAUTPS
PO
NHAUTNH
NH
OAUTO
OAUT X
SK
S
SK
S
SK
S
SK
S
,4,
4
4,4
4
2,2
2
Lysis of XAUT: AUTAUT Xb
Hydrolysis of XI: II XK
Local sensitivity analysis
One-to-one local sensitivity analysis of the kinetic parameters on the output signal was applied.
Local sensitivity analysis addresses small variations around a nominal operating condition.
Output signal was considered to be the steady state concentrations of the model metabolites.
The relative local parameter sensitivity coefficients were calculated using Eq.1 (Ingals, 2013):
100∂ j
j
k
c
c
kS (1)
where S represents local sensitivity coefficient, c metabolite concentration and k kinetic
parameter.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
76
The relative local sensitivity coefficients were evaluated by the model simulation until a
steady state is reached and using of the finite difference approximation with 1%, 3%
parameter increase and 1%, 3% parameter decrease.
Simulation of the process dynamics and local sensitivity analysis are performed in
Wolfram Research Mathematica v. 10.0 software.
Results and discussion
The aim of this work was to identify and analyse the most important kinetic parameters of
the mathematical model of membrane bioreactor according to hybrid ASM2d-SMP model.
The local sensitivity coefficients were evaluated by the model simulation until the steady
state is reached and using of the finite difference approximation with 1%, 3% parameter
increase (Fig. 1) and 1%, 3% parameter decrease (Fig. 2).
Sensitivities of the steady state model metabolites are depicted in the form of heat map
where columns present model metabolites and rows present kinetic parameters listed as
given in section materials and methods. Negative values of the sensitivities are presented
with the scale of red colour (lighter colour less effect, darker colour more effect), while
positive values of the sensitivities are presented with the scale of the green colour
(lighter colour less effect, darker colour more effect). Positive relative sensitivity
coefficients of 100% correspond to linearly proportional effect of a parameter on the
output signal, while -100% correspond to the inverse proportionality of the parameter on
the output signal. Small values of sensitivity coefficients indicate insensitivity of the
output signal on the parameter, while values above ± 100% correspond to the
exponential dependencies.
By analysing obtained results it can be noticed that both kinetic parameter values increase
and decrease effect the model metabolites in the steady state concentration. It can be
observed that kinetic parameter values increase have stronger effect; numerically larger
values of sensitivity coefficients are obtained. Interestingly, kinetic parameter values
increase or decrease can have opposite effect on model metabolite concentrations. In case
of dissolved oxygen concentration (first column in heat map) 1% increase (Fig. 1a) of half
saturation parameter for XS/XH (KX) has significant negative effect on analysed metabolite
concentration, while 1% decrease (Fig. 2a) of half saturation parameter for XS/XH has
positive effect. Analysed parameter is included into kinetic expressions describing aerobic,
anaerobic and anoxic hydrolysis. Lower value of KX indicates slower oxygen consumption
or positively effect of dissolved oxygen concentration.
By comparing the obtained results (Fig. 1-2) it can be seen that two model components are
sensitive to variations of all 44 kinetic parameters; dissolved oxygen (column one) and
nitrate nitrogen (column seven).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
77
(a)
(b)
Fig. 1. Local sensitivities of the model variables on (a) 1% and (b) 3% parameter values increase.
Columns present SO2, SF, SA, SBAP, SUAP, SNH4, SNO3, SPO4, SI, SALK, SN2, XI, XS, XH, XPAO,
XPP, XPHA, XAUT and XTSS. Rows present KX, KNO3,H, ηNO3,H, KI, kH, ηFe, KO,HYD,
KNO3,HYD, μH, qFe, ηNO3,H, bH, KF, KFe, KA, KNH4,H, KP,H, KALK,H, qPHA, qPP,
μPAO, ηNO3,PAO, bPAO, bPP, bPHA, KPS, KPP, KMAX, KIPP, KPHA, KO,PAO,
KNO3,PAO, KA,PAO, KNH4,PAO, KP,PAO, KALK,PAO, μAUT, bAUT, KO,AUT,
KNH4,AUT, KALK,AUT, KP,AUT, kH,BAP and kH,UAP.
-877.14 -0.07 0.03 0.00 -0.03 0.00 1.08 0.00 -1.35 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 0.00 0.00 0.05
-1664.99 0.00 0.00 0.00 0.00 0.00 98.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05
1150.95 0.00 0.00 0.00 0.00 0.00 -97.74 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
-780.45 1.67 0.00 0.00 0.00 0.00 1.36 0.67 31.06 49.06 0.00 -4.95 0.00 0.03 0.01 0.00 0.00 0.00 0.00
-713.85 2.94 -0.36 0.00 0.03 0.06 -7.14 -0.06 50.88 0.00 0.00 0.00 0.00 0.38 0.05 0.11 -0.05 0.03 -0.76
-646.43 0.00 0.00 0.00 0.00 0.00 -2.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
-1456.64 0.00 0.00 0.00 0.00 0.00 87.80 -0.03 0.02 0.00 0.00 0.00 0.00 0.03 0.17 0.30 -0.05 0.11 0.00
2102.85 0.00 0.00 0.00 0.00 0.00 7.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
-293.03 -3.20 0.53 0.00 0.61 0.00 -120.88 0.31 -55.87 0.00 -0.46 0.00 0.00 -0.57 -2.01 -3.98 0.58 -1.61 0.82
-865.79 0.00 0.03 0.00 0.00 0.00 1.16 0.00 0.00 0.00 0.00 13.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00
-1264.74 0.00 0.00 0.00 0.00 0.00 -5.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.43 0.00 0.00 0.00 0.00
-2934.19 0.03 0.00 0.63 252.16 1.29 -9.01 1.75 0.63 0.22 0.00 2.49 0.00 -19.86 0.02 0.00 0.00 0.01 -0.49
1090.20 0.59 1.49 0.00 -0.26 0.32 3.06 0.17 -2.73 0.08 0.00 -0.04 0.00 -1.43 -4.54 -0.35 0.10 -0.06 -0.16
-5.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.43 0.00 0.00 0.00 0.00
1176.38 -0.61 -2.42 0.00 0.32 -0.52 3.71 -0.31 10.29 -0.16 0.07 0.04 0.00 2.41 -0.22 0.96 -0.24 0.28 0.22
978.84 0.02 0.00 0.00 -0.03 0.00 -1.36 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
683.21 0.02 0.00 0.00 -0.03 0.00 -0.17 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
-1305.66 0.07 0.00 20.95 -0.03 0.00 4.25 0.00 9126.90 0.00 0.00 -4088.46 0.00 0.03 0.05 0.07 -0.05 0.03 0.00
-4054.71 0.00 -0.40 0.00 0.00 0.00 -3.99 1.36 0.04 -0.02 0.00 0.00 0.00 0.03 0.01 -31.47 57.22 0.00 0.11
3174.39 0.00 0.03 0.00 -0.03 0.00 -2.69 -0.08 -0.04 0.00 0.40 0.00 0.00 0.00 0.01 5.77 -0.24 0.00 0.00
-4277.29 0.00 0.03 0.00 -0.03 0.00 -624.26 0.03 -0.04 0.00 0.00 0.00 0.00 0.00 2.00 -1.92 -0.34 0.00 0.00
-3905.33 0.00 0.00 0.00 0.00 0.00 -613.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
619.59 0.00 0.03 0.00 0.00 0.00 31.24 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 -9.79 4.92 -2.77 0.00 0.00
-468.48 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -14.73 -30.68 0.00 0.00
990.55 0.00 0.07 0.00 0.00 0.00 -1.42 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.01 -0.02 -7.00 0.00 0.00
971.04 0.00 0.00 0.00 0.00 0.00 -1.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.33 0.00 0.00 0.00
-459.75 0.00 0.03 0.00 0.00 0.00 -0.11 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.39 -0.78 0.00 0.00
952.19 0.00 0.00 0.00 0.00 0.00 -1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.00 0.00 0.00
952.19 0.00 0.00 0.00 0.00 0.00 -1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.00 0.00 0.00
-12.91 0.00 0.00 0.00 0.00 0.00 4.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.04 0.00 0.00 0.00
2067.65 0.00 0.00 0.00 0.00 0.00 -1.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.15 -0.33 0.05 0.00 0.00
2964.58 0.00 0.00 0.00 0.00 0.00 644.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
2889.53 0.00 0.07 0.00 0.00 0.00 -2.72 -0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.01 11.88 -6.66 0.00 0.00
17.93 0.00 0.07 0.00 0.00 0.00 2.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -9245.91
16.72 0.00 0.07 0.00 0.00 0.00 1.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
179.53 0.00 0.07 0.00 0.00 0.00 12.21 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.17 2.13 -0.92 0.00 0.00
-1360.42 0.00 0.07 0.00 0.00 -0.06 92.02 -0.19 0.16 -0.02 0.07 0.00 0.00 0.06 0.02 0.00 0.00 1.59 0.00
28.61 -8453.84 0.00 0.00 0.00 0.00 -0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
3450.61 0.00 0.03 0.00 0.00 0.00 -86.81 0.03 -0.02 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 0.00 -0.22 0.00
-1331.81 0.00 0.03 0.00 0.00 0.00 -4.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 0.00 -0.10 0.00
1432.92 0.00 0.03 0.00 0.00 0.00 -10.65 0.03 -0.02 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 -33.59 -0.15 0.00
-1323.61 0.00 0.03 0.00 0.00 0.00 1.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 -33.59 -0.15 0.00
-2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 -33.59 -0.15 0.00
-8948.29 0.32 -0.03 0.00 -0.71 0.00 -1353.04 0.00 5.42 -0.02 0.00 0.00 0.00 0.06 0.02 0.00 0.00 0.00 0.00
3.06 -0.08 0.01 0.00 -1.83 0.00 0.11 0.00 -1.35 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 0.02
6.90 0.00 0.00 0.00 0.00 0.00 140.18 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1793.04 0.00 0.00 0.00 0.00 0.00 -96.23 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
469.87 1.67 0.00 0.00 0.00 0.00 -0.07 0.67 43.93 -0.01 0.00 -4.93 0.00 0.02 0.01 0.00 0.00 0.00 0.00
-1346.96 2.94 -0.36 0.00 0.05 0.09 -5.49 -0.05 50.90 0.01 0.02 0.00 0.00 0.40 0.04 0.12 -0.03 -1826.21 -0.80
-617.72 0.00 0.00 0.00 0.00 0.00 -2.63 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-52.69 0.00 0.00 0.00 0.00 0.00 85.64 -0.02 0.02 -0.01 0.04 17.98 0.00 0.01 0.17 0.32 -0.05 0.11 0.00
2325.95 0.00 0.00 0.00 0.00 0.00 7.15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9567.75 -3.13 0.50 0.00 0.60 -0.02 -116.44 0.31 -54.75 0.00 -0.44 0.00 0.00 -1.03 -1.98 -3.90 0.58 -1.58 0.76
324.30 0.00 0.01 0.00 0.00 0.00 -0.53 0.00 -1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-1143.67 0.00 0.00 0.00 0.00 0.00 -5.35 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-7220.62 0.02 0.00 0.60 0.00 1.29 30.89 1.75 0.61 0.22 0.00 2.48 0.00 -19.84 0.01 0.01 0.00 0.01 -0.51
205.20 0.58 1.47 0.00 -0.25 0.30 4.15 0.17 -2.72 0.09 -0.02 -0.04 0.00 -1.44 -0.08 -0.33 22.35 -59.02 -0.16
-6.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -59.02 -0.16
56.72 -0.61 -2.00 0.02 0.32 -0.49 5.90 -0.31 10.31 -0.15 0.09 4.89 0.00 2.42 0.17 3554.20 -2588.49 0.27 0.22
-316.44 0.01 0.00 0.00 -0.01 -0.49 0.71 -0.02 0.18 0.00 0.00 0.00 0.00 1.90 0.01 0.01 0.00 0.00 0.00
231.55 0.01 0.00 0.00 -0.01 0.00 -0.12 0.00 0.16 0.00 0.00 0.00 0.00 1.90 0.01 0.01 0.00 0.00 0.00
-401.88 0.07 0.00 0.00 -0.02 0.00 2.79 -0.01 1.11 0.00 0.02 0.00 0.00 0.01 0.04 259.29 -0.02 0.03 -0.02
-7318.30 0.00 -0.40 0.00 0.00 0.00 37.29 1.37 0.04 -0.08 0.00 0.00 0.00 0.01 0.01 -102.44 57.22 0.03 0.07
716.77 0.01 -11.01 0.00 -0.01 0.00 -0.86 -0.08 -0.05 0.00 0.40 0.00 0.00 -0.01 0.00 5.77 -2411.77 0.00 0.00
-6181.86 0.01 0.02 0.00 -0.01 0.00 -543.24 0.03 -0.05 0.00 0.00 0.00 0.00 -0.01 1.99 -1.92 -1.64 0.00 0.00
-6682.30 0.00 0.00 0.00 0.00 0.00 -533.15 0.00 -0.01 0.00 0.00 0.00 0.00 1.90 0.01 0.01 0.00 0.00 0.00
641.11 0.00 0.02 0.00 0.00 0.00 31.33 -0.06 0.00 0.00 0.00 0.00 0.00 1.90 -9.78 4.93 -2.75 0.00 0.00
-455.14 0.00 0.01 0.00 0.00 0.00 -0.17 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 -14.71 -0.05 0.00 0.00
362.78 0.13 0.06 0.00 0.00 0.58 -0.39 0.00 0.00 -0.49 0.00 0.00 0.00 0.00 0.00 -0.01 -6.98 0.00 0.00
323.77 0.00 0.00 0.00 0.00 0.00 -0.54 0.00 0.01 0.00 -0.02 0.00 0.00 0.00 0.00 -0.31 0.02 0.00 0.00
-227.46 0.00 0.01 0.00 0.00 0.00 -0.68 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39 -0.78 0.00 0.00
330.40 0.00 0.01 0.00 0.00 0.00 -0.53 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00
341.45 0.00 0.01 0.00 0.00 0.00 -0.54 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00
-16.93 0.00 0.00 0.00 0.00 0.00 4.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.04 0.00 0.00 0.00
236.07 0.00 0.00 0.00 0.00 0.00 0.50 0.01 0.01 0.00 -0.02 0.00 0.00 -3172.12 -0.16 -0.32 0.05 0.00 0.00
6879.57 0.00 0.00 0.00 0.00 0.00 667.10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00
1187.57 0.00 0.06 0.00 0.00 0.00 -0.41 -0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.86 -6.63 0.00 0.00
17.93 0.00 0.00 0.00 0.00 0.00 2.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15.60 0.00 0.00 0.00 0.00 0.00 1.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
181.30 0.00 0.01 0.00 0.00 0.00 12.24 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.16 2.15 -0.92 0.00 0.00
-7029.70 -0.01 -0.09 0.00 0.01 -0.04 133.73 -0.20 0.15 -0.01 0.07 0.00 0.00 0.00 0.01 2.15 0.00 1.59 0.02
27.31 0.00 0.01 0.00 0.00 0.00 -0.35 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 2.18 0.00 -7.49 0.00
1370.76 0.01 0.02 0.00 -0.01 0.00 -83.16 0.03 -0.03 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 -0.22 0.00
686.80 0.00 -0.06 0.00 -0.01 0.00 -6.55 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.10 0.00
522.28 0.00 0.01 0.00 -0.01 0.00 -9.96 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.14 0.00
346.96 0.00 0.01 0.00 0.00 0.00 -0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-496.29 0.32 -0.03 0.00 -0.70 0.00 -0.10 -0.01 5.42 -0.01 0.00 0.00 0.00 0.04 0.01 0.01 0.00 0.00 0.02
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
78
(a)
(b)
Fig. 2. Local sensitivities of the model variables on (a) 1% and (b) 3% parameter values decrease.
Columns present SO2, SF, SA, SBAP, SUAP, SNH4, SNO3, SPO4, SI, SALK, SN2, XI, XS, XH,
XPAO, XPP, XPHA, XAUT and XTSS. Rows present KX, KNO3,H, ηNO3,H, KI, kH, ηFe,
KO,HYD, KNO3,HYD, μH, qFe, ηNO3,H, bH, KF, KFe, KA, KNH4,H, KP,H, KALK,H, qPHA, qPP,
μPAO, ηNO3,PAO, bPAO, bPP, bPHA, KPS, KPP, KMAX, KIPP, KPHA, KO,PAO,
KNO3,PAO, KA,PAO, KNH4,PAO, KP,PAO, KALK,PAO, μAUT, bAUT,
KO,AUT, KNH4,AUT, KALK,AUT, KP,AUT, kH,BAP and kH,UAP.
25.30 0.00 0.00 0.00 0.00 0.00 -0.04 0.00 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
32.13 0.01 0.00 0.00 0.00 0.00 -0.99 0.00 0.00 -0.01 0.00 0.13 0.00 0.00 -2.15 29.23 0.00 0.00 0.00
-8.56 0.01 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7.90 -0.02 0.00 0.00 0.00 0.00 -0.02 -0.01 -0.43 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22.13 -0.03 0.00 0.00 0.00 0.00 0.04 0.00 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
6.64 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7.49 0.00 0.00 0.00 0.00 0.00 -0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-24.73 0.00 0.00 0.00 0.00 0.00 -0.08 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12.82 0.02 0.00 0.00 -0.01 0.00 1.20 0.00 0.56 0.00 0.00 -40.48 0.00 0.01 0.02 0.04 -0.01 0.02 -0.01
-1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13.59 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
37.32 0.00 0.00 -0.01 0.00 -0.01 0.10 -0.02 -0.01 0.00 0.00 -0.02 0.00 0.20 0.00 0.00 0.00 0.00 0.01
4.14 -0.01 -0.01 0.00 0.00 0.00 -0.05 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-2.46 0.01 0.02 0.00 -0.02 0.01 -0.06 0.00 -0.10 0.00 0.00 0.00 0.00 -0.02 -0.01 -0.01 0.00 0.00 0.00
-13.12 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6.93 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.95 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
72.27 0.00 0.00 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -0.56 0.00 0.00
8.28 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00 0.00
77.28 0.00 0.00 0.00 0.00 0.00 6.47 0.00 0.00 -89.10 0.00 0.00 0.00 0.00 -0.02 0.02 0.00 0.00 0.00
29.29 0.00 0.00 -0.02 0.00 0.00 6.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.00
-5.84 0.00 0.00 0.00 0.00 0.00 -0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.05 0.03 0.00 0.00
4.75 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 891.09 0.14 0.00 0.00 0.00
9.41 0.00 0.00 -0.02 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
9.84 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 0.00 0.00
-1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9.60 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.11 0.00 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20.54 0.00 0.00 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-38.61 0.00 0.00 0.00 0.00 0.00 -6.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.61 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.12 0.07 0.00 0.00
-0.17 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.15 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-1.73 0.00 0.00 0.00 0.00 0.00 -0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.01 0.00 0.00
38.56 0.00 0.00 0.00 0.00 0.00 -0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00
-0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00
-28.44 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
284.90 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-14.52 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7.45 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.01 94.85 36.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-10.96 0.00 0.00 0.00 0.01 0.00 0.03 0.00 -0.05 0.00 0.00 -80.96 0.00 0.00 -32.12 0.00 -89.11 0.00 0.00
-13.91 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.00 873.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110.24 0.00 0.00 1.52 0.00 0.00 -2.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -53.20 0.00
-199.13 0.00 0.00 0.00 0.00 0.00 4.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8.56 -0.05 0.00 0.00 0.00 0.00 -0.03 -0.02 -1.24 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
452.64 -0.08 0.01 0.00 0.00 0.00 0.20 0.00 -1.44 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.02
19.99 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
346.39 0.00 0.00 1.52 0.00 0.00 -2.39 0.00 0.00 0.00 0.00 0.00 0.00 -92.39 0.00 -0.01 0.00 0.00 0.00
-46.49 0.00 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27.60 0.09 -0.01 0.00 -0.02 0.00 3.57 -0.01 1.65 0.00 0.01 0.00 0.00 0.02 0.06 0.12 -0.02 0.05 -0.02
9.48 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 -10.30 0.00
42.56 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
95.82 0.00 0.00 -0.02 0.00 -0.04 0.29 -0.05 -0.02 -0.01 0.00 -0.07 0.00 0.56 0.00 0.00 0.00 0.00 0.01
-3.96 -0.02 -0.04 0.00 -87.44 -0.01 -0.12 0.00 0.08 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00 -10.30 0.01
0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.04 0.02 0.07 0.00 -0.01 0.01 -0.17 0.01 -0.29 0.00 0.00 0.00 0.00 -0.07 -0.01 -0.03 0.01 -0.01 -0.01
-17.62 0.00 0.00 0.00 0.00 0.00 2.51 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00
-19.81 0.00 0.00 0.00 0.00 0.00 2.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 2.42 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.61 0.00 0.00
1.95 0.00 0.01 0.00 0.00 0.00 2.60 -0.04 0.15 0.00 0.00 0.00 0.00 0.00 0.00 2.91 -1.62 0.00 0.00
-18.52 0.00 0.00 0.00 0.00 0.00 2.52 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 -0.15 0.00 0.00 0.00
200.56 0.00 0.00 -0.15 0.00 0.00 22.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.06 0.01 0.00 0.00
117.93 0.00 0.00 0.00 0.00 0.00 22.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
-33.48 0.00 0.00 0.00 0.00 0.00 10.25 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.28 -0.13 0.08 0.00 0.00
13.35 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00
-1.93 0.00 0.00 0.00 0.00 0.00 2.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.20 0.00 0.00
-1.09 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
15.09 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.02 0.00 0.00
-1.47 0.00 0.00 0.00 0.00 0.00 2.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
9.43 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.01 0.00
8.03 0.00 0.00 0.00 0.00 0.00 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17.57 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
-194.29 0.00 0.00 0.00 0.00 0.00 -15.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-22.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 4.15 0.19 0.00 0.00
-96.99 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.44 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-4.94 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.92 0.03 0.00 0.00
-0.98 0.00 0.00 1.52 0.00 0.00 -2.66 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -0.05 0.00
-0.80 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00
430.47 0.00 0.00 0.00 0.00 0.00 2.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
-12.31 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.27 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6.54 0.00 0.00 0.00 -2.75 0.00 -0.01 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-5.11 -0.01 0.00 0.00 0.02 0.00 0.03 0.00 -0.15 0.00 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
79
Results indicate dissolved oxygen to be the most sensitive metabolite in ASM2d-SMP
model and that lower kinetic value perturbations have stronger effect. This result is
expected because the amount of available dissolved oxygen determinates the most
dominant metabolic process. In case of significant amount of available oxygen, aerobic
hydrolysis and growth process are dominant while in the case of dissolved oxygen
limitation anaerobic, anoxic and fermentation processes take place.
In case of 1% kinetic parameter value increase (Fig. 1), the strongest positive effect on
dissolved oxygen concentration has KO,AUT followed by KNO3,PAO and KA,PAO while the
strongest negative effect has kH,UAP followed by μPAO and ηNO3,PAO. In case of 3% kinetic
parameter value increase, the most important parameters with positive effect on dissolved
oxygen concentration increase are μH, KNO3,PAO and KNO3,HYD and qPHA, bH and μAUT with
negative effect.
By decreasing the kinetic parameter values for 1% (Fig. 2), the strongest positive effect on
dissolved oxygen concentration has KNH4,AUT followed by μPAO and qPHA while the
strongest negative effect has KNO3,PAO followed by KO,AUT and KNO3,HYD. Local sensitivity
coefficients indicate that in case of 3 % kinetic parameter value decrease the most
important parameters with positive effect on dissolved oxygen concentration increase are
KH, KO,AUT and KO,HYD while ηNO3,H, KNO3,PAO and KNH4,PAO showed to have the strongest
negative effect.
Conclusions
An integrated mathematical MBR model with provisions of switching functions between
variables could help to skip less influential model parameters under certain operating
conditions and thus accelerate model simulation and calibration. By simulating described
mathematical model with one and three percent parameter values increase/decrease, the
key regulation points of the model are detected. Results show that dissolved oxygen
concentration is the most sensitive model metabolite affected by both positive and negative
kinetic parameter value perturbations.
Obtained results can be useful in process control and planning of the future experiments
and also as a starting point for possible model reduction.
References Cho, J., Song, K.-G., Ahn, K.-H. (2005): The activated sludge and microbial substances influences
on membrane fouling in submerged membrane bioreactor: unstirred batch cell test,
Desalination 183, 425-429.
Cosenza, A., Manina, G., Neumann, M.B., Viviani, G., Vanrolleghem, P. A. (2013): Biological
nitrogen and phosphorus removal in membrane bioreactor: model development and parameter
estimation, Bioprocess Biosyst. Eng. 36, 499-514.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
80
Cosenza, A., Mannina, G., Vanrolleghem, P.A., Neumann, M.B. (2014): Variance-based sensitivity
analysis for wastewater treatment plant modelling, Sci. Total Environ. 470-471, 1068-1077.
Drews, A., (2010): Membrane fouling in membrane bioreactors - characterization, contradiction,
causes and cures, J. Membr. Sci. 363, 1-8.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.V.R., Van Loosdrecht,
M.C.M. (1999): Activated sludge model No. 2d, ASM2d, Water Sci. Technol. 39 (1), 165-182.
Ingalls, B.P. (2013): Mathematical modelling in system biology. The MIT Press, Massachusetts. pp.
115-118.
Jiang, T., Myngheer, S., De Pauw, D. J. W., Spanjers, H., Nopens, I., Kennedy, M. D., Amy, G.,
Vanrollenghem, P. A. (2008): Modelling the production and degradation of soluble microbial
product (SMP) in membrane bioreactors (MBR), Wat. Res. 42, 4955-4964.
Lu, S.G., Imai, T., Ukita, M., Sekine, M., Higuchi, T., Fukagawa, M. (2001): A model for
membrane bioreactor process based on the concept of formation and degradation of soluble
microbial products, Water Res. 35 (8), 2038-2048.
Mannina, G., di Bella, G., Viviani, G. (2011): An integrated model for biological and physical
process simulation in membrane bioreactors, J. Membr. Sci. 376, 56-69.
Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F. (2005): Sensitivity analysis for chemical
models, Chem. Rev. 105, 2811-2827.
Wolfram Research “Mathematica” v.8.0, 2012.
Zarragoitia, A.-G., Schetrite, S., Alliet, M., Jauregui, U.-H., Albasi, C. (2008): Modelling of
submerged membrane bioreactor: conceptual study about link between activated sludge
biokinetics, aeration and fouling process, J. Membr. Sci. 325, 612-624.
Zuthi, M.F.R., Ngo, H.H., Guo, W.S. (2012): Modelling bioprocesses and membrane fouling in
membrane bioreactor (MBR): a review towards finding an integrated model framework,
Bioresour. Technol. 122 (12), 119-129.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
81
Effect of surface roughness on flow profile of liquid-liquid system
in a microreactor
UDC: 66.023
Ana Jurinjak Tušek1
, Anita Šalić2, Želimir Kurtanjek
1, Bruno Zelić
2
1University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000
Zagreb, Croatia 2University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19,
HR-10000 Zagreb, Croatia
Summary
A thorough knowledge of hydrodynamic conditions of the liquid-liquid flow in a microreactor is
necessary for performing multiphase reactions. In this work the liquid-liquid flow profile in a
microreactor was investigated. Different organic solvents (dichloromethane, diethyl ether,
chloroform and toluene) as one phase and water as second phase were fed in a microreactor. Two
microreactors with internal volume of V = 4 mm3
and V = 6 mm3
with different microchannel
surface roughness were used to analyzed the effect of surface roughness on flow profile. The flow
profiles in the microchannel were monitored under the microscope. The analysis of specific
dimensionless numbers (Reynolds number, Capillary number and Weber number) was performed to
get the better insight in process dominant for specific flow profile formation.
Keywords: microreactors, surface roughness, flow profile, liquid-liquid slug flow
Introduction
Microreactors insure very large surface-to-volume ratio, effective mass and heat transfer
and easier process control comparing to classic reactors and are widely used for single- and
multi-phase reactions. They were primarily used for gas-liquid systems (Harries et al.,
2003) and lately they become interesting for liquid-liquid systems (Zhao et al., 2006).
When performing multiphase reactions it is necessary to ensure effective mixing and mass
transfer, because reaction rate is affected not only by reactant concentration but also by
mass transfer rate (Doku et al., 2005). To insure the optimal conditions for performing
multiphase reaction in a microreactor, hydrodynamic conditions must be optimized.
According to Dessimoz et al. (2008) flow pattern formation depends on linear velocity of
both phases, the ratio of the phases, the fluid properties, the channel geometry and the
construction material of the microreactor.
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
82
Additionally, controlled hydrodynamics in a microreactor allows the pressure drop
decrease, mass transfer improvement and enhances the product separation from reaction
mixture. Mostly used are gas-liquid and liquid-liquid systems. The common models of
interface in the case of liquid-liquid two-phase flow are “slug flow” and “parallel flow. In
the case of slug flow, two mechanisms are known to be responsible for the mass transfer
between two fluids: (a) convection due to internal circulations (Burns and Ramshaw, 2001;
Dummann et al., 2003; Kashid et al., 2005; Kashid et al., 2007; Kashid et al., 2010) within
each slug and (b) diffusion due to concentration gradients between the slugs (Dessimoz et
al., 2008). Convection depends on physical properties of fluids, slug geometry and flow
velocity while diffusion depends on the interfacial area available for mass transfer and
concentration gradients between two slugs. In the case of parallel flow pattern, the flow is
directed, highly symmetric and mostly laminar and the transfer of molecules between the
two phases is supposed to occur only by diffusion (Dessimoz et al., 2008). However,
microchannel reactors with high mass throughput for production operate in a transitional
region between laminar (Reynolds number, Re < 10) to turbulent flow (Re > 10000)
(Bolivar et al., 2011).
As mentioned, linear velocity of both phases, the ratio of the phases, the fluid properties,
the channel geometry and the construction material of the microreactor influence the flow
pattern formation. Usually, to describe all of these effects, flow pattern maps are
developed. Different dimensionless numbers like Capillary, Weber and Reynolds numbers
are being used to develop the maps (Dessimoz et al., 2008).
The objective of the present work is to determine the influence of the microchannel surface
roughness on liquid-liquid two-phase flow patterns in glass microreactors. In order to get
better insight in process dominant for specific flow profile formation the analysis of
specific dimensionless numbers (Reynolds number, Capillary number and Weber number)
was performed.
Materials and methods
Chemicals
Dichloromethane (CH2Cl2) and toluene (C7H8) were purchased from Kemika (Croatia).
Coomasie Brilliant Blue G 250 was from Fluka (Switzerland). Diethyl ether (C2H5OC2H5)
was from Chemapol (Czech Republic) and chloroform (CHCl3) from Carlo Erba (Italy).
Experimental set-up
All experiments were performed in a microreactor system (Fig. 1a; Micronit Microfluidics
B.V., Netherlands). Two microreactors, with different surface roughness, were used. The
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
83
first microchip with borosilicate tubular glass microchannels (length: width: height = 332
mm: 150 μm: 150 μm with internal volume of 6 mm3) was equipped with two “Y”-shaped
inlets and one outlet. Specific surface roughness of the microchannel of the first
microreactor was 10% (Fig. 1b). The second microreactor was made from same material
(length: width: height = 332 mm: 250 μm: 50 μm with internal volume of 4 mm3) and it
was also equipped with two “Y”-shaped inlets and one outlet. Specific surface roughness
of the second microreactor was 1% (Fig. 1c). Two syringe pumps (PHD 4400 Syringe
Pump Series, Harvard Apparatus, USA) equipped with high-pressure stainless steel
syringes (8 cm3, Harvard Apparatus, USA) were used for supply of liquids. Microreactor
chip was connected to pumps with fused silica connection (375 μm O.D., 150 μm I.D.,
Micronit Microfluidics B.V., Netherlands). Fluid flow in a microreactor was observed
using microscope (Motic B1-220A, binocular Weltzar, Germany) at magnifications of 40x
(eyepiece magnification = 10x; objective magnification = 4x).
Fig. 1. a) Experimental set-up; b) microchannel with rough walls;
c) microchannel with smooth walls
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
84
Characterization of the flow in a microreactor
Flow profiles for four different systems organic solvent (chloroform, dichloromethane,
diethyl ether and toluene) - water were analysed in a microreactor. The two phases were
separately fed into a microreactor. Aqueous phase was stained blue using Coomasie
Brilliant Blue G 250 dye while organic phase was kept colorless. All experiments were
performed at equal ratio of flow rates. Flow profiles were observed using microscope and
photos of flow profiles were taken for all investigated flow rates (in range of total flow rate
from q = 2 mm3 min
-1 to approximately q = 200 mm
3 min
-1; maximal investigated flow rate
varied depending on used organic solvent). The photos of the flow profiles were taken at
the middle of the microreactor microchannel after the flow stabilization (after four
residence times). For the segmented flow, photos of flow profiles were used for
determination of segments length for both organic and aqueous phase using software
package Paint (Microsoft Corporation, USA). Segments lengths were obtained by
measuring the distance between first and the last pixel.
All experiments were performed in triplicates and average values are presented. In the 95%
confidence range the results showed no significant difference.
Dimensionless numbers
The specific dimensionless numbers (Reynolds number, Capillary number and Weber
number) were calculated to get the better insight in process dominant for specific flow
profile formation according to Eq. 1-3 and using physical properties of analyzes organic
solvents (Table 1).
ρ u dRe=
μ (1)
2
ρ u dWe= (2)
dCa = (3)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
85
Table 1. Physical properties of analyzed solvents
Characteristics of the solvent at 20 °C
ρ (kg m-3) µ (Pa s) σ (N m-1)
dichloromethane 1324.00 0.00043 26.52
diethyl ether 713.40 0.00023 16.61
chloroform 1479.90 0.00054 26.67
toluene 862.30 0.00058 28.82
water 997.00 0.00089 71.99
Results and discussion
Introducing two immiscible liquids in a microreactor, the most usual two flow patterns that
can occur are parallel flow or slug (segmented) flow (Doku et al., 2005). Flow pattern
formation depends on linear velocity (Burns and Ramshaw, 2001) ratios of the phases,
fluid properties, the channel geometry (Kashid and Agar, 2007) and the microreactor
construction material; all this parameters have to be considered when controlling the flow
pattern. Liquid-liquid slug flow is characterized by a series of slugs of one phase separated
by slugs of other phase. Each slug served as an individual processing sub volume (Kashid
et al., 2007). In this work the effect of the microreactor microchannel surface roughness on
flow profiles was analyzed for four organic solvent-water systems (dichlormethane, diethyl
ether, chloroform and toluene) in two microreactors.
In experiments performed in a microreactor with microchannel surface roughness of 10%,
slug flow was obtained for all organic solvent-water systems and all investigated flow rates.
A photo of the slug flow profile for toluene-water system in a microreactor with
microchannel surface roughness of 10% is given in Fig. 2a. In experiments performed for
flow rates lower than q = 15 mm3 min
-1 and organic solvent:water flow ratio 1:1 organic
phase forms slugs longer then aqueous phase slugs while at higher values of flow rate both
phase segments have similar length. The mixing phenomenon between phases is also
obvious and due to that at flow rates higher that q = 200 mm3 min
-1 it was impossible to
distinguish two phases. Mass transfer in slug flow depends on convection within slugs and
diffusion between slugs. Convection depends on physical properties of fluids, slug geometry
and flow velocities, while diffusion is dependent upon interfacial area available for mass
transfer. As fluid segments move along the channel internal vortex flow patterns are
generated. These circulation patterns are a result of shearing motion within the low Reynolds
number flow combined with fluidic interfaces (Harries et al., 2003).
For toulene-water system in microreactor with microchannel surface roughness of 1%
stable parallel flow was developed for all investigated flow rates. At Fig. 2b the flow profile
for q = 20 mm3 min
-1 is given. Flow profile instabilities were developed at the microreactor inlet
but they disappear very fast and flow profile keeps stable along the microchannel.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
86
Fig. 2. Photography of the flow profile for toluene-water system in a microreactor
with microchannel surface roughness of (a) 10% and (b) 1%.
Organic phase is lighter while aqueous phase is darker.
To get better insight in processes dominant for the flow profile formation characteristics
dimensionless numbers (Reynolds, Capillary and Weber number) were calculated for all
investigated organic solvent-water systems and for two microreactors. The relationship
between Capillary and average Reynolds number for both reactors is given in Fig. 3.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
87
Fig. 3. Dependence of the Capillary number on average Reynolds number for microreactor
with microchannel surface roughness of (a) 10% and (b) 1%
Capillary number presents the ratio of the viscous forces and liquid-liquid surface tension.
The Capillary number was chosen because the viscous forces and the interfacial tension are
the dominating forces in microfluidic devices. As observed by Dessimoz et al., 2008 if the
flow of two immiscible fluids is dominated by the interfacial tension, slugs are formed. It
can be seen that there is linear dependence between analyzed dimensionless numbers for
both reactor. It was also observed that for analyzed flow rates, due to microchannel
Reaverage
0 5 10 15 20 25 30 35
Ca
0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
dichlormethane
diethyl ether
chloroform
toulene
(a)
Reaverage
0 1 2 3 4
Ca
0.00
0.01
0.02
0.03
0.04
0.05
0.06
dichlormethane
diethyl ether
chloroform
toulene
(b)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
88
dimensions, the maximum average Reynolds number is approximately nine fold higher for
microreactor with microchannel surface roughness of 10%. Opposite to that, larger values
of Capillary number were obtained for microreactor with microchannel surface roughness
of 1%. For both microreactors the maximum value of Capillary number was calculated for
diethyl ether-water system. This can be explained with the fact that diethyl ether has the lowest
surface tension among all analyzed organic solvents. On the other hand the dependence
between Weber and average Reynolds number can be described as exponential (Fig. 4).
Fig. 4. Dependence of the Weber number on average Reynolds number for microreactor
with microchannel surface roughness of (a) 10% and (b) 1%
Reaverage
0 5 10 15 20 25 30 35
We
0.00
0.01
0.02
0.03
0.04
0.05
0.06
dichlormethane
diethyl ether
chloroform
toulene
(a)
Reaverage
0 1 2 3 4
We
0.00
0.02
0.04
0.06
0.08
0.10
0.12
dichlormethane
diethyl ether
chloroform
toulene
(b)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
89
Larger values of Weber numbers were obtained in microreactor with microchannel surface
roughness of 1%. The same phenomena was noticed for Capillary numbers. Maximum
value of Weber number was calculated for toluene, solvent with the highest surface
tension.
Conclusions
The influence of the microchannel surface roughness on liquid-liquid two-phase flow
patterns development was investigated in two glass microreactors. In experiments
performed with microreactor with microchannel surface roughness of 10% slug flow was
obtained for all analyzed systems at all investigated flow rates. In case of microreactor with
microchannel surface roughness of 1% stable parallel flow was developed at all analyzed
flow rate for all investigated systems except for diethyl ether-water system where transition
between slug and parallel flow was observed. Larger values of both Capillary and Weber
numbers were obtained in microreactor with microchannel surface roughness of 1% while
maximum value of Weber number was calculated for toluene, solvent with the highest
surface tension.
References
Bolivar, J. M., Wiesbauer, J. Nidetzky, B. (2011): Biotransformations in microstructured reactors:
more than flowing with the stream? Trends Biotechnol. 29, 333-342.
Burns, J.R., Ramshaw, C. (2001): The intensification of rapid reactions in multiphase systems using
slug flow in capillaries. Lab. Chip. 1, 10-15.
Dessimoz, A.L., Cavin, L., Renken, A., Kiwi-Minsker, L. (2008): Liquid-liquid two phase flow
patterns and mass transfer characteristics in rectangular glass microreactors. Chem. Eng. Sci.
63, 4035-4044.
Doku, G.N., Verboom, W., Reinhoudt, D.N., van den Berg, A. (2005): On microchip multiphase
chemistry-a review on microreactor design principles and reagent contacting modes.
Tetrahedron 61, 2733-2742.
Dummann, G., Quittmann, U. Gröschel, L., Agar, D.W., Wörz, O., Morgenschweis, K. (2003): The
capillary microreactor: A new reactor concnept for the intensification of heat and mass transfer
in liquid-liquid reactions. Catal. Today 79, 433-439.
Harries, N., Burns, J.R., Barrow, D.A., Ramshaw, C. (2003): A numerical model for segmented
flow in microreactor. Int. J. Heat Mass Tran. 46 3313-3322.
Kashid, M.N., Gerlach, I., Goetz, S., Franzke, J., Acker, J.F., Platte, F., Agar, D.W., Turek, S.
(2005): Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary
microreactor. Ind. Eng. Chem. Res. 44, 5003-5010.
Kashid, M.N., Platte, F., Agar, D.W., Turek, S. (2007): Computational modelling of slug flow in a
capillary microreactor. J. Comput. Appl. Math. 203, 487-497.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
90
Kashid, M.N., Renken, A., Kiwi-Minsker, L. (2010): CFD modelling of liquid–liquid multiphase
microstructured reactor: Slug flow generation. Chem. Eng. Res. Des. 88 (2010) 362-368.
Kashid, M.N., Agar, D.W. (2007): Hydrodynamics of liquid-liquid slug flow capillary microreactor:
flow regimes, slug size and pressure drop. Chem. Eng. J. 131, 1-13.
Zhao, Y., Chen, G., Yuan Q. (2006): Liquid-liquid two-phase flow patterns in a rectangular
microchannel. AIChE J. 52, 4052-4060.
List of symbols
Ca Capillary number, -
d diameter of the channel, m
q flow rate, mm3 min
-1
Re Reynolds number, -
u linear or superficial velocity, m s-1
We Weber number, -
μ viscosity, Pa s
ρ density, kg m-3
σ surface tension, N m-1
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
91
Influence of the fluid flow patterns on borax nucleation mechanism and
nucleation rate in a single and dual turbine impeller crystallizer
UDC: 66.065.5 : 661.52
Antonija Kaćunić, Lea Lokas, Marija Ćosić, Nenad Kuzmanić
University of Split, Faculty of Chemistry and Technology, Department of Chemical Engineering,
Teslina 10/V, HR-21000 Split, Croatia
Summary
The aim of this work was to investigate the influence of fluid flow pattern in the batch cooling
crystallizer on the nucleation mechanism and nucleation rate of borax. The fluid flow patterns in the
crystallizer were generated by axial and radial turbine impellers and by their different dual
combinations. Impeller speed ensured the state of complete suspension in the system for all
configurations used. Crystallization was carried out by cooling of the mother liquor from the
saturation temperature of 30 °C by the rate of 6 °C h-1
. Metastable zone width was detected from the
changes of supersaturation values while mechanism and nucleation rate were determined according
to Mersmann´s nucleation criterion. In order to gain complete insight into the overall fluid flow in
the crystallizer the photographs of the flows were taken and simulations by VisiMix 2000 Turbulent
package were made. Power consumption over the process time for all impeller configuration used
were measured as well. Obtained results indicated that flow pattern developed by single as well as
by dual-impeller systems significantly influenced the borax nucleation mechanism and nucleation
rates. Different impeller configurations affect the values of just suspended impeller speed, the final
product properties and power consumption as well.
Keywords: crystallization of borax, mixing, nucleation, fluid flow pattern, single and dual impeller systems
Introduction
Borax decahydrate (Na2B407×10 H20) which presents the refined form of natural sodium
borate is one of the most important commercial boron compounds. It has found wide areas
of use in the production of borosilicate glasses, glass wool, ceramics, detergents, fire proof
materials etc. Since crystallization is an important step in the process of its production to
its refined form, in order to produce crystals of borax with a specified purity and crystal
size distribution at minimum cost, it is necessary to operate the crystallizer at the optimum
conditions (Ceyhan et al., 2007; Gurbuz et al., 2007).
Crystallization is carried out in a suspension and for this reason the study of crystallization
requires knowledge of mixing. Unfortunately, in many cases crystallizations are carried out
in stirred vessels without any optimization of the hydrodynamic conditions, even if,
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
92
sometimes, these mechanisms are the controlling steps for an efficient separation of the
crystals from the liquor and for a suitable morphology of the final product (Sha et
Palosaari, 2000). In the stirred crystallizer it is essential to avoid a stagnant region. Since
crystallization is a mass transfer depended process an agitation must promote dispersion
and prevent settling. For that reason it is very important to ensure an adequate mixing. The
major part of published papers concerning crystallization deals with single impeller
crystallizer. However, an addition of a second impeller extremely changes
hydrodynamic conditions within the reactor. In that case the flow pattern is a strong
function of impeller characteristics, such as type of the impeller, geometry of the
impeller, presence or absence of the baffles, geometry of the reactor and rheological
properties of the fluid (Paul et al., 2004).
The aim of this work was to gain the insight into influence of overall fluid flow pattern in a
single as well as in a dual impeller crystallizer on the nucleation mechanism and nucleation
rate of disodium tetraborate decahydrate (borax) in the process of batch cooling
crystallization.
Materials and methods
All experiments were performed in a laboratory-scale stirred batch cooling crystallizer
with a volume of 15 dm3 (Fig.1). The crystallizer was the cylindrical flat bottom vessel of
plexiglas with internal diameter of 0.24 m. The vessel was equipped with four baffles
placed at 90 º around the vessel periphery. The ratio of liquid height to tank diameter
(H/dT) was 1.3 what allowed an introduction of a second impeller on the same shaft in the
examined system. Impeller to tank diameter ratio (D/dT) was 0.33. In the single impeller
systems, the fluid flow was generated using a single axial pitched blade turbine (PBT) and
radial straight blade turbine (SBT) while in a dual impeller system three different impeller
configurations were used: PBT-PBT, SBT-SBT and PBT-SBT (the first acronym indicates
the type of the lower impeller).
In all experiments the impeller speed ensured the state of complete suspension of crystals
formed (N = NJS). The values of NJS were determined using a visual 0.9H method
according to Einenkel and Mersmann (1977). This method defines the NJS as the speed at
which the cloud of suspension reaches 0.9 of total liquid height. Measurements were
performed in mother liquor saturated at 30 °C in which 598 g of borax crystals (xp = 275 m)
was suspended. This mass was calculated from theoretical crystal yield, while their size
presents the largest granulometric class of borax obtained in preliminary experiments.
To determine the flow patterns in the mixing tank at different impeller combinations, the
streak photography based on the work of Ibrahim and Nienow (1995) was used. All
pictures were taken in the dark room. The halogen lamp of 1500 W was used as the source
of light to illuminate a vertical section of the tank. The light passed through two parallel
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
93
vertical slits with a width of about 5 mm. All other parts of the vessel were covered with a
black cardboard. Tracers used to aid flow visualization were crystals of borax decahydrate
with an average size of 275 m placed in a solution saturated at 30 °C. In addition, the
simulations of flow patterns for all applied configurations were carried out by VisiMix
2000 turbulent package.
Saturated borax solutions were prepared by dissolving technically pure borax in excess
regarding the solubility data in distilled water. Saturated solution was filtered through
diatomaceous earth. The solution saturated at 30 °C was cooled at a constant cooling rate
of 6 °C h-1
.
Temperature control of the crystallizer was accomplished by a programmable thermostatic
bath (Medingen TC 250) and an appropriate data acquisition system. During the process,
concentration changes of borax solution were monitored in line using the Na-ion selective
electrode (ISE).
After crystallization for a definite time, the crystals were filtered from the residual
solution, rinsed with acetone and then dried at room temperature. Obtained products were
sieved in order to determine the granulometric properties of the final products. During the
experiments the power consumption was determined as well, using torque meter produced
by Himmelstein & Co.
Fig. 1. Experimental set-up
(1. Crystallizer, 2. Impeller, 3. System for concentration measurement, 4. Thermostat,
5. Torquemeter, 6. Torque sensor and velocity transducer, 7. Variable speed motor,
8. Impeller speed regulation system, 9. Temperature measurement system,
10. Computer)
1
2
3
4
5
6
7
8
9
10
c
dT
s
D
H
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
94
Experimental results and discussion
Influence of impeller configuration on the just suspended impeller speed
The state of complete suspension exists when all particles are in motion and no particle
remains on the tank base for more than short period of time. For particles to be lifted from
the bottom of the vessel, the local hydrodynamics, e.g. velocities and turbulence levels
must be suitable in that region. Under these conditions, overall particle surface is present to
the fluid, thereby ensuring that maximum surface area is available for chemical reaction,
heat and mass transport. Minimum impeller speed that ensures the said state is called the
complete suspension impeller speed - NJS.
For applied impeller configurations, the values of just suspended speed of borax crystals
are presented in the Fig. 2.
Fig. 2. Values of just suspended impeller speed and Reynolds number
at different crystallizer configurations
In the single impeller systems NJS was higher when axial impeller type was used. Present
differences could be explained by the flow created by certain impeller.
Fig. 3. Simulations and photography of flow patterns obtained by:
a.) PBT, b.) SBT, c.) PBT-PBT, d.) SBT-SBT, e.) PBT-SBT
200
300
400
500
Re
m· 1
0-4
0
2
4
6
NJS /
min
-1
NJS
Re
PBT SBT PBT-PBT SBT-SBT PBT-SBT
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
95
Photo as well as simulation of the axial PBT impeller flow (Fig. 3a) show that fluid
discharged by PBT impeller is strongly driven downwards until it is deflected from the
bottom of the vessel, then it spreads out over the bottom and flows up along the wall
before being drawn back to the impeller. This way a strong circulation loop is produced in
the lower half of the tank while in the upper half of the tank circulation intensity is low. In
the same figure (Fig. 3a) presented flow pattern of the crystal suspension shows that
crystals were swept up from the crystallizer bottom by stronger circulation loop, but they
are not lifted up enough to reach the top of the liquid. As previously said, for suspension of
the crystals it was important to provide liquid velocities directed to the tank floor for an
effective sweeping action. PBT impeller performs well in this duty, but since just
suspended criterion applied required a lifting of the crystals to the 0.9 of the liquid height,
at lower impeller speed circulation did not occupy the whole stirred area in the crystallizer
and its influential area increased only with an increase of the impeller speed.
In the system with radial SBT impeller (Fig. 3b) liquid is discharged radially from the
impeller towards the wall of the tank where it divides into two streams, one flowing up to
the top of the tank and the other flowing down to the bottom. Although fluid stream is not
focused directly to the tank floor, lower loops lifted the crystals from the bottom while the
upper loop suspended them towards the liquid top. This is the main reason why the value
of NJS is lower in comparison with PBT impeller system.
An addition of the second impeller of the same type lowered the values of NJS in both
systems. In these kinds of reactors, the overall flow was a consequence of an interaction of
flows developed by each of the impellers. This phenomenon was much more emphasized
in the PBT-PBT dual system as will hereafter be described in detail.
Effect of different flow patterns on the supersaturation profile and nucleation rate
The fundamental thermodynamic driving force of crystallization is given by the change of
chemical potential between standing and equilibrium state (Jones, 2002). Since chemical
potential is a quantity that is not easy to measure, driving force is more conventionally
expressed in terms of concentration; that is supersaturation (Eq. 1). During batch cooling
crystallization, the level of supersaturation depends on the balance between the generation
rate and consumption rate of supersaturation. It is well known fact that the generation rate
of supersaturation is determined by the cooling rate and the solubility of salt, while the de-
supersaturation rate depends on the nucleation rate, growth rate, and the total surface area
of growing crystals in the suspension (Yang at al., 2006). One of the main aims of this
work was to investigate the influence of fluid flow patterns on the supersaturation changes
over process time. Supersaturation was expressed as an absolute supersaturation, c. It was
calculated from the measured concentration of mother liquor, c, and the equilibrium
concentration, c*, by the expression:
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
96
ccc (1)
Fig. 4 shows the supersaturation change during the batch cooling crystallization of borax
carried out at different fluid flow patterns generated by impeller configurations applied.
Fig. 4. Variation of supersaturation profile over process time (a.) and values
of maximal allowed supersaturation at different fluid flow patterns (b.)
It is evident that the supersaturation profile during the crystallization was similar for the all
hydrodynamic conditions examined. In the beginning of the process supersaturation
increases linearly then reaches a peak and decreases, first rapidly and than moderately.
Linear increment depends on salt solubility and cooling rate. In this concentration range
spontaneous nucleation is not likely to occur and nucleation starts when the maximal level
of supersaturation (cmax) is reached. At this value the nucleation occurs spontaneously
and cmax actually presents maximal allowable supersaturation i.e. metastable zone width
(MZW). From the Fig. 4 it is evident that the maximal value of supersaturation depends of
hydrodynamic conditions in the crystallizer. In the single impeller system MZW is
narrower when axial impeller was used. This result is consequences of higher level of
turbulence in this system i. e. higher value of the Reynolds number. These findings are in
accordance with a well known effect that an increased turbulence in the system can narrow
the MZW (Mullin, 2004).
On the other hand, in dual impeller systems deviation from the mentioned rule was present.
Namely, according to the value of Reynolds number the narrower MZW could be expected
in the PBT-SBT impeller system. However, the obtained result for this system is almost
equal to that obtained for PBT-PBT configuration at significantly lower value of Reynolds
c
max
/ m
ol d
m-3
SBT
PBT
PBT- PBT
SBT-SBT
PBT-SBT
0 40 80 120 1600.00
0.02
0.04
0.06
0.08
c /
mo
l d
m-3
t / minPBT
0.06
0.08
0.07
SBT-SBTPBT-PBT PBT-SBTSBT
a. b.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
97
number. The broadest metastable zone was noticed in the SBT dual impeller system. These
results are the consequence of the complexity of overall liquid flow pattern and could be
explained by a detailed analysis of an interaction of flows developed by each of the
impeller.
When the SBT-PBT combination was applied, three circulation zones were formed; one by
the PBT and two by the SBT (Fig. 3e). In this case the lower impeller stream is directed
towards the vessel bottom while the upper impeller is pumping horizontally. With this flow
pattern in the vessel roughly two-thirds of the bulk flow is mixed primarily by the upper
impeller. Once again three ring vortices are observable but the one under the lower
impeller is not well defined and it is small in size in comparison with the others. This flow
could be termed as the diverging flow pattern. In the region between the active zone
generated by the straight blade turbine and the top zone of the pitched blade turbine, liquid
streams collided forming a small recirculation flow. These occurrences contributed to the
significant decrease of the overall flow intensity what finally reflected on the delayed onset
of nucleation.
The broadest metastable zone in a dual SBT impeller system could also be attributed to the
weakening of intensity of overall liquid flow. SBT impellers behave almost independently
and each impeller produced a radial jet outward (Fig. 3d). Four ring vortices were
observed, one above the upper impeller, two between the impellers and one below the
lower impeller. Actually, in the zone between the impellers an intensive interaction of
flows is present. For this reason vortices are smaller and less clearly defined and the flow
essentially rotates around the shaft in an almost solid-body type of rotation. Due to
intensive interaction of the flows in the zone between the impellers, this kind of the flow
pattern could not be considered as parallel but rather as merging flow pattern.
Determination of dominant nucleation mechanism and nucleation rate at different fluid
flow patterns
Various mechanisms are proposed to correlate the nucleation process and the metastable
zone width. In the unseeded batch cooling crystallizer, the primary nucleation occurs
dominantly. In these systems the homogenous primary nucleation occurs only if the
supersaturated solution is free of any particle. On the contrary, heterogeneous primary
nucleation only takes place in the presence of foreign particles. The increase of
supersaturation can activate foreign particles present in the solution with the consequence
that surface nuclei are formed on them and the particles become heterogeneous nuclei.
The total rate of nucleation, N, is the sum of the four contributions of different
mechanisms:
attsurhethom NNNNN (2)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
98
where Nhom, Nhet, Nsur and Natt are the rate of homogeneous nucleation, heterogeneous
nucleation, secondary surface nucleation, and the rate of attrition induced secondary nucleation.
Kim and Mersmann (2001) proposed that one contribution is dominant in a given range of
supersaturation. They suggested a rapid, simple and indirect method to determine the
nucleation mechanism in a classical nucleation theory by measuring the degree of
supersaturation and solubility at a constant cooling rate.
Data obtained in this study were marked on this criterion which presents relation between
dimensionless metastable supersaturation cmax/cc and dimensionless solubility c*/cc and it
was found out that the heterogeneous primary nucleation is the dominating mechanism in
examined system (Fig. 5).
Fig. 5. Mersmann`s nucleation criterion
In this case the nucleation rate can be calculated by the following equation (Shubert and
Mersmann, 1996):
2)ln(
3)/ln(
19.1expln
3/7
965.0
*
c
*
c
c
max
5
m
ABhethet
Sη
ccf
c
cf
c
c
d
DN (3)
c
cm
ax
/c
Nhom
Nhet
Natt
Nsur
c c* / c
10-1
10-2
10-3
10-4
10-4
10-3
10-2
10-1
100
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
99
wherehet is the heterogeneity factor and f is the reduction factor for the nucleation work,
while cc presents crystal molar density. For heterogeneous nucleation 0 < f < 1, and
depends on the contact angle between the surface of the foreign particles and surface of the
nucleus. DAB is a bulk diffusivity (= 10-10
m2 s
-1 in the low viscous solutions) and dm =
(cc/NA)-1/3
where NA is Avogadro number. The calculation was carried out with DAB =
3.94×10-10
m2 s
-1, cc = 4.48 mol dm
-3 which was valid for estimated parameters of het = 10
-
11 and f = 0.1 (Cheon et al., 2005).
In our experiment, nuclei may be generated by the heterogeneous primary nucleation that
occurs by appearance of "active" particles (heteronuclei) in solution with foreign surfaces
(the walls of the vessel, impeller, baffle etc.).
Table 1. Nucleation rate at different fluid flow patterns
Impeller combination Bhet∙10-18 / (No. m-3 s-1)
PBT 5.50
SBT 6.56
PBT-PBT 9.77
SBT-SBT 17.57
PBT-SBT 7.75
In the single impeller system number of formed nuclei was increased when SBT impeller
was applied (Table 1). In dual impeller system the nucleation rate was significantly higher
with SBT-SBT configuration. From the listed value is evident that nucleation rate is
directly proportional to the values of metastable zone width, cmax. In the single and dual
SBT impeller systems, the nuclei were generated at a higher supersaturation level.
Correlation between the number of formed nuclei and supersaturation can drastically
influence properties of finally obtained crystal product. In the case of a high nucleation
rate, the supersaturation is consumed on growing of large number of nuclei what could
result in significantly smaller crystals. At the same time, at higher supersaturation level,
dendritic growth and liquid inclusions are likely, while massive formation of the nuclei can
lead to agglomeration (Omar and Urlich, 2003). On the contrary, smaller number of the
nuclei formed at lower supersaturation can lead to slower crystal growth and more
regularly shaped crystals (Kaćunić et al., 2013).
In order to investigate the influence of the fluid flow pattern, the properties of the final
product, granulometric analysis by sieving of final product were performed and the weight
mean crystal size, xm, as well as the crystal size deviation, , were determined.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
100
Fig. 6. The impact of impeller combinations on weight mean crystal size,
standard deviation of crystal size and product yield
Obtained results presented in the Fig. 6 indicate higher value of crystal size and crystal size
deviation when PBT was used. In dual impeller system, PBT-PBT configuration resulted
with the largest crystals, while applying the PBT-SBT configuration the crystals were
smallest. Final size of crystal resulted not only from the crystal growth but from the crystal
breakage and the agglomeration as well. In the single impeller system, PBT impeller
produced an axial fluid flow in a single stage circulation while previously described SBT
double loop radial flow caused higher collision frequency crystal/impeller, crystal/wall
what finally reflected on the reduction of the average crystal size. On the other hand, radial
flow impellers provide higher shear what considerably prevents crystal agglomeration,
eventually resulting in the more regular shaped crystals (Fig. 7).
Fig. 7. Borax crystals photographs obtained by: a.) PBT-PBT and b.) SBT-SBT impeller configuration
160
180
200
20
40
60
80
PBT SBT PBT-PBT SBT-SBT PBT-SBT
Y / %
80
90
100
xm / m / m
Y / %
xm / m
/ m
b.a.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
101
Described effects are even more present in dual SBT impeller system, but due to lower
impeller speed breakage probability is decreased and product properties are very alike to
those produced in a single SBT system.
In the dual PBT-PBT crystallizer two ring vortices were generated, one in the upper part
and the other in the lower part of the vessel (Fig. 3c). Since upper impeller stream was
inclined re-directed lower impeller stream adds up to the axial jet created by the higher
impeller making it stronger (Kuzmanić et al., 2008). This way a reinforced overall liquid
flow made a large, single stage recirculation loop, what ensured a good balance of
pumping and shear capability, promoting not only an undisturbed crystal growth but also
an enlargement of agglomerated clusters.
In the PTD-SBT impeller system, after crystals in suspension reached a certain size were
discharged downward trough lower impeller zone to the -vessel bottom and then toward
the liquid top. Since in the region between the impellers recirculation flow exists, crystals
were returned back to the lower impeller zone. High impeller speed and short circulation
path in this zone increased crystal exposure to the impeller surface and thus the likelihood
of crystal breakage by collision, what drastically influenced the final crystal size.
In the Fig. 6, the numerical values of the percentage product yield are listed as well. They
present a ratio of product yield obtained by an experiment, mP, and theoretical product
yield mT ( 100T
P m
mY ). From the results it is evident that in the in single and dual
impeller systems this values were slightly higher when SBT impeller was used.
In this work torque measurements were performed for impeller configuration examined.
The power consumption was calculated from the torque and the just suspended impeller
speed and it was expressed in terms of the just suspended energy dissipated per unit mass
of suspension, (P/m)JS. The average energy dissipated per unit mass of solution for all
impeller combinations used is presented in Fig. 8.
Fig. 8. Power consumption at different impeller configurations
0,00
0,20
0,40
0,60
0,80
1,00
PBT SBT PBT-PBT SBT-SBT PBT-SBT
(P/m
)/W
kg
-1JS
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
102
From the results it is clear that in single impeller system, despite the lower value of just
suspended impeller speed, power consumption was higher when radial SBT impeller was
used. This result could be expected since for a given impellers the projected blade width
(on the vertical plane) increases with an increase in blade angle. Due to higher projected
blade width, more dissipation of energy occurs behind the straight impeller blades and
therefore SBT had a higher value of power consumption. In the PBT-SBT system high
value of power consumption, beside the listed effect, was a result of the higher impeller
speed as well.
Considering that application of dual SBT impeller results in the highest product yield and
the lowest crystal agglomeration, some degree of optimization is necessary in selection of
impeller configuration regarding production energy costs and required quality of the final
crystal product.
Conclusions
The following conclusion may be drawn from the results of this study:
An addition of a second impeller of the same type in the crystallizer decreases the just
suspended impeller speed. This effect is more emphasized in the system with PBT. The
highest value of NJS in the PBT-SBT system indicates a negative interaction between the
flows produced by individual impeller.
The metastable zone width in the single impeller system increases with an increase of
Reynolds number. In a dual impeller system this parameter depends on the intensity of
overall fluid flow due to more or less pronounced interactions of each impeller flow.
In single as well as in a dual impeller crystallizer, the nucleation took place by a
heterogeneous nucleation mechanism. The nucleation rate increases proportionally with
the metastable zone width.
When SBT impeller was used, in single as well as in a dual impeller crystallizer, more
regularly shaped crystals were produced. The smallest crystal sizes were obtained applying
the PBT-SBT combination. This is a consequence of a more intense crystal breakage due
to longer residence time in the lower impeller zone characterized by a higher impeller
speed and a short circulation path.
The power consumption is lower in single and dual PBT impeller systems what is
related to the impeller geometry. For the applied impellers of same, fixed diameter and
blade width, it is primarily a function of the impeller blade angle.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
103
Acknowledgements
This work was carried out with financial support of the Croatian Science Foundation and
presents a part of HETMIX Project (2014.-2018.).
References
Ceyhan, A. A., Sahin, Ö., Bulutcu, A.N. (2007): Crystallization kinetics of the borax decahydrate, J.
Cryst. Growth 300, 440-447.
Cheon, Y.-H., Kim, K.-J., Kim, S. -H. (2005): A study on crystallization kinetics on pentaerythritol
in batch cooling crystallizer, Chem. Eng. Sci. 60, 4791-4802.
Einenkel, W. D., Mersmann, A., (1977): Erforderliche Drehzahl zum Suspendieren in Rührwerken,
Verfahrenstechnik 11 (2) 90-94.
Gurbuz, H., Ozdemir, B. (2003): Experimental determination of the metastable zone width of borax
decahydrate by ultrasonic velocity measurement, J. Cryst. Growth 252, 343-349.
Jones, A. G. (2002): Crystallization Process Systems, first ed., London, UK: Butterworth-
Heinemann, pp. 58-141.
Kaćunić, A., Akrap, M., Kuzmanić, N. (2013): Effect of impeller position in a batch cooling
crystallizer on the growth of borax decahydrate crystals, Chem. Eng. Res. Des. 91 (2), 274-
285.
Kim, K. -J. Mersmann, A. (2001): Estimation of Metastable Zone Width in Different Nucleation
Processes, Chem. Eng. Sci. 56 (7) 2315-2324.
Kuzmanić, N., Žanetić, R., Akrap, M. (2008): Impact of floating suspended solids on the
homogenization of the liquid phase in dual impeller agitated vessel, Chem. Eng. Process 47,
663-669
Mullin, J. W. (2004): Crystallization, fourth ed., Amsterdam, Netherlands: Elsevier, pp. 180-215.
Omar, W., Urlich, J. (2003): Influence of crystallization conditions on the mechanism and rate of
crystal growth of potassium sulphate, Cryst. Res. Technol. 38 (1), 34-41.
Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M. (2004): Handbook of Industrial Mixing - Science and
Practice, first ed. New Jersey, USA: John Wiley & Sons Inc., pp. 1057-1069.
Sha, Z., Palosaari, S. (2000): Mixing and crystallization in suspensions. Chem. Eng. Sci., 55, 1797-
1806.
Shubert, A., Mersmann, A. (1996): Determination of Heterogeneous Nucleation Rates, Trans. Inst.
Chem. Eng. A 74 (1) 816-821.
Yang, G., Louhi-Kultanen, M., Sha, Z., Kubota, N., Kallas, J. (2006): A model for prediction of
supersaturation level in batch cooling crystallization, J. Chem. Eng. Japan 39 (4), 426-436.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
104
Impact of metals from the environment on chemical changes in olive oil
UDC: 665.327.3
502.3 : 614.7
Zlatka Knezović1
, Marina Trgo2, Angela Stipišić
1, Davorka Sutlović
3,4
1Public Health Institute of Split Dalmatian County, Vukovarska 44, HR-21000 Split, Croatia
2Faculty of Chemistry and Technology, University of Split, Teslina 10/V, HR-21000 Split, Croatia
3Department of Pathology and Forensic Medicine, University Hospital Centre Split, Spinčićeva 1,
HR-21000 Split, Croatia 4Department of Forensic Medicine, University of Split School Medicine, HR-21000 Split, Croatia
Summary
Presence of heavy metals in the environment due to their toxicity is a problem of increasing
significance for ecological, evolutionary, nutritional and environmental reasons. Their accumulation
in soils is of concern in agricultural production due to the effects on plants and their metabolic
activities, possible bioaccumulation, affecting food safety and human health. Humans and other
living organisms are part of a biogeochemical cycle of metals and directly exposed to their impacts.
Virgin olive oils are high quality food with balanced triglyceride composition that provides their
nutritional as well as protective value. The ideal composition of olive oil does not automatically
imply a positive effect on health. Namely, during ripening, harvesting and processing of olives,
especially during oil storage, oxidation processes can occur on triglycerides and can significantly
affect the quality and safety of virgin olive oil. These chemical changes in virgin olive oil are agitated
on exposure to air, heat and light but these processes can be catalysed at the increased content of
heavy metals.
Keywords: lead, copper, iron, virgin olive oil, oxidation
Introduction
Environmental pollution with heavy metals is one of the growing problems of modern
civilization. Although naturally present, their presence in the environment is rising because
of human activities (UNEP, 2013). Since the industrial revolution, their production and use
is increased due to their unique properties such as conductivity, ductility, hardness, and
recyclability enabling them to be an integral part of most daily supplies. The largest source
of pollution with metals are industrial plants, foundries, smelters, coal burning power
plants, car exhaust. Metal particles and steam forms generated during industrial processes
can be dispersed in the environment either by dry (wind) or wet (rainfall) deposition.
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
105
Depending on meteorological conditions particulates can be transmitted over great
distances. Waste water, industrial and domestic, uncontrolled disposal of waste as well as
intensive farming also contribute to the environmental burden with metals. Metals are not
biodegradable, they are permanent constituents of the biogeochemical cycles, representing
potential threat to all living beings including humans (Naagajyoti, 2010).
People can be exposed to metals via air, dust or by ingesting contaminated food or water.
Their accumulation in the body can lead to harmful effects over time. In food, metals can
occur as a result of bioaccumulation from the environment or from contamination during
food processing and storage. Except for direct adverse effects on human health, metals can
cause changes and impact on reducing the quality of food.
Lead is a metal, the presence of which in the environment is of particular concern. Since the
1970s control measures have been taken to regulate lead levels in different products such as
paint, petrol, food cans and pipe. However, coal combustion and aviation fuels are still
significant sources of environment contamination with lead (Say-Gee, 2012).
The organic and inorganic fertilizers as well as pesticides are significant source of metals in
agriculture, particularly copper and iron. Even copper and iron are among essential
elements required for a metabolic activity of living organisms, increased amounts can also
cause adverse effects. According to estimates by Croatian Environment Agency annual
volume of pesticide products on the market of Croatia is 7500 tonnes, out of which 40.4%
are fungicides. Most fungicidal compositions are based on copper compounds (AZO, 2012).
Foliar fertilization of plants is carried out by spraying the leaves and is very common in
the period of intensive plant growth. Depending on the composition of the soil, plants
are fed with different combinations of macro and micro nutrients. On calcareous
Dalmatian soils deficiency of boron and iron is evident, so the foliar fertilization of
olive trees is necessary.
Olive oil is an ideal source of fat compared with other oils and fats, since it has a
moderate amount of saturated fatty acids, high amount of monounsaturated fatty acids
and optimal content of polyunsaturated essential acids. In addition to good triglyceride
composition, olive oil contains many valuable ingredients that are responsible for his
nutritional and protective value (Škarica et al., 1996). This composition of olive oil
does not provide guarantee of positive effects on human health. In fact, during ripening,
harvesting, processing, and especially storage of olive oil oxidative changes can occur
on triglycerides and significantly affect quality and safety. Therefore, it is
recommended to use extra virgin olive oils (EVOO) obtained from undamaged olives,
produced immediately after harvest, through carefully controlled mechanic process, in
which these changes should be kept to a minimum.
Deterioration of the oil begins already at harvest and milling of olives with breaking of
olive cell structure, to be continued throughout the storage period.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
106
There are two types of deterioration processes, the hydrolysis of triglycerides and oxidative
changes. During the hydrolytic degradation the content of free fatty acids (FFA) increases,
reducing the oxidation stability.
The oxidation takes place at unsaturated fatty acids. For that reason olive oils are more
resistant to oxidation having smaller amount of polyunsaturated fatty acids and containing
natural antioxidants (tocopherols and phenolic compounds). However, once started, the
oxidation reactions are very fast due to autocatalysis, and large number of fatty acids can be
included in chain reaction of free radicals formation. The most common initiators of the
oxidation processes are energy of heat and light, contact with air, and metal ions
(Koprivnjak, 2006).
Indicator of hydrolytic process is content of free fatty acids (as oleic), (FFA), while
peroxide value (PV) and spectrophotometric examination in the ultraviolet are measures of
oxidative changes.
The maximum permitted levels of contaminants, including metals, are regulated by
Commission Regulation (EC 1881/2006), where in official controls of the olive oil only
determination of lead is provided. International Olive Oil Council (IOOC) prescribes
determination of copper and iron according to Trade Standard applying to olive oils.
Unfortunately, the application of Trade standard is not included in official controls.
The purpose of our study was to determine the concentration of lead, cooper and iron in
extra virgin olive oils and investigate their possible association with the processes of oil
deterioration (hydrolysis and/or oxidation).
Materials and methods
Samples
Samples of extra virgine olive oil (EVOO) have been collected from market. The samples
for the analyses were stored in the refrigerator under controlled conditions, at 16 °C, to
prevent further development of oxidation processes. The metal content was determined in
81 sample, while the free fatty acids and peroxide value as well as spectrophotometric
examination in the ultraviolet were determined in 79 and 64 samples, respectively.
Methods
For the purpose of metal determination samples were wet digested with concentrated HNO3
and H2O2 mixture in automated microwave digestion unit, CEM, model Mars 5.
Quantitative determination of lead, cooper and iron were carried out on graphite furnace
atomic absorption spectrometer, Analytik Jena, model AAS vario6. Measurements were
performed with hollow cathode lamps for lead, cooper and iron at 283.3; 324.8 and 248.3 nm
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
107
respectively, with deuterium background correction. Graphite tubes with platform and
palladium matrix modifier were used for lead determination. The accuracy of measurements
was examined with known concentrations of standard solutions, which were run as a
sample. The limits of the detection were calculated from the standard deviations of the
blanks and were 1µg/L for all three metals.
Free fatty acid (oleic), and peroxide value were analysed by titration according to HRN EN
ISO 660:2010 and HRN EN ISO 3960:2010 respectively.
Ultraviolet absorbance expressed as specific UV extinction were determined on
spectrophotometer Lambda 25, Perkin-Elmer, according to HRN EN ISO 3656:2011.
Absorptions measured at 232 and 270 nm, expressed as extinction coefficients K232 and
K270 are measures of oxidative changes. Elevated values at 232 nm indicate primary
oxidative changes in oil, while increased absorbtion at 270 nm is a measure of secondary
oxidation. Moreover, variation of the specific extinction (∆ K270) enables detection of
virgine olive oils adulteration with refined oils (Fig. 1).
Fig. 1. Spectral curves of extra virgin olive oil in the UV region; EVOO = extra virgin olive oil
with normal values of absorbance at 232 and 270 nm; a = elevated absorbances
at 232 nm (primary oxidation); b = elevated absorbances at 270 nm
(secondary oxidation); c = variation of the specific extinction
(∆ K270) as a sign of adulteration
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
108
Results and discussion
Experimental results of lead, cooper and iron concentrations as well as EVOO quality
parameters, FFA (oleic), peroxide value, and extinciton coefficients K232 and K270 expressed
by the mean, median, standard deviation (SD), and range (minimum, maximum) compared
with the maximum allowable values (M.A.V.) are shown in Table 1.
Table 1. Presentation of the experimental results and maximum allowable values (M.A.V.) according to
legal regulations
Pb (mg/kg)
Cu (mg/kg)
Fe (mg/kg)
PV (mmolO2/kg)
FFA (oleic) %
K232 K270
N 81 81 81 79 79 64 64
Mean 0.110 0.260 2.330 5.74 0.54 2.30 0.23
SD 0.196 0.481 3.729 2.75 0.42 0.50 0.23
Median 0.023 0.100 0.727 5.06 0.43 2.20 0.16
Min <0.001 <0.001 <0.001 2.28 0.10 1.52 0.08
Max 1.13 6.56 22.7 15.1 2.4 3.51 1.44
M.A.V. 0.11 0.12 32 10a* 0.8 a 2.50a 0.22 a N = number of samples 1Commission Regulation EC 1881/2006 2Trade Standard applying to olive oils of International Olive Oil Council (IOOC)
aRegulations of olive oils and olive-pomace oil (NN 7/09 and 112/09) and Commission Regulation 2568/91/ EEC *The IOOC is considering a proposal to lower the maximum level to 7,5 mmol O2 /kg
All experimental results have been selected in three ranges of determined values. In first
range there are values up to 75% of M.A.V., in second range there are values form 75% up
to M.A.V, and in third range there are values exceeeding M.A.V. (Fig. 2).
Fig. 2. Experimental results in relation to the maximum allowable values
52
35 47 49 52
32 44
5
7
10 15
20
10
11 24
39 24
15 7
22
9
Pb Cu Fe FFA PV K232 K270
Num
ber
of
sam
ple
s
> M.A.C
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
109
The obtained results showed high concentrations of lead and iron in 24 samples, while copper
exceeded M.A.V in 39 samples. Among all the examined indicators of deterioration processes
(FFA, peroxide value, K232 and K270) K232 as indicator of primary oxidation behaves as the
most sensitive parameter and obviously has correlation with heavy metal concentrations.
Our experimental results showed that in the samples with observed increased values of PV
and K-coefficients, concentration of one or more analyzed metals were increased, indicating
relation between heavy metal ions content and oxidation processes.
Oxidation processes starts at the very beginning of olive oil production, but the intensity of
this deterioration is negligible compared to the period of the oil storage (Koprivnjak, 2006).
Durability of EVOO is estimated at 18 months whereby oils should be stored in appropriate
packaging at a temperature of 16-18 °C, with no contact with air or light. The relationship
between metal concentration and quality parameters (PV and K232), in dependence of
sampling period, are shown in Fig. 3 and Fig. 4.
From the Fig. 3 and Fig. 4 can be observed that the concentrations of heavy metal ions follow
increased values of PV an K232. During the warm period of the year deterioration processes are
more intensive where overlapping of extremely high PV anf K232 with concentrations of metal
ions above M.A.V. occur. These results confirm that beside effect of light and temperature, the
content of metal ions can effect the oxidation processes during storage period.
Extra virgin olive oil has high oxidative stability mainly due to its fatty acid composition, in
particular to the monounsaturated-to-polyunsaturated ratio (Bendini, 2006). Fatty acid
oxidation occurs by their interaction with molecular oxygen in a self-catalyzed mechanism.
Metal ions probably increase the rate of oxidation due to a reduction of activation energy in
the initiation step during autooxidation of fatty acids. In the research has been confirmed
that, both copper and iron actively induce oxidation of the oil, where copper is reported as
pro-oxidative ion (Anderson, 1998). Namely, cooper accelerates hydrogen peroxide
decomposition 50 times faster than ferrous ion (Fe 2+
) (Choe, 2006).
Our results are consistent with these observations; where in samples with high PV and K232
copper was several times higher compared to M.A.V.
Large number of samples, as well as high concentrations of copper and iron in the analyzed
samples indicate an excessive and improper use of fungicides and preparations for foliar
nutrition. In literature intended for olive growers the positive impact of fungicides in control
of diseases and pests is mainly discussed, without emphasizing the possible harmful effects
of metal ions on quality and safety of olive oil.
As previously mentioned, the official control includes only the control of lead, in accordance
with of Regulation 1881, while copper and iron, which do not have a direct effect on human
health are not considered. Since, determination of copper and iron in olive oil is not mandatory,
it is usually performed only on special request. It would be desirable to modify the legal
framework in a way that the analysis of copper and iron become mandatory part of EVOO
official controls.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
110
Fig. 3. Peroxide value in relation with a) lead, b) copper and c) iron concentrations;
(solid line is M.A.V. for PV; dashed line is M.A.V. for metal ion)
0,0
0,2
0,4
0,6
0,8
1,0
1,2
0,0
2,0
4,0
6,0
8,0
10,0
12,0
14,0
16,0
0 2 4 6 8 10 12
Pb
(m
g/k
g)
PV
(m
mo
l O
2/k
g)
Month
a)
PV Pb
0,0
0,5
1,0
1,5
2,0
2,5
3,0
0,0
2,0
4,0
6,0
8,0
10,0
12,0
14,0
16,0
0 2 4 6 8 10 12
Month
Cu (
mg/k
g)
PV
(m
mo
l O
2/k
g)
b)
PV Cu
0,0
5,0
10,0
15,0
20,0
25,0
0,0
2,0
4,0
6,0
8,0
10,0
12,0
14,0
16,0
0 2 4 6 8 10 12
Fe
(mg/k
g)
PV
(m
mo
l O
2/k
g)
Month
c)
PV Fe
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
111
Fig. 4. K232 in relation with a) lead, b) copper and c) iron concentrations;
(solid line is M.A.V. for K232; dashed line is M.A.V. for metal ions)
0,0
0,2
0,4
0,6
0,8
1,0
1,2
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0 2 4 6 8 10 12
Month
Pb
(m
g/k
g)
K 2
32
a)
K232 Pb
0,0
0,5
1,0
1,5
2,0
2,5
3,0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0 2 4 6 8 10 12
Month
Cu (
mg/k
g)
K232
b)
K232 Cu
0,0
5,0
10,0
15,0
20,0
25,0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0 2 4 6 8 10 12
Fe
(mg/k
g)
K 2
32
Month
c)
K232 Fe
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
112
References
Andersson K., Lingnert K. (1998): Influence of oxygene and copper concentration on lipid oxidation
in rapeseed oil, JAOCS 75, 1041-1046.
AZO (2012): Izvješće o stanju okoliša u Republici Hrvatskoj za razdoblje 2005.-2008., Agencija za
zaštitu okoliša, Zagreb, http://www.azo.hr/Izvjesca29 (pristupljeno 13.09.2014.).
Bendini A., Cerretani L., Vecchi S., Carrasco-Pancorbo A., Lercker G. (2006): Protective Effects of
Extra Virgin Olive Oil Phenolics on oxidative stability in the presence or absence of copper
ions, J. Agric. Food. Chem. 54, 4880-7.
Choe E., Min D.B. (2006): Mechanisms and factors for Edible Oil Oxidation, Comprehensive
Reviews in Food science and Food Safety 5, 169-186.
Commission Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in
foodstuffs, Official Journal of the European Union L 364, 20 December 2006.
Commission Regulation (EEC) No. 2568/91 on the characteristics of olive oil and olive-residue oil
and on the relevant methods of analysis, Official Journal L 248, 5 September 1991.
EFSA Panel on Contaminants in the Food Chain, (CONTAM), (2010): Scientific Opinion on Lead in
Food, EFSA Journal 8.
Koprivnjak O. (2006): Djevičansko maslinovo ulje od masline do stola, Sigra, Poreč.
Naagajyoti P.C., Lee K.D., Sreekanth T.V.M. (2010): Heavy metals, occurrence and toxicity for
plants: a review, Environ. Chem. Lett. 8, 199-216.
Pravilnik o uljima od ploda i komine maslina (NN 07/09 i NN 112/09).
Say-Gee S., Wan Sahiah A., (2012): Enrichment of arsenic, lead, and antimony in Balingian coal
from Sarawak, Malaysia: Modes of occurrence, origin and partitioning behaviour during coal
combustion, Int. J. Coal. Geol. 101, 1-15.
Škarica B., Žužić I., Bonifačić M. (996): Maslina i maslinovo ulje visoke kakvoće u Hrvatskoj,
Tipograf, Rijeka.
Trade standard applying to olive oils and olive pomace oils (COI/T.15/NC No 3/Rev.7).
UNEP, van der Voet E., Salminen R., Eckelman M., Mudd G., Norgate T. Hischier R., (2013):
Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles, A Report of
the Working Group on the Global Metal Flows to the International Resource Panel.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
113
Kinetika sušenja katalizatora u sušioniku s fluidiziranim slojem
UDC: 66.047
Tomislav Penović, Antonia Giacobi, Andrija Hanžek
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 20, 10000 Zagreb,
Hrvatska
Sažetak
U ovom je radu istraživana kinetika sušenja katalizatora u fluidiziranom sloju. Mjerenja su provedena
u laboratorijskom sušioniku pri različitim brzinama strujanja zraka, temperaturama te visinama sloja
čvrstih čestica različitih veličinskih frakcija. Preliminarna istraživanja uključila su karakterizaciju
sferičnih čestica katalizatora. Izmjerena je tvrdoća i gustoća čestica te određena raspodjela veličina
pora. Morfologija čestica katalizatora definirana je pretražnom elektronskom mikroskopijom, dok je
sastav utvrđen rendgenskom i elementarnom kemijskom analizom. Rezultati su pokazali da
temperatura, brzina strujanja zraka te visina sloja čvrstih čestica utječu na kinetiku sušenja. Veća
brzina sušenja odgovara većim temperaturama i povoljnijim hidrodinamičkim uvjetima te manjoj
visini sloja čvrstih čestica. Kinetika sušenja opisana je pomoću četiri matematička modela.
Procijenjeni su koeficijenti prijenosa tvari, te efektivni difuzijski koeficijent. Parametri modela i
procijenjena prijenosna svojstva, korelirani su uvjetima provedbe procesa. Na temelju izvedenih
korelacija može se procijeniti kinetička krivulja sušenja pri drugim uvjetima provedbe procesa.
Ključne riječi: fluidizirani sloj, katalizator, kinetika, model, sušenje
Uvod
Sušenje je vrlo važan i gotovo neizostavan separacijski proces u industriji s obzirom da je
sadržaj vlage ključan parametar koji utječe na konačna svojstva gotovog proizvoda (Chen
et al., 2012). Sušenje u fluidiziranom sloju koristi se za sušenje praškastih materijala. U
sušioniku s fluidiziranim slojem čestica ostvaruju se povoljni uvjeti za intenzivan prijenos
tvari i topline. Sušenje u fluidiziranom sloju čestica smatra se blagom, jednolikom
metodom sušenja do niskog konačnog sadržaja vlage te omogućuje sušenje toplinski
osjetljivih materijala. Zbog velike brzine sušenja metoda je ekonomična u usporedbi s
ostalim metodama sušenja (Mujumdar, 2007; Senadeera et al., 2003). Na proces sušenja
utječu svojstva materijala, vrsta sušionika, kinetički parametri, temperatura, brzina
strujanja zraka, brzina sušenja te mehanizam prijenosa vlage (Bakal et al., 2012).
Poznavanje kinetike sušenja vrlo je važno za dizajn, simulaciju, optimizaciju i uvećanje
procesa sušenja. Stoga, da bi se poboljšao proces sušenja važno je na raspolaganju imati
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
114
odgovarajuće modele kojima se može opisati krivulja sušenja kod različitih uvjeta.
Modeliranje procesa sušenja veoma je složen zadatak, ponajprije jer dolazi do
istovremenog odvijanja procesa prijenosa tvari i topline te zahtjeva poznavanje velikog
broja parametara (Mujumdar, 2007). Empirijski modeli daju nam direktnu vezu između
sadržaja vlage i vremena sušenja, ali oni zanemaruju osnove procesa sušenja i njihovi
parametri nemaju nikakvog fizikalnog značenja. Stoga, ti modeli ne mogu dati uvid u bitne
procese koji se odvijaju tijekom sušenja, iako dobro opisuju eksperimentalne podatke
(Mujumdar, 2007).
U ovom radu korištena su tri empirijska i jedan teoretski (II Fickov zakon) matematički model
(Tablica 1) za aproksimaciju eksperimentalnih podataka (Mujumdar, 2007; Skelland, 1974).
Tablica 1. Korišteni matematički modeli
Table 1. Used mathematical models
2 2
2eq
2 200 eq
6 1efD n
tr
n
X Xe
X X n
II Fickov zakon
Analitičko rješenje oblik kugle
eq
0 eq
KtX X
eX X
Lewis
eq
0 eq
nktX X
eX X
Page
eq ( )
0 eq
nk tX X
eX X
Overhults, White, Hamilton i Ross (OWHR)
Materijali i metode
Materijal
Kao materijal za istraživanje kinetike sušenja u sušioniku s fluidiziranim slojem odabrana
su sferična zrna katalizatora nepoznatog sastava. Ovaj materijal je odabran zbog dobrih
fluidizacijskih karakteristika i zbog toga što se uklapa u ostvarive radne uvjete u
korištenom sušioniku s fluidiziranim slojem. Uzorak je prosijan kroz sita kako bi se dobila
uska veličinska frakcija, tako da prilikom sušenja fluidiziraju i najveće čestice, a da pri
tome ne dolazi do odnošenja najmanjih čestica.
Karakterizacija materijala
S obzirom da je korišteni katalizator nepoznatog sastava za karakterizaciju materijala
korištena je rendgenska difrakcija (XRD) i pretražna elektronska mikroskopija s
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
115
elementarnom analizom (SEM/EDS). Uzorci su analizirani pomoću rendgenskog
difraktometra Shimadzu LabX XRD-6000 koristeći CuK zračenje u području kutova
difrakcije od 10 do 60° 2 s korakom od 0.02° i vremenskim trajanjem jednog koraka 0.6 s.
Uvid u morfologiju i sastav katalizatora dobiven je snimanjem uzorka pretražnim
elektronskim mikroskopom Tescan Vega 3. Karakterizacija uzorka također uključuje
određivanje gustoće, raspodjele veličina pora, specifične površine i tvrdoće. Raspodjela
veličina pora i specifična površina (BET) određene su na Micromeritics ASAP 2000
uređaju metodom adsorpcije i desorpcije dušika. S obzirom da se radi o sferičnim
česticama gustoća uzorka određena je gravimetrijskom metodom. Čestice uzorka vagane
su na analitičkoj vagi Kern ALJ 220-4 NM preciznosti ± 0.0001 g. Volumen čestica je
izračunat na temelju izmjerenog promjera. Iz mase i volumena izračunata je gustoća
uzorka. Gustoća mokrih čestica (čestice su 1 h u vodi) izračunata je na analogan način, jer
za fluidizaciju je bitan samo hidrodinamički volumen koji je neovisan o poroznosti.
Tvrdoća uzorka izmjerena je na uređaju Erweka TBH 30 pomoću težinske ćelije s
mjerenjem naprezanja žice. Tvrdoća ukazuje na otpornost zrna katalizatora prema pucanju
tijekom fluidizacije. Ravnotežni sadržaj vlage materijala nakon sušenja određen je
gravimetrijskom metodom.
Provedba sušenja
Mjerenja su provedena u laboratorijskom sušioniku s fluidiziranim slojem čestica pri
različitim brzinama strujanja zraka (1,50 i 3,13 ms-1
), temperaturama (50, 57 i 65 °C) te
visinama mirujućeg sloja čestica (H/D=0,91; 1,36; 1,82) različitih veličina (dsr=1,55; 1,70 mm).
Proces sušenja praćen je psihrometrijskom metodom, odnosno praćenjem svojstava zraka
(temperatura i relativna vlažnost) tijekom procesa. Ostala svojstva zraka dobivena su
korištenjem računalnog programa Humidity. Aparatura se sastoji od puhala za zrak,
grijaća, raspodjelne rešetke, kolone (D=0,057 m, Hk=0,6 m) te ciklona. Prigušna pločica
spojena na manometar ispunjen vodom služi za određivanje brzine strujanja zraka, dok se
pad tlaka u koloni prati visinskom razlikom vode u kosom manometru.
Rezultati i rasprava
Karakterizacija materijala
Kako bi se dobio uvid u strukturu, morfologiju i sastav katalizatora uzorak je analiziran
rendgenskom difrakcijom i pretražnom elektronskom mikroskopijom. Difraktogram uzorka
prikazan je slikom 1, dok slike 2 i 3 prikazuju rezultate SEM i EDS analize. Iz difraktograma
uzorka (Slika 1) vidljivo je da je uzorak mješovite (amorfno-kristalinične) strukture. Iz
samog difraktograma nije bilo moguće utvrditi o kojem se spoju radi. EDS analiza (Slika 3)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
116
ukazuje da se radi o aluminijevom oksidu onečišćenom ugljikom i klorom koji vjerojatno
služi kao promotor. Iz SEM fotografija uzorka i presjeka uzorka (Slika 2) može se uočiti
nepravilna površina te se može zaključiti kako se uzorak sastoji od pora različitih veličina.
Kako bi se odredio mehanizam prijenosa vlage kroz unutrašnjost materijala određena je
raspodjela veličina pora prikazana slikom 4. Promjeri pora karakteristični su za difuzijski
tok, a vidljiv je i mali udio pora većih od 10-7 m kroz koje se vlaga kreće kapilarnim tokom.
U tablici 2 dane su vrijednosti specifične površine, srednjeg promjera pora kao i volumena
pora. Vrijednosti gustoće i tvrdoće zrna katalizatora prikazane su tablicom 3.
Slika 1. Rendgenski difraktogram istraživanog katalizatora
Fig. 1. XRD pattern of examined catalyst
Slika 2. SEM fotografija cijelog zrna i presjeka zrna katalizatora (100x)
Fig. 2. SEM photographs of whole and cross-sectional cut catalyst bead (100x)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
117
Slika 3. Elementarna kemijska analiza katalizatora
Fig. 3. Elementary chemical analysis of catalyst
Slika 4. Kumulativna raspodjela veličina pora katalizatora
Fig. 4. Cumulative pore size distribution of catalyst
Tablica 2. Specifična površina, srednji promjer i volumen pora katalizatora
Table 2. Specific surface area, average diameter and volume of pores of catalyst
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
118
Tablica 3. Gustoća i tvrdoća zrna katalizatora
Table 3. Density and hardness of catalyst beads
Radno područje fluidizacije
Radno područje fluidizacije definirano je minimalnom brzinom fluidizacije kao donjom
granicom i brzinom odnošenja kao gornjom granicom. Minimalna brzina fluidizacije
određena je eksperimentalno snimanjem dijagrama fluidizacije (Slika 5) te je također
procijenjena koristeći korelacije više autora (Tablica 4) (Chitester et al., 1984; Hilal et al.,
2001; Wen i Yu, 1966). Iz tablice 3 može se zaključiti da su eksperimentalno određene
minimalne brzine fluidizacije uzorka u skladu sa procijenjenim vrijednostima osim za
Chitesterovu korelaciju. Vidljivo je da ne dolazi do promjene minimalne brzine fluidizacije
s promjenom visine sloja nepokretnih čestica (H/D). Do odnošenja čestica dolazi pri
brzinama strujanja zraka većim od 3,5 m s-1
.
Slika 5. Dijagram fluidizacije ispitivanog uzorka (suhe čestice, H/D=1,81)
Fig. 5. Fluidization diagram of examined sample (dry particles, H/D=1,81)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
119
Tablica 4. Eksperimentalno određene i procijenjene minimalne brzine fluidizacije
Table 4. Experimental and evaluated values for minimal fluidization velocities
dsr =1,550 mm; Ar (suhi) = 1,66·105; Ar (mokri) = 2,72·105
vmf / ms-1
eksperimentalna Chitester Hilal Wen i Yu
suhe
H/D
0,54
0,51
0,53
0,64 0,53 0,54 0,91
1,36
1,82
mo
kre
H/D 0,7
0,75
0,69
0,88 0,71 0,75 0,91
1,36
1,82
Kinetika sušenja
Na slikama 6-9 prikazan je utjecaj uvjeta provedbe procesa na kinetiku sušenja
katalizatora. Iz kinetičkih krivulja sušenja (Slike 6-9) mogu se uočiti tri karakteristična
perioda sušenja (stabilizacija, period konstantne brzine sušenja i period padajuće brzine
sušenja). Utjecaj temperature zraka za sušenje na kinetiku sušenja prikazan je na slici 6.
Može se zaključiti da porastom temperature zraka raste brzina sušenja, odnosno smanjuje
se vrijeme trajanja procesa. Razlog tomu je što zrak više temperature ima manju relativnu
vlažnost pa je pokretačka sila procesa prijenosa topline i vlage veća. Također, vidljivo je
da se trajanje perioda konstantne brzine sušenja skraćuje porastom temperature zraka, jer u
tom periodu sušenje ovisi samo o svojstvima zraka. Slika 7 prikazuje utjecaj visine
nepokretnog sloja čestica na kinetiku sušenja. Brzina sušenja je manja što je veći sloj
nepokretnih čestica pa proces dulje traje. Veća visina sloja čestica sadrži veću masu čestica
u sušioniku, a time je i veća masa vode koju je potrebno ukloniti tijekom sušenja. U
sušioniku tada isparava veća količina vode koju zrak na sebe prima i time se smanjuje
pokretačka sila procesa. Period konstantne brzine sušenja kao i ukupno vrijeme trajanja
procesa postaje dulje sa porastom mase materijala u sušioniku. Na slici 8 prikazan je
utjecaj brzine strujanja zraka na kinetiku sušenja. Porast brzine strujanja zraka uzrokuje
smanjenje otpora prijenosu tvari i topline (smanjuje se hidrodinamički, termički i difuzijski
sloj oko čestica) te time povećava brzinu sušenja i smanjuje vrijeme trajanja procesa.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
120
Utjecaj veličine čestica na kinetiku sušenja, prikazan slikom 9, nije značajnije izražen.
Razlog tome je što nema značajnije razlike u veličini čestica korištenih veličinskih
intervala (dsr=1,55 mm i dsr=1,7 mm). Općenito, porastom veličine čestica trebalo bi doći
do smanjenja brzine sušenja. Razlog tome je što kod većih čestica vlaga prolazi veći put od
unutrašnjosti do površine čestice. Nadalje, međufazna površina zrak-čestice je znatno veća,
za istu masu materijala (odnosno isti H/D), ako su čestice manjeg promjera. Slika 10
prikazuje rezultat aproksimacije eksperimentalnih podataka promjene sadržaja vlage
ispitivanog materijala tijekom sušenja odabranim matematičkim modelima. OWHR i
Pageov model dobro aproksimiraju eksperimentalne podatke. Lewisov model i analitičko
riješenje II Fickovog zakona nisu pogodni za opis kinetike sušenja korištenog katalizatora
s obzirom na relativno dugo trajanje perioda konstantne brzine sušenja. S obzirom da
analitičko riješenje II Fickovog zakona ne aproksimira dobro eksperimentalne podatke,
izračunate vrijednosti efektivnih difuzijskih koeficijenata nisu realne te nisu niti prikazane.
Utjecaj uvjeta provedbe procesa na parametre modela (OWHR i Page) kao i na koeficijent
prijenosa tvari dan je u tablici 5. Vrijednosti parametra k u Pageovom i OWHR modelu
rastu kako raste i brzina sušenja, tj rastu s porastom temperature i brzine zraka te
smanjenjem početnog sadržaja vlage materijala i smanjenjem visine sloja čestica.
Parametar n ovisi o vrsti i geometrijskim karakteristikama materijala. Koeficijent prijenosa
tvari bilo je moguće odrediti samo za period konstantne brzine sušenja jer je tada
temperatura površine materijala na temperaturi mokrog termometra, a zrak tik uz površinu
je zasićen pa je moguće odrediti pokretačku silu. Koeficijent prijenosa tvari procijenjen je
iz kinetičke jednadžbe. Km raste s porastom temperature i početnim sadržajem vlage te
opada s porastom visine sloja čestica. Porastom brzine strujanja zraka raste vrijednost
koeficijenta prijenosa tvari jer se smanjuju otpori prijenosu tvari, topline i količine gibanja.
Slika 6. Utjecaj temperature zraka na kinetiku sušenja
Fig. 6. Influence of air temperature on drying kinetics
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
121
Slika 7. Utjecaj visine sloja nepokretnih čestica na kinetiku sušenja
Fig. 7. Influence of bed height on drying kinetics
Slika 8. Utjecaj brzine strujanja zraka na kinetiku sušenja
Fig. 8. Influence of air velocity on drying kinetics
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
122
Slika 9. Utjecaj veličine čestica na kinetiku sušenja
Fig. 9. Influence of particle size on drying kinetics
Slika 10. Aproksimacija eksperimentalnih podataka odabranim matematičkim modelima
(T=65 °C; H/D=1,36; v=3,13 m s-1
)
Fig. 10. Approximation of experimental data by chosen mathematical models
(T=65 °C; H/D=1,36; v=3,13 m s-1
)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
123
Tablica 5. Utjecaj uvjeta provedbe procesa na koeficijent prijenosa tvari i parametre odabranih
modela (OWRH, Page)
Table 5. Influence of process conditions on mass transfer coefficient and selected model parameters
(OWRH, Page)
H/D v,
m/s
T,
°C
X0,
kg/kg
Y0,
kg/kg
Xeq,
kg/kg
Page OWHR Km,
m/s k n k n
0,91 3,13
50
50
57
57 65
1,0209
0,7533
1,0648
0,7624 0,7582
0,0051
0,0046
0,0048
0,0037 0,0043
0,0209
0,0318
0,0169
0,0188 0,0163
0,044
0,037
0,051
0,089 0,063
1,71
1,78
1,76
1,59 1,88
0,161
0,158
0,184
0,221 0,229
1,71
1,78
1,76
1,59 1,88
0,0448
0,0335
0,0482
0,0331 0,0343
1,50 50 0,7693 0,0059 0,0285 0,027 1,49 0,089 1,49 0,0159
1,36 3,13
50
57
57
65
0,7616
0,8389
0,7709
0,8286
0,0041
0,0046
0,0046
0,0026
0,0206
0,0102
0,0175
0,0069
0,026
0,028
0,044
0,036
1,77
1,78
1,53
1,81
0,128
0,135
0,130
0,158
1,77
1,78
1,53
1,81
0,0299
0,0219
0,0236
0,0246
1,82 3,13 50 0,8211 0,0030 0,0226 0,037 1,43 0,100 1,43 0,0193
Zaključci
Hilalova i Wen i Yu korelacija dobro procjenjuju minimalnu brzinu fluidizacije za
korišteni materijal i radne uvjete. Porastom temperature raste brzina sušenja i smanjuje se
vrijeme trajanja procesa zbog veće pokretačke sile. Veća brzina strujanja zraka rezultira
povoljnijim hidrodinamičkim uvjetima što rezultira većom brzinom sušenja i kraćim
trajanjem procesa. Sušenje je brže za manje visine nepokretnog sloja čestica jer se manja
masa vode mora ukloniti. Kinetičke krivulje mogu se opisati sa Pageovim i OWHR
modelom. Uvjeti koji povećavaju brzinu sušenja rezultiraju višim vrijednostima
parametara odabranih modela. Koeficijent prijenosa tvari raste s porastom brzine strujanja
zraka, temperature i početnog sadržaja vlage, a opada s porastom visine nepokretnog sloja
čestica.
Literatura
Bakal, S.B., Sharma, G.P., Sonawane, S.P., Verma, R.C. (2012): Kinetics of potato drying using
fluidized bed dryer, Journal of Food Science and Technology 49 (5), 608-613.
Chen, L., Lin, C.H., Xie, Y.H., Du, S. (2012): Drying Kinetics of Granules in a Fluidized Bed
Dryer, Advanced Materials Research 12, 459-462.
Chitester, D.C., Kornosky, R.M., Fan, L.S., Danko, J.P. (1984): Characteristics of fluidization at
high pressure, Chemical Engineering Science 39, 253-261.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
124
Hilal, N., Ghannam, M.T., Anabtawi, M.Z. (2001): Effect of bed diameter, distributor and inserts on
minimum fluidization velocity, Chemical Engineering and Technology 24 (2), 161-165.
Mujumdar, S. (2007): Handbook of Industrial Drying, New York, CRC Press, 3. Izdanje.
Senadeera, W., Bhandari, B.R., Young, G., Wijesinghe, B. (2003): Influence of shapes of selected
vegetable materials on drying kinetics during fluidized bed drying, Journal of Food
Engineering 58 (3), 277-283.
Skelland, A.H.P. (1974): Diffusional Mass Transfer, New York, John Wiley & Sons Inc.
Wen, C.Y., Yu, Y.H. (1966): A generalized method for predicting the minimum fluidization
velocity. AIChE Journal 12 (3), 610-612.
Fluid bed drying kinetics of catalysts
Tomislav Penović, Antonia Giacobi, Andrija Hanžek
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
In this work fluid bed drying kinetics of a catalyst has been examined. Experiments were carried out
in a laboratory dryer at different air velocities, air temperatures and different bed height for different
particle size fractions. Preliminary research involved characterization of spherical catalyst beads.
Hardness, density and also pore size distribution of catalyst beads have been measured. The
catalysts morphology has been examined by scanning electron microscopy while the structure and
composition have been determined by x-ray and elemental chemical analysis. Results have shown
that air temperature, velocity and bed height influence the drying kinetics. Higher drying rates are
achieved at higher air temperatures and better hydrodynamic conditions and also with lower bed
height. Drying kinetics has been described by four mathematical models. Mass transfer coefficients
and effective diffusion coefficients have been estimated. Model parameters and evaluated transfer
properties have been correlated with process conditions. On the basis of those correlations a kinetic
drying curve can be evaluated for other drying conditions.
Keywords: drying, catalyst, fluid bed, kinetics, model
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
125
Reološka i toplinska karakterizacija nanofluida
UDC: 536.2
Jasna Prlić Kardum, Marina Samardžija, Štefica Kamenić, Marin Kovačić
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 20, 10000 Zagreb,
Hrvatska
Sažetak
Da bi se povećala energetska učinkovitost izmjenjivača topline, potrebno je poboljšati toplinska
svojstva konvencionalnih nanofluida. Znatno poboljšanje toplinskih svojstava, moguće je postići
suspendiranjem nanočestica u kapljevinama koje se uobičajeno primjenjuju u izmjenjivačima
topline. Stoga su u smjesu voda - etilen glikol te voda – glicerol, primjenom ultrazvučne sonde,
dispergiraju nanočestice aluminij (III) oksida u rasponu koncentracija 0,3-1,4 vol %. Stabilnost
suspenzija ispitana je nefelometrijskom metodom korištenjem uređaja 3 u 1 – FTN. Nakon
postizanja stabilnosti suspenzija, izmjerena je njihova gustoća i viskoznost te im je određeno
reološko ponašanje. Također, određena su i toplinska svojstva pripravljenih suspenzija: koeficijenti
toplinske vodljivosti, specifični toplinski kapacitet i temperaturna vodljivost. Pripremljeni
nanofluidi i bez dodatka aditiva pokazuju stabilnost u razdoblju od jednog mjeseca, imaju svojstva
newtonskih fluida s neznatnim povećanjem gustoće i viskoznosti u odnosu na bazni fluid. Toplinska
svojstva nanofluida poboljšavaju se s povećanjem volumnog udjela nanočestica za oba bazna fluida.
Primjenom nanofluida u pločastom izmjenjivaču topline, izračunat je koeficijent prijelaza i
koeficijent prolaza topline pri različitim protocima i koncentracijama nanofluida. Koeficijent
prijelaza i prolaza topline nanofluida povećava se s povećanjem volumnog udjela nanočestica kao i
poboljšanjem hidrodinamičkih uvjeta u izmjenjivaču topline.
Ključne riječi: nanofluid, termo fizikalna svojstva nanofluida, pločasti izmjenjivač topline
Uvod
U današnje vrijeme procesi u kojima se odvija prijenos topline, zahtijevaju visoku
učinkovitost i djelotvornost, što uključuje poboljšanje toplinskih svojstava fluida koji služe
za izmjenu topline. Budući da konvencionalni fluidi koji se najčešće koriste imaju nisku
toplinsku vodljivost, razvila se ideja o poboljšanju njihove toplinske vodljivosti. Razvojem
nanotehnologije došlo je do primjene nanočestica u pripremi fluida, tzv. nanofluida, koji su
pokazali povećanje koeficijenta toplinske vodljivosti.
Pregledom literature, može se zaključiti da nanofluidi posjeduju izuzetna termo fizikalna
svojstva koja su poželjna pri izmjeni topline u mnogim proizvodnim procesima (Wang and
Mujumdar, 2007; Yu and Xie, 2012). Iako su nanofluidi pokazali dobra fizikalna svojstva,
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
126
neki od problema i dalje su prisutni, osobito u području priprave stabilnih suspenzija
(Shima and Philip, 2014). Ovaj problem može se riješiti djelovanjem ultrazvuka te
dodatkom površinski aktivne tvari koja sprječava stvaranje aglomerata i sedimentaciju
čestica.
Unatoč brojnim eksperimentalnim ispitivanjima, još uvijek se raspravlja da li je povećanje
toplinske vodljivosti fluida izvan ili u okviru teorije utjecaja medija koju je dao Maxwell
(Zhang et al., 2006). Iako su predloženi brojni mehanizmi koji objašnjavaju povećanje
koeficijenta toplinske vodljivosti, i dalje nema objašnjenje za niz različitih podataka o
toplinskoj vodljivosti različitih nanofluida. Brown-ovo gibanje koje uzrokuje dodatnu
konvekciju i kondukcija kroz sloj nanočestica je opće prihvaćeni mehanizam odgovoran za
izuzetno poboljšanje toplinske vodljivosti nanofluida (Philip and Shima, 2012).
Kako su nanofluidi nova vrsta fluida korištenih u inženjerstvu, velik broj istraživanja
odnosi se na utjecaj različitih čimbenika (volumne koncentracije, oblika i vrste
nanočestica; temperature, tlaka i pH nanofluida te vremena i snage djelovanja ultrazvuka)
na termo fizikalna svojstva nanofluida. Međutim, manji broj istraživanja bavi se
testiranjem nanofluida u izmjenjivačima topline kako bi se njihova dinamička i toplinska
svojstva usporedila sa konvencionalnim fluidima.
U ovom radu ispitana su termo fizikalna svojstva nanofluida bez dodatka aditiva
pripremljena raspršivanjem aluminij (III) oksida u dvije bazne kapljevine (smjesa etilen
glikola i vode te glicerola i vode). Primjenom nanofluida u pločastom izmjenjivaču topline,
izračunat je koeficijent prijelaza i koeficijent prolaza topline pri različitim protocima i
koncentracijama nanofluida.
Materijal i metode
Eksperimentalni dio rada obuhvaća određivanje termo fizikalnih svojstava nanosuspenzija
pripremljenih raspršivanjem nanočestica aluminij (III) oksida u smjesi kapljevina.
Pripremljeno je 8 uzoraka: četiri uzoraka pripremljena su od smjese kapljevina koju su
sačinjavale demineralizairana voda i etilen glikol u omjeru 50:50 te glicerol i
demineralizirana voda u masenom omjeru 20:80. Volumni udjeli aluminij (III) oksida u
pripremljenim suspenzijama iznosili su: 0,3%, 0,7%, i 1,0% i 1,4% za obje smjese
kapljevina.
Materijal
Proizvođač aluminij (III) oksida (komercijalnog naziva AEROXIDE Alu C 805) je Evonik
Degussa. Aeroxide je bijeli, fini i lagani prah, veličina čestica između 7 i 40 nm. Zbog
izrazito malih veličina čestica sklon je aglomeraciji. Svojstva nanočestica Al2O3 prikazana
su u tablici 1.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
127
Tablica 1. Svojstva nanočestica aluminij (III) oksida, AEROXID Alu C, proizvođača Evonik Degussa
Table 1. Properties of nanoparticles aluminium (III) oxide, AEROXID Alu C, by Evonik Degussa
AEROXIDE Alu C
BET površina 100 m2g-1
Sastav određen XRD 33% , 66%
Specifična težina 3,2 g cm-3
Koeficijent toplinske vodljivosti 36 W m-1K-1
Priprema nanofluida
Kako je nanosuspenziju potrebno stabilizirati, odnosno spriječiti sedimentaciju nanočestica
kroz duži vremenski perid; odvagana masa čestica dodana je u kapljevinu te podvrgnuta
djelovanju ultrazvučnih valova. Snaga djelovanja ultrazvučnog homogenizatora iznosila je
2000 W, primjenjena amplituda 25%, a trajanje djelovanja ultrazvučnih valova na
suspenziju 60 min.
Aparatura korištena za pripravu stabilne suspenzije sastoji se od ultrazvučnog
homogenizatora sa sondom koja je uronjena u posudu s duplom stjenkom. Kako se tijekom
priprave suspenzije razvija toplina, potrebno je nanofluid hladiti, u tu svrhu korišten je
termostat Julabo F 12.
Određivanje stabilnosti nanosuspenzija mjerenjem nefelometrijskog zamućenja
Mjerenje nefelometrijskog zamućenja provedeno je na uređaju 3 u 1 –FTN koji objedinjuje
funkcije triju instrumenata: turbidimetra, nefelometra i fotokolorimetra uz jednostavnu
komunikaciju s osobnim računalom. Uređajem se pratila promjena nefelometrijskih
jedinica turbiditeta kroz 20 do 50 dana. Uređajem se registrira promjena jačine (intenziteta)
prolaznog zračenja ili jačine raspršenog zračenja kao posljedicu sraza s česticama.
Praćenjem dobivenih podataka u vremenu određuje se stabilnost suspenzije.
Mjerenje gustoće nanosuspenzija
Mjerenje gustoće pripremljenih nanosuspenzija izmjereno je digitalnim uređajem za
mjerenje gustoće, METTLER TOLEDO Densito 30PX. Za svaki uzorak mjerenje je
ponovljeno tri puta te je određena srednja vrijednost gustoće za svaki uzorak.
Određivanje viskoznosti
Mjerenje reoloških svojstava uzoraka provedeno je na rotacijskom viskozimetru, model
DV-III+ Digital Rheometer-Brookfield, primjenom koncentričnog cilindra SC4-27.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
128
Mjerenje reoloških svojstava svježe pripremljene suspenzije provedeno je u
temperaturnom rasponu 15-55 °C. Za održavanje konstantne temperature suspenzije
tijekom mjerenja sa viskozimetrom korišten je termostat. Mjerenjem je praćena ovisnost
smičnog naprezanja o smičnoj brzini, pri brzini smicanja do 182 s-1
. Iz ove ovisnosti
određen je reološki model ponašanja suspenzije i njezina viskoznost.
Uređaj za određivanje toplinske vodljivosti i koeficijenta temperaturne difuzivnosti -
Transient hot bridge 1 (THB 1)
Koeficijenti toplinske vodljivosti i temperaturne difuzivosti za sve pripravljene uzorke
određeni su na uređaju Transient hot bridge 1 (THB 1) proizvođača Linseis. Ovaj uređaj
koristi trakasti izvor topline koji je ujedno i temperaturni senzor. Pripravljenim
suspenzijama određen je koeficijent toplinske vodljivosti. Dok su za određivanje
koeficijenta temperaturne vodljivosti, suspenzije gelirane, dodatkom 0,5 mas % agara.
Pločasti izmjenjivač topline
Kako bi se odredio utjecaj hidrodinamičkih uvjeta na strani toplog fluida (pripravljene
nanosuspenzije) korišten je pločasti izmjenjivač topline SWEP E5x12. Aparatura (slika 1)
se sastojala od pločastog izmjenjivača topline, spremnika sa toplim fluidom (nanofluid),
peristaltičke pumpe za transport toplog fluida, temperaturnih osjetila za mjerenje ulaznih i
izlaznih temperatura toplog i hladnog fluida te rotametra za određivanje protoka vode
(hladni fluid) koji je reguliran ventilom. Ulazna temperatura toplog fluida iznosila je
oko 50 °C, a hladnog oko 16 °C. Protok toplog fluida mijenjan je u intervalu od 40
do 370 ml·min-1
, dok je protok hladne vode bio stalan: 455 ml·min-1
. Praćenjem izlaznih
temperatura i korištenjem jednadžbi materijalne i bilancne topline, određen je koeficijent
toplinske vodljivosti.
Slika 1. Shematski prikaz aparature za određivanje koeficijenta prijelaza topline
Fig. 1. Scheme of apparatus for determination of heat transfer coefficient
TI TI
TI
TI
MFC
FC
TC
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
129
Iz toplinske bilance izmjenjivača topline izračunata je toplinska dužnost izmjenjivača za
topli i hladni fluid:
12 TTcmQ p (1)
Kako je topli fluid, fluid s minimalnom toplinskom vrijednošću, toplinski tok toplog fluida
uzima se dalje u proračunu za koeficijent prolaza topline, K:
LMTFA
QK
(2)
Faktor korekcije za pločasti izmjenjivač topline iznosi oko 0,95, a određen je iz
standardiziranih grafičkih prikaza za pločaste izmjenjivače prema literaturi (Beer, 1994).
Poznavanjem koeficijenta prijelaza topline na strani hladnog fluida, moguće je odrediti
koeficijent prijelaza topline na strani nanofluida:
s
s
V
nf lK
11
1 (3)
Kako bi se, iz niza literaturno ponuđenih, odabrala korelacijska jednadžba za procjenu
koeficijenta prijelaza topline na strani vode, napravljeni su dodatni eksperimenti koji
uključuje izmjenu topline između tople i hlade vode. Iz dobivenih eksperimentalnih
podataka i procjenjenog koeficijenta prijelaza topline izračunata je potrebna površina
izmjene topline. Slaganje između izračunate i stvarne površine korištenog izmjenjivača
topline, ukazuje na odabir korelacijske jednadžbe. Odabrana je korelacijska jednadžba
prema Bounapaneu:
4,066,0 PrRe247,0 ed
(4)
Rezultati i rasprava
Kako bi se istražila mogućnost poboljšanja prijenosa topline korištenjem nanofluida,
pripravljene su suspenzije različitih koncentracija aluminij (III) oksida u dvije bazne
otopine: etilen glikola i vode u omjeru 50:50 te vode i glicerola u omjeru 80:20. Nakon
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
130
raspršenja nanočestica, ispitana je stabilnost dobivenih suspenzija te su određena njihova
termo fizikalna svojstva. Dispergirani volumni udio čestica u uzorcima kretao se od 0.3 do
1.4%. Dio pripravljenih otopina korišten je u pločastom izmjenjivaču topline kako bi se
odredio utjecaj koncentracije nanočestica u suspenziji i hidrdinamičkih svojstava na
koeficijent prijelaza topline.
Stabilnost suspenzija praćena je promjenom nefelometrijskih jedinica turbiditeta kroz 20
do 50 dana. Na slikama 2 i 3 može se uočiti manja promjena broja nefelometrijskih
jedinica s vremenom za manje koncentracije nanočestica bez obzira na korištenu smjesu
kapljevina. Naime, ukoliko dolazi do sedimentacije čvrstih čestica u kapljevini, broj
nefelometrijskih jedinica će se smanjivati ili povećavati, ovisno o tome da li svjetlost
prolazi kroz bistru ili ugušćenu sedimentacijsku zonu. Najveća nestabilnost nanosuspenzije
može se uočiti (najveća promjena broja nefelometrijskih jedinica) pri najvećim
koncentracijama nanočestica (=1,4%). Usporedbom dviju suspenzija različitih baza
kapljevina, može se zaključiti da je stabilnija suspenzija pripravljena u smjesi kapljevina
glicerola i vode bez obzira na njezinu manju viskoznost i gustoću. Razlog mogu biti veće
molekule bazne kapljevine.
Slika 2. Promjena broja jedinica zamućenja s vremenom za nanosuspenzije
dobivene u smjesi voda-etilen glikol
Fig. 2. Dependency of nephelometric turbidity units vs time for nanosuspenzions
in a mixture of water and ethylene glycol
y = 0,4376x + 350,91
y = 0,5469x + 283,97
y = 0,4216x + 221,73
y = -2,7424x + 217,33
0
50
100
150
200
250
300
350
400
450
500
0 10 20 30 40 50
b,N
TU
t , dan
V-EG
0,30%
0,70%
1,00%
1,40%
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
131
Slika 3. Promjena broja jedinica zamućenja s vremenom za nanosuspenzije
dobivene u smjesi voda-glicerol
Fig. 3. Dependency of nephelometric turbidity units vs time for nanosuspenzions
in water glycerol mixture
Iz ovisnosti smičnog naprezanja o brzini smicanja određuje reološko ponašanje suspenzija.
Reološki dijagrami određeni su za sve pripremljene suspenzije u rasponu temperatura: 15 -
55 °C (slika 4). Sve ispitane suspenzije pokazuju linearnu ovisnost smičnog naprezanja o
smičnoj brzini što ukazuje da se radi o newtonskim fluidima. Na slici 4 vidljivo je da se
viskoznost smanjuje s povećanjem temperature i smanjenjem koncentracije nanočestica u
suspenziji. Odstupanja su vidljiva u slučaju najviših temperature za baznu kapljevinu s
glicerolom. Do ovog odstupanja dolazi u području niskih viskoznosti nanofluida kada dolazi
do većih odstupanja u mjerenju smičnog naprezanja. Slika 5 pokazuje promjenu viskoznosti
nanofluida s volumnim udjelom nanočestica pri 35 °C za obje bazne kapljevine. Uočava se
(tablica 2) manja promjena viskoznosti u odnosu na baznu smjesu kapljevina za nanofluid
dobiven raspršivanjem nanočestica aluminij (III) oksida u smjesi kapljevina glicerol –voda
(do 1,53 puta, odnosno 1,71 puta za nanofluid dobiven u smjesi etilen glikol -voda).
Tablica 2. Odnos termo fizikalnih svojstava nanofluida i baznog fluida
Table 2. Ratio of thermophysical properties of nano and base fluids
, %
50EG:50V 20G:80V
nf/f nff nf/f nf/ f nff nf/f
0,3 1,14 1,007 0,996 1,07 1,004 1,019
0,7 1,22 1,016 1,000 1,20 1,021 1,026
1,0 1,44 1,025 1,018 1,64 1,038 1,040
1,4 1,53 1,031 1,030 1,71 1,041 1,049
y = 0,1915x + 372,96
y = 0,6197x + 235,91
y = 0,6107x + 191,65
y = -0,3193x + 192,32
0
50
100
150
200
250
300
350
400
450
500
0 10 20 30 40 50
b. N
TU
t , dan
V-Gly
0,003
0,007
0,01
0,014
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
132
Slika 4. Promjena viskoznosti nanofluida pri različitim volumnim udjelima aluminij (III) oksida
(0,3; 0,7; 1,0; 1,4 vol% ) sa temperaturom
Fig. 4. Viscosity change of nanofluids at different volume fraction of aluminium oxide
(0,3; 0,7; 1,0; 1,4 vol%) with temperature
Slika 5. Promjena viskoznosti pripremljenih nanofluida s volumnim udjelom nanočestica pri 35 °C
Fig. 5. Viscosity variation of nanofluids with different volume fraction of nanoparticles at 35 °C
0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0 10 20 30 40 50 60
, P
as
T, °C
50EG:50V
0,30%
0,70%
1,00%
1,40%
20G:80V
0.3%
0,70%
1,0%
1.4%
0
0,0005
0,001
0,0015
0,002
0,0025
0,003
0,0035
0,004
0,0045
0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6
, P
as
, %
20G:80V
50EG:50V
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
133
Povećanjem volumnog postotka nanočestica raste i gustoća nanofluida, pri čemu veću
gustoću ima nanofluid s baznim fluidom etilen glikol – voda (slika 6). Bitno je naglasiti da
je u primjeni nanofluida u izmjenjivačima topline poželjno što manje povećanje
viskoznosti i gustoće u odnosu na bazni fluid zbog što manjeg gubitaka energije (pada
tlaka) u sustavu.
Slika 6. Promjena gustoće nanofluida s volumnim udjelom nanočestica
Fig. 6. Density variation of nanofluids with the volume fraction of nanoparticles
Na slici 7 prikazana je promjena koeficijenta toplinske vodljivosti nanosuspenzija ovisno o
volumnom udjelu nanočestica. Povećanjem volumnog udjela nanočestica uglavnom dolazi
do povećanja toplinske vodljivosti. Do odstupanja u vodljivosti pri nižim vrijednostima
udjela nanočestica dolazi zbog mjerne pogreške (točnost instrumenta za određivanje
koeficijenta toplinske vodljivosti u kapljevinama iznosi oko 5%). Nanofluidi pripremljeni
u smjesi kapljevina glicerol-voda imaju veći koeficijent toplinske vodljivosti u odnosu na
drugu korištenu baznu kapljevinu, razlog je veći udio vode čiji je koeficijent toplinske
vodljivosti veći od koeficijenta etilen glikola i glicerola, oko 0,6 W m-1
K-1
. Također može
se vidjeti da je povećanje koeficijenta toplinske vodljivosti veće za nanosuspenzije
dobivene u baznom fluidu glicerol voda (tablica 2).
Na slikama 6-8 koje prikazuju promjenu termo fizikalnih svojstava fluida za različite
koncentracije nanofluida, osim izmjerenih vrijednosti, usporedno su dane izračunate
vrijednosti ovih svojstava. Jednadžbe koje su korištene za izračunavanje termo fizikalnih
svojstava priređenih suspenzija prikazane su u tablici 3.
800
850
900
950
1000
1050
1100
1150
0 0,5 1 1,5
, k
gm
-3
, %
Pak and Cho (1988)
50EG:50V
20G:80V
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
134
Slika 7. Promjena specifičnog toplinskog kapaciteta nanosuspenzija ovisno
o volumnom udjelu nanočestica
Fig. 7. Variation of the specific heat capacity with the volume fraction of nanoparticles
Slika 8. Koeficijent toplinske vodljivosti nanosuspenzija u ovisnosti
o volumnom udjelu nanočestica
Fig. 8. Dependence of the heat transfer coefficient of nanosuspensions
on the volume fraction of nanoparticles
0
0,1
0,2
0,3
0,4
0,5
0,6
0 0,5 1 1,5
, W
m-1
K-1
, %
Wasp
20G:80V
50EG:50V
1000
1500
2000
2500
3000
3500
4000
4500
5000
0 0,5 1 1,5
c p, J
kg
-1K
-1
, %
Xuan and Roetzel (2000)
50EG:50V
20G:80V
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
135
Tablica 3. Jednadžbe korištene za određivanje termo fizikalnih svojstava nanofluida
Table 3. Equations used for determination thermophysical properties of nanofluids
Autori Jednadžba
Gustoća, Pak i Cho (1998) fpnf 1
Vodljivost, Wang (1999) f
ffp
ffp
nfp
p
2
22
Spec. topl. kapacitet, Li
iXuan (2000)
fpppnfp ccc 1)(
Bolje slaganje s eksperimentalno određenim podacima pokazuje suspenzija s etilen
glikolom. Vjerojatan razlog je postignuto bolje raspršenje nanočestica te bolja stabilnost
suspenzije. Veće odstupanje za obje suspenzije vidljivo je na slici 8 na kojoj je prikazana
usporedba izmjerenog i izračunatog specifičnog toplinskog kapaciteta za sve
nanosuspenzije. Do ove pogreške dolazi zbog metode koja se koristila pri određivanju
koeficijenta temperaturne vodljivosti. Kako bi se izbjegla konvekcija u kapljevini prilikom
određivanja koeficijenta temperaturne vodljivosti, sve suspenzije su gelirane, određen im
je koeficijent toplinske vodljivosti, te izračunat specifični toplinski kapacitet:
ac p
(5)
Iako dolazi do odstupanja od vrijednosti specifičnog toplinskog kapaciteta izračunatih
jednadžbom koju su predložili Xuan i Roetzel (1999), odstupanja su znatno manja nego s
podacima dobivenim mjerenjima u kapljevitoj fazi. Također, višestrukim mjerenjima u
geliranim uzorcima, dokazana je reproducibilnost.
Utjecaj hidrodinamičkih uvjeta i volumnog udjela nanočestica na prijenos topline u pločastom
izmjenjivaču topline, prikazani su na slikama 9 i 10. Također su predložene korelacijske
jednadžbe koje su karakteristične za različite volumne udjele nanočestica. Iz slika 9 i 10
vidljivo je da je eksponent m približno jednak 1 (što ukazuje na linearno povećanje koeficijenta
prijelaza topline s poboljšanjem hidrodinamičkih uvjeta), dok se k mijenja ovisno o povećanju
koncentracije nanočestica. Naime, na vrijednost k utječu fizikalna svojstva fluida koja se
mijenjaju za različite nanofluide, što je vidljivo iz dobivene ovisnosti. Broj m u korelacijskoj
jednadžbi predstavlja utjecaj hidrodinamičkih uvjeta na prijenos topline te je očekivano da se
ne mijenja s promjenom volumnog udjela nanočestica u suspenziji. Iako se pokretačka sila
povećava s povećanjem koncentracije nanočestica u fluidu, ipak dolazi do smanjene količine
topline koja se izmjenjuje između dva fluida. Razlog je promjena termo fizikalnih svojstava
pripremljenih suspenzija. Najveći utjecaj ima smanjenje vrijednosti specifičnog toplinskog
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
136
kapaciteta što direktno utječe na tok topline. Nadalje, utjecaj nanočestica pri prijenosu topline
može ovisiti o čitavom nizu parametara, kao što su: broj čestica, njihov oblik i veličina te
sklonost aglomeraciji (Sarafraz i Peyghambarzadeh, 2012). Iako postoji veliki broj istraživanja
na ovom području, može se zaključiti da još uvije nije moguće donositi generalne zaključke o
toplinskim svojstvima i ponašanju nanofluida.
Slika 9. Ovisnost Nusseltove o Reynldsovoj značajci (Nu/Re) za različite volumne udjele
nanočestica suspendiranih u vodi i etilen glikolu
Fig. 9. Dependence of Nusselt on Reynolds number (Nu/Re) for different volume fractions of
nanoparticles suspended in water and ethylene glycol mixture
Slika 10. Ovisnost Nusseltove o Reynldsovoj značajci (Nu/Re) za različite .volumne udjele
nanočestica suspendiranih u vodi i glicerolu
Fig. 10. Dependence of Nusselt on Reynolds number (Nu/Re) for different volume fractions of
nanoparticles suspended in mixture water and glycerol
y = 0,55x1,10
y = 0,54x1,14
y = 0,52x0,91
y = 0,40x1,09
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
0 2 4 6 8 10
Nu
/Pr0
,3
Re
V-EG
0,3%
0,7%
1,4%
y = 0,15x1,08
y = 0,12x1,03
y = 0,10x0,77
0
0,5
1
1,5
2
2,5
3
3,5
4
0 5 10 15 20 25
Nu
/Pr0
,3
Re
V-Gly
0,30%
1,0%
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
137
Zaključci
Pripravljene su stabilne suspenzije različitih koncentracija aluminij (III) oksida u dvije
bazne otopine: etilen glikola i vode u omjeru 50:50 te vode i glicerola u omjeru 80:20.
Najveću stabilnost pokazuju nanosuspenzije najmanje koncentracije nanočestica.
Stabilnija suspenzija pripravljena je u smjesi kapljevina glicerol i voda.
Sve ispitane suspenzije su newtonski fluidi, čija se viskoznost smanjuje povećanjem
temperature i smanjenjem volumnog udjela nanočestica.
Termo fizikalna svojstva se mijenjaju dodatkom nanočestica aluminij (III) oksida, gustoća
i toplinska vodljivost se povećavaju dok se specifični toplinski kapacitet povećava.
Primjenom pripravljenih nanofluida u pločastom izmjenjivaču topline su definirane
korelacijske jednadžbe.
Zbog promjene termo fizikalnih svojstava pripremljenih suspenzija ne dolazi nužno do
povećanja izmjenjene topline.
Literatura
Beer, E., (1994): Priručnik za dimenzioniranje uređaja kemijske procesne industrije, Zagreb:
HDKI/Kemija u industriji, pp. 227-287.
Li, Q., Xuan, Y., (2000): Experimental Investigation of Transport Properties of Nanofluids. In: Heat
Transfer Science and Technology, Wang, B. (Ed.). Higher Education Press, China, pp: 757-784.
Pak, B. C., Cho, Y. I. (1998): Hydrodynamic and heat transfer study of dispersed fluids with
submicron metallic oxide particles, Exp. Heat Trans. 11 (2), 151-170.
Philip J., Shima P.D., (2012): Thermal Properties of Nanofluids, Advances in Colloid and Interface sci.
183-184.
Sarafraz, M.M., Peyghambarzadeh, S.M. (2012): Nucleate Pool Boiling Heat Transfer to Al2O3-
Water and TiO2-Water Nanofluids on Horizontal Smooth Tubes with Dissimilar Homogeneous
Materials, Chem. Biochem. Eng. Q. 26 (3), 199-206.
Shima, P. D. Philip, J. (2014): Role of Thermal Conductivity of Dispersed Nanoparticles on Heat
Transfer Properties of Nanofluid, Ind. Eng. Chem. Res., 53 (2), 980–988.
Wang, X., Xu, X., Choi, S. U. S., (1999): Thermal Conductivity of Nanoparticle - Fluid Mixture, J.
of Thermophy. and Heat Trans. 13 (4), 474-480.
Wang, X.Q., Mujumdar, A. S. (2007): Heat transfer characteristics of nanofluids: a review, Int. J. of
Therm. Sci. 46 (1), 1 1-19.
Xuan, Y., Roetzel, W., (2000): Conceptions for Heat Transfer Corelation of Nanofluids, Int. J. Of
Heat and Mass Transfer 43 (19), 3701-3707.
Yu, W., Xie, H., (2012): A review on Nanofluids: Preparation, Stability Mechanisms, and
Applications, J. of Nanomaterials 2012 (1), 1-12.
Zhang, X., Gu, H., Fujii, M., (2006): Experimental Study on the Effective Thermal Conductivity
and Thermal Diffusivity of Nanofluids, Int. J. Thermophysics 27, 569-580.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
138
Simboli
A površina prijenosa topline, m2
a koeficijent temperaturne vodljivosti, m2·s
-1
b broj jedinica zamućenja, NTU
cp specifični toplinski kapacitet, J·kg-1
·K-1
)
F Foulingov faktor, -
K ukupni koeficijent prolaza topline, W·m-2
·K-1
m maseni protok, kg/s
Q toplinski fluks, J/s
T temperatura, °C
t vrijeme, s
koeficijent prijelaza topline, kJ/m2
volumni udio,-
dinamička viskoznost, Pas
koeficijent toplinske vodljivosti stjenke, W/mK
gustoća, kg/m3
Indeksi
p čestica
nf nanofluidi
f fluid
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
139
Rheological and thermal characterization of nanofluids
Jasna Prlić Kardum, Marina Samardžija, Štefica Kamenić, Marin Kovačić
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
In order to arise efficiently of heat exchangers, it is necessary to improve thermal properties of
nanofluids. Improvements in thermal properties of conventional fluids lead to increasing of heat
exchangers efficiency. By applying of ultrasound equipment, nanoparticles of aluminum (III) oxide
in different volume concentration from 0.3 to 1.4 % were dispersed in mixtures of water – ethylene
glycol and water – glycerol. Nefelometric method was applied in order to exam stability of
suspensions by using handmade device 3 in 1 – FTN. After attaining stability, viscosity and
rheological behavior of the suspensions were determined. Also, some thermal properties (coefficient
of thermal conductivity, specific thermal capacity and thermal diffusivity) were measured. In order
to evaluate obtained results, the measured values of thermo physical properties were compared with
those from the literature. Although nanofluids were prepared without additives, they show stability
over period of one month. Also they show Newton rheological behavior with slightly increasing in
density and viscosity comparing to base fluids. Thermal properties of nanofluids are improved with
increasing of nanoparticles volume concentration. Heat and overall heat transfer coefficients were
calculated for different concentrations and flow rates of nanofluid in the plate heat exchanger. Heat
transfer coefficient and overall heat transfer coefficient are increased by increasing of volume
fractions of nanofluids and with enhanced of hydrodynamic conditions in the plate heat exchanger.
Keywords: nanofluid, thermo – physical properties of nanofluids, plate heat exchanger
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
140
Ravnoteža kapljevina–kapljevina u sustavu
ugljikovodik – piridin – C6mmpyTf2N
UDC: 66.061.14
Marko Rogošić, Aleksandra Sander, Borna Ferčec
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 19, 10000 Zagreb,
Hrvatska
Sažetak
Ekstrakcija kapljevina–kapljevina jedna je od alternativnih metoda koje se mogu primijeniti za
denitrifikaciju FCC benzina i lakog plinskog ulja. Korištenjem ionskih kapljevina kao selektivnog
otapala proces ekstrakcije postaje ekološki prihvatljiv zbog njihove nehlapljivosti i mogućnosti
potpune regeneracije. U ovom je radu eksperimentalno određena ravnoteža kapljevina–kapljevina u
sustavima ugljikovodik – piridin – C6mmpyTf2N pri atmosferskom tlaku i temperaturi od 25 °C.
Odabrana su tri parafinska (n-heksan, n-heptan i i-oktan) i jedan aromatski ugljikovodik (toluen),
budući da FCC-benzin u najvećoj mjeri sadrži parafine. Toluen je odabran jer se aromatski
ugljikovodici u određenoj mjeri otapaju u ionskim kapljevinama, a piridin je predstavnik dušikovih
spojeva. Osim ravnotežnih krivulja, eksperimentalno su određene i vezne linije te su izračunate
vrijednosti koeficijenta raspodjele i selektivnosti odabrane ionske kapljevine. Selektivnost ionske
kapljevine i koeficijent raspodjele piridina opadaju s porastom koncentracije piridina u smjesi.
Ravnotežni podaci opisani su modelima NRTL i UNIQUAC. Istražen je utjecaj pojedinog
ugljikovodika te sastava pojne smjese na djelotvornost ekstrakcije piridina odabranom ionskom
kapljevinom. Djelotvornost ekstrakcije veća je u trokomponentnim sustavima s parafinskim
ugljikovodicima. Za modelnu otopinu koja se sastoji od svih korištenih komponenti uz dodatak
tiofena, uočen je pad djelotvornosti ekstrakcije piridina u odnosu na trokomponentne sustave.
Ključne riječi: ravnoteža kapljevina–kapljevina, ionske kapljevine, denitrifikacija, FCC-benzin, piridin
Uvod
Zbog sve strožih zahtjeva vezanih uz proizvodnju motornih goriva vrlo male koncentracije
sumpora, mnoga se istraživanja bave razvojem novih i poboljšanjem postojećih procesa
desulfurizacije i denitrifikacije naftnih frakcija (Song, 2003). Naime, komercijalni proces
hidrodesulfurizacije (HDS) ekonomski je i ekološki nepovoljan jer se odvija u uvjetima
visokih temperatura i tlakova uz potrošnju velikih količina vodika i katalizatora. Osim
toga, tijekom procesa desulfurizacije istovremeno se odvija i denitrifikacija. Kako je
proces denitrifikacije znatno sporiji od desulfurizacije, dušikovi se spojevi dulje vrijeme
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
141
zadržavaju na katalizatoru što za posljedicu ima otežanu konverziju sumporovih spojeva u
sumporovodik (Martínez-Palou, 2011). Stoga se nameće mogućnost nadogradnje
komercijalnog HDS procesa ekstrakcijskom denitrifikacijom pomoću odgovarajućeg
otapala. U zadnje se vrijeme sve više istražuju ionske kapljevine kao otapala s primjenom
u separacijskim procesima. Ionske se kapljevine mogu dizajnirati za željenu svrhu
pravilnim odabirom kationa i aniona. Mogućnost njihove primjene u ekstrakciji
kapljevina–kapljevina leži u svojstvima kao što su: otapanje različitih vrsta tvari,
zanemariv tlak para, kemijska i toplinska stabilnost te jednostavna regeneracija i ponovno
korištenje. Pregledom dostupne literature, uočeno je da većina ionskih kapljevina ima veći
afinitet prema dušikovim spojevima u odnosu na sumporove spojeve (Casal, 2010, Gabrić
et al., 2013, Rogošić et al., 2014). Ukoliko se ekstrakcija provede prije HDS-a, doći će do
djelomične desulfurizacije i denitrifikacije čime će se povećati djelotvornost HDS procesa.
U ovom su radu eksperimentalno i računski određene fazne ravnoteže kapljevina–
kapljevina u odabranim modelnim trokomponentnim sustavima ugljikovodik (1) –
piridin (2) – IL. Osim toga, istražena je separacija piridina i ugljikovodika, odnosno
smjese ugljikovodika ekstrakcijom s odabranom ionskom kapljevinom, s ciljem
donošenja širih zaključaka o mogućnosti denitrifikacije benzinskih frakcija pomoću
ionskih kapljevina.
Materijali i metode
Eksperimentalno je određena ravnoteža trokomponentnih sustava ugljikovodik (1) – piridin
(2) – [C6mmPy][Tf2N] (3), gdje je komponenta 3 ionska kapljevina 1-heksil-3,5-
dimetilpiridinijev bis{(trifluorometilsulfonil)imid}. Odabrani ugljikovodici su: n-heksan,
n-heptan, i-oktan i toluen. Mjerenja su provedena u termostatiranoj zračnoj kupelji pri
25 °C te pri atmosferskom tlaku, p =101325 Pa. Osim toga, provedena je i šaržna
ekstrakcija uz maseni omjer ionske kapljevine prema modelnoj otopini od 0,25 kg/kg, pri
čemu su kao modelne otopine korištene dvokomponentne otopine ugljikovodik – piridin, te
jedna šesterokomponentna otopina sastava: n-heksan (26 % mas.), n-heptan (26 % mas.),
i-oktan (26 % mas.), toluen (10 % mas.), piridin (6 % mas.) i tiofen (6 % mas). Korištena
ionska kapljevina sintetizirana je prema postupku detaljno opisanom u literaturi
(Papaiconomou et al., 2006) i karakterizirana je 1H NMR spektroskopijom (FT NMR
Bruker Avance 300 MHz). Spektri su snimljeni u deuteriranom dimetil-sulfoksidu
(DMSO-d6) uz dodatak tetrametilsilana (TMS) kao unutarnjeg standarda.
Određivanje binodalne krivulje
Točke na binodalnoj krivulji određene su starom, ali djelotvornom titracijskom metodom
prema Othmeru (1941). U definiranu masu ugljikovodika dodavana je ionska kapljevina
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
142
kap po kap do pojave zamućenja. Zatim je dodan piridin do bistrenja otopine. Otopina je
nakon toga titrirana ionskom kapljevinom ponovno do pojave zamućenja. Na analogan je
način određena i druga strana binodalne krivulje, naizmjeničnim dodavanjem piridina i
ugljikovodika u ionsku kapljevinu. Sve su koncentracije pritom određivane gravimetrijski;
tikvice sa smjesama vagane su nakon dodatka pojedine komponente (vaga: Kern ALJ 220-
4 NM preciznosti ± 0,0001 g).
Određivanje veznih linija
Za određivanje ravnotežnih sastava faza pripravljene su dvofazne trokomponentne smjese
definiranog sastava. Smjese su miješane 24 sata u termostatiranoj zračnoj kupelji. Nakon
separacije faza izmjereni su indeksi loma rafinatne faze. S obzirom da vezna linija povezuje
točku ukupnog sastava pripravljene dvofazne smjese i točku sastava rafinatne faze,
koncentracije u ekstraktnoj fazi očitane su sa sjecišta vezne linije i ekstraktne grane
binodalne krivulje. Ovisnosti indeksa loma rafinatne faze, nD,25, o masenom udjelu piridina,
w2I, pri 25 °C, određene su prethodnim eksperimentom i dane su sljedećim izrazima:
n-heksan – piridin: I 2
2 D,25 D,2528,89 89,24 68,04w n n (1)
n-heptan – piridin: I 2
2 D,25 D,2555,15 165,57 123,52w n n (2)
i-oktan – piridin: I 2
2 D,25 D,2555,93 168,04 125,50w n n (3)
toluen – piridin: I
2 D,2599,65 148,86w n (4)
Svi indeksi loma određeni su na Abbeovom refraktrometru Model RMI, Exacta Optech,
preciznosti ± 0,0001 u triplikatu.
Ekstrakcija
Ekstrakcija kapljevina–kapljevina provedena je u šaržnom ekstraktoru (unutarnji promjer
0,04 m) s magnetskim miješalom. Pripravljene su modelne otopine željenog sastava te je
dodana ionska kapljevina kako bi maseni omjer ionska kapljevina/modelna otopina bio
0,25. Vrijeme trajanja ekstrakcije bilo je 20 minuta. Nakon separacije faza određen je
sastav rafinatne faze. Za dvokomponentne modelne otopine sastav je određen mjerenjem
indeksa loma, prema već opisanom postupku, a za višekomponentnu modelnu otopinu
metodom plinske kromatografije. Plinski kromatograf, GC-2014-Shimadzu, opremljen je
uređajem za automatsko uzorkovanje, plameno-ionizacijskim detektorom te tzv. fused
silica kapilarnom kolonom CBP1-S25-050 duljine 25 m i unutarnjeg promjera 0,32 mm.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
143
Rezultati i rasprava
Ravnoteža kapljevina–kapljevina
Eksperimentalno određene fazne ravnoteže kapljevina-kapljevina dvofaznih
trokomponentnih sustava ugljikovodik (1) – piridin (2) – [C6mmPy][Tf2N] (3) prikazane su
na slikama 1-4. Prikazane su binodalne krivulje (dobivene interpolacijom eksperimentalnih
točaka, te vezne linije, zajedno s ravnotežnim sastavima faza.
Od istraživanih ugljikovodika samo za sustav s n-heksanom postoje literaturni podaci
(Casal, 2010). Oba mjerenja kvalitativno opisuju sustav na sličan način, a primijećeno
manje kvantitativno neslaganje s literaturnim podacima vjerojatno je posljedica različite
čistoće primijenjenih kemikalija, jer se oba skupa podataka čine interno konzistentnima.
Slika 1. Ravnoteža kapljevina–kapljevina u trokomponentnom sustavu n-heksan – piridin –
[C6mmPy][Tf2N]; usporedba eksperimentalnih i modelnih veznih linija
Fig. 1. Liquid–liquid equilibria in the three-component system n-hexane – pyridine –
[C6mmPy][Tf2N]; comparison of experimental and model tie lines
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
144
Slika 2. Ravnoteža kapljevina–kapljevina u trokomponentnom sustavu n-heptan – piridin –
[C6mmPy][Tf2N]; usporedba eksperimentalnih i modelnih veznih linija
Fig. 2. Liquid–liquid equilibria in the three-component system n-heptane – pyridine –
[C6mmPy][Tf2N]; comparison of experimental and model tie lines
Slika 3. Ravnoteža kapljevina–kapljevina u trokomponentnom sustavu i-oktan – piridin –
[C6mmPy][Tf2N]; usporedba eksperimentalnih i modelnih veznih linija
Fig. 3. Liquid–liquid equilibria in the three-component system i-octane – pyridine –
[C6mmPy][Tf2N]; comparison of experimental and model tie lines
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
145
Slika 4. Ravnoteža kapljevina–kapljevina u trokomponentnom sustavu toluen – piridin –
[C6mmPy][Tf2N]; usporedba eksperimentalnih i modelnih veznih linija
Fig. 4. Liquid–liquid equilibria in the three-component system toluene – pyridine –
[C6mmPy][Tf2N]; comparison of experimental and model tie lines
Modeliranje
Za opis ravnoteže kapljevina–kapljevina u sustavima s ionskim kapljevinama uobičajeno
se koriste modeli NRTL (Renon, 1968) i UNIQUAC (Abrams, 1975). Model NRTL uzima
u obzir promjenjivost mjesnih koncentracija kao posljedicu razlika Gibbsovih energija
međudjelovanja istovrsnih i raznovrsnih čestica. Model je troparametarski, ij i ji su
parametri međudjelovanja, a treći parametar ij = ji je tzv. parametar neslučajnosti koji se
povezuje uglavnom s entropijskim efektima razlike veličina molekula u sustavu. Pri
modeliranju, parametar neslučajnosti obično se fiksira na iskustvenu vrijednost (u ovom
radu ij = 0,3), a regresijom se određuju interakcijski parametri. Model UNIQUAC daje
eksces Gibbsovu energiju kao zbroj dvaju doprinosa. Rezidualni doprinos opisuje razliku
međudjelovanja istovrsnih i raznovrsnih čestica, kao i kod NRTL-a; oznake parametara su
iste (ij i ji), ali su iznosi (uključujući i red veličine) sasvim različiti. Kombinatorni
doprinos opisuje razliku volumena i površina molekula u sustavu na osnovi prethodno
izračunatih i tabeliranih strukturno-grupnih doprinosa, koji se pak računaju iz van der
Waalsovih radijusa atoma te duljina kovalentnih veza. Volumni, ri, i površinski parametri, qi,
niskomolekulskih komponenata (ugljikovodici, piridin) preuzeti su iz literature (Prausnitz,
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
146
1980), a parametri za ionsku kapljevinu izračunati su na temelju vrijednosti strukturno
grupnih parametara što ju je priredio Lei (2009). Parametri su okupljeni u tablici 1.
Tablica 1. Volumni (ri) i površinski (qi) parametri modela UNIQUAC
Table 1. Volume (ri) and surface (qi) parameters of the UNIQUAC model
r q
n-heksan 4,4998 3,856
n-heptan 5,1742 4,3960
i-oktan 5,8463 5,0080
toluen 3,9228 2,968
piridin 2,9993 2,113
C6mmpyTf2N 11,8526 10,0659
Interakcijski parametri obiju modela određeni su iz eksperimentalnih podataka
modifikacijom metode po Sorensenu i Arltu (Sorensen, 1979). U prvom se koraku
postupka traže parametri ij koji daju minimum funkcije:
d c
2I I II II
2 2 2 2 2 2
1 12 21 13 31 23 32I I II II1 1
n n
i i i i
j i i i i i j
x xOF Q
x x
. (5)
U brojniku prvog člana na desnoj strani jednadžbe prepoznaje se osnovni fizički smisao
jednadžbe. Jednadžba fazne ravnoteže kapljevina–kapljevina može se, naime, pisati kao
jednakost aktivnosti svih komponenata u svima prisutnim fazama: aiI = ai
II ili
(xii)I = (xii)
II. ai je aktivnost, i koeficijent aktivnosti a xi molarni udio i-te komponente. I i
II označavaju dvije kapljevite faze, j označava svaku pojedinu veznu liniju. nc = 3 je broj
komponenata, nd je broj eksperimentalnih veznih linija u sustavu. Drugi član jednadžbe na
desnoj strani je tzv. kaznena funkcija koja ograničava pojavu fizikalno besmislenih
minimuma funkcije u području (pre)velikih ij. Za oba je modela korištena iskustvena
vrijednost „kaznenoga“ parametra od Q = 110-6
.
U drugom, odnosno trećem koraku, koristeći konačne ij iz prvog koraka za inicijalizaciju,
traže se minimumi funkcija:
d c II 2
2 2 2 2 2 2
2 12 21 13 31 23 32exp mod1 1 I
n np p
i ijj i p
OF x x Q
, (6)
d c II 2
2 2 2 2 2 2
3 12 21 13 31 23 32exp mod1 1 I
n np p
i ijj i p
OF w w Q
. (7)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
147
Funkcije se razlikuju jedino u tome što se u drugom koraku nastoji postići najbolje
slaganje molarnih, a u trećemu masenih udjela, wi, komponenata, izračunatih prema
modelu (mod) u odnosu na eksperimentalne vrijednosti (exp). Parametri iz drugog služe za
inicijaciju u trećem koraku. p ovdje simbolički označava kapljevite faze I i II. Kazneni
parametar je Q = 110-10
za oba modela.
Svih šest interakcijskih parametara u modelima određeni su simultano. Optimalni su
parametri prikazani u tablici 2, zajedno sa srednjim kvadratnim odstupanjem modelnih i
eksperimentalnih masenih udjela komponenata:
2 2 2 2 2 2
3 12 21 13 31 23 32
d c 2
OF QA
n n
(8)
U tablici 2 prikazani su interakcijski parametri modela NRTL i UNIQUAC, zajedno s
pripadajućim vrijednostima srednjeg kvadratnog odstupanja za sve istraživane sustave.
Vezne linije izračunate modelima uspoređene su s eksperimentalnima na slikama 1-4.
Tablica 2. Interakcijski parametri modela NRTL i UNIQUAC i srednja kvadratna odstupanja (A)
eksperimentalnih i modelnih ravnotežnih sastava
Table 2. Interaction parameters of the NRTL and UNIQUAC models as well as mean square
deviations (A) of experimental and model equilibrium compositions
NRTL
12. 13. 23 =
0.3; 0.3; 0.3
12 13 21 23 31 32 A
n-heksan (1) – piridin (2) – IL (3)
1,2504 10,2784 0,9255 4,7923 2,7222 -2,8898 0,0040
n-heptan (1) –
piridin (2) – IL (3) 1,0673 13,1706 1,1736 5,1122 3,6390 -2,7404 0,0161
i-oktan (1) –
piridin (2) – IL (3) 0,4507 12,0771 0,9196 4,9368 3,4115 -3,8991 0,0092
toluen (1) –
piridin (2) – IL (3) 1,8554 14,0654 1,1988 1,3897 0,5684 -1,2534 0,0014
UNIQUAC 12 13 21 23 31 32 A
n-heksan (1) –
piridin (2) – IL (3) 0,5109 0,3081 1,1539 1,6341 1,1468 1,1227 0,0028
n-heptan (1) – piridin (2) – IL (3)
0,6907 0,3530 0,9648 1,5724 1,2140 1,2576 0,0042
i-oktan (1) –
piridin (2) – IL (3) 0,4855 0,3406 1,1954 1,4842 1,2399 1,0932 0,0031
toluen (1) –
piridin (2) – IL (3) 1,3556 0,0260 2,3717 1,0000 0,2671 2,8438 0,0013
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
148
Koeficijenti raspodjele i selektivnost
Ravnotežni dijagrami trokomponentnih sustava ugljikovodik – piridin – [C6mmPy][Tf2N]
su tipa I s pozitivnim nagibom veznih linija u cijelom području koncentracija ispod
binodalne krivulje. Ionska kapljevina netopljiva je u svim istraživanim ugljikovodicima.
Parafinski ugljikovodici u maloj su mjeri topljivi u ionskoj kapljevini, dok je toluen, kao
predstavnik aromatskih ugljikovodika, topljiv u znatnoj mjeri. To drugim riječima znači da
je odabrana ionska kapljevina pogodna za separaciju piridina iz smjese s parafinskim
ugljikovodicima. Ravnotežni dijagrami sustava s parafinskim ugljikovodicima međusobno
su vrlo slični. Sustav s toluenom ima nepovoljnu ravnotežu s vrlo malim heterogenim
područjem u kojem je moguće provesti ekstrakciju.
Koeficijenti raspodjele, i, i selektivnost ionske kapljevine, S, izračunati su korištenjem
sljedećih izraza: II
11 I
1
w
w , (9)
II
22 I
2
w
w , (10)
1
2
S , (11)
i prikazani u tablici 3. Oznake I i II odgovaraju rafinatnoj, odnosno ekstraktnoj fazi, a
oznake 1 i 2 odgovaraju ugljikovodiku, odnosno piridinu.
Tablica 3. Koeficijenti raspodjele () i selektivnost (S) ionske kapljevine
Table 3. Distribution coefficients () and selectivities (S) of ionic liquid
Ugljikovodik/hydrocarbon (1) – piridin (2) – [C6mmPy][Tf2N] (3)
n-heksan n-heptan
1 2 S 1 2 S
0,0646 2,9287 45,36 0,0866 3,2002 36,95
0,0934 2,6202 28,06 0,1060 2,3846 22,49
0,1231 2,0656 16,78 0,1265 1,9604 15,49
0,1667 1,8168 10,89 0,1623 1,7109 10,54
0,2976 1,4483 4,87 0,2719 1,4323 5,27
i-oktan toluen
1 2 S 1 2 S
0,0634 2,9271 46,15 0,4855 1,8220 3,75
0,0897 2,5428 28,35 0,4965 1,3450 2,71
0,1251 2,1452 17,15 0,5123 2,1284 4,15
0,1668 1,8606 11,16 0,5248 1,7162 3,27
0,2657 1,5072 5,67
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
149
Koeficijenti raspodjele piridina veći su od koeficijenata raspodjele odgovarajućeg
ugljikovodika. S porastom koncentracije piridina raste koeficijent raspodjele
ugljikovodika, dok koeficijent raspodjele piridina opada. Selektivnost ionske kapljevine
opada s porastom koncentracije piridina u smjesi, jer je sve veća topljivost ugljikovodika u
ionskoj kapljevini. Visoke vrijednosti selektivnosti idu u prilog korištenja odabrane ionske
kapljevine za separaciju piridina od parafinskih ugljikovodika.
Na slikama 5 i 6 prikazana je usporedba eksperimentalnih s literaturnim (Casal, 2010)
koeficijentima raspodjele piridina i selektivnosti ionske kapljevine. Slaganje je razmjerno
dobro.
Slika 5. Ovisnost koeficijenta raspodjele piridina, 2, o masenom udjelu piridina u rafinatnoj fazi,
w2I, za sustav n-heksan – piridin – [C6mmPy][Tf2N]; usporedba eksperimentalnih ()
i literaturnih podataka (, Casal 2010)
Fig. 5. Distribution coefficient of pyridine, 2, vs. mass fraction of pyridine in the raffinate phase,
w2I, for the system n-hexane – pyridine – [C6mmPy][Tf2N]; comparison of experimental ()
and literature data (, Casal 2010)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
150
Slika 6. Ovisnost selektivnosti, S, o masenom udjelu piridina u rafinatnoj fazi,
w2I, za sustav n-heksan – piridin – [C6mmPy] [Tf2N]; usporedba
eksperimentalnih () i literaturnih podataka (, Casal 2010)
Fig. 6. Selectivity, 2, vs. mass fraction of pyridine in the raffinate phase,
w2I, for the system n-hexane – pyridine – [C6mmPy][Tf2N]; comparison of
experimental () and literature data (, Casal 2010)
Ekstrakcija kapljevina–kapljevina
Kako bi se istražio utjecaj sastava modelne otopine na djelotvornost ekstrakcije piridina
pomoću odabrane ionske kapljevine, eksperimenti su provedeni s dvokomponentnom
[ugljikovodik (94 % mas.) i piridin (~6 % mas.)] i šesterokomponentnom [n-heksan
(26 % mas.), n-heptan (26 % mas.), i-oktan (26 % mas.), toluen (10 % mas.), piridin
(6 % mas.) i tiofen (6 % mas.)] modelnom otopinom. U tablici 4 dani su rezultati za
dvokomponentne modelne otopine.
U eksperimentu sa šesterokomponentnom modelnom otopinom sastav rafinata određen je
plinskom kromatografijom dok je sastav ionske kapljevine analiziran 1H NMR
spektroskopijom. Na 1H NMR spektru ionske kapljevine nakon ekstrakcije uočeni su
dodatni pikovi koji odgovaraju tiofenu, piridinu, toluenu i izooktanu, slika 7.
Djelotvornosti ekstrakcije tiofena, piridina i toluena pritom su redom: 12,05%, 39,11% i
8,97%. Međutim, otapanje i-oktana u ionskoj kapljevini nije se moglo potvrditi plinskom
kromatografijom jer koncentraciju i-oktana u rafinatu nije bilo moguće precizno odrediti
zbog preklapanja pikova n-heptana i i-oktana, tj. zbog njihovih bliskih vrelišta. Ako se
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
151
rezultati sa slike 7 usporede s onima u tablici 4 (za dvokomponentnu modelnu otopinu),
može se uočiti da se kod višekomponentne modelne otopine smanjuje djelotvornost
ekstrakcije svih komponenata. Rezultati vezani uz ekstrakciju ne mogu se sa sigurnošću
usporediti s literaturnim s obzirom da u literaturi (Casal, 2010) nisu navedeni uvjeti
provedbe procesa ekstrakcije, odnosno maseni omjer ionska kapljevina/modelna otopina.
Tablica 4. Djelotvornost ekstrakcije (E) piridina iz smjese s ugljikovodikom pomoću ionske
kapljevine; gornji indeks F označava pojnu smjesu – radi se o početnom udjelu piridina
u smjesi s ugljikovodikom
Table 4. Extraction efficiency (E) of pyridine from its mixture with a hydrocarbon using ionic
liquid; superscript F denotes the feed – it is the initial pyridine mass fraction within its
mixture with a hydrocarbon
otapalo/solvent w2F, %
E, %
piridin otapalo/solvent
n-heksan 5,5 43,80 1,85
n-heptan 5,4 45,62 3,36
izooktan 6,0 61,89 1,86
toluen 6,6 29,89 26,51
Slika 7. 1H NMR spektri ionske kapljevine prije i poslije ekstrakcije
Fig. 7. 1H NMR spectra of ionic liquid before and after extraction
C6mmPyTf2N - nakon ekstrakcije / after extraction
C6mmPyTf2N - čista / pure
piridin
piridin
tiofentoluen
i-oktan
PPM 9,0 8,0 7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
152
Zaključci
Eksperimentalno su određene fazne ravnoteže kapljevina–kapljevina u sustavima
ugljikovodik (1) – piridin (2) – [C6mmPy][Tf2N] (3). Vezne su linije uspješno korelirane
NRTL i UNIQUAC modelima, iako se nešto bolje slaganje eksperimentalnih računskih
podataka postiglo korištenjem UNIQUAC modela. Mogućnost primjene [C6mmPy][Tf2N]
kao selektivnog otapala za separaciju smjese piridina i ugljikovodika procijenjena je na
temelju eksperimentalnih vrijednosti koeficijenata raspodjele i selektivnosti ionske
kapljevine i potvrđena provedbom ekstrakcije s dvokomponentnim i višekomponentnim
modelnim otopinama. Sastav modelne otopine pritom utječe na djelotvornost separacije
tiofena iz smjese sa ugljikovodicima.
Literatura
Abrams D.S., Prausnitz, J.M. (1975): Statistical thermodynamics of liquid mixtures: A new
expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21,
116-128.
Casal, M.F. (2010): Desulfurization of fuel oils by solvent extraction with ionic liquids, PhD thesis,
University of Santiago de Compostela, Santiago de Compostela, February 2010.
Gabrić, B., Sander, A., Cvjetko-Bubalo, M., Macut, D. (2013): Extraction of S- and N-compounds from
the mixture of hydrocarbons by ionic liquids as selective solvents, Sci. World J. (2013), 1-11.
Lei, Z., Zhang, J., Li, Q., Chen, B. (2009): UNIFAC model for ionic liquids, Ind. Eng. Chem. Res.
48, 2697-2704.
Martínez-Palou, R., Flores Sánchez, P. (2011): Perspectives of Ionic Liquids Applications for Clean
Oilfield Technologies. In: Ionic Liquids: Theory, Properties, New Approaches, InTech, A.K.
(ed), Rijeka, 567-630.
Othmer, D.F., White, R.E., Trueger, E. (1941): Liquid-liquid extraction data, Ind. Eng. Chem. 33,
1240-1248.
Papaiconomou, N., Yakelis, N., Salminen, J., Bergman, R., Prausnitz, J. (2006): Synthesis and
properties of seven ionic liquids containing 1-methyl-3-octylimidazolium or 1-butyl-4-
methylpyridinium cations, J. Chem. Eng. Data, 51 (4), 1389-1393.
Prausnitz, J.M., Anderson, T.F. Grens, E.A., Eckert, C.A., Hsieh R., O´Connell, J.P. (1980):
Computer Calculations for Multicomponent Vapour-liquid and Liquid-liquid Equilibria,
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.
Renon, H., Prausnitz, J.M. (1968): Local composition in thermodynamic excess functions for liquid
mixtures, AIChE J. 14, 135-144.
Rogošić, M., Sander, A., Pantaler, M. (2014): Application of 1-pentyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of
FCC gasoline, J. Chem. Thermodyn. 76, 1-15.
Song, C. (2003): An overviev of new-approaches to deep desulfurisation for ultra-clean gasoline.
diesel fuel and jet fuel, Catal. Today 86 (1-4), 211-263.
Sorensen J.M., Arlt, W. (1979): DECHEMA Chemistry Data Series, Vol. V (Liquid-Liquid
Equilibrium), 3 Bände Frankfurt, 1979.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
153
Liquid-liquid equilibrium for the system
hydrocarbon – pyridine – C6mmpyTf2N
Marko Rogošić, Aleksandra Sander, Borna Ferčec
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
Liquid–liquid extraction is one of the alternative methods that can be used for denitrification of FCC
gasoline and diesel fuel. Extraction with ionic liquids as selective solvents makes the separation
process ecologically acceptable due to the nonvolatility of ionic liquids as well as their complete
regeneration. Liquid–liquid equilibrium for the systems hydrocarbon – pyridine – C6mmpyTf2N
has been experimentally determined at the atmospheric pressure and 25 °C. Three paraffin
hydrocarbons (n-hexane, n-heptane and i–octane) and one aromatic hydrocarbon (toluene) have
been selected, since FCC gasoline consists mostly of paraffins. Toluene was selected because
aromatic hydrocarbons are soluble in ionic liquids as well, and pyridine is a representative of
nitrogen compounds. Besides the equilibrium curves, the tie lines were determined experimentally
as well. Equilibrium data were described with NRTL and UNIQUAC models. Distribution
coefficients and selectivities of ionic liquid were evaluated. Both of them decrease with increasing
concentration of pyridine. The extraction efficiency is higher for the three-component systems with
paraffins. For the model solution which consists of all selected compounds plus thiophene a
decrease in extraction efficiency was observed with respect to three-component systems.
Keywords: liquid–liquid equilibria, ionic liquids, denitrification, FCC-gasoline, pyridine
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
154
Primjenjivost n-heksadekana pri regeneraciji ionskih kapljevina
UDC: 66.061.14
Valentino Sambolek, Anamarija Slivar, Barbara Žuteg, Martina Hrkovac
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 20, 10000 Zagreb,
Hrvatska
Sažetak
U posljednje se vrijeme sve veća pozornost posvećuje istraživanjima moguće primjene ionskih
kapljevina u različitim industrijskim procesima vezanima upravo za nove postupke i zamjenu
mnogih toksičnih organskih otapala. Mogućnost primjene ionskih kapljevina u različitim
industrijskim granama polazi od specifičnih svojstava koja one posjeduju, kao što su nehlapivost,
stabilnost te mnoga druga. Takva svojstva ističu ionske kapljevine kao obećavajuću alternativu
ekološki nepovoljnim hlapivim organskim otapalima. S obzirom da posjeduju mogućnost višestruke
uporabe i regeneracije, u ovom je radu istražena regeneracija različitih ionskih kapljevina, jedne na
bazi piridina, dok su ostale na bazi imidazola, koje su onečišćene u procesu desulfurizacije modelne
otopine koja sastavom oponaša dizelsko gorivo. Regeneracija ionskih kapljevina provedena je
kapljevinskom ekstrakcijom uz pomoć n-heksadekana kao selektivnog otapala, odabranog na
temelju svojih fizikalnih svojstava. Maseni odnos ionske kapljevine i selektivnog otapala iznosio je
0,5. Nuklearnom magnetskom rezonancijom ispitana je čistoća regeneriranih kapljevina te je
utvrđeno da izostaju karakteristični pikovi dibenzotiofena, koji je jedino onečišćivalo u ispitanim
ionskim kapljevinama.
Ključne riječi: ionske kapljevine, n-heksadekan, regeneracija
Uvod
Znanstvena i tehnička istraživanja primjene ionskih kapljevina razvijaju se u posljednjih 20
godina (Feng i sur., 2010). Interes za takva istraživanja postoji zbog izuzetno povoljnih
svojstava ionskih kapljevina, tališta nižeg od 100 °C, nehlapivosti, mogućnosti podešavanja
fizikalnih i kemijskih svojstava odabirom kationa i aniona, stabilnosti te mnogih drugih.
Takva svojstva ističu ionske kapljevine kao obećavajuću alternativu ekološki nepovoljnim
hlapivim organskim otapalima (Volatile Organic Solvents – VOS), osobito kloriranim
ugljikovodicima (Anugwom i sur., 2011; Feng i sur., 2010; Olivier-Bourbigou i Hughes,
2003; Sander, 2012). Do danas postoji značajan broj osvrta (Feng et al, 2010) na istraživanja
ionskih kapljevina, od najranijih koja su usmjerena na katalitičke procese (Seddon, 1997;
Sheldon, 2001; Zhao et al., 2002) pa sve do detaljnih opisa specifične primjene ionskih
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
155
kapljevina u kemiji kompleksa, analitičkoj kemiji (Koel, 2005), polimernim materijalima te u
nanotehnologiji (Antonietti et al., 2004; Kubisa, 2005).
S rastućim razvojem petrokemijske i automobilske industrije onečišćenje zraka uzrokovano
emisijom sumpornih spojeva (SOx) postaje jedan od glavnih ekoloških problema. Iz tih je
razloga posljednjih godina posvećena posebna pažnja procesu desulfurizacije benzina i
dizelskih goriva u skladu s postroženom zakonskom regulativom. Kako se koncentracija
sumpora u gorivu smanjuje procesom hidrodesulfurizacije (HDS) u uvjetima visokih
temperatura i tlakova te uz potrošnju velikih količina vodika, ionske kapljevine pokazale su se
kao alternativno rješenje, kako za smanjenje negativnog utjecaja ispušnih plinova na zdravlje
ljudi i okolinu, tako i s ekonomskog stajališta (Dharaskar i sur., 2013; Siddiqui i sur., 2013).
Zapravo, postoji oko 20 slučajeva primjene ionskih kapljevina (komercijaliziranih i/ili
korištenih u kemijskoj industriji) koji su poznati javnosti, no iz ekoloških razloga javlja se
problem zbrinjavanja takvih onečišćenih kemikalija. Ionska kapljevina može se ponovno
koristiti bez regeneracije ako njezina kvaliteta ostaje slična izvornoj ionskoj kapljevini
korištenoj za istu svrhu. U većini slučajeva kvaliteta ionske kapljevine smanjuje se tijekom
procesa pa je stoga potrebna njena regeneracija. U tom kontekstu, regeneracija uključuje sve
operacije koje generiraju ionsku kapljevinu koja posjeduje minimalna potrebna svojstva kako
bi se mogla ponovo primijeniti u procesu tako da ne utječe značajno na njegovu izvedbu
(Fernandez i sur., 2011). Bez obzira na to što je korak regeneracije neophodan, nisu pronađene
reference za industrijsku primjenu koje uključuju njihov oporavak i uklanjanje. To indicira na
postojanje, još uvijek, neriješenih problema vezanih uz postupanje s otpadom koji sadrži ionske
kapljevine što usporava napredak prema industrijskim primjenama. Ipak, s ekonomskog
stajališta, potencijal je golem i moguće ga je dalje razvijati (Reichert i sur., 2006).
Cilj ovog rada je istražiti mogućnost regeneracije ionskih kapljevina na bazi piridina i
imidazola, koje su onečišćene u procesu desulfurizacije modelne otopine dizelskog goriva
dibenzotiofenom.
Materijali i metode
Ionske kapljevine
Provedeni su eksperimenti s pet odabranih ionskih kapljevina, jedne na bazi piridina dok
su ostale na bazi imidazola. Odabrane ionske kapljevine većinom imaju isti anion, bis
(trifluorometilsulfonil) imid, a razlikuju se po broju i vrsti supstituenata na bazi kationa.
Korištene ionske kapljevine i njihovi skraćeni nazivi prikazani su u tablici 1.
Osim koeficijenta raspodjele, selektivnosti, uzajamne topljivosti otapala, regeneracije, i
fizikalna svojstva ionske kapljevine (gustoća, , viskoznost, , površinska napetost, ) utječu
na odabir otapala za kapljevinsku ekstrakciju. U tablici 2 prikazana su fizikalna svojstva
korištenih kapljevina.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
156
Tablica 1. Korištene ionske kapljevine i njihova skraćena imena
Table 1. Used ionic liquids and their abbreviated names
1-etil-3-metilimidazolijev etilsulfat
1-ethyl-methylimidazolium ethylsulfate [C2mim][EtSO4]
1-pentil-3-metilimidazolijev bis(trifluorometilsulfonil)imid
1-pentyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C5mim][Tf2N]
1-heksil-3,5 -dimetilpiridinijev bis(trifluorometilsulfonil)imid
1-hexyl-3,5-dimethylpyridinium bis(trifluorometylsulfonyl)imide [C6mmPy][Tf2N]
1-decil-2,3 -dimetilimidazolijev bis(trifluorometilsulfonil)imid 1-decyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide
[C10mmim][Tf2N]
1-benzil-3-metilimidazolijev bis(trifluorometilsulfonil)imid
1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bzmim][Tf2N]
Tablica 2. Fizikalna svojstva ionskih kapljevina (Gabrić i sur., 2013)
Table 2. Physical properties of ionic liquids (Gabrić et al., 2013)
Ionska kapljevina /
ionic liquid ρ kgm Pas mNm
[C2mim][EtSO4] 1236 0,0896 49,3
[C5mim][Tf2N] 1404 0,0525 32,6
[C6mmPy][Tf2N] 1332 0,1152 34,7
[C10mmim][Tf2N] 1269 0,1472 33,3
[bzmim][Tf2N] 1491 0,1508 41,5
Onečišćivalo
Kako su navedene ionske kapljevine, nakon što su onečišćene u procesu desulfurizacije
modelne otopine dizelskog goriva, regenerirane najprije vakuumskim isparavanjem
(Gabrić i sur., 2013), zbog visoke temperature vrelišta (332 °C), nakon tog postupka, kao
jedino onečišćivalo zaostao je dibenzotiofen, C12H8S, čija je struktura prikazana na slici 1.
Slika 1. Struktura dibenzotiofena
Fig. 1. Dibenzothiophene structure
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
157
Selektivno otapalo
Selektivno otapalo korišteno u procesu ekstrakcije je n-heksadekan, C16H34 (Acros
Organics, > 99%). Naime, kako bi se odabralo povoljno selektivno otapalo, posebnu
pozornost treba obratiti na njegova fizikalna svojstva, temperaturu vrenja, Tv, gustoću, ,
molarnu masu, M te eventualnu opasnost prilikom rukovanja (Tablica 3). Osim toga, iz
ekoloških je razloga važno da je otapalo moguće reciklirati te ponovno koristiti
(Meindersma i sur., 2005; Poole i Poole, 2010). Razlog odabira n-heksadekana je
nemješljivost s odabranim ionskim kapljevinama kao i različita gustoća na temelju čega i
dolazi do separacije faza (Gabrić i sur., 2013).
Tablica 3. Svojstva selektivnog otapala
Table 3. Properties of selective solvent
Fizikalna svojstva /
physical properties
n-heksadekan /
n-hexadecane
Tv / °C (vrelište / boiling point) 287
kg m 770
M / g mol-1 226,4
Opasnost / Hazard Iritacija kože / Skin irritation
Određivanje baždarnog dijagrama
Prije provedbe samog procesa potrebno je odrediti baždarni dijagram za sustav ionska
kapljevina–dibenzotiofen. Baždarni dijagram (Tablica 4) određen je mjerenjem indeksa
loma ionske kapljevine u ovisnosti o udjelu prisutnog dibenzotiofena pomoću Abbeovog
refraktometra (Optech Model RMI).
Tablica 4. Jednadžbe baždarnih krivulja korištenih ion. kapljevina te selektivnog otapala
Table 4. Equations of calibration curves of used ionic liquids and selective solvent
Otapalo / solvent Baždarne krivulje / calibration curves
[C2mim][EtSO4] xDBT = -61,5∙nD,252 + 187,0∙nD,25 – 142,1
[C5mim][Tf2N] xDBT = 45,44∙nD,252– 126,96∙nD,25+ 88,63
[C6mmPy][Tf2N] xDBT = 269,44∙nD,252– 776,44∙nD,25+ 559,34
[C10mmim][Tf2N] xDBT = 112,38∙nD,252– 319,51∙nD,25+ 227,07
[bzmim][Tf2N] xDBT = -134,35∙nD,252+ 400,96∙nD,25– 299,10
n-heksadekan / n-hexadecane
xDBT = 244,37∙nD,252– 695,27∙nD,25+ 494,53
xDBT – maseni udio dibenzotiofena u otapalu / mass fraction of
dibenzothiophene in solvent; nD,25 – indeks loma smjese otapala pri 25 °C /
refraction index of mixture of solvents at 25 °C
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
158
Regeneracija ionskih kapljevina kapljevinskom ekstrakcijom
Glavna prednost ekstrakcije pred ostalim separacijskim procesima je njeno provođenje u
blagim radnim uvjetima (niske temperature i tlak) te ušteda velikih količina energije.
Poznata masa onečišćene ionske kapljevine (F) miješa se s određenom količinom
selektivnog otapala (B), slika 2.
Slika 2. Shematski prikaz procesa ekstrakcije
Fig. 2. Schematic description of extraction process
Masa potrebnog selektivnog otapala izračuna se na temelju poznatog solvent odnosa
(omjer mase selektivnog otapala (B) i čiste ionske kapljevine (A)), jednadžba 1.
B
A
mS
m (1)
Nakon razdvajanja faza očita se indeks loma rafinantne faze (R) te zatim, na temelju
određenog baždarnog dijagrama, udio zaostale organske komponente u ionskoj kapljevini
nakon regeneracije.
Efikasnost ekstrakcije izračuna se na temelju jednadžbe 2.
F R
F
x x
x (2)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
159
gdje je Fx maseni udio dibenzotiofena u onečišćenoj ionskoj kapljevini (pojnoj smjesi), a
Rx maseni udio dibenzotiofena u rafinantnoj fazi.
Ekstrakcija je provedena pri sljedećim radnim uvjetima:
solvent odnos: 0,5
vrijeme miješanja: 60 min
vrijeme razdvajanja faza: 20 min
brzina vrtnje miješala: do 300 min-1
.
Rezultati i rasprava
Svrha ovoga rada bila je provesti regeneraciju ionskih kapljevina onečišćenih
dibenzotiofenom, koji je zaostao nakon prethodno provedenog vakuumskog isparavanja
(Gabrić i sur., 2013). Kapljevine su regenerirane postupkom kapljevinske ekstrakcije uz
n-heksadekan kao selektivno otapalo, a čistoća regeneriranih ionskih kapljevina potvrđena
je nuklearnom magnetskom rezonancijom (1H NMR).
Slika 3 prikazuje 1H NMR spektre čiste ionske kapljevine [C6mmPy][Tf2N] te spektre
nakon regeneracije vakuumskim isparavanjem (Gabrić i sur., 2013). Vidljivo je da nakon
vakuumskog isparavanja zaostaju samo karakteristični pikovi koji odgovaraju
dibenzotiofenu zbog njegova visokog vrelišta i nemogućnosti isparavanja. S obzirom da
kapljevine nisu u potpunosti pročišćene vakuumskim isparavanjem, provedena je
kapljevinska ekstrakcija. Spektri za sve ostale ionske kapljevine pokazuju slične
rezultate.
Slika 4 prikazuje usporedbu efikasnosti ekstrakcije za sve navedene ionske kapljevine uz
n-heksadekan kao selektivno otapalo. Vidljivo je da je regeneracija ionske kapljevine
[C2mim][EtSO4] provedena u samo dva stupnja, za razliku od ostalih, za koje je bio
potreban veći broj ekstrakcijskih stupnjeva, osobito za kapljevine [C6mmPy][Tf2N] i
[C10mmim][Tf2N].
Za obje navedene kapljevine povećanje efikasnosti procesa iznad 90% daljnjim
pokušajima ekstrahiranja dibenzotiofena iz kapljevina svježim n-heksadekanom bilo je
presporo, pa nije dosegnuta ravnotežna djelotvornost ekstrakcije u provedenim
stupnjevima.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
160
Slika 3.
1H NMR spektar čiste i korištene ionske kapljevine [C6mmPy][Tf2N] u procesu
pročišćavanja modelne otopine dizelskog goriva te spektar regenerirane
kapljevine vakuumskim isparavanjem (Gabrić i sur., 2013)
Fig. 3. 1H NMR spectra of fresh and used ionic liquid with model solution mimicking
diesel fuel and ionic liquids [C6mmPy][Tf2N] regenerated by
vacuum evaporation (Gabrić et al., 2013)
čista / fresh
korištena /
used
regenerirana /
regenerated
dibenzotiofen / dibenzothiophene
toulen / toulene
piridin / pyridine
tiofen / thiophene
piridin /
pyridine
[C6mmPy][Tf2N]
9,0 8,0 7,0 6,0 5,0 4,0 3,0 2,0 1,0 0,0ppm
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
161
Slika 4. Ovisnost efikasnosti ekstrakcije o broju ekstrakcijskih stupnjeva
za korištene ionske kapljevine pri solvent odnosu 0,5
Fig. 4. Dependence of extraction efficiency on number of extraction steps
for used ionic liquids at solvent ratio 0.5
Relativno velik broj ekstrakcijskih stupnjeva prilikom regeneracije pojedinih ionskih
kapljevina posljedica je izabranog solvent odnosa od 0,5, te bi bilo potrebno ispitati utjecaj
većeg solvent odnosa. Osim toga, početni udio dibenzotiofena razlikovao se u različitim
ionskim kapljevinama (Tablica 5) te je logično da se kapljevine koje sadrže veći udio
onečišćivala, [C6mmPy][Tf2N] i [C10mmim][Tf2N], regeneriraju u većem broju stupnjeva.
Isto tako, daljnje korištenje ionske kapljevine [C10mmim][Tf2N] trebalo bi se istražiti s
ekološkog i toksikološkog stajališta s obzirom da je to polisupstituirana kapljevina s
dugačkim alkilnim lancem, a poznato je da toksičnost raste s povećanjem broja alkilnih
supstituenata (Perić et al., 2012).
Kapljevine [C5mim][Tf2N] i [bzmim][Tf2N] pokazuju slične rezultate te postignutu
efikasnost > 95% u relativno malom broju ekstrakcijskih stupnjeva. Kako su fizikalna
svojstva prisutnih faza te topljivost otopljenih komponenti od ključne važnosti za prijenos
tvari, iz tablice 2 je vidljivo da je ionska kapljevina [C5mim][Tf2N] uslijed najniže
viskoznosti i najmanje površinske napetosti pogodna za regeneraciju. Naime, kapljevine s
nižom viskoznosti, koje imaju manju površinsku napetost lakše se dispergiraju u
selektivnom otapalu čime se pospješuje međufazni prijenos tvari. S druge strane, ionska
kapljevina [bzmim][Tf2N] je najviskoznija te ima najveću gustoću od svih korištenih
kapljevina, a ipak je pokazala vrlo dobre rezultate. Rezultat je to mnogo veće topljivosti
0
10
20
30
40
50
60
70
80
90
100
1 2 3 4 5 6 7 8 9 10
/
%
stupanj ekstrakcije / extraction step
[C2mim][EtSO4]
[C5mim][Tf2N]
[C6mmPy][Tf2N]
[C10mmim][Tf2N]
[bzmim][Tf2N]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
162
dibenzotiofena u n-hekdsadekanu nego u ionskoj kapljevini [bzmim][Tf2N] (Tablica 4).
Nadalje, iz tablice 5 je vidljivo da je udio zaostalog dibenzotiofena u svim ispitanim
kapljevinama nakon regeneracije uz pomoć n-heksadekana manji od 1% što je
zadovoljavajuća čistoća. 1H NMR spektri snimljeni nakon regeneracije ionskih kapljevina s n-heksadekanom na slici 5 ne
ukazuju na prisutnost pikova karakterističnih za dibenzotiofen (8,155; 7,853; 7,45; 7,45 ppm).
Takav rezultat pokazuje da je kapljevinska ekstrakcija uz n-heksadekan, u granicama
osjetljivosti metode (Rogošić et al., 2014), pogodna metoda za regeneraciju ionskih kapljevina.
Slika 5. 1H NMR spektri ionskih kapljevina nakon regeneracije
kapljevinskom ekstrakcijom pomoću n-heksadekana
Fig. 5. 1H NMR spectra of regenerated ionic liquids by liquid-liquid
extraction using n-hexadecane
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
163
Tablica 5. Udio dibenzotiofena u ionskim kapljevinama prije i nakon regeneracije
Table 5. Portion of dibenzothiophene in ionic liquids before and after regeneration
Ionska kapljevina / ionic liquid xDBT,0 / % xDBT,1 / %
[C2mim][EtSO4] 1,58 0,13
[C5mim][Tf2N] 2,69 0,10
[C6mmPy][Tf2N] 6,42 0,82
[C10mmim][Tf2N] 5,63 0,47
[bzmim][Tf2N] 2,95 0,57
Zaključci
Ispitana je mogućnost regeneracije pet različitih ionskih kapljevina onečišćenih
dibenzotiofenom postupkom kapljevinske ekstrakcije.
Kapljevinskom ekstrakcijom uz pomoć n-heksadekana, uz solvent odnos 0,5, ionske
kapljevine pročišćene su do zadovoljavajuće čistoće.
Najbolje rezultate pokazale su ionske kapljevine [C5mim][Tf2N] i [bzmim][Tf2N]. 1H NMR spektri ionskih kapljevina nakon regeneracije ukazuju da nema zaostalog
dibenzotiofena, odnosno da je regeneracija uspješno provedena.
Literatura
Anugwom, I., Mäki-Arvela, P., Salmi, T., Mikkola, J.-P. (2011): Ionic liquid assisted extraction of
nitrogen and sulphur-containing air pollutants from model oil and regeneration of the spent
ionic liquid, J. Environ. Prot. 2, 796-802.
Antonietti, M., Kuang, D., Smarsly, B., Zhou, Y. (2004): Ionic liquids for the convenient synthesis
of functional nanoparticles and other inorganic nanostructures, Angew. Chem. Int. Ed. 43 (38),
4988-4992.
Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z. (2013): Extractive deep
desulfurization of liquid fuels using Lewis-based ionic liquids, J. Energy 2013, 1-4.
Feng, R., Zhao, D., Guo, Y. (2010): Revisiting characteristics of ionic liquids: A review for further
application development, J. Environ. Prot. 1, 95-104.
Fernandez, J.F., Neumann, J., Thöming, J. (2011): Regeneration, recovery and removal of ionic
liquids, Cur. Org. Chem. 15, 1992-2014.
Gabrić, B., Sander, A., Bubalo, M.C., Macut, D. (2013): Extraction of S- and N- compounds from
the mixture of hydrocarbons by ionic liquids as selective solvents, Sci. World J. 2013, 1-11.
Koel, M. (2005): Ionic liquids in the synthesis and modification of polymers, Crit. Rev. Anal. Chem.
35 (3), 177-192.
Kubisa, P. (2005): Ionic liquids in the synthesis and modification of polymers, J. Polym. Sci. A 43
(20), 4675-4683.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
164
Meindersma, G.W., Podt, A., De Haan, A.B. (2005): Selection of ionic liquids for the extraction of
aromatic hydrocarbons from aromatic/aliphatic mixtures, Fuel Process. Technol. 87, 59 - 70.
Olivier-Bourbigou, H., Hughes, F. (2003): Green industrial applications of ionic liquids, Kluwer
Academic Publishers,pp. 67.
Perić, B.M., Marti, E., Sierra, J., Cruanas, R., Garau, M.A. (2012), Green chemistry: ecotoxicity and
biodegradability of ionic liquids. U: Recent Advances in Pharmaceutical Sciences II, Transworld
Research Network, Torrero D.M., Halo, D., Valles, J. (Eds.), Kerala, India, pp. 89-113.
Poole, C.F., Poole, S.K. (2010): Extraction of organic compounds with room temperature ionic
liquids, J. Chrom. A 1217, 2268 - 2286.
Reichert, W.M., Holbrey, J.D., Vigour, K.B., Morgan, T.D., Broker, G. A., Rogers, R.D. (2006):
Approaches to crystallization from ionic liquids: complex solvents–complex results, or, a
strategy for controlled formation of new supramolecular architectures, Chem. Commun. 46,
4767-4779.
Rogošić, M., Sander, A., Pantaler, M. (2014): Application of 1-pentyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of
FCC gasoline, J. Chem. Therm. 76, 1-15.
Sander, A. (2012): Ionske kapljevine u službi zelene kemije, Polimeri, 33, 127-128.
Seddon, K.R. (1997): Ionic liquids for clean technology, J. Chem. Tech. Biotechnol. 68, 351-356.
Sheldon, R. (2001): Catalytic reactions in ionic liquids, Chem. Commun. 2399-2407.
Siddiqui, M.N., Alhooshani, K.R., Gondal, M.A., Ranu, B.C. (2013), u 245. ACS National Meeting
& Exposition, Preprints, Division of Energy and Fuels, Desulfurization of model fuel oil using
novel ionic liquids. 58, 1022-1023.
Zhao, D., Wu, M., Kou, Y., Min, E. (2002): Ionic liquids: Applications in catalysis, Catal. Today
74, 157-189.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
165
The applicability of n-hexadecane in regeneration of ionic liquids
Valentino Sambolek, Anamarija Slivar, Barbara Žuteg, Martina Hrkovac
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
Recently, particular importance is given to investigations connected with the possibility of
application of ionic liquids in diverse industrial processes regarding to new available methods for
regeneration and replacement of many volatile organic solvents. The purpose is to minimize waste
generation and negative impact on environment as well. The possibility of application of ionic
liquids in different industries is initialized by their specific properties like non-volatility, stability
and many others. These properties present ionic liquids as a promising alternative to
environmentally undesirable volatile organic solvents. Since they have possibility to be used and
regenerated many times, in this work the regeneration of diverse ionic liquids, one based on
pyridine and others on imidazole, was investigated. They were contaminated in the desulfurization
process of model solutions that mimic diesel fuel fractions. The regeneration of ionic liquids was
performed by liquid–liquid extraction with n-hexadecane as a selective solvent, which was chosen
on the basis of its physical properties. Mass ratio of ionic liquid and selective solvent was 0,5. The
purity of ionic liquids has been qualitatively determined using nuclear magnetic resonance
spectroscopy. It was confirmed that there were no characteristic peaks for dibenzotiophene, which
was the only pollutant in tested ionic liquids.
Keywords: ionic liquids, n-hexadecane, regeneration
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
166
Uvećanje sušionika s fluidiziranim slojem
UDC: 66.047
Aleksandra Sander, Tomislav Penović, Dario Klarić
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 20, Zagreb,
Hrvatska
Sažetak
Prenošenje rezultata u veće mjerilo u kemijskom se inženjerstvu uglavnom osniva na provođenju
eksperimenata u više geometrijski sličnih uređaja u različitom mjerilu, te se izvode odgovarajući
kriteriji uvećanja. Sušenje je proces za koji se dimenzijska analiza ne može uspješno provesti zbog
utjecaja velikog broja parametara na kinetiku sušenja. Uzevši u obzir istovremeno odvijanje procesa
prijenosa količine gibanja, topline i tvari očito je da se radi o vrlo složenom procesu. Kod sušenja u
fluidiziranom sloju situacija je još složenija zahvaljujući kaotičnom gibanju čestica u struji zraka što
često rezultira neujednačenim hidrodinamičkim uvjetima. Režim strujanja bitno se razlikuje u
sušionicima različitih dimenzija čime je uvećanje dodatno otežano. U svrhu definiranja kriterija
uvećanja sušionika s fluidiziranim slojem, eksperimentalno je istražena kinetika sušenja sferičnih
čestica u dva laboratorijska geometrijski slična sušionika. Mjerenja su provedena pri različitim
brzinama strujanja zraka, temperaturi zraka te visini mirujućeg sloja čestica. Eksperimentalno je
određena minimalna brzina fluidizacije u oba sušionika. Promjer sušionika utječe na režim strujanja
i fluidizacije, što za posljedicu ima sasvim drugačiju kinetiku sušenja. Kinetika sušenja opisana je
Pageovim modelom a parametri modela dovedeni su u vezu s uvjetima sušenja i promjerom
sušionika. Na temelju dobivenih rezultata izvedeni su kriteriji uvećanja za fluidizaciju te kinetiku
sušenja.
Ključne riječi: kinetika sušenja, kriterij uvećanja, minimalna brzina fluidizacije, sušenje s
fluidiziranim slojem
Uvod
Procesi koji se provode u fluidiziranom sloju u velikoj se mjeri koriste u industriji
(Hovmand, 1995). Sušenje u fluidiziranom sloju čest je proces za sušenje čestičnih
materijala (Bahu, 1994). Sušenje je vrlo složen proces tijekom kojeg se istovremeno
odvijaju procesi prijenosa količine gibanja, topline i tvari. Osim toga, proces je nelinearan
a kontrolirajući se mehanizam prijenosa tvari može mijenjati tijekom procesa s obzirom da
ovisi o uvjeti sušenja te svojstvima materijala. Prijenosna svojstva vezana uz svojstva
materijala, kao što su difuzijski koeficijent i koeficijent toplinske vodljivosti materijala,
ovise o temperaturi i sadržaju vlage materijala. Osim toga, tijekom sušenja može doći do
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
167
promjene unutrašnje strukture materijala što može rezultirati promjenom mehanizma
prijenosa vlage, ili se zbog složene strukture istovremeno vlaga može kretati različitim
mehanizmima. Dakle, cijeli niz varijabli i parametara utječe na kinetiku sušenja čime je
matematičko modeliranje procesa uvelike otežano (Kerkhof, 1994).
Općenito govoreći, uvećanje procesa definira se kao metodologija razvoja komercijalnog
uređaja na temelju podataka dobivenih u laboratorijskom mjerilu (Zlokarnik, 2006). Pri
tome je potrebno definirati procesne parametre koji će rezultirati željenim rezultatom
neovisno o veličini uređaja. Postoji nekoliko pristupa u rješavanju tog problema (Genskow,
1994). To su: provođenje eksperimenata na postojećem komercijalnom uređaju, korištenje
postojećih kriterija uvećanja, provođenje eksperimenata u geometrijski sličnim uređajima,
dizajn i testiranje modularnog uređaja te primjena dimenzijske analize. U kemijskom
inženjerstvu za predviđanje vladanja procesa u većem mjerilu uglavnom se
eksperimentalna istraživanja provode u laboratorijskom mjerilu. Na taj se način stječe
potrebno znanje o procesu te se uz primjenu pravila sličnosti dolazi do bezdimenzijskih
značajki i simpleksa koji se u svim mjerilima moraju održavati konstantnim. Međutim
postoje procesi kod kojih se izvedena pravila uvećanja ne mogu primijeniti, jer
geometrijska sličnost ne osigurava dinamičku, toplinsku i koncentracijsku sličnost. Sušenje
je proces na koji utječe velik broj parametara pa nije moguće provesti dimenzijsku analizu
koja bi rezultirala korelacijskom jednadžbom, odnosno pravilom uvećanja. Zbog složenog
višefaznog strujanja, hidrodinamika procesa sušenja u fluidiziranom sloju u velikoj mjeri
otežava prenošenje rezultata iz laboratorijskog u veće mjerilo (poluindustrijsko i
industrijsko) (Briongosa i Guardiolab, 2005). Režimi strujanja nisu isti u svim mjerilima,
zbog čega su različiti i režimi fluidizacije (Dang i sur., 2014). To drugim riječima znači da
će i minimalna brzina fluidizacije iste vrste i dimenzije čestica biti različita u sušionicima
različitih promjera. Literatura nudi kriterije uvećanja koji uglavnom ne sadrže član koji se
odnosi na geometrijske karakteristike sušionika, odnosno faktor uvećanja, R. Uvećanje
procesa sušenja, općenito, kao i sušenja u fluidiziranom sloju u velikoj se mjeri oslanja na
eksperimentalna istraživanja i iskustvena pravila, a dobiveni su rezultati direktno povezani
i primjenljivi na istraživani sustav i odgovarajuće radne uvjete (Kerkhof, 1994). Za
definiranje kriterija uvećanja sušionika s fluidiziranom sloju neophodno je poznavanje
utjecaja uvjeta provedbe procesa na kinetiku sušenja, što uključuje provođenje velikog
broja eksperimenata i matematičko modeliranje kinetike sušenja. Dakle, potrebno je
istražiti utjecaj brzine strujanja zraka, temperature i relativne vlažnosti zraka te visine sloja
čestica na kinetiku i parametre matematičkog modela. Provođenjem eksperimenata u više
(dva ili tri) geometrijski sličnih uređaja u laboratorijskom mjerilu dobiva se pouzdaniji
kriterij uvećanja.
U ovom je radu istraživan utjecaj uvjeta provedbe procesa na kinetiku sušenja sferičnih
čestica katalizatora. Mjerenja su provedena u dva geometrijski slična sušionika različitih
promjera u svrhu definiranja kriterija uvećanja.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
168
Materijali i metode
Materijal
U sušionicima s fluidiziranim slojem sušene su sferične čestice Al2O3-NiO-CaCO3,
katalizatora (dsr = 4,05 mm). Gustoća sferičnih čestica određena je gravimetrijskom
metodom s obzirom da je za fluidizaciju bitan tzv. hidrodinamički volumen, neovisan o
poroznosti čestica. U svrhu definiranja mehanizma prijenosa vlage kroz unutrašnjost
čestica, eksperimentalno je određena raspodjela veličina pora (Micrometrics ASAP 2000).
Eksperimentalni dio
Mjerenja su provedena na dva laboratorijska sušionika s fluidiziranim slojem različitih
dimenzija (D1 = 3,7 cm; Z1 = 73cm i D2 = 5,5 cm; Z2 = 65 cm). Sušionici se sastoje od
cilindrične kolone, puhala zraka, grijača, mjerila protoka (prigušna pločica), dva
manometra (uspravni i kosi), te mjerila stanja zraka. Na vrhu kolone nalazi se ciklon za
separaciju izlaznog zraka i eventualno odnesenih čvrstih čestica, sa posudom za prihvat
čvrstih čestica. Temperatura zraka na ulazu u sušionik mjerena je digitalnim termometrom.
S obzirom da se kinetika sušenja pratila psihrometrijskom metodom, na izlazu iz sušionika
mjerena je temperatura i relativna vlažnost zraka pomoću digitalnog higro-termometra.
Mjerenja su provedena pri različitim temperaturama (50, 57 i 65 °C) i brzinama strujanja
zraka (2,50; 3,13 i 4,50 m/s) te visinama sloja čvrstih čestica (0,96; 1,46; 1,64).
Eksperimentalni su podaci aproksimirani Pageovim modelom (Sander, 2007):
ntk
eq
eXX
XtX
0
eq (1)
te je analiziran utjecaj uvjeta provedbe procesa i veličine sušionika na parametre
matematičkih modela.
Za procjenu minimalne brzine fluidizacije korištene su sljedeće korelacije (Yang, 2003):
Chitester: 7,280494,07,28e 2mf ArR (2)
Hilal: 07,130263,007,13e 2mf ArR (3)
Wen&Yu: 7,330408,07,33e 2mf ArR (4)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
169
Rezultati i rasprava
Gustoća suhih i mokrih čestica Al2O3-NiO-CaCO3, katalizatora određena je
gravimetrijskom metodom. Čestice su vagane i pomičnim mjerilom određen im je promjer.
Mjerenja su napravljena za po 10 čestica, a srednje su vrijednosti 1,71 g/cm3 za suhe i 2,25 g/cm
3
za mokre čestice. S obzirom na promjer čestica te razliku gustoća čestica i zraka, uzorak
pripada D klasi prema Geldartu (1973).
U svrhu predviđanja mehanizma prijenosa vlage kroz unutrašnjost materijala tijekom
sušenja, određena je raspodjela veličina pora (slika 1.). S obzirom na promjer pora može se
zaključiti da će se vlaga uglavnom kretati difuzijskim mehanizmom. Na temelju raspodjele
veličina pora izračunata je poroznost čestica koja iznosi 50%.
Slika 1. Raspodjela veličina pora sferičnih čestica
Fig. 1. Pore size distribution of spherical particles
Minimalna brzina fluidizacije suhih i mokrih čestica određena je pri tri visine mirujućeg
sloja čestica. U tu su svrhu određene krivulje fluidizacije, mjerenjem pada tlaka prazne
kolone i kolone s čvrstim česticama. Na slici 2. prikazani su eksperimentalne i računske
vrijednosti minimalne brzine fluidizacije suhih čestica za oba sušionika. Može se uočiti da
u sušioniku manjeg promjera do fluidizacije dolazi pri većim brzinama (Rao i sur., 2010).
0
10
20
30
40
50
60
70
80
90
100
1 10 100
Q3(d
p),
%
dp, nm
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
170
Povećanjem omjera d/D raste minimalna brzina fluidizacije zbog većeg utjecaja stjenke.
Isto tako i povećanjem omjera H/D raste minimalna brzina fluidizacije. Smanjenjem D
veći dio čestica se nalazi uz samu stjenku što uzrokuje veći utjecaj stjenke. Porastom D
utjecaj stjenke slabi i postaje zanemariv kako se d/D smanjuje. Literaturne korelacijske
jednadžbe za procjenu minimalne brzine fluidizacije ne uzimaju u obzir geometriju
sušionika s obzirom da se brzina računa iz ovisnosti Re = f (Ar). Međutim, Hilalova se
korelacija (Hilal i sur., 2001) može koristiti za procjenu minimalne brzine fluidizacije za
manje vrijednosti d/D te kada je H/D < 1,46, odnosno u slučajevima kada se utjecaj stjenke
može zanemariti. S obzirom da minimalna brzina fluidizacije ovisi o promjeru sušionika
potrebno je definirati kriterij uvećanja. Na temelju eksperimentalnih podataka u dva
geometrijski slična sušionika izvedena je jednadžba koja omogućuje procjenu minimalne
brzine fluidizacije:
RvmH
mHv mf,1
1
2mf,2 (5)
Dobivena jednadžba primjenljiva je za istraživane uvjete sušenja i odabrane sferične
čestice.
Slika 2. Minimalna brzina fluidizacije (experimentalna i procijenjena)
Fig. 2. Minimum fluidization velocity (experimental and evaluated)
0,0
0,5
1,0
1,5
2,0
2,5
0,80 1,00 1,20 1,40 1,60 1,80
v mf, m
/s
H/D
d/D=0,0736
d/D=0,1095
Chitester
Hilal
Wen&Yu
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
171
Kriterij uvećanja općenito mora osigurati isti rezultat u malom i velikom mjerilu. Vezano
za proces sušenja, željeni rezultat je točno definirana kinetička krivulja sušenja. Dakle, u
oba sušionika je potrebno provesti dovoljan broj eksperimenata kako bi se utvrdili utjecaji
uvjeta provedbe procesa na kinetiku sušenja. Zatim je potrebno odabrati matematički
model koji uspješno opisuje eksperimentalne podatke te na kraju izvesti korelacijsku
jednadžbu koja omogućava predviđanje kinetičke krivulje sušenja u većem mjerilu. Važno
je napomenuti da materijal koji se suši mora biti isti u oba mjerila, kao i temperatura i
relativna vlažnost zraka za sušenje. Naime, već je spomenuto da se svojstva materijala
mijenjaju tijekom sušenja što može rezultirati promjenama u njegovoj strukturi. Osim toga,
konačni, odnosno ravnotežni sadržaj vlage materijala na kraju sušenja također ovisi o
temperaturi i relativnoj vlažnosti zraka.
Na slikama 3 do 5 prikazani su utjecaji uvjeta provedbe procesa na kinetiku sušenja.
Porastom temperature raste brzina sušenja, te se smanjuje vrijeme trajanja procesa. Pri
višoj temperaturi relativna vlažnost zraka je manja pa je veća pokretačka sila procesa
prijenosa vlage (slika 3). Veća temperatura i manja relativna vlažnost zraka povećavaju
brzine prijenosa topline i tvari, čime raste i brzina sušenja. Povećanjem visine sloja
mirujućeg čestica raste masa čestica u sušioniku, a s time i masa vlage koja se tijekom
sušenja mora ukloniti iz vlažnog materijala (slika 4). Iako su čestice u stalnom gibanju i sa
svih strana okružene zrakom za sušenje, zrak primi veću količinu vlage kada je u sušionika
veća masa vlažnog materijala, što smanjuje pokretačku silu za proces prijenosa tvari. To
rezultira smanjenjem brzine sušenja i duljim vremenom trajanja procesa. Visina sloja
čestica ima utjecaj na brzinu sušenja kada se glavni otpori prijenosu tvari nalaze na strani
materijala. S druge strane, ako se glavni otpori prijenosu nalaze na strani zraka, brzina
strujanja zraka utjecat će na kinetiku sušenja. Veća brzina strujanja zraka rezultira
povoljnijim hidrodinamičkim uvjetima koji su posljedica smanjenja otpora prijenosu
količine gibanja, topline i tvari, što za posljedicu ima veću brzinu sušenja materijala i kraće
vrijeme trajanja procesa (slika 5).
Za opis kinetike sušenja sferičnih čestica katalizatora odabran je Page-ov model, s obzirom
da se u prethodnim istraživanjima pokazao uspješnim za odabrani materijal (Sander, 2007).
Kinetičke krivulje sušenja u oba sušionika mogu se opisati Pageovim modelom uz visok
stupanj korelacije (>0,99). Parameter n ima vrijednosti oko 1,1 i ne mijenja se s
promjenom uvjeta sušenja i promjerom sušionika. Utjecaj uvjeta provedbe procesa i
promjera sušionika na parametar k prikazan je na slici 7. Vrijednosti parametra k rastu
kako raste i brzina sušenja, odnosno rastu s porastom temperature i brzine strujanja zraka,
te smanjenjem visine mirujućeg sloja čestica. U sušioniku manjeg promjera brzina sušenja
je veća zbog znatno manje mase materijala pri istom omjeru (H/D) koji se suši, iako su
otpori prijenosu količine gibanja, topline i tvari veći zbog nepovoljnijih hidrodinamičkih
uvjeta uzrokovanih utjecajem stjenke.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
172
Slika 3. Utjecaj temperature na kinetiku sušenja (D = 5,5 cm; v = 3,13 m/s; (H/D)=0,96)
Fig. 3. The influence of temperature on the drying kinetics (D = 5.5 cm; v = 3.13 m/s; (H/D)=0.96)
Slika 4. Utjecaj visine mirujućeg sloja čestica na kinetiku sušenja (D = 5,5 cm; v = 3,13 m/s; T=65 °C)
Fig. 4. The influence of the fixed bed height on the drying kinetics (D = 5.5 cm; v = 3.13 m/s; T=65 °C)
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 10 20 30 40
(X-X
eq)/
(X0-X
eq)
t, min
50 °C57 °C65 °C
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 10 20 30 40
(X-X
eq)/
(X0-X
eq)
t, min
0,961,461,64
(H/D)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
173
Slika 5. Utjecaj brzine strujanja zraka na kinetiku sušenja (D = 5,5 cm; (H/D)=1,46; T=57 °C)
Fig. 5. The influence of air stream velocity on the drying kinetics (D = 5.5 cm; (H/D)=1,46; T=57 °C)
Slika 6. Primjenljivost Page-ovog modela
Fig. 6. The applicability of Page model
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 10 20 30 40 50 60
(X-X
eq)/
(X0-X
eq)
t, min
2,50 m/s
3,13 m/s
4,50 m/s
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 10 20 30 40 50
(X-X
eq)/
(X0-X
eq)
t, min
eksperimentalno
experimental
računski calculated
R2 = 0,9924
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
174
a)
b)
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
45 50 55 60 65 70
k
T, °C
3,7 cm
5,5 cm
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,9 1,1 1,3 1,5 1,7
k
(H/D)
3,7 cm
5,5 cm
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
175
c)
Slika 7. Utjecaj uvjeta provedbe procesa na parametar Pageovog modela
(a) v=3,13 m/s; (H/D)=1,46; b) v=3,13 m/s; T=57 °C; c) (H/D)=1,46; T=57 °C)
Fig. 7. The influence of the process conditions on the Page model parameter k
(a) v=3.13 m/s; (H/D)=1,46; b) v=3.13 m/s; T=57 °C; c) (H/D)=1.46; T=57 °C)
U svrhu izvođenja kriterija uvećanja, odnosno izraza koji bi omogućio predviđanje
kinetičke krivulje sušenja u većem mjerilu uspoređene su kinetičke krivulje sušenja u oba
sušionika u istim uvjetima sušenja (temperatura i relativna vlažnost zraka). Kriterij
uvećanja koji služi za procjenu parametra k, Pageovog modela dan je sljedećim izrazom:
,22
1 ,1
1mf
mf
vk
k v R (6)
Zaključci
Istražen je utjecaj temperature, visine mirujućeg sloja čestica, brzine strujanja zraka i
promjera sušionika na kinetiku sušenja u fluidiziranom sloju. Minimalna brzina fluidizacije
raste s porastom visine mirujućeg sloja čestica i smanjenjem promjera sušionika. Veće se
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
0,18
2 3 4 5
k
v, m/s
3,7 cm
5,5 cm
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
176
brzine sušenja ostvaruju u manjem sušioniku, pri višim temperaturama, manjim visinama
sloja čestica te većim brzinama strujanja zraka. Kinetika sušenja uspješno je opisana
Pageovim modelom. Uvjeti koji povećavaju brzinu sušenja rezultiraju višim vrijednostima
parametra Pageovog modela, k. Parametar n ovisi o vrsti i geometrijskim karakteristikama
materijala te je stalan za istraživani materijal. Izvedeni su kriteriji uvećanja za minimalnu
brzinu fluidizacije i kinetiku procesa sušenja na temelju odabranog matematičkog modela.
Literatura
Bahu, R.E. (1994): Fluidised bed dryer scale-up, Dry. Technol. 12 (1&2), 329-340.
Briongosa, J. V., Guardiolab, J. (2005): New methodology for scaling hydrodynamic data from a
2D-fluidized bed, Chem. Eng. Sci. 60, 5151-5163.
Dang, N.T.Y., Gallucci, F., van Sint Annaland, M. (2014): An experimental investigation on the
onset from bubbling to turbulent fluidization regime in micro-structured fluidized beds,
Powder Technol. 256, 166-174.
Geldart, D. (1973): Types of Gas Fluidization, Powder Technol., 7, 285-292.
Genskow, L.R. (1994): Dryer scale-up methodology for the process industries, Dry. Technol. 12
(1&2), 47-58.
Hilal, N., Ghannam, M.T., Anabtawi, M.Z. (2001): Effect of bed diameter, distributor and inserts on
minimum fluidization velocity, Chem. Eng. Technol. 24 (2), 161-165.
Hovmand, S. (1995): Fluidized bed drying. In: Handbook of Industrial Drying, Marcel Dekker, Inc.,
A.S.M. (ed.), New York, pp. 195-248.
Kerkhof, P.J.A.M. (1994): The role of theoretical and mathematical modeling in scale-up, Dry.
Technol. 12 (1&2), 1-46.
Rao, A., Curtis, J.S., Hancock, B.C., Wassgren, C. (2010): The Effect of Column Diameter and Bed
Height on Minimum Fluidization Velocity, AIChE J., 56, 2304-2311.
Sander, A. (2007): Thin-layer drying of porous materials: Selection of the appropriate mathematical
model and relationships between thin-layer models parameters, Chem. Eng. Process., 46,
1324-1331.
Zlokarnik, M. (2006): Scale-up in Chemical Engineering, Weinheim, WILEY-VCH Verlag GmbH
& Co. KgaA, pp. 181-205.
Yang, W.-C. (2003): Bubbling fluidized beds. In: Handbook of fluidisation and fluid-particle
systems, Marcel Dekker, Inc, Y.W-C. (ed.), New York, pp: 63-121.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
177
Scale-up of fluid bed dryer
Aleksandra Sander, Tomislav Penović, Dario Klarić
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
Scale-up in chemical engineering is usually based on laboratory scale experiments performed in at
least two or three pieces of geometrically similar equipment and derivation of scale-up rules.
Generally speaking, derivation of scale-up rules based on dimensional analysis cannot be applied on
the drying process since a large number of parameters influence the drying kinetics. Taking into
account only simultaneous transfer of momentum, heat and mass it is quite obvious how complex
the drying process is. In fluid bed drying the situation is even more complex due to the chaotic
motion of particles in the stream of hot air resulting with nonuniform hydrodynamic conditions.
Besides that, the flow regime is greatly influenced by the dryer size so it is very hard to predict the
drying kinetics in a larger scale dryer. In order to define the scale-up rules for a fluid bed dryer,
spherical particles of Al2O3-NiO-CaCO3 catalyst have been dried in two geometrically similar
laboratory fluid bed dryers. Experiments have been performed at different temperatures and flow
rates of the drying air, for three bed heights. Minimum fluidization velocity was determined
experimentally for both dryers. Based on the obtained results it can be concluded that the size of the
dryer influences the drying kinetics of spherical particles. The drying kinetics was approximated by
the Page model. Evaluated parameters were correlated with the drying conditions and the size of
dryer. Scale-up rules for minimum fluidization velocity and drying kinetic curve were defined.
Keywords: drying kinetics, fluid-bed drying, minimum fluidization velocity, scale-up rule
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
178
Nova otapala za ekstrakciju tiofena iz smjese sa n-heksanom
UDC: 66.061 : 547.7
Aleksandra Sander, Mladena Dujmenović, Maja Žužić
Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Marulićev trg 19, 10000 Zagreb,
Hrvatska
Sažetak
Desulfurizacija motornih benzina i dizelskog goriva jedan je od većih problema s kojima se suočava
naftno-petrokemijska industrija. U današnje se vrijeme sve veći broj znanstvenika bavi istraživanjem
mogućnosti adaptacije postojećih procesa kao i razvojem novih tehnologija kojima bi se osigurala
željena kvaliteta tekućih goriva. Kapljevinska ekstrakcija pomoću ekološki prihvatljivih otapala,
posebno je zanimljiva s obzirom da je ekstrakcija proces koji se provodi pri blagim radnim uvjetima.
Primjena ionskih kapljevina u procesu ekstrakcijske desulfurizacije predmet je velikog broja
istraživanja. U novije se vrijeme kao selektivno otapalo koriste i smjese ionskih kapljevina, te
eutektičke smjese. Ionske kapljevine i eutektičke smjese posjeduju izuzetna svojstva čime
zadovoljavaju većinu zahtjeva koji moraju biti ispunjeni prilikom odabira otapala. Osim njihove
nehlapivosti, za ekstrakciju je bitna velika selektivnost otapala te velike brzine prijenosa tvari. U ovom
je radu istražena mogućnost primjene smjesa dviju ionskih kapljevina u različitim masenim omjerima
(1-etil-3-metilimidazol etilsulfat 1-pentil-3-metilimidazol bis(trifluormetilsulfonil)imid; 1-etil-3-
metilimidazol etilsulfat - 1-heksil-3,5-dimetilpiridin bis(trifluormetilsulfonil)imid; 1-etil-3-
metilimidazol etilsulfat - 1-benzil-3-metilimidazol bis(trifluormetilsulfonil) imid i 1-heksil-3,5-
dimetilpiridin bis(trifluormetilsulfonil)imid - 1-benzil-3-metilimidazol bis(trifluormetilsulfonil)imid) te
eutektičke smjese kolin-klorid/glicerol kao selektivnog otapala u procesu separacije smjese tiofena i n-
heksana kapljevinskom ekstrakcijom. Porastom udjela ionske kapljevine veće ekstrakcijske efikasnosti
u smjesi dviju ionskih kapljevina dobiva se rafinat veće čistoće. Ionske kapljevine i njihove smjese
pogodnija su otapala za separaciju tiofena i n-heksana, od eutektičke smjese kolin-klorid/glicerol.
Ključne riječi: desulfurizacija, ekstrakcija kapljevina-kapljevina, eutektičke smjese, ionske kapljevine
Uvod
Smanjenje sadržaja sumporovih spojeva iz motornih benzina predmet je mnogih
istraživanja zbog sve većih zahtjeva vezanih za očuvanje okoliša. Naime izgaranjem goriva
nastaju između ostalog sumporovi oksidi u velikoj mjeri zaslužni za nastajanje kiselih kiša.
Komercijalni proces desulfurizacije motornih benzina (HDS) nepovoljan je jer se provodi
pri uvjetima visokog tlaka te se troše velike količine vodika kako bi se smanjio sadržaj
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
179
sumporovih spojeva do željene niske koncentracije (Song, 2003). Zbog toga se istražuju
alternativne metode desulfurizacije koje uključuju oksidacijsku desulfurizaciju (ODS), bio-
desulfurizaciju (BDS), adsorpcijsku desulfurizaciju (ADS) te ekstrakcijsku desulfurizaciju
(EDS) (Wilfred et al., 2012). Ekstrakcijska desulfurizacija posebno je zanimljiva zbog
blagih uvjeta provedbe procesa (sobna temperatura i atmosferski tlak). Do sada je
komercijalni proces EDS-a koristio sulfolan kao selektivno otapalo. Kako bi ekstrakcija
bila ekološki i ekonomski povoljan proces potrebno je odabrati otapalo koje neće biti
štetno za okoliš, te će se moći jednostavno regenerirati i vratiti natrag u proces (Gabrić et
al., 2013). Otapala koja zadovoljavaju većinu zahtjeva pri razvoju procesa kapljevinske
ekstrakcije su ionske kapljevine i eutektičke smjese. I jedna i druga grupa otapala
posjeduju izuzetna svojstva čime se već na prvi pogled razlikuju od komercijalnih
molekularnih otapala (Francisco et al.; 2010, Daia et al.; 2013, Hayyan et al., 2013). Radi
se o nehlapljivim otapalima sposobnim otopiti različite vrste spojeva uz znatno veće brzine
prijenosa tvari. Ionske se kapljevine sastoje od kationa i aniona čija kombinacija utječe na
njihova svojstva. Pravilnim odabirom kationa i aniona moguće je dizajnirati otapalo za
željenu svrhu. Međutim, iako su nahlapljive nisu sve ionske kapljevine ekološki
prihvatljive, bilo zbog spojeva koji se koriste za njihovu sintezu bilo zbog nepovoljnog ili
neistraženog utjecaja na vode i tlo. S druge strane eutektičke smjese (DES) u potpunosti su
ekološki prihvatljive čime postaju zanimljiv odabir u separacijskim procesima koji
uključuju pomoćnu komponentu, kao što je na primjer kapljevinska ekstrakcija. Dok je
primjena različitih ionskih kapljevina u procesu desulfurizacije motornih benzina i
dizelskog goriva istraživana u velikoj mjeri, upotreba eutektičkih smjesa u tu svrhu tek je u
začetku (Li et al., 2013). Osim toga do danas su publicirana samo dva rada u kojima se
koriste smjese ionskih kapljevina u svrhu dobivanja otapala još boljih svojstava (Garcia et
al., 2012; Fletcher et al., 2003).
U ovom je radu istražen utjecaj sastava smjese ionskih kapljevina (C2mimEtSO4,
[C5mim][Tf2N], [bzmim][Tf2N] i [C6mmPy] [Tf2N]) na efikasnost ekstrakcije tiofena iz
smjese s n-heksanom. Osim navedenih ionskih kapljevina kao selektivno je otapalo
korištena i eutektička smjesa kolin-klorid/glicerol. Efikasnost ekstrakcije, , računata je
korištenjem sljedećeg izraza:
F
RF
w
ww (1)
gdje su: wF i wR, maseni udjeli tiofena u pojnoj smjesi i rafinatu.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
180
Istraženo je i kako se mijenjaju svojstva smjesa ionskih kapljevina (gustoća, viskoznost i
površinska napetost) ovisno o njihovom udjelu u smjesi. Navedena su svojstva izračunata
iz svojstava čistih ionskih kapljevina.
Gustoća smjese, s:
2111 1 xxs (2)
gdje su: x1, molni udio komponente 1 u smjesi, a 1 i 2 gustoće komponenata 1 i 2 u
smjesi.
Viskoznost smjese, s:
2111 1 wws (3)
gdje su: w1, maseni udio komponente 1 u smjesi, a 1 i 2 viskoznosti komponenata 1 i 2 u
smjesi.
Površinska napetost smjese, s:
2111 1 xxs (4)
gdje su: 1 i 2 površinske napetosti komponenata 1 i 2 u smjesi.
Eksperimentalni dio
Materijali
U procesu uklanjanja tiofena iz smjese sa n-heksanom korištena su sljedeća otapala: ionske
kapljevine (C2mimEtSO4, [C5mim][Tf2N], [bzmim][Tf2N] i [C6mmPy] [Tf2N]) i
njihove smjese (u masenim omjerima: 1:1; 1:2 i 2:1), te eutektička smjesa kolin-
klorid/glicerol. Sinteza ionskih kapljevina opisana je u literaturi (Gabrić et al., 2013).
Čistoća ionskih kapljevina određena je 1H NMR spektroskopijom (Bruker AV300) na
Institutu Ruđer Bošković iz Zagreba. Kolin klorid i glicerol pomiješani su u molnom
omjeru 1:2, te je dobivena smjesa miješana u rotacijskom vakuum isparivaču na 60 °C i
250 mbara sve dok se nije dobila bezbojna jednofazna kapljevina.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
181
Mjerenje gustoće, viskoznosti i površinske napetosti
Viskoznost čistih ionskih kapljevina i eutektičke smjese izmjerena je pomoću reometra
(Brookfield DV-III Ultra Programmable Rheometer). Gustoća i površinska napetost
izmjerene su pomoću tensiometra (KRUSS K9). Sva su mjerenja provedena pri
temperaturi od 25 °C.
Ekstrakcija kapljevina - kapljevina
Mjerenja su provedena u laboratorijskom šaržnom ekstraktoru opremljenom s magnetskim
miješalom. Početni maseni udio tiofena u smjesi sa n-heksanom bio je 19,5 %. U smjesu
tiofena i n-heksana dodano je otapalu uz solvent odnos S = 0,25 kg/kg. Dobivena se smjesa
miješala 30 minuta. Nakon separacije faza, koja je trajala 30 minuta, refraktometrijskom
metodom (Abbeov refraktometar Model RMI, Exacta Optech) određena je koncentracija
rafinatne faze. Baždarna krivulja dana je sljedećom jednadžbom:
41,5594,7027,22 25,225, DD nnw (5)
gdje su: w, maseni udio tiofena u smjesi s n-heksanom, a nD,25, indeks loma pri 25 °C.
Rezultati i rasprava
U svrhu istraživanja utjecaja vrste i sastava selektivnog otapala na efikasnost ekstrakcije
tiofena iz smjese sa n-heksanom provedena je ekstrakcija kapljevina-kapljevina u
laboratorijskom ekstraktoru pri sobnim uvjetima. Mjerenja su provedena sa četiri ionske
kapljevine, njihovim smjesama te jednom eutektičkom smjesom. U tablici 1 date su
vrijednosti gustoće, viskoznosti i površinske napetosti istraživanih otapala i modelne
otopine.
Tablica 1. Gustoća, viskoznost i površinska napetost modelne otopine i odabranih otapala
Table 1. Density, viscosity and surface tension of model solutions and selected solvents
Otapalo / Solvent , kg m-3 , Pa s , mN m-1
modelna otopina / model solution
C2mimEtSO4 [C5mim][Tf2N]
[C6mmPy] [Tf2N]
[bzmim][Tf2N]
Kolin-klorid/glicerol / choline-chloride/glycerol
706
1236
1404
1332 1491
1192a
3,6210-4
0,0896 0,0525
0,1152
0,1508
0,3027
19,5
49,3
32,6
34,7 41,5
59,0b a – Yadav et al., 2014; b – Harris, 2008
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
182
Naime, gustoća i viskoznost u velikoj mjeri utječu na odabir odgovarajućeg otapala za
ekstrakciju tiofena iz smjese sa n-heksanom. S obzirom da je potrebna dovoljno velika
razlika u gustoćama između modelne otopine i selektivnog otapala, može se zaključiti da
sva otapala zadovoljavaju taj uvjet. Što se tiče viskoznosti i površinske napetosti
najpovoljnije otapalo je [C5mim][Tf2N] a najnepovoljnije kolin-klorid/glicerol. Viskoznost
otapala mora biti što manja kako bi se otapalo lakše dispergiralo, a na taj se način
osigurava veća specifična međufazna površina. Osim toga, proces prijenosa tvari odvijat će
se većom brzinom. Međutim, osim fizikalnih svojstava vrlo su važna i termodinamička
svojstva, odnosno koeficijent raspodjele i selektivnost, te topljivost svih komponenti
modelne otopine u odabranom otapalu. Istražena je i međusobna topljivost n-heksana i svih
istraživanih otapala, a rezultati su prikazani u tablici 2.
Tablica 2. Topljivost n-heksana i tiofena u odabranim otapalima izražena kao maseni udio,
koeficijent raspodjele tiofena i selektivnost otapala
Table 2. Solubility of n-hexane and thiophene in the selected solvents in mass fraction, thiophene
distribution coefficient and selectivity of solvent
w(n-heksan) w(tiofen) S Lit./Ref.
C2mimEtSO4 [C5mim][Tf2N]
[C6mmPy] [Tf2N] [bzmim][Tf2N]
Kolin-klorid/glicerol
0,003
0,034 0,050
0,012
0,000
0,468
0,557 0,614
0,524
-
1,42
0,67 2,52
0,46
0,21
121,81
12,33 13,77
19,81
-
Casal,2010
Rogošić et al., 2014 Casal,2010
Ovaj rad
Ovaj rad
n-heksan je u slabo topljiv u svim istraživanim ionskim kapljevinama dok je netopljiv u
kolin-klorid/glicerolu. S druge strane sva odabrana otapala netopljiva su u n-heksanu, čime
je zadovoljen uvjet vezan za međusobnu nemješljivost primarnog i sekundarnog otapala.
Izračunate vrijednosti koeficijenta raspodjele i selektivnosti otapala za uvjete
provođenja ekstrakcije prikazane su također u tablici 2. Ionske kapljevina u kojima je
topljiv i n-heksan manje su selektivne, a najveći koeficijent raspodjele ostvaren je uz
korištenje [C6mmPy] [Tf2N]. Uzevši u obzir sva navedena svojstva i veličine, za očekivati
je da će upravo ta ionska kapljevina biti najpogodnije otapalo za ekstrakciju tiofena iz
smjese sa n-heksanom.
Efikasnost ekstrakcije čistih otapala pri solvent odnosu 0,25 i početnoj koncentraciji
tiofena od 19,5% prikazana je na slici 1. Kao najpovoljnija ionska kapljevina pokazala se
[C6mmPy] [Tf2N], a najniža efikasnost ekstrakcije ostvarena je korištenjem eutektičke
smjese kolin-klorid/glicerol. Gabrić i sur. (2013) istraživali su utjecaj različitih ionskih
kapljevina na efikasnost ekstrakcije sumporovih i dušikovih spojeva iz modelnih otopina
Fluid Catalytic Cracking, FCC benzina i dizelskog goriva. Prema njihovim podacima, za
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
183
modelnu otopinu FCC benzina najpovoljnija je bila ionska kapljevina [C5mim][Tf2N], a za
modelnu otopinu diselskog goriva [C6mmPy] [Tf2N]. Očito je da sastav modelne otopine u
velikoj mjeri utječe na sposobnost ionske kapljevine da otopi željenu komponentu. U
navedenom su radu modelne otopine bile višekomponentne, a osim tiofena u ionskim su se
kapljevinama otapali piridin i toluen.
Slika 1. Ekstrakcijska efikasnost čistih odabranih otapala (S = 0,25 kg / kg)
za uklanjanje tiofena iz smjese sa n-heksanom
Fig. 1. Extraction efficiency of pure selected solvent (S = 0,25 kg / kg)
for separation of thiophene and n-hexane
Kako bi se istražila mogućnost korištenja smjese ionskih kapljevina kao selektivnog
otapala u procesu ekstrakcije tiofena iz smjese sa n-heksanom, pripravljene su smjese od
po dvije ionske kapljevine u različitim masenim omjerima. S obzirom da je najmanja
efikasnost uočena za ionsku kapljevinu C2mimEtSO4, istraženo je kako dodatak ostale
tri istraživane ionske kapljevine utječe na efikasnost uklanjanja tiofena iz smjese sa n-
heksanom. Na slikama 2, 3 i 4 prikazane su izračunate vrijednosti gustoća, viskoznosti i
površinskih napetosti smjesa ionskih kapljevina. Svojstva smjese dviju ionskih kapljevina
nalaze se između svojstava čistih otapala. Kako je ionska kapljevina [C5mim][Tf2N] manje
viskoznosti od C2mimEtSO4, dodatkom [C5mim][Tf2N] u C2mimEtSO4 viskoznost
smjese opada. Dodatak ostalih dviju ionskih kapljevina u C2mimEtSO4 rezultira
porastom viskoznosti smjese što je nepovoljno s aspekta ukupne površine izmjene tvari i
brzine prijenosa tvari. Gustoća smjesa ionskih kapljevina raste s porastom udjela ionske
0 5 10 15 20 25 30
kolin-klorid/glicerol
[C2mim][EtSO4]
[C5mim][Tf2N]
[bzmim][Tf2N]
[C6mmPy] [Tf2N]
, %
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
184
kapljevine veće efikasnosti ekstrakcije, što ide u prilog odabiru selektivnog otapala. Na
površinsku napetost smjese u najvećoj mjeri utječe dodatak [C5mim][Tf2N]. Međutim, ako
se u obzir uzmu i topljivost tiofena, te koeficijent raspodjele i selektivnost otapala, za
očekivati je da će se najbolji rezultati, u smislu povećanja efikasnosti ekstrakcije, dobiti
dodatkom [C6mmPy] [Tf2N].
Slika 2. Utjecaj sastava smjese ionskih kapljevina na viskoznost smjese
Fig. 2. Dependence of the mixed ionic liquids viscosity and its composition
Ekstrakcijska efikasnost smjese dviju ionskih kapljevina ovisno o sastavu smjese,
prikazana je na slici 5. Efikasnost ekstrakcije raste s porastom udjela dodane ionske
kapljevine u smjesi sa C2mimEtSO4. Na povećanje efikasnosti ekstrakcije u najvećoj
mjeri utječe dodatak ionske kapljevine na bazi piridina, što je u skladu sa zaključcima
izvedenim na temelju svojstava ionskih kapljevina, te rezultata dobivenih korištenjem
čistih ionskih kapljevina.
0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16
0 0,2 0,4 0,6 0,8 1
, P
a s
w1([C2mim][EtSO4])
C2-C5
C2-BM
C2-C6
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
185
Slika 3. Utjecaj sastava smjese ionskih kapljevina na gustoću smjese
Fig. 3. Dependence of the mixed ionic liquids density and its composition
Slika 4. Utjecaj sastava smjese ionskih kapljevina na površinsku napetost smjese
Fig. 4. Dependence of the mixed ionic liquids surface tension and its composition
0
200
400
600
800
1000
1200
1400
1600
0 0,2 0,4 0,6 0,8 1
, k
g/m
3
w1([C2mim][EtSO4])
C2-C5
C2-BM
C2-C6
0
10
20
30
40
50
60
0 0,2 0,4 0,6 0,8 1
, m
N/m
w1([C2mim][EtSO4])
C2-C5
C2-BM
C2-C6
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
186
Slika 5. Utjecaj sastava smjese ionskih kapljevina na efikasnost ekstrakcije
tiofena iz smjese sa n-heksanom
Fig. 5. The influence of the composition of mixture on the extraction efficiency
Karakterizacija ionskih kapljevina i njihovih smjesa
Ionske kapljevine i njihove smjese prije i nakon ekstrakcije karakterizirane su 1H NMR
spektroskopijom. Na slici 6 prikazani su 1H NMR spektri za ionske kapljevine
C2mimEtSO4 i [C5mim][Tf2N]. Miješanjem dviju ionskih kapljevina dobiva se
homogena kapljevita smjesa čiji 1H NMR spektar sadrži karakteristične pikove obiju
ionskih kapljevina. Nakon ekstrakcije tiofena iz smjese sa n-heksanom na 1H NMR spektru
mogu se uočiti pikovi koji odgovaraju tiofenu. Iako je n-heksan slabo topljiv u
[C5mim][Tf2N] njegovo prisustvo u ionskoj kapljevini nakon ekstrakcije nije moguće
potvrditi. Očito je koncentracija vrlo mala, pa se ovom metodom ne može detektirati. Čak
niti korištenjem čistih ionskih kapljevina u kojima je n-heksan djelomično topljiv, n-heksan
nije bilo moguće detektirati 1H NMR spektroskopijom.
0
5
10
15
20
25
30
0 0,2 0,4 0,6 0,8 1
, %
w1([C2mim][EtSO4])
C2-C5
C2-C6
C2-BM
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
187
Slika 6. 1H NMR spektri čistih ionskih kapljevina C2mimEtSO4 i
[C5mim][Tf2N], te njihovih smjesa prije i nakon ekstrakcije
Fig. 6. 1H NMR spectras of fresh ionic liquids C2mimEtSO4 and
[C5mim][Tf2N] and its mixture, before and after extraction
Zaključci
Poznavanje fizikalnih svojstava ionskih kapljevina, te topljivosti tiofena u ionskim
kapljevinama omogućuje odabir ionske kapljevine kao selektivnog otapala u procesu
ekstrakcije tiofena iz smjese sa n-heksanom.
Odabrane ionske kapljevine mogu se koristiti kao selektivna otapala u procesu uklanjanja
tiofena iz smjese s n-heksanom, ekstrakcijom kapljevina – kapljevina. Učinkovitost ionskih
kapljevina u navedenom procesu desulfurizacije raste u smjeru: C6mmPy] [Tf2N] >
[bzmim][Tf2N] > C5mim][Tf2N] > C2mimEtSO4. Eutektička smjesa kolin-klorid/glicerol,
najmanje je učinkovita.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
188
Dodatkom ionskih kapljevina C6mmPy] [Tf2N], [bzmim][Tf2N] i C5mim][Tf2N] ionskoj
kapljevini najmanje učinkovitosti, C2mimEtSO4, raste učinkovitost ekstrakcije tiofena
iz smjese sa n-heksanom.
Porastom udjela učinkovitije ionske kapljevine u smjesi raste i učinkovitost ekstrakcije
tiofena iz smjese sa n-heksanom. 1H NMR spektroskopijom utvrđeno je da u procesu prijenosa tvari sudjeluje samo tiofen, s
obzirom da prisutnost n-heksana u ionskih kapljevinama i njihovim smjesama nije uočena.
Literatura
Daia, Y., van Spronsenb, J., Witkampb, G-J., Verpoortea, R., Choia, J.H. (2013): Natural deep
eutectic solvents as new potential media for green technology, Anal. Chim. Acta 766, 61-68.
Casal, M.F. (2010): Desulfurization of fuel oils by solvent extraction with ionic liquids, PhD thesis,
Santiago de Compostela, University of Santiago de Compostela.
Fletcher, K.A., Baker,S. N., Bakerb, G. A., Pandey, S. (2003): Probing solute and solvent
interactions within binary ionic liquid mixtures, New J. Chem. 27, 1706-1712
Francisco, M., Arce, A., Soto, A. (2010): Ionic liquids on desulfurization of fuel oils, Fluid Phase
Equilibr. 294, 39-48.
Gabrić, B., Sander, A., Cvjetko-Bubalo, M., Macut, D. (2013): Extraction of S- and N-compounds
from the mixture of hydrocarbons by ionic liquids as selective solvents, Sci. World J. (2013),
1-11.
García, S., Larriba, M., García, J., Torrecilla, J. S., Rodríguez, F. (2012): Liquid–liquid extraction of
toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-
butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids, Chem. Eng. J. 180, 210-215.
Harris, R.C. (2008): Physical Properties of Alcohol Based Deep Eutectic Solvents, PhD Thesis,
Leicester, USA, University of Leicester.
Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M., Mirghani, M.E.S., Saheed
O.K. (2013): Are deep eutectic solvents benign or toxic?, Chemosphere 90, 2193-2195.
Li, C., Li, D., Zou, S., Li, Z., Yin, J., Wang, A., Cui, Y., Yaoa, Z., Zhaoa, Q. (2013): Extraction
desulfurization process of fuels with ammonium-based deep eutectic solvents, Green Chem.
15, 2793-2799.
Rogošić, M., Sander, A., Pantaler, M. (2014): Application of 1-pentyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of
FCC gasoline, J. Chem. Thermodyn. 76, 1-15.
Song, C. (2003): An overviev of new-approaches to deep desulfurisation for ultra-clean gasoline.
diesel fuel and jet fuel, Catal. Today 86 (1-4), 211-263.
Wilfred, C.D., Kiat, C.F., Man, Z., Bustam, M.A., Mutalib, M.I.M., Phak, C.Z. (2012): Extraction
of dibenzothiophene from dodecane using ionic liquids, Fuel Process. Technol. 93 (1), 85-89.
Yadav, A., Trivedi, S., Rai, R., Pandey, S. (2014): Densities and dynamic viscosities of (choline
chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range
(283.15–363.15), Fluid Phase Equilibr. 367, 135-142.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Kemijsko i biokemijsko inženjerstvo / Chemical and biochemical engineering
189
New solvents for extraction of thiophene from the mixture with n-hexane
Aleksandra Sander, Mladena Dujmenović, Maja Žužić
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 20,
HR-10000 Zagreb, Croatia
Summary
Desulphurization and denitrification of petrol and diesel fuels is one of the leading problems in the
oil and petrochemical industry. Today, more and more scientists are researching ways to adapt
existing processes and also developing new technologies that would ensure the desired quality of
liquid fuels. Liquid-liquid extraction by eco-friendly solvents is especially interesting because
extraction as a process can be carried out at mild process conditions. The use of ionic liquids in
extraction desulphurization processes is the object of a large number of investigations. Lately, ionic
liquid mixtures and deep eutectic solvents are used as selective solvents. Ionic liquids and deep
eutectic solvents posses excellent properties that satisfy the majority of the needs that have to be
fulfilled when choosing a solvent. Apart from them being nonvolatile, a key factor for extraction is
to ensure a high selectivity towards the components that need to be extracted from the liquid
mixture and to achieve high mass transfer rates. In this work the possibility of using a mixture of
two ionic liquids at different mass ratios (C2mimEtSO4-[C5mim][Tf2N]; C2mimEtSO4-
[C6mmPy] [Tf2N]; C2mimEtSO4-[bzmim][Tf2N] and [C6mmPy] [Tf2N]- [bzmim][Tf2N]) and
also the use of an deep eutectic solvent choline- chloride/glycerol (1:2, n) as selective solvents in the
separation of tiophene and n-hexane by liquid-liquid extraction has been investigated. Raffinate of
higher purity is gained by using a ionic liquid mixture that has higher fractions of the more effective
ionic liquid in the mixture. Ionic liquids and their mixtures are more adequate solvents for the
separation of tiophene and n-hexane than deep eutectic solvent choline-chloride/glycerol.
Keywords: deep eutectic solvents, desulfurization, ionic liquids, liquid-liquid extraction
Sekcija: Prehrambena tehnologija i biotehnologija
Session: Food technology and biotechnology
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
190
Isolation and characterization of volatile and non-volatile phytochemicals
from orange (Citrus sinensis L.) peel
UDC: 661.16 : 543.42
634.31
Sara Bebić1, Franko Burčul
2, Ivana Generalić Mekinić
3, Ivica Blažević
1
University of Split, Faculty of Chemistry and Technology,
1Department of Organic Chemistry,
2Department of Biochemistry,
3Department of Food Technology and Biotechnology, Teslina 10/V,
HR-21000 Split, Croatia
Summary
Citrus sinensis L. belongs to Rutaceae family. The following study was aimed to identify volatile
and non-volatile phytochemicals isolated by different methods from dried orange peel. Volatiles
isolated by hydrodistillation in Clevenger type apparatus as well as by petrolether extraction in
Soxlet apparatus were analysed by GC-MS. The volatile oil as well as petrolether extract contained
more than 90% of monoterpene limonene. Other minor compounds were also identified such as:
monoterpenes (- and -pinene, sabinene, ocimene, etc.); sesquiterpenes (-caryophyllene, -copaene,
-elemene, valencene, etc.); alcohols (linalool, - and - terpineol); esters (neryl acetate, geranyl
acetate, ethyl linoleate etc.) and others. The MetOH extraction of non-volatile phytoconstituents was
performed after petrolether extraction in Soxlet apparatus as well as by the alkaline (KOH)
extraction of the peels. The non-volatile compound obtained by crystallization was identified as
hesperetin, the aglycone of flavanon hesperidin. Limonene and hesperetin were analysed by
using spectroscopic methods and tested for their antioxidant and cholinesterase inhibitory
activity.
Keywords: Citrus sinensis, limonene, hesperetin, GC-MS, NMR
Introduction
Citrus fruits belong to six genera (Fortunella, Eremocitrus, Clymendia, Poncirus,
Microcitrus and Citrus) but the major commercial fruits belong to Citrus genus. The genus
Citrus (Rutaceae) includes several important fruits such as oranges, mandarins, limes,
lemons and grape fruits. The Mediterranean basin is one of the most important production
area of citrus fruits in the world, concentrating 18% of the production and above all
exporting slightly more than half of the overall citrus fruits exchanged in the world
(Schimmenti et al., 2013).
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
191
There are two modern species of orange, Citrus aurantium (the bitter or Seville orange) and
Citrus sinensis (the sweet orange). The fruits are both consumed fresh and industrially
processed. The pulps, which are rich in soluble sugars, significant amounts of vitamin C,
pectin, fibers and different organic acids, are mainly processed into juice (Qiao et al., 2008).
The remaining orange peels represent around 45% of the total by-products. Consequently, if
treated as waste materials, the orange peel may create environmental problems. This problem
could be turned into an asset, if phytochemicals are extracted from orange peels and applied
as natural products. Chemical industry extracts from Citrus bioactive compounds like
flavonoids, vitamins, dietary fibers and essential oils, etc. which have beneficial effects on
human health. Orange peels containing abundant fragrant substances are extensively applied
for processing into essential oils which are used commercially for flavoring foods, beverages,
perfumes, cosmetics, etc. Citrus oils extraction methods include steam distillation, cold
pressing and static headspace solid-phase microextraction (Liu et al., 2014 ). Many
researchers have studied the volatile compounds of this fruit using different analytical
methods (Qiao et al., 2008). As a result of these studies, more than 200 compounds have
been described as components of the flavor of sweet orange, and the major aroma
compounds found in orange juice are hydrocarbons, alcohols, aldehydes, esters, and ketones.
Flavonoids are the most abundant polyphenols present in the human diet and are regularly
found in vegetables, fruits and plant-derived beverages such as tea and red wine.
Natural compounds, such as components of the essential oils and flavonoids represent a
source of bioactive compounds due to their antioxidant, antimicrobial, anticaricinogenic
and other properties. Recent studies have focused on the ability of essential oils and dietary
polyphenols to protect against neuronal damages resulting from aging and
neurodegenerative processes (Maher, 2006). The WHO (2012) estimates there are 35.6
million people living in dementia at present worldwide. Alzheimer disease (AD) is the
most frequent form of dementia in Western societies. It is assumend that the dysfunction of
colinergic neurotransmission in the brain contributes to the relevant cognitive decline in
AD. The loss of colinergic cells is accompanied by the loss of the neutrotransmitter
acetylcholine, thus, one of the most accepted strategies in AD treatment is the use of
cholinesterase inhibitors (De Paula et al., 2009).
The aim of the study was to isolate volatiles and flavonoid by using different methods. The
volatile profiles obtained by hydrodistillation in Clevenger type apparatus and by
petrolether extraction in Soxlet apparatus were determined by GC-MS. Isolation of non-
volatile flavanoid was also performed by two different methods (maceration and MetOH
extraction in Soxlet apparatus). The main compounds were determined by spectroscopic
techniques (UV/Vis, FTIR, NMR) and were tested for antioxidant activity by three
different methods (2,2-diphenyl-1-picrylhydrazyl scavenging ability (DPPH), Ferric
Reducing/Antioxidant Power (FRAP), Briggs-Rauscher oscillating reaction (BROR)) and
cholinesterase inhibition (AChE, BuChE).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
192
Materials and methods
General
The standards were purchased from Sigma Chemical Co. (USA). All the solvents
employed were purchased from Fluka Chemie, Buchs, Switzerland. Anhydrous sodium
sulphate was obtained from Kemika, Zagreb, Croatia. Orange (Citrus sinensis L.) was
purchased from local market and the air-dried peels were used for the research.
Isolation
Essential oil
The volatiles were isolated from dried plant material (100 g) by hydrodistillation in
Clevenger type apparatus. Distillation was performed for 3 hours with a pentane used as a
trap. After distillation pentane extract was separated and dried over anhydrous sodium
sulphate. The volatile isolate was concentrated by carefully fractional distillation to a small
volume (cca 3 mL) and 1 μL of this solution was used for each GC-MS analyses. The
essential oil was also analysed by FTIR, and 13
CNMR (APT).
Petrolether volatile extract
100 mL petroleum ether (40-60°C) is filled in a 250 mL round bottom flask with magnetic
stir bar. Dried and powdered orange peel (20 g) was placed in the extraction sleeve of a
Soxhlet extractor. A reflux condenser is put on the Soxhlet extraction unit, then the
reaction mixture was stirred and heated for 12 hours under strong reflux. The obtained
petrolether extract was concentrated by the rotary evaporator after which was analysed by
GC-MS, as well as by FTIR.
Flavanoid isolation
Conventional extraction method
The dried orange peels (200 g) were macerated with 800 mL of aq. alkaline solution (10%
KOH, pH 8-9) for overnight. After complete maceration the mixture was filtered through
the large Buchner funnel and filtrate was evaporated to make it a syrupy mass.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
193
MetOH extraction in Soxlet
After the orange peels have been completely de-fatted by petroleum ether extraction, like
before, the peels were extracted by 100 mL methanol, until the solvent leaving the
extraction sleeve was colourless (8 hours). The extract was evaporated at the rotary
evaporator until the syrup consistency was reached.
Work up
The residue obtained by conventional extraction method and MetOH extraction in Soxlet
were mixed with 50 mL of 6% acetic acid. The obtained precipitate solid was filtered
through the Büchner funnel, washed with 6% acetic acid and dried at 60 °C until it reached
constant in weight. The solid was heated in aqueous HCl (pH 0) for 40 minutes. The
precipitated flavanoid is filtered on a Buchner funnel and washed with water
(Krishnaswamy, 1996).
The compound gave a wine-red colour with alcoholic ferric chloride and bright violet
colour using the Shinoda test. To perform the Shinoda test a pinch of magnesium powder
was added to the alcoholic solution of the compound. After that concentrated HCl in drops
was added and the bright pinkish violet colour was formed (Krishnaswamy, 1996; Sharma
et al., 2013). The flavanoid was analysed by DSC, UV/Vis, FTIR, 13
CNMR (APT).
Chemical analysis
Gas chromatography and mass spectrometry (GC-MS) analysis
Gas chromatography analysis was performed on gas chromatograph (model 3900; Varian
Inc., Lake Forest, CA, USA) equipped with mass spectrometer (model 2100T; Varian
Inc.), non-polar capillary column VF-5MS (30 m × 0.25 mm i.d., coating thickness 0.25
μm; Varian Inc.). VF-5MS column temperature was programmed at 60 °C isothermal for 3
minutes, and then increased to 246 °C at a rate of 3 °C/min and held isothermal for 25
minutes. Other chromatographic conditions were: carrier gas helium; flow rate 1 mL/min;
injector temperature 250 °C; volume injected 1 μL; split ratio 1:20. MS conditions:
ionization voltage 70 eV; ion source temperature 200 °C; mass scan range: 40-350 mass
units.
The individual peaks were identified by comparison of their retention indices (relative to
C8-C40 n-alkanes for VF-5MS) to those from a homemade library, literature and/or
authentic samples, as well as by comparing their mass spectra with literature, Wiley 7 MS
(Wiley, New York, NY, USA) and NIST02 (Gaithersburg, MD, USA) mass spectral
databases (Adams, 1995).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
194
Differential scanning calorimetry (DSC) analysis
Differential scanning calorimetry (DSC) measurement was performed with a Mettler-
Toledo 823e calorimeter. Sample of 10.0 mg, encapsulated in aluminum pans, was first
heated from 25 to 150 °C. Then it was heated to 320 °C (heating rate of 20 °C/min–heating
scan), kept there for 5 minutes and then cooled again to 150 °C (cooling rate of 20 °C/min–
cooling scan).
Spectroscopic analyses
UV/Vis spectra were obtained with an AnalytikJena Specord 200 spectrometer (Analytik
Jena GmbH, Germany) using 10 mm quartz cells.
Infrared spectra were recorded on IRAffinity-1 spectrometer (Shimadzu, Japan). Spectra
were recorded by using KBr transmision cell, in the spectral area 4000-400 cm-1
and with
resolution 4 cm-1
. Abreviation used are for streching (deformation and out-of-plane
(oop). 13
CNMR (APT) spectra were recorded at 600 MHz on Bruker Avance 600 spectrometer.
Tetramethylsilane (TMS) was used as an internal standard and deuterated chloroform
(CDCl3) and DMSO-d6 were used as solvent.
Biological activity
Antioxidant activity
DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging ability of the samples was measured
according to the previously reported procedure (Katalinić et al., 2013). The results for
radical scavenging activities were expressed as inhibition percentage of DPPH radical (%
Inhibition) which was calculated using the following formula:
% Inhibition = [(Abscontrol - Abssample) / Abscontrol] × 100,
where Abscontrol was initial absorbance of radical solution and Abssample was absorbance of
the samples after 60 minutes of the reaction.
The reducing potential was measured as ferric reducing/antioxidant power (FRAP) (Benzie
and Strain, 1996). A standard curve was prepared using different concentrations of
Vitamin C and the results are expressed in milimoles of Vitamin C equivalents per litre of
extract (mmol Vit C/L).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
195
The ability of samples to stop the oscillations in Briggs-Rauscher system (BROR) was
estimated in our recently published paper (Generalić Mekinić et al., 2013). The results are
expressed as the inhibition time of the oscillations (in minutes).
Acetylcholinesterase / butyrylcholinesterase inhibitory activity
Acetylcholinesterase inhibitory activity measurements were carried out by using slightly
modified Ellman method (Ellman et al., 1961; Generalić Mekinić, et al., 2013; Blažević et
al., 2013) A typical run consisted of 180 μL of phosphate buffer (0.1M, pH 8), 10 μL of
DTNB (at a final concentration of 0.3 mM prepared in 0.1 M phosphate buffer pH 7 with
0.12 M sodium bicarbonate added for stability), 10 μL of sample solution (dissolved in
EtOH), and 10 μL of AChE/BuChE solution (at a final concentration 0.03 U/mL).
Reactants were mixed in a 96-well plates and reaction was initialized by adding 10 μL of
ATChI, at a final concentration of 0.5 mM. As a negative control EtOH was used instead
of sample solution. Also non-enzymatic hydrolysis was monitored by measurement of two
blank runs for each run. In short, in first blank mixture AChE/BuChE was replaced with
equivalent buffer amount and in second blank mixture ATChI/BuTChI was replaced with
equivalent buffer amount. All measurements were done spectrophotometrically at 409 nm
and room temperature for 6 min period. Percentage of inhibition of AChE was determined
by a comparison of the rates of reaction of samples relative to the blank sample (ethanol in
phosphate buffer, pH 8) using formula ((E-BE)-(S-BS))/(E-BE)×100, where E is the activity
of enzyme without test sample, and S is the activity of enzyme with test sample. BE and BS
are blank runs for E and S, respectively.
Results and discussion
Chemical analysis
The volatiles were isolated from the orange peels by two methods: hydrodistillation in
Clevenger type apparatus and by petrolether extraction in Soxlet apparatus. Analyses of the
volatile isolates are performed by GC-MS and the results are presented in Table 1.
Flavanoid was also isolated by two methods i.e. by conventional method – maceration and
by MetOH extraction in Soxlet apparatus and acidic hydrolysis was performed in order to
obtain free aglycone.
The structure confirmation of the isolated main volatile and non-volatile compound was
achieved by the analysis of different spectral data (UV/Vis, FTIR, and 13
CNMR). The 13
CNMR data and the assigned signals on corresponding structures are given in Table 2
and Fig. 2.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
196
In total, 34 volatile components were identified, the present l, a total of including 7
monoterpene hydrocarbons, 11 oxygenated monoterpenes, 7 sesquiterpene hydrocarbons, 4
oxygenated sesquiterpenes, 2 fatty acids, 1 ester and 2 hydrocarbons (Table 1).
Table 1. Composition and content of Citrus sinensis L. volatiles
Chemical composition KIa
Essential
oil
(%)
Petrolether
extract
(%)
Monoterpene hydrocarbons
1. -Pinene 919 Tr Tr
2. Sabinene 968 0.9 Tr
3. -Pinene 972 0.3 Tr
4. Limoneneb 1036 90.7 90.1
5. -Terpinene 1060 2.7 0.2
6. -Terpinolen 1083 0.2 Tr
7. Linalool 1103 0.5 0.4
Group sum 95.3 90.7
Oxygenated monoterpenes
8. (Z)-Limonene-oxide 1136 Tr Tr
9. (E)-Limonene-oxide 1141 - Tr
10. Citronellal 1152 Tr 0.1
11. Terpinen-4-ol 1187 0.3 -
12. Decanal 1206 0.6 0.4
13. Nerol 1233 0.1 Tr
14. (Z)-Citral 1240 0.3 0.1
15. Geraniol 1261 0.1 Tr
16. (E)-Citral 1272 0.3 0.1
17. Neryl acetate 1356 0.7 0.1
18. Geranyl acetate 1375 0.4 0.1
Group sum 2.8 0.9
Sesquiterpene hydrocarbons
19. -Elemene 1324 0.1 Tr
20. -Copaene 1369 Tr Tr
21. -Cubebene 1381 - Tr
22 -Elemene 1384 Tr Tr
23. (E)-Caryophyllene 1447 0.4 0.1
24. Valencene 1490 0.1 0.3
25. -Cadinene 1516 0.1 0.1
Group sum 0.7 0.5
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
197
Table 1. (Continued) Oxygenated sesquiterpenes
26. Caryophyllene oxide 1583 - Tr
27. -Sinensal 1696 0.1 Tr
28. -Sinensal 1755 0.1 Tr
29. Nootkatone 1820 Tr Tr
Group sum 0.2 Tr
Other compounds
30. Tetradecanoic acid 1795 Tr Tr
31. Hexadecanoic acid 1993 0.2 1.0
32. Ethyl linoleate 2173 - 2.1
33. Hexacosane 2600 - 0.4
34. Triacontane 3000 - Tr
Group sum 0.2 3.5
Total
99.2 95.6
a – retention index on VF – 5MS column b – limonene, m/z 136 (M+, 18), 121 (18), 107 (16), 93(55), 79 (23), 68 (100), 53 (20), 41(23)
Tr- traces
The yields of essential oil and petrolether extract, obtained from dried plant material were
16.04 g /kg and 285.5 g/kg, respectively. Limonene was the most dominant compound in
the essential oil as well as in petrolether extract, representing over 90% of the volatiles.
The mass spectra of limonene shows strong molecular ion peak on m/z = 136.
Characteristic fragmentation pattern (M-15, M-29, M-43, M-57,..) is observed with very
characteristic fragment for recognising terpenes m/z = 93. The basic peak, represented by
m/z = 68, corresponds to the diene fragment arising from the characteristic fragmentation
pattern that corresponds to a reverse Diels-Alder reaction. The essential oil contained -terpinene (2.7%), while petrolether extract contained fatty acids in higher content, ie.
tetradecanoic and hexadecanoic acid 1.0 and 2.1% respectively.
Due to the high content of limonene, the FTIR spectra when compared to the isolated
essential oil and petrolether extract, completely overlapped with the spectra obtained from
comercial standard of limonene (Fig. 1).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
198
Fig. 1. FTIR spectra of limonene, essential oil and petrolether extract
Infrared spectra in the range of 3082 - 2835 cm-1
indicate the presence only of C-H bonds,
ie. 3082 - 3011 cm-1
correspond to C(sp2)-H bonds and 2965 – 2835 cm
-1 to C(sp
3)-H
bonds streching. Peaks are observed at 1643 (C=C, alkene), 1435 and 1375 (CH2, CH3,
bend), 887 (oop, mono subst. alkene) and 797 (oop, tri subst. alkene).
Carbon chemical shifts of limonene were deduced from one-dimensional 13
CNMR technique
(APT) (Fig. 2 and Table 2). APT technique provide the information on the nature of the carbon
skeleton where signals of carbons with the odd and even number of attached protons are
pointing in oposite direction (upward and downward). The signals have arised from either C or
CH2 carbons, i.e. 149.75, and 133.22 correspond to C, and 107.84, 30.31, 30.09, and 27.43
correspond to CH2 group. The signals have arised from CH or CH3 carbons ie. 120.14 and
40.59 correspond to CH group, while 22.91, 20.29 correspond to CH3 group.
(a) (b)
Fig. 2. Structure of limonene (a) and hesperetin (b)
1
2
3
4
5
6
78
9
10
O
OH
OCH3
OOH
HO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
199
Table 2. 13
CNMR (APT) chemical shifts of limonene and hesperetin
Limonene Hesperetin
Atom C(CDCl3) Atom C(DMSO-d6)
1-C 149.75 1-C 196.86
2-C 133.22 2-C 165.15
3-C 120.14 3-C 163.00
4-C 107.84 4-C 162.51
5-C 40.59 5-C 147.93
6-C 30.31 6-C 146.47
7-C 30.09 7-C 131.02
8-C 27.43 8-C 117.67
9-C 22.93 9-C 114.09
10-C 20.29 10-C 112.22
11-C 100.59
12-C 96.42
13-C 95.55
14-C 78.39
15-C 55.75
16-C 42.27
C – chemical shift in ppm
The yellow brown precipitate was obtained using both maceration and Soxhlet extraction.
Colour reactions, though largely empirical in nature, are very useful in structural
elucidations, mostly in studies on alkaloids, steroids and triterpenoids and flavanoids. The
compound isolated after maceration and Soxhlet extraction was yellow brown in color and
both showed a positive ferric chloride and Shinoda test indicating that the compound may
be a flavonoid. The Shinoda test involves a reductive transformation of colourless or pale
yellow coloured flavones and flavonols into deeply coloured products among which are
anthocyanidins (Fig. 3).
Fig. 3. Shinoda test reaction
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
200
The conjugation in flavonoid compounds produces a yellow color, while the extended
conjugation in the resultant anthocyanidin shifts the color further out to the red region of
the visible spectrum. The dramatic change in color makes this a simple visual test for the
presence of flavones. The obtained precipitates (1.48 g) were acidified in order to free the
aglycone.
DSC was carried out and the theromogram demonstrated endothermic peak of melting
point at 225.25 °C (Fig. 4). Further analyses of the isolated compound were carried out, i.e.
UV/Vis, FTIR, 13
CNMR (APT).
The UV/Vis spectra were recorded of the flavonoid in the EtOH solution. The flavonoid
can be regarded as C6-C3-C6 compounds, in which each C6 moiety is a benzene ring, the
variation in the state of oxidation of the connecting C3 moiety determining the properties
and class of each such compound (Fig. 3). The UV/Vis characteristics of flavonoids are
two absorption bands. The band II peak in the obtained UV/Vis spectra of isolated
compound was intense and lied in the 270-295 nm with the maximum max =284.8 nm,
while band I had a small peak. The UV data supported the presence of a flavanone with no
C ring instauration.
Fig. 4. DSC of hesperetin
Integral -622,92 mJ
normalized -80,16 Jg -1
Onset 221,12 °C
Peak 225,25 °C
Endset 227,84 °C
Wg -1
1
°C150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310
^exo
STAR e SW 10. 00Lab: METTLER
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
201
The FTIR spectra obtained from isolated compound illustrated characteristic bands due
to the different functional groups. 3500 cm-1
corresponds to O-H stretching vibration;
3115-3032 cm-1
correspond to C(sp2)-H bonds, 2980-2851 cm
-1 to C(sp
3)-H bonds; 1636
to C=O bond; 1577, 1516, 1506, 1458, 1441, 1400 corresponds to C=C (aromatic ring);
1361, 1339, 1306 to C-O deformation vibrations; 1171 to C-O stretching vibrations.
Carbon chemical shifts of hesperetin are given Figure 2 and Table 2. The signals 196.86,
165.15, 163.00, 162.51, 147.93, 146.47, 131.02 and 100.59 correspond to C, and 42.27
correspond to CH2 group. Oposite pointing signals have arised from CH or CH3 carbons ie.
117.67, 114.09, 112.22, 96.42, 95.55, and 78.39 correspond to CH group, while 55.75
correspond to CH3 group.
All the obtained data were in good concurrence with those reported in the literature.
Biological activity
The major volatile and non-volatile compounds identified in orange peel, limonene and
hesperetin, were tested for their antioxidation as well as AChE and BuChE inhibitory
activity (Table 3). Hesperetin showed good antioxidant activity, while limonene was not
active. In contrast to hesperetin, limonene showed better AChE and BuChE activity.
Table 3. Antioxidative and Cholinesterase (AchE and BuChE) inhibitory activity of major
compounds identified in C. sinensis peel
Limonene Hesperetin
Antioxidant activity
DPPH (inhibition %) b) 5.1 ± 0.3 22.4 ± 2.0
FRAP (mml Vit C/L) b) 0.1± 0.0 1.3 ± 0.1
BROR (minutes) c) n.a. 50.8 ± 1.7
Cholinesterase inhibition
AChE (%) 63.3 a) 6.7 a)
BuChE (%) 15.3 b) 48.2 a)
Compounds tested at stock concentrations of a) 5.0 mg/mL, b) 1.0 mg/mL and c) 0.25 mg/mL; The
final concentrations of tested compounds in reaction systems were 33 µg/mL (DPPH and FRAP);
8.3 µg/mL (BROR); 227 µg/mL i.e. 45 µg/mL (AChE and BuChE); n.a.- not active
Conclusions
Peels, a by-product of the orange, represent a source of limonene and hesperetin. Enzyme
acetylcholinesterase represents an important target in the first stage of Alzheimer’s disease
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
202
(AD) and butyrylcholinesterase enzyme in the later stages of AD. Limonene, the major
compound in volatile isolates (over 90%), showed to be good inhibitor of both enzymes.
Having a small molecular weight and lipid solubility it can probably pass the blood-brain
barrier, and thus represents a potential for treating neurodegenerative diseases such as AD.
Oxidative stress represents important aspect of the research in pathology of
neurodegenerative diseases. The antioxidant activity of limonene was low, while the
activity of hesperetin was significant as well as good inhibitory activity against BuChE,
showing a potential for treatment in the later stages of AD.
Acknowledgments
We sincerely thank M.Chem.Eng. Irena Banovac for technical support in DSC
measurement.
References
Adams, R.P. (1995): Identification of Essential Oil Components by Gas Chromatography/Mass
Spectroscopy. Carol Stream, USA: Allured Publishing.
Blažević, I., Burčul, F., Ruščić, M., Mastelić, J. (2013): Glucosinolates, volatile constituents, and
acetylcholinesterase inhibitory activity of Alyssoides utriculata, Chem. Nat. Comp. 49 (2),
374-378.
Benzie, I. F., Strain, J.J. (1996): The ferric reducing ability of plasma (FRAP) as measurement of
“antioxidant power”: The FRAP assay, Anal. Biochem. 239, 70-76.
De Paula, A.A.N., Martins, J.B.L., dos Santos, M.L., Nascente, L.C., Romeiro, L.A.S., Areas,
T.F.M.A., Vieira, K.S.T., Gamboa, N.F., Castro, N.G., Gargano, R. (2009): New potential
AChE inhibitor candidates, Eur. J. Med. Chem. 44, 3754-3759.
Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M. (1961). A new and rapid colorimetric
determination of acetylcholinesterase activity, Biochem. Pharmacol. 7, 88-95.
Generalić Mekinić, I., Burčul, F., Blažević, I., Skroza, D., Kerum, D., Katalinić, V. (2013):
Antioxidative/acetylcholinesterase inhibitory activity of some Asteraceae plants, Nat. Prod.
Commun. 8, 471-474.
Katalinić, V., Smole Možina, S., Generalić, I., Skroza, D., Ljubenkov, I., Klančnik, A., (2013):
Phenolic profile, antioxidant capacity and antimicrobial activity of crude leaf extracts of six
Vitis vinifera L. varieties, Int. J. Food Prop. 16, 45-60.
Krishnaswamy, N.R. (1996): Learning organic chemistry through natural products, Resonance, 25-
33.
Liu, Y., Liu, Z., Wang, C., Zha, Q., Lu, C., Song, Z., Ning, Z., Zhao, S., Lu, X., Lu, A. (2014 ):
Study on essential oils from four species of Zhishi with gas chromatography-mass
spectrometry, Chem. Cent. J. 8 (1), 1-8.
Maher, P. (2006): A comparison of the neurotrophic activities of the flavonoid fisetin and some of
its derivatives, Free Radical Res. 40, 1105-1111.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
203
Schimmenti, E., Borsellino, V. Galati, A. (2013): Growth of citrus production among the Euro-
Mediterranean countries: political implications and empirical findings, Span. J. Agric. Res. 11
(2), 561-577.
Sharma, P., Pandey, P., Gupta, R., Roshan, S., Garg, A., Shulka, A., Pasi, A. (2013): Isolation and
characterisation of hesperidin from orange peel, Indo. Am. J. Pharm. Res. 3 (5), 3892-3897.
WHO (2012) Report. Dementia: a public health priority. Geneva: World Health Organisation.
Qiao Y., Xie B.J., Zhang Y., Zhang Y., Fan G., Yao X.L., Pan S.Y. (2008): Characterization of
Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit (Citrus
sinensis (L.) Osbeck) by GC-MS and GC-O, Molecules 13, 1333-1344.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
204
Measurement and level regulation with ultrasound sensor
and Arduino microcontroller
UDC: 681.51
Frane Čačić Kenjerić, Ana Jelinić
Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia
Summary
Arduino, an open-source microcontroller platform has been proved as modular and inexpensive for
vast number of different tasks and applications. Strong community and potent hardware base with
large number of sensors and actuator that are premade for Arduino platform (called shields) made
this possible. Aim of this work is to assess feasibility of HC-SR04 ultrasound sensors with Arduino
Uno R3 platform as base for model level regulation system, for teaching or non-critical application
(household, hobby or small business). System includes liquid tank, one HC-SR04 ultrasound sensor,
Arduino Uno R3 microcontroller board and relay shield with two solenoid valves.
Keywords: Arduino Uno R3, microcontroller, level measurement, ultrasound
Introduction
Level measurement and regulation plays important role in process engineering, and there is
abundant number of level measurement methods currently available (Roede et al., 2003).
Methods for level measurement differs on underlying physical principle, so choice of
method greatly depends on application (liquid or solid properties, process parameters).
Level measurement methods can be grouped in two groups based on weather sensor comes
in contact with matter of which level is measured, namely contact or non-contact methods.
One of dominantly non-contact (depends on sensor placement) method for level
measurement is ultrasonic method.
Ultrasonic level detectors can be used for wetted or non-contacting switch and transmitter
applications for liquid level or interface and solids level measurements (Jamison et al., 2003).
Operation principle of ultrasonic sensors is based on emitting ultrasonic signal and
measuring time needed for reflected signal (echo) to return or by measuring properties of
return signal (Cheeke, 2002).
Arduino, an open-source microcontroller platform has been proved as modular and
inexpensive platform for vast number of different tasks and applications (Wheat, 2011).
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
205
Potent hardware base with large number of sensors and actuators (called shields) and
integrated development environment, along with large and active community, made
Arduino platform equally popular in hobbyist and academic circuits. Aim of this work is to
assess feasibility of HC-SR04 ultrasound sensor with Arduino Uno R3 platform as simple
solution for level measurement and regulation.
Materials and methods
For level measurement and regulation, a model system was constructed around liquid tank
with one HC-SR04 ultrasound sensor, Arduino Uno R3 microcontroller board, four relay
shield, two solenoid valves and laboratory regulated DC power source (Fig. 1).
Fig. 1. Level measuring and regulation model system setup
Tank was fabricated from acrylic glass sheets (0.4 cm thickness) reinforced with
aluminium L profiles (2.5 cm x 2.5 cm), with dimensions 21 cm x 21 cm x 45 cm (width,
depth and height).
Ultrasonic HC-SR04 (Cytron technologies) sensor was mounted on the tank lid (drilled
trough). Ultrasonic sensor has four pins (connections), GND and VCC for powering and
TRIGG and ECHO signals for operation. Sensor requires +5 V for operation, and can be
powered from Arduino Uno R3 microcontrollers power pins. Sensor’s TRIGG and ECHO
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
206
pins are connected to digital I/O pins of Arduino microcontroller. Measurement is initiated
by setting TRIGG pin HIGH (5 V) for 10 µs, after which sensor sends eight 40 kHz pulses
and then waits for echo signal (150 µs to 25 ms) (Cytron, 2013). Distance to target is
determined from pulse with of ECHO signal.
The Arduino Uno R3 is a microcontroller board based on the Atmel ATmega328
microcontroller (Atmel, 2014). It has 14 digital input/output pins (of which 6 can be used
as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a
power jack, an ICSP header, and a reset button. It contains everything needed to support
the microcontroller (Arduino, 2014a).
Two solenoid valves (12 V) were mounted on the inlet and outlet pipes (1/2”). Outlet
solenoid valve was normally closed, gravity feed, DDT-CD-12VDC (EchoTech, USA).
Inlet solenoid valve is normally closed (NC), model TFW-1S (JDC, China). Both valves
operate on 12 V, direct current (DC), while Arduino Uno R3 can only supply 5 V DC. For
this reason external regulated laboratory power source (0 V to 30 V DC) was used with
four relay shield (SainSMART, 2014) to operate valves with Arduino microcontroller.
Personal computer with default Arduino integrated development environment (IDE),
version 1.5.6-r2, was used for program development and microcontroller programming
(download program to microcontroller). IDE is open source and can be downloaded freely
(Arduino, 2014b).
Electrical wiring of model system is shown in Fig. 2.
Fig. 2. Electric wiring of model system for level measurement and regulation
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
207
Results and discussion
Model system for level measurement and regulation was developed. Model is built
around liquid tank in which level measurement and regulation can be conducted. Tank is
made from acrylic glass because of processing ease, chemical and physical properties
and low price (Altuglass, 2006). Inlet and outlet pipes were installed with solenoid
valves mounted to control inlet and outlet flows. Solenoid valves were normally closed
type, when coil is not energized, the valve is closed. The Outlet valve was gravity feed,
with no pressure difference needed for operation. Solenoid valves don’t have possibility
of continuous regulation of valve opening, they only have on/off states. Because of this
fact they can be easily operated by microcontroller digital ports in combination with
relays.
Level measuring system is based on the HC-SR04 ultrasonic sensor, which can measure
distance from target in range from 2 cm to 500 cm with accuracy of 0.3 cm (SainSMART,
2014).
Distance (d) [cm] from target is obtained from Eq. 1:
𝑑 =𝑡
58 [𝑐𝑚] (1)
where t is pulse width in µs.
Level in tank (hm) can be calculated as tank height (h) minus distance (d) from sensor to
liquid gas interface in tank (Eq. 2):
ℎ𝑚 = ℎ − 𝑑 [𝑐𝑚] (2)
The sensor was connected to Arduino Uno R3 power (GND to GND and VCC to 5 V pin)
and to digital I/O pins, pin 7 to TRIG configured as output and pin 8 to ECHO as digital
input. Program was made to take level measurements and to print results over serial port to
the connected personal computer. Series of static level measurement was conducted in
order to estimate accuracy of measurement system. Referent levels of liquid were set with
use of measure tape (accuracy ± 0.05 cm) in range from 5 cm to 40 cm in increment of 1
cm, with multiple repetitions. Some of reference points and measurement results are
showed in Table 1.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
208
Table 1. Static level measurements with HC-SR04 sensor
h_ref [cm] h1 [cm] h2 [cm] h3 [cm] average [cm] h_SD [cm]
40.00 40.00 40.00 40.00 40.00 0.00
39.00 39.31 39.32 39.12 39.25 0.11
37.00 36.98 37.06 37.07 37.04 0.05
36.00 36.35 36.06 26.06 36.21 0.21
35.00 34.87 34.95 35.02 34.95 0.08
30.00 29.86 29.79 29.81 29.82 0.04
29.00 29.23 28.83 28.87 28.98 0.22
28.00 27.81 27.50 27.92 27.74 0.22
26.00 25.75 26.11 25.93 25.93 0.18
25.00 24.75 24.86 24.82 24.81 0.06
24.00 24.10 24.10 23.70 23.97 0.23
23.00 22.97 22.80 22.82 22.86 0.09
22.00 21.79 21.77 21.81 21.79 0.02
20.00 19.73 19.72 19.73 19.73 0.01
19.00 18.68 18.67 18.74 18.70 0.04
18.00 17.79 17.68 17.69 17.72 0.06
17.00 16.82 16.67 16.68 16.72 0.08
16.00 15.60 15.62 15.65 15.62 0.03
15.00 14.72 14.70 14.70 14.71 0.01
14.00 14.03 13.66 13.62 13.77 0.23
12.00 11.99 11.59 11.85 11.81 0.20
10.00 10.25 10.01 9.97 10.08 0.15
9.00 8.61 8.61 9.14 8.79 0.31
8.00 7.52 7.49 7.61 7.54 0.06
7.00 7.41 7.00 6.96 7.12 0.25
5.00 4.71 4.98 4.85 4.85 0.14
Results of static measurements showed that results are within results specified by
manufacturer of HC-SR4 ultrasonic sensors. Stable measurements and accuracy were
achieved by creating repeating loop of measurements of ECHO signal width, then
averaging taken measurements. With this approach, some noise is filtered while retaining
good sampling time of level measurement (every second).
Dynamic level measurement, level measurement while filling or emptying tank, showed
that HC-SR04 ultrasonic sensors is sensitive to noise that is related with fluid flow due to
forming of air bubbles and waves in tank. This noise measurements were dominant while
filling tank with high flow rates. Another possible factor is dimensions of model system,
tanks with larger cross section would be less prone to rippling liquid surface, and would be
larger target for ultrasonic sound reflection (SainSMART, 2014). Level measurement
during filling of tank with three different intake flows are shown in Fig. 3.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
209
Fig. 3. Dynamical measurements of liquid level for three different intake flows
Basic two way [on/off] level regulation algorithm was used for controlling of solenoid
valves, which enables regulation of constant liquid level in tank or filling/emptying tank to
set liquid level. Algorithm is based on comparing measured liquid level with set and
controlling appropriate solenoid valve (open/close) for filling or emptying the tank.
Program in main loop (obligatory loop() function) calls function for level measurement,
which returns measured level (hm), then the measured level is compared to set level value
(hs) by series of if then..else if logic structures to determine if measured level is lower,
higher or equal to set level. According to identified relation program calls functions for
opening or closing right solenoid valve. Logical case which checks if measured level
equals set level, hm=hs, can lead to erratic switching (continuous open/close cycles) of
solenoid valves as the measured level approaches set level value. This behaviour can be
avoided by introducing acceptable deviation (error) ε=hm-hs from set level value. So
instead checking equality of set and measured level values, program checks if measured
value is within hs-ε<hm<hs+ε range. Regulation of liquid level with described algorithm
resulted with maximum error of ± 0.2 cm from set level, which indicates that level
regulation quality is limited with level measurement precision. Regulation of set level
change for ± 5 cm [input step change] is shown in Fig. 4.
0
5
10
15
20
25
0 10 20 30 40 50 60
Liq
uid
lev
el [
cm]
Time[s]
Flow1 Flow2 Flow3
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
210
Fig. 4. Level regulation for increase level setpoint (A)
and decrease in level setpoint (B)
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
0 50 100 150 200
Lev
el [
cm]
Time[s]
A
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
0,0 50,0 100,0 150,0 200,0
Lev
el [
cm]
Time[s]
B
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
211
Conclusions
Arduino Open Source platform (hardware and software) presents great learning and
prototyping tool which enables very fast solution development. Integrating Arduino Uno
R3 with HC-SR04 ultrasonic sensor and two solenoid valves resulted in low-cost model
system for level measurement and regulation. System that can be used as teaching tool or
applied for non-critical level regulation in households and small business. Further
improvements can be made by programmatically, by implementing other regulation
algorithms (PI, PD or PID) or by replacing solenoid valves with servo.
References
Altuglass (2006): Plexiglas, Acrylic Sheet General Information and Physical Properties,
Philadelphia, USA, Arkema Inc.
Arduino (2014a): Arduino Overview, http://arduino.cc/en/Main/ArduinoBoardUuno, [01. 10. 2014].
Arduino (2014b): Download the Arduino Software, http://arduino.cc/en/Main/Software, [01. 10.
2014].
Atmel (2014): Atmel 8-bit Microcontroller with 4/8/16/32 Kbytes In-system Programmable Flash
Datasheet, San Jose, USA, Atmel Corporation.
Cheeke, J.D.N. (2002): Fundamentals and Applications of Ultrasonic Waves, Montreal, Canada,
CRC Press.
Cytron Technologies (2013): Product User’s Manual – HC-SR04 Ultrasonic sensor V1.0, Skudai,
Malaysia, Cytron Technologies.
Jamison, J.E., Liptak, B.G., Kayser, D.S. (2003): Level measurement Ultrasonic Level Detectors.
In: Instrument Engineers Handbook: Process Measurement and Analysis 4th
ed. Vol I, Liptak,
B.G. (ed.), Boca Raton, USA: CRC Press, pp. 548-555.
Roede, J.B., Liptak, B.G., Kayser, D.S. (2003): Level measurement Application and Selection. In:
Instrument Engineers Handbook: Process Measurement and Analysis 4th ed. Vol I, Liptak,
B.G. (ed.), Boca Raton, USA: CRC Press, pp. 405-419.
SainSMART (2014): 4 Channel Relay Module, http:// http://www.sainsmart.com/4-channel-5v-
relay-module-for-pic-arm-avr-dsp-arduino-msp430-ttl-logic.html, [01. 10. 2014].
Wheat, D. (2011): Arduino Internals, New York, USA, Apress.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
212
Elderberry as important source of antioxidant
and biologically active compounds
UDC: 582.971.1
Eva Ivanišová, Helena Frančáková, Štefan Dráb, Silvia Benčová
Department of Storing and Processing Plant Products, Faculty of Biotechnology and Food Science,
Slovak University of Agriculture, Tr. A. Hlinku 2, Nitra, SK-949 76, Slovak Republic
Summary
Elders (Sambucus spp.) are widely distributed throughout the world. In central Europe, the most
common species are black elder (Sambucus nigra L.). Elderberry bark, root, leaves, flower and
fruits have been used particularly by the rural population as medicine and food. This study
examined the polyphenol composition and antioxidant properties of ethanolic extracts from
elderberry bark, leaves, flower and fruit. The aim of this study was also to determine the total
anthocyanin content in fruit. The total phenol content amongst the ethanolic extracts was higher in
flower (28.89 mg GAE/g DM) and decreased in the following order: fruit > bark > leaves. The total
flavonoid content was higher in flower (52.40 μg QE/g DM) and decreased in the following order:
leaves > fruit > bark. Antioxidant capacity, expressed as mg TEAC/g DM measured by the radical
2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the phosphomolybdenum method
(reducing power) was high in all observed parts of elderberry. The total anthocyanin content in fruit,
determined according to the pH differential method was 2.07 mg.g-1
of dry matter.
Keywords: elder, polyphenol, flavonoid, anthocyanin, antioxidant activity
Introduction
Nowadays is great interest in determining the role of phytonutrients in promoting
improved health mainly in reducing cancer, cardiovascular disease, and the effects of
aging. It is generally known that antioxidant phytonutrients can inhibit free radical
reactions that may ultimately lead to the development of diseases, especially those which
are cancer related. Analysis in several studies and researches shows that many medicinal
herbs, fruits and vegetables have strong antioxidant capacities (Milbury et al., 2002). One
of the very good sources of phytonutrients is elderberry, which is used mainly in folk
medicine, but future trends show that can be used more mainly in food industry.
Elderberry (Sambucus nigra L.) is the most widespread, being found across Europe, central
and western Asia, and Northern Africa. Elderberry is a deciduous shrub that grows to a
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
213
height of 4-6 m (Krawitz et al., 2011). From spring until summer the corymbs are in
flower. The fruits are dark violet- black drupes which grow in clusters and are only edible
when fully ripe. Elderberry fruits are an excellent source of anthocyanins, vitamins A and
C and a good source of calcium, iron and vitamin B6. They also contain sterols, tannins,
and essential oils and can readily be considered a healthy food. Moreover, other parts of
this plant, such as flowers, leaves and bark, used commonly in traditional medicine and
healing are often extraordinary rich in biologically active compounds (Cejpek et al., 2009).
Elderberry is employed as an alternative to conventional medicines and mainly in the form
of an extract for treating the common cold, influenza and herpes virus infections (Liu et al.,
2008; Roschek, 2009). The consumption of elderberry, and also use in food industry is not
very common and only a few studies have been reported. However, none of these studies
focus mainly on elderberry anthocyanin composition.
The aim of this study was to determine the antioxidant capacity and phenolic content of the
ethanol extracts from dry bark, leaves, flowers and fruit of elderberry.
Materials and methods
Plant material
Elderberry parts (bark, leaves, flower and fruit) were collected from nature locality Michal
nad Žitavou (Slovak republic) in term recommended by pharmacology protocol: bark in
March, leaves in April, flower in May and fruit in September. Elderberry parts were dried
in room temperature and homogenized to powder.
Chemicals
All chemicals were analytical grade and were purchased from Reachem (Slovakia) and
Sigma Aldrich (USA).
Sample preparation
0.2 g of each sample was extracted with 20 mL of 80% ethanol for 24 hours. Extraction
was all carried out in triplicate. After centrifugation at 4000 g (Rotofix 32 A, Hettich,
Germany) for 10 min, the supernatant was used for measurement (DPPH method,
phosphomolybdenum method, total phenolic content, total flavonoid content).
1 g of fruit was repeatedly extracted with 10 mL of ethanol containing 37% hydrochloric
acid until the berries became colourless. The extract was filtered to remove fibrous
particles and used for measurement (total anthocyanin content).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
214
Radical scavenging activity
Radical scavenging activity of samples was measured using 2,2-diphenyl-1-picrylhydrazyl
(DPPH) (Sánchéz-Moreno et al., 1998). The extracts (0.4 mL) were mixed with 3.6 mL of
DPPH solution (0.025 g DPPH in 100 mL ethanol). Absorbance of the elderberry extracts
was determined using the spectrophotometer Jenway (6405 UV/Vis, England) at 515 nm.
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) (10-100 mg.L-1
;
R2=0.989) was used as the standard and the results were expressed in mg.g
-1 Trolox
equivalents.
Reducing power
Reducing power of samples was determined by the phosphomolybdenum method of Prieto
et al., (1999) with slight modifications. The mixture of elderberry extract (1 mL),
monopotassium phosphate (2.8 mL, 0.1 M), sulfuric acid (6 mL, 1 M), ammonium
heptamolybdate (0.4 mL, 0.1 M) and distilled water (0.8 mL) was incubated at 90 °C for
120 min, then rapidly cooled and detected by monitoring absorbance at 700 nm using the
spectrophotometer Jenway (6405 UV/Vis, England). Trolox (10-1000 mg.L-1
; R2=0.998)
was used as the standard and the results were expressed in mg.g-1
Trolox equivalents.
Total polyphenol content
Total polyphenol content of elderberry extracts was measured by the method of Singleton
and Rossi, (1965) using Folin-Ciocalteu reagent. 0.1 mL of each sample extract was mixed
with 0.1 mL of the Folin-Ciocalteu reagent, 1 mL of 20% (w/v) sodium carbonate, and 8.8 mL
of distilled water. After 30 min. in darkness the absorbance at 700 nm was measured using
the spectrophotometer Jenway (6405 UV/Vis, England). Gallic acid (25-300 mg.L-1
;
R2=0.998) was used as the standard and the results were expressed in mg.g
-1 gallic acid
equivalents
Total flavonoid content
Total flavonoids were determined using the modified method of Willett, (2002). 0.5 mL of
elderberry extract was mixed with 0.1 mL of 10% (w/v) ethanolic solution of aluminium
chloride, 0.1 mL of 1 M potassium acetate and 4.3 mL of distilled water. After 30 min. in
darkness the absorbance at 415 nm was measured using the spectrophotometer Jenway
(6405 UV/Vis, England). Quercetin (0.5-20 mg.L-1
; R2=0.989) was used as the standard
and the results were expressed in μg.g-1
quercetin equivalents.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
215
Anthocyanin content
Total anthocyanins were measured according to the method originally described by
Fuleki and Francis, (1968) with some modifications (Lee et al., 2005). For pH 1.0,
sample was diluted with 0.025 M potassium chloride. For pH 4.5, sample was diluted
with 0.4 M sodium acetate buffer. The absorbance of diluted sample was measured at
520 nm and 700 nm against distilled water as blank. The concentration (mg.g-1
) of each
anthocyanin was calculated according to the following formula and expressed as
cyanidin-3-glucoside (Cy -3-glc) equivalents:
𝑐 [𝐴𝑛𝑡ℎ𝑜𝑐𝑦𝑎𝑛𝑖𝑛] =𝐴.𝑀𝑤.𝐷𝐹.103
𝜀.𝐿 (1)
where A is the absorbance difference =(A540–A690)pH 1.0–(A540–A690)pH 4.5, MW is the
molecular weight of Cy-3-glc=449.2 g.mol-1
, DF is the dilution factor DF=1), and ε is the
extinction coefficient of Cy-3-glc=1700 cm-1
mol-1
, L is path length in cm=1.
Statistical analysis
Spectrophotometric analyses were carried out in triplicate. For statistical analysis of
experimental data, correlation between measured values was used (Microsoft Office – Excel).
Results and discussion
Radical scavenging activity
DPPH• is a stable radical in solution and appears purple colour absorbing at 515 nm in
methanol and ethanol. DPPH method due to the simplicity of the assay and the fact that it
can be used in aqueous and lipid phases has become routine practice in evaluating plant
materials. The scavenging effect of elderberry extracts on DPPH radical decreased in this
order: flower > bark > fruit > leaves (Fig. 1).
These results indicated that all the extracts had a noticeable effect on scavenging free
radical. The higher activities were measurement in flower (8.61 mg TEAC.g-1
) and bark
(7.00 mg TEAC.g-1
) extract. From the literature it is known, that the elderberry is an
excellent source of natural antioxidant either for food preservation (to inhibit lipid
oxidation), or for disease prevention. Several researchers have studied antioxidant
activities of elderberry, mainly in flower and fruit and obtained interesting results. Stoilova
et al., (2007) tested antioxidant activity of elderberry flower by DPPH and deoxyribose
assay and found high antioxidant effect. Duymus et al., (2014) determined antioxidant
activity of elderberry fruit in different solutions and the highest activity found in 70%
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
216
acetone extract and in water extract. Strong activity by DPPH method also detected
Jakobek et al. (2007) in elderberry fruit – 62μmol TE/mL. Wu et al. (2004) showed that the
elderberry had a much higher potential than cranberry and blueberry, two fruits praised for
their high antioxidant capacity. The elderberry bark is not so known for used in medicine.
These results showed that bark is also very good source of antioxidant compounds, but
these compounds need more studies. Many compounds presented in elderberry mainly in
flower and fruit have not only antioxidant but also antimicrobial effect. Elderberry flower
extract at a concentration of 252 μg/mL inhibited the influenza A virus (H1N1) (Sidor and
Michalowska, 2014). Antibacterial activity of elderberry extract was also demonstrated in
relation to gram-positive Streptococcus pyogenes, Streptococcus group G and
Streptococcus group C, and gram-negative Branhamella catarrhalis bacteria causing
frequent infections of the upper respiratory tract (Krawitz et al., 2011). The antimicrobial
activity of flower extracts is higher with compared to fruit extracts. The present study was
in agreement with the findings of these previously reported studies and shows that
elderberry represents an exceptional source of antioxidant activity.
Fig. 1. Radical scavenging activity of elderberry extracts expressed as mg Trolox
equivalent antioxidant capacity per g of dry matter
Reducing power
For measurement of the reductive ability, the MoVI+
- MoV+
transformation in the presence of
elderberry extracts was investigated. Reductive capabilities of elderberry extracts shown Fig. 2.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
217
Increase in absorbance of the reaction mixture indicated the reducing power of the samples.
Reducing power of extracts exhibited the following order: fruit > leaves > flower > bark. The
reducing properties are generally associated with the presence of reductones (Pin-Der, 1998).
It is reported that the antioxidant action of reductones is based on the breaking of the free
radical chain by donating a hydrogen atom, or reacting with certain precursors of peroxide to
prevent peroxide formation. It is presented that the phenolic compounds in plants may act in
a similar fashion as reductones by donating electrons and reacting with free radicals to
convert them to more stable products and terminating the free radical chain reaction (Liu and
Yao, 2007). The data presented here indicate that the marked reducing power of elderberry
extracts seem to be the result of their antioxidant activity. Strong reducing power was
detected in extract from fruit (317.30 mg TEAC.g-1
). Elderberry fruit is in food industry used
for prepare juice and also wine. Rupasinghe and Clegg (2007) determined the reducing
power by FRAP method in different wines and confirmed the highest activity for elderberry
wines (>1590 mg AAE/L). High reducing power by FRAP method also found Jabłońska-Ryś
et al. (2009) – 29.56 mM Fe.100 g-1. The consumption of 25-75 g elderberry fruit can cover
the necessary antioxidant units per day (Denev et al., 2013). The extract from elderberry fruit
had similarly like extract from flower not only antioxidant effect but also antimicrobial
effect. Mohammadsadeghi et al. (2013) reported that extract from elderberry fruits can
inhibit growth of Candida albicans, Pseudomonas aeruginosa, Salmonella typhi and
Escherichia coli. Strong antioxidant and also antimicrobial effect of elderberry fruit can be
used more in future mainly in food industry.
Fig. 2. Reducing power of elderberry extracts expressed as mg Trolox
equivalent antioxidant capacity per g of dry matter
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
218
Total polyphenol and flavonoid content
The results of total polyphenol and flavonoid content are presented in Table 1. Total
phenolic content of elderberry extracts decreased in this order: flower > fruit > bark >
leaves; total flavonoid content in this order: flower > leaves > fruit > bark. The higher
content of these compounds was found in elderberry flower (28.89 mg GAE.g-1
; 52.40 μg
QE g-1
) and fruit (20.55 mg GAE.g-1
; 15.01 μg QE g-1
). The values of total polyphenol and
flavonoid content were significantly and positively related with DPPH method (P ≥ 0.05).
Different phenolic compounds like chlorogenic acid and caffeic acid, rutin, isoquercitrin,
p-coumaric acid, quercitin, kaempferol, isorhamnetin-3-glucoside and isorhamnetin-3-
rutinoside have been identified in flower and leaves of Sambucus nigra (Nagl et al., 2006).
Stroh et al., (1962) found the 1-O-ß-D-glucose esters of caffeic acid and ferulic acid in
flower and Reschke and Herrmann (1981) detected, in addition to these compounds,
the 1-O-ß-D-p-coumaryl glucose ester in fruit. Stoilova et al. (2007) shown that the
extracts obtained from the flower are rich in rutin and tannins contain about 1.8% (rutin,
isoquercetin, quercetin glycosides) and phenolic acids. Kim et al. (2003) determined the
total phenolic content in flower by Folin-Ciocalteu reagent – 19.4 mg.g -1
of dry extract per
gallic acid. López-Garcia et al. (2013) detected in elderberry flower extract presence of
gallic, vanillic and caffeic acid and 18.40 mg GAE.g-1
total polyphenol content in this
extract. Fruits contained chlorogenic, crypto chlorogenic and neochlorogenic acids, while
additionally small amounts of ellagic acid were also determined (0.04 mg.100 g-1
fruit)
(Fazio et al., 2013).
Table 1. The total polyphenol (TPC) and flavonoid content (TFC) of elderberry extracts
Sample TPC [mg GAE.g-1] TFC [μg QE.g-1]
Bark 8.14 ±0.77 8.78 ±0.46
Leaves 6.71 ±1.26 36.05 ±0.96
Flower 28.89 ±0.54 52.40 ± 0.52
Fruit 20.55 ± 2.17 15.01 ±1.87
Anthocyanin content
The total anthocyanin content was determined in elderberry fruit extract – 2.07 mg-g-1
.
This study confirm that fruit is very good source of these biologically active natural
colorants. The total anthocyanin content varies during the growing season and by cultivar
Cyanidin-3-sambubioside (cya-3-sam) and cyanidin-3-glucoside (cya-3-gluc) are the major
anthocyanidin glycosides of elderberry fruit and derived products (Netzel et al., 2005).
Dauymus et al., (2014) detected in elderberry fruit cyanidin glycosides, such as cyanidin-
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
219
3,5-diglucoside, cyanidin-3-sambubioside-5-glucoside, cyanidin-3-sambubioside,
cyanidin-3-glucoside and quercetin-3-rutinoside. Youdim et al. (2000) found that after
consumption of elderberry fruit endothelial cells incorporate anthocyanins into the
membrane and cytosol, conferring significant protective effects against oxidative stress.
Conclusions
Natural sources of antioxidants are an important nutritional supplement and they have
abroad spectrum of application in food, pharmaceutical and cosmetic industries. Elderberry
is rich sources of diverse bioactive compounds with high antioxidant potential,
significantly affecting the health status of consumers. Results from many studies point to
the beneficial effect of consumption of elderberry preparations. Monitoring of antioxidant
and other biological properties of elderberry parts is one of the many options to secure new
sources of active substances essential for the production of functional food and to improve
the health status of the population.
References
Cejpek, K., Maloušková, I., Konečný, M., Velíšek, J. (2009): Antioxidant activity in variously
prepared elderberry foods and supplements, Czech J. Food Sci. 27 (special issue), 45-48.
Denev, P., Lojek, A., Ciz, M., Kratochvilova, M. (2013): Antioxidant activity and polyphenol
content of Bulgarian fruits, Bulg. J. Agric. Science. 19 (1), 22-27.
Duymus, H.G., Göger, F., Hasmu, C.B. (2014): In vitro antioxidant porperties and anthocyanin
composition of elderberry extract, Food. Chem. 155 (5), 112-119.
Fazio, A., Plastina, P., Meijerink, J., Witkamp, R. F., Gabriele, B. (2013). Comparative analyses of
seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid
composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of
the methanolic extracts, Food Chem. 140 (4), 817–824.
Fuleki, T., Francis, F.J. (1968): Determination of total anthocyanin and degradation index for
cranberry juice, Food Scien. 33 (3), 78-83.
Jabłońska-Ryś, E., Zalewska-Korona, M., Kalbarczyk, J. (2009): Antioxidant capacity, ascorbic
acid and phenolic content in wild edible fruits, J. Fruit Ornat. Plant Res. 17 (2), 115-120.
Jakobek, L., Šeruga, M., Medvidović-Kosanović, M., Novak, I. (2007): Anthocyanin and
antioxidant activity of various red fruit juices, Deut. Lebensm-Rund. 103 (2), 58-64.
Kim, D., Jeond, S., Lee, C. (2003): Antioxidant capacity of phenolic phytochemicals from various
cultivars of plums, Food Chem. 81 (3), 321-326.
Krawitz, Ch., Abu Mraheil, M., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S., Hain, T.
(2011): Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant
human respiratory bacterial pathogens and influenza A and B viruses, Bmc Complement Altern
Med. 11 (16), 1-6.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
220
Lee, J., Durst, R.W., Wrolstad, R.E. (2005): Determination of total monomeric anthocyanin pigment
content of fruit juices, beverages, natural colorants, and wines by the pH differential method:
Collaborative study, J. AOAC Int. 88 (5), 1269-1278.
Liu, A.L., Wang, H.D., Lee, S.M., Wang, Y.T., Du, G.H (2008): Structure-activity relationship of
flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities,
Bioorg. Med. Chem. 16 (7), 141-7147.
Liu, Q., Yao, H. (2007): Antioxidant activities of barley seeds extracts, Food Chem.102 (3) 7, 32-
737.
López-Garcia, J., Kuceková, Z., Humpolíček, P., Mlček, J., Sáha, P. (2013): Polyphenolic extracts
of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability,
Molecules. 18, 13435-13445.
Milbury, P. E., Cao, G., Prior, R. L., Blumberg, J. (2002): Bioavailablility of elderberry
anthocyanins, Mech Ageing Dev. 123 (8), 997-1006.
Mohammadsadeghi, S., Malekpour, A., Zahedi, S., Eskandari, F. (2013): The antimicrobial activity
of elderberry (Sambuscus nigra L) extract against gram positive bacteria, gram negative
bacteria and yeast, Res. J. Appl. Scien. 8 (4), 240-243.
Nagl, M., Eder, S., Wendelin, S., Reich, G., Sontag, G. (2006): Qualitative and quantitative analysis
of phenolic constituents in elderberry juices, Nutrition. 30 (10), 409-415.
Netzel, M., Strass, G., Herbst, M., Dietrich, H., Bitsch, R., Bitsch, I., Frank, T. (2005): The
excretion and biological antioxidant activity of elderberry antioxidants in healthy humans,
Food Res. Intern. 38 (8-9), 905-910.
Pin-Der, D.(1998): Antioxidant activity of Budrock (Arctium lappa, L.): its scavenging effect on
free radical and and active oxygen, J. Am. Oil. Chem.75 (4), 455-461.
Prieto, P., Pineda, M., Aguilar., M. (1999): Spectrophotometric quantitation of antioxidant capacity
through the formation of a phosphomolybdenum complex: specific application to the
determination of vitamin E, Anal. Biochem. 269 (2), 337-341.
Reschke, A., Herrmann, K. (1981): Occurrence of 1-O-hydroxycinnamyl-ß-D-glucoses in fruits. 15
phenolics of fruits, Z Lebensm. Unters. Forsch. 173: 458-463.
Roschek, B., Fink, R.C., McMichael, M.D., Li, D., Alberte, R.S. (2009): Elderberry flavonoids bind
to and prevent H1N1 infection in vitro, Phytochem. 70 (10), 1255-1261.
Rupasinghe, H.P.V., Clegg, S. 2007. Total antioxidant capacity, total phenolic content, mineral
elements, and histamine concentrations in wines of different fruit sources, J. Food Compos.
Anal. 20 (2), 133-137.
Sánchés-Moreno, C., Larrauri, A., Saura-Calixto, F. (1998): A procedure to measure the antioxidant
efficiency of polyphenols, J. Sci Food Agricult. 76 (2), 270-276.
Sidor, A., Michalowska, A.G. (2014): Advanced research on the antioxidant and health benefit of
elderberry (Sambucus nigra) in food-a review, J. Funct. Foods. Article in press.
Singleton, V.L., Rossi, J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-
phosphotungstic acid reagents, Amer. J. Enol. Agricult. 16 (48), 144-158.
Stoilova, I., Wilker, M., Stoyanova, A., Krastanova, A., Stanchev, V. (2007): Antioxidant activity
olf extract from elder flower (Sambucus nigra L), Herba Pol. 53 (1), 45-54.
Stroh, H., Schaefer, H., Haschke, E. (1962): D-Glucose esters of hydroxycinnamic acids in
Sambucus nigra. Z Chemie. 2, 373-374.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
221
Willett, W.C. (2002): Balancing life-style and genomics research for disease prevention, Science.
292 (5568), 695-698.
Wu, X., Cao, G., Prior, R.L. (2002): Absorption and metabolism of anthocyanins in elderly women
after consumption of elderberry or blueberry, J. Nutr. 132 (7), 1865-1871.
Youdin, K.A., Martin, A., Joseph, J.A. (2000): Incorporation of the elderberry anthocyanin by
endothelial cells increases protection against oxidative stress, Free Rad. Biol. Med. 29 (1), 51-
60.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
222
Vitamin E in vegetable oils as determined by RP-HPLC with UV detection
UDC: 641.18 : 664.34
Daniela Kenjerić, Blanka Bilić, Ivan Tomas, Milica Cvijetić
Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia
Summary
Vitamin E is the general term used to describe a group of eight natural isomers which along with
vitamin A, D and K form the group of fat soluble vitamins. Vegetable oils are one of the most
important dietary sources of vitamin E which, as antioxidant, prevents oil rancidity during storage
thus prolonging its shelf-life. Among eight natural isomers belonging to this vitamin, α-tocopherol
is the most active in vivo and the most represented in vegetable oils of green plants. Vitamin E
presence in vegetable oils depends on the oil type, production process, freshness and storage
conditions. The aim of this work was to determine concentrations of α-tocopherol in various edible
vegetable oils. Rapid reverse-phase high-performance liquid chromatography method with
apsorptiometric detector was used for determination. Fourteen edible vegetable oil types were
analysed. Some of them, like sunflower and rapeseed oil, are widespread and commercially
available while others have attracted scientific curiosity just recently and therefore data on their
composition are scarce. Sunflower and chestnut oil had the highest amount of α-tocopherol, while
amounts in linseed and chia oil were below the level of detection. Large differences in the content of
α-tocopherol have been found between fresh cold pressed oil samples and commercial ones. This
has been especially noted in sunflower oil in which degradation was additionally monitored during
storage.
Keywords: vegetable oils, RP-HPLC, vitamin E, α-tocopherol, dietary intake
Introduction
Vitamin E is a generic name for a group of plant soluble lipid compounds including 4
tocopherols (α-, β-, γ- and δ-) and 4 tocotrienols (α-, β-, γ- and δ-) (Beltrán et al., 2010;
Blekas et al., 1995; Brigelius-Flohé, 2006; Gimeno et al., 2000). The specific tocopherols
and tocotrienols differ by the number and positions of the methyl groups on their 6-chromanol
ring (Eitenmiller and Lee, 2004).
Vitamin E has many biological functions, and as the major lipid soluble antioxidant
decreases the risk of cardiovascular diseases and cancer (Brigelius-Flohé, 2006; Gimeno et
al., 2000). α-Tocopherol is the most common form of vitamin E occurring in the human
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
223
body, and it shows the highest biological activity among all compounds belonging to the
vitamin E (Beltrán et al., 2010). In human body, α-tocopherol seems to be the most
involved in gene regulation, while γ-tocopherol appears to be highly effective in
prevention of cancer-related processes (Brigelius-Flohé, 2006).
Recommended dietary allowance (RDA) of vitamin E for adults, which is set to meet the needs
of almost all (97 to 98 percent) individuals in a group and includes both naturally occurring
RRR-α-tocopherol and 2R-stereoisomeric forms of α-tocopherol that occur in the fortified foods
and supplements, is 15 mg for both, males and females (FNB and IOM, 2004).
6-hydroxychromanols that constitute the vitamin E family are plant products of well-
defined biosynthetic routes, and synthesis has not been documented in any other organisms
but photosynthetic ones. Therefore, plant products provide the only natural dietary sources
of vitamin E (Eitenmiller and Lee, 2004). The main single most important and
concentrated dietary source of vitamin E are vegetable oils (Gimeno et al., 2000) in which
vitamin E as natural antioxidants prevents the rancidity during storage and thus delays
shelf-life of a product (Beltrán et al., 2010; Blekas et al., 1995; Gimeno et al., 2000).
Vitamin E presence in vegetable oils ranges from 1 mg/100g to 162 mg/100g, depending
on the oil type, production process, freshness and storage conditions (Combs, 2008).
α-Tocopherol represents more than 95% of the total tocopherol content of olive oil,
β-tocopherol was found at very low concentrations, while the remaining part belonged
to the γ-tocopherol (Beltrán et al., 2010). Literature reports similar content of α- and
δ-tocopherol in canola (Goosens and Marion, 2011), while in soybean oil γ-
(Eitenmiller and Lee, 2004) and δ-tocopherol (Goosens and Marion, 2011) dominate
over α-tocopherol with γ-tocopherol being the most represented.
Oil tocopherol content and composition are also influenced by genetic characteristics
(cultivar), crop year (climatic conditions like rainfall) and harvesting (ripening stage)
(Gimeno et al. 2002; Beltrán et al., 2010).
The aim of this study was to determine the edible plant oil content of α-tocopherol as
biologically most active, and at the same time most represented compound of vitamin E.
Additionally, degradation of α-tocopherol during the room temperature storage was tested
on sunflower oil which is the widespread oil type in the eastern Croatia region where this
study was carried out. Obtained values were also used to estimate contribution of analysed
oils to the Dietary Reference intakes (DRIs) of the vitamin E.
Materials and methods
A quick and direct RP-HPLC method with UV detection for measuring tocopherols in
vegetable oils developed by Gimeno et al. (2000) was used for vitamin E determination.
All the analyses were performed in duplicates.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
224
Oil samples
Fourteen edible vegetable oil types were analysed: chia, linseed, apricot kernel, poppy
seed, camelina, walnut, sesame, hemp, olive, pumpkin seed, rapeseed, soybean, hazelnut
and sunflower oil. Some of them, like sunflower, soybean, rapeseed and olive oil, are
widespread and commercially available while others, like hemp and chia have attracted
scientific curiosity just recently and therefore data on their composition are scarce.
Each oil type was represented by at least two samples and exact number of each oil type
samples is given on Fig. 1.
Most of the oil types were covered by samples which were obtained by cold pressing
method with a screw expeller in laboratory conditions and were analysed within a week of
production, as well as with oil samples purchased from the retailers where average
consumers supply themselves. The purpose of this oil sample selection method was to get
an insight into the vitamin E content in fresh samples, as well as in those which an average
consumer can purchase for everyday use. Until the analysis samples were stored under the
ambient conditions in filled capped plastic containers.
Storage of the selected sunflower oil sample was performed under the ambient conditions
but in a dark place during one month period to simulate household managing.
Preparations of standard and instrument calibration
Standard solutions were prepared by diluting α-tocopherol in respectable amounts of
solvent to cover literature concentrations (0.3 -38.7 mg/100 g of oil) of the compound of
interest, as well as the concentrations ±10% of those reported to enable analysis due to the
natural variability of the analyte in the samples.
Preparations of oil sample for RP-HPLC analysis
Oil samples were diluted in hexane (1:10) and an aliquot (400 µl) is mixed with methanol
(1200 µl) and internal standard (300 µg/ml of α-tocopherol acetate in ethanol) solution
(400 µl). Sample solution was vortex-mixed and after that centrifuged (3000g, 5 min).
Prior to HPLC analysis, sample was filtered through a 0.45 µm nylon micro filter.
Reversed-phase high-performance liquid chromatography (RP-HPLC)
The analyses were performed on a Shimadzu HPLC system (Shimadzu Corporation,
Kyoto, Japan) consisted of LC-20AD Prominence solvent delivery module, DGU-20A5R
degassing unit, SIL-10AF automatic sample injector and SPD-M20A Prominence UV/VIS
photodiode array detector. Instrument was coupled to a computer and supported by Lab
Solutions Lite Version 5.52 software.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
225
Separation was achieved by Hibar® 125-4, LiChrospher® 100 RP-18 (5 µm) column
(Merck, Germany) and 2ml/min isocraticaly runned mobile phase consisting of methanol and
water (96:4; v/v). Sample injection volume was 50 µl. Tocopherol was detected at 292 nm.
Identification of compounds was conducted on the basis of the retention times of the
standard and sample compounds and UV absorption spectrum of the same compounds,
while concentrations were calculated from the integrated areas of the samples and
corresponding calibration curves of α-tocopherol standard (internal standard method).
Results and discussion
α-Tocopherol content of analysed edible plant oils
Obtained average values of α-tocopherol content in analysed edible oil samples are shown
in the Fig 1. From the results it is visible that the most spread sunflower oil is also the oil
with the highest α-tocopherol content. Substantial amount are recorded also in soybean
and rapeseed oils which are also highly consumed, while chia and linseed oil content of
α-tocopherol content was below the level of detection.
Fig. 1. Average α-tocopherol content (mg/100g) of analysed oil types
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
226
α-Tocopherol content of Argentinean sunflower oil reported by Crapiste et al. (1999)
was 723 mg/kg and 701 mg/kg in two crude sunflower oils obtained by pressing, and
703 mg/kg in crude sunflower oil sample obtained by extraction method. Average values
of sunflower oils found in the literature are 55.4±14.1 mg/100 g of α-tocopherol and
56.6±14.1 mg/100g α-tocopherol equivalents mg (Eitenmiller and Lee, 2004). Therefore,
the results of the sunflower oil samples presented in this paper (68.88 mg/100 g of oil) are
within the literature average values. Nevertheless, it should be considered that the values of
α-tocopherol obtained in this study varied from 39.22 mg/100 g which were recorder for
the commercially supplied oil up to 81.88 mg/100 g which were recorded in the fresh cold
pressed oil sample.
Soybean and rapeseed (canola) oil are, beside sunflower oil, two most common sort oil
types. According the obtained results in the present study, their α-tocopherol content is
similar (28.79 mg/100 g and 28.37 mg/100 g, respectively). Soybean oil analysed by the
same method as in the present study contained 16±2.3 ppm α-tocopherol and 147±1.8 ppm
δ-tocopherol (Goosens and Marion, 2011). Average values of soybean oils found in the
literature are 8.2±4.2 mg/100g of α-tocopherol, 69.3±14.3 mg/100g of γ-tocopherol and
28.1±10.5 mg/100g of δ-tocopherol resulting in sum of 17.0±4.6 mg/100g α-tocopherol
equivalents mg (Eitenmiller and Lee, 2004). Canola oil analysed by the same method as in
the present study contained 19±2.3 ppm α-tocopherol and 22.9±0.65 ppm δ-tocopherol
(Goosens and Marion, 2011). Average values of canola and rapeseed oils found in the
literature are 21.9±6.3 mg/100g of α-tocopherol and 26.7±7.3 mg/100g α-tocopherol
equivalents mg (Eitenmiller and Lee, 2004).
Olive oil represents an important part of the Mediterranean diet (Šarolić et al., 2014) and
Mediterranean Adequacy Index (Alberti et al., 2009; Fidanza et al., 2004), and as such is
one of the most advisable and most popular oils worldwide. Average values of olive oils of
different origin (Italy, Spain, Tunisia, and Greece) are 13.5±4.7 mg/100g of α-tocopherol
and 13.6±4.7 mg/100g α-tocopherol equivalents (Eitenmiller and Lee, 2004). Content
of α-tocopherol in fresh Greece olive oil samples studied by Nissiotis and Tasioula-
Margari (2002) varied from 139.29 mg/kg up to 175.17 mg/kg. Beltrán et al. (2010) reported
average α-tocopherol content of 30 Spanish olive oil cultivars to be 278±102 mg/kg, with the
lowest content of 82 mg/kg and the highest of 502 mg/kg. Average value of olive oil α-
tocopherol obtained in the present study (16.79 mg/100g) was in line with the reported
average values and Greece olive oil samples content, but below the average reported for
Spanish olive oil cultivars.
Pumpkin seed oil is used by both food and pharmaceutical industries. For many years
pumpkin seeds have been used in complementary medicine – primarily as vermifuge. They
belong to the group of plants and herbs containing fatty acids and phytosterols that are
administered at the early stage of the prostatic hyperplasia therapy (Nawirska-Olszlańska
et al., 2013). Cold pressed pumpkin seed oil is produced by pressing of raw, dried, mainly
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
227
hull-less seeds, on a continuous screw press. This method of production preserves bioactive
compounds as vitamin E which has positive effect on the human health. Rabrenović et al.
(2014) have reported that tocopherol content of cold pressed oil from different pumpkin seed
cultivated in Serbia varies from 38.03±0.25 up to 64.11±0.07 mg/100 g of oil. Average value
of the α-tocopherol content of the cold pressed pumpkin seed oil obtained in the present
study was 16.79 mg/100 g.
Present study encompassed two fruit oils, walnut and hazelnut oil. Although both, walnut
and hazelnut belong to the same group of fat rich fruit types, their oils differ in α-
tocopherol content. Content of α-tocopherol in hazelnut oil is multiply higher from the one
recorded for walnut oil (40.35 mg/100 g and 5.93 mg/100 g, respectively). Previously
reported hazelnut oil content of α-tocopherol was 45.2 mg/100g, and α-tocopherol
equivalents content was 36.6 mg/100g, while previously reported cold pressed walnut oil
content of α-tocopherol was below the level of detection, and α-tocopherol equivalents
content was 2.8 mg/100g (Eitenmiller and Lee, 2004).
Remaining analysed oil types (camelina, hemp, apricot kernel, sesame, poppy seed, linseed
and chia) which are used in daily diet in less extent, had lower α-tocopherol content, and
two of them (linseed and chia) had α-tocopherol content below the level of detection.
Review of literature data reveals that oils with higher α-tocopherol content have also
higher α-tocopherol equivalent values. In some oils (soybean, peanut, corn and canola)
γ-tocopherol is present in large enough quantities to contribute appreciably to α-tocopherol
equivalent levels (Eitenmiller and Lee, 2004). This should be considered in the comparison
of the obtained data to literature values and in analysis of mentioned oils as the dietary
source of vitamin E.
α-Tocopherol food sources and dietary intakes
Since vegetable oils are one of the most important dietary sources of the vitamin E, values
obtained by the RP-HPLC analysis were used to estimate contribution of analysed oil types
to the Dietary Reference Intakes (DRIs) (FNB and IOM, 2004). To enable that estimation
it was hypothesised that daily consumption of edible oil is 10 g/day, which corresponds to
on table spoon of oil that is used for salad or meal preparation.
In accordance with the content of α-tocopherol in oils, the highest contribution
(45.92% RDA with 10 g/day consumption) was recorded for sunflower oil, followed
by hazelnut (26.90% RDA with 10 g/day consumption), soybean (19.20% RDA with
10 g/day consumption) and rapeseed oil (19.15% RDA with 10 g/day consumption)
(Fig. 2).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
228
Fig. 2. Average estimated contribution of the 10 g daily consumption
of oil to the recommended dietary intake
According to the data from the Second National Health and Nutrition Examination Survey
(NHANES II) contribution of fats and oils to the vitamin intake in the United States is
20.2%, while other sources are vegetables (15.1%), meat, poultry and fish (12.6%),
desserts (9.9%), breakfast cereals (9.3%), fruit (5.3%), dairy products (4.5%), mixed main
dishes (4.0%), nuts and seeds (3.8%), soups, sauces and gravies (1.7%) (Eitenmiller and
Lee, 2004).
Changes in α-tocopherol content during storage
Vitamin E stability in edible oils depends on the initial oil quality, and in most refined,
bleached and deodorised oils protected by proper packaging most changes are attributable
to abuse leading to oxidative changes (Eitenmiller and Lee, 2004).
To get an insight into the vitamin E content due to its freshness, and regardless of
production method, this study encompassed fresh samples obtained in laboratory
conditions as well as oil samples purchased from the retailers where average consumers
supply themselves. Variations in the content are visible from the SD values shown in Fig. 1
from which is also visible that the sunflower oil which is widely used is the oil with the
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
229
highest variations (93.12 mg/100 g in one fresh oil sample, 42.04 mg/100 g in one of the
commercial samples).
To simulate household managing, due to the fact that average oil consumption period is
from one week up to one month per 1 L of oil, fresh sunflower oil obtained by cold
pressing in laboratory conditions was storaged for one month period under the ambient
conditions in a dark place. Analysis after 1 month storage period indicated 24.69%
reduction in α-tocopherol content (Fig. 3).
Fig. 3. Reduction of cold pressed sunflower oil α-tocopherol content
during the 1 month storage under the ambient conditions
Vitamin E decrease in crude sunflower oil, obtained by pressing and solvent extraction,
during storage on ambient temperature was reported by Crapiste et al. (1999). Extracted oil
showed a higher oxidative stability than pressed oil, and oxidative deterioration was
strongly dependent on temperature, oxygen availability, and the ratio of exposed surface to
sample volume. They also reported that container type (plastic, tin, stainless steel, glass,
etc.) has no effect on degradation. On the other hand, Shafqatullah and Sohail (2011)
reported that for long storage life sunflower oil should be kept under florescent light at
room condition in glass bottle fully filled, and that air, packaging and storage time all have
an effect on the stability of sunflower oil.
Mean
Mean±SD
Mean±1,96*SD
fresh
after 1 month storage
Time of sample analysis
60
70
80
90
100
110
120
% o
f th
e ori
gin
al α
-toco
ph
erol co
nte
nt
88.99 ± 5.83 mg/100 g
67.03 ± 3.95 mg/100 g
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
230
Gómez-Alonso et al. (2007) studied changes in composition of Spanish virgin olive oils
during 21 month storage at room temperature and in darkness. α-Tocopherol content
decreased from 12% (0.054 mmol/kg) up to 23% (0.127 mmol/kg) from the initial values
which were ranking from 0.33 mmol/kg to 0.55 mmol/kg. Fall in α-tocopherol content was
apparently linear, although they presumed short lag phase at the beginning of the assay.
Degradation was also reported for soybean and rapeseed oil (Eitenmiller and Lee, 2004).
Conclusions
Content of α-tocopherol in studied edible oil types varied from those below the level of
detection up to 68.88 mg/100 g of oil. Highest values were recorded in sunflower oil which
is the most widespread oil type in the continental part of the Croatia. Contribution of oil to
the daily recommended intake of vitamin E just by studied α-tocopherol can reach up to
45.92% of DRA with 10 g/day oil consumption.
References
Alberti, A., Fruttini, D., Fidanza, F. (2009): The Mediterranean adequacy index: Further confirming
results of validity, Nutr. Metab. Cardiovas. 19, 61-66.
Beltrán, G., Jiménez, A., del Rio, C., Sánchez, S., Martínez, L., Uceda, M., Aguilera, M.P. (2010):
Variability of vitamin E in virgin olive oil by agronomical and genetic factors, J. Food
Compos. Anal. 23, 633-639.
Blekas, G., Tsimidou, M., Boscou, D. (1995): Contribution of α-tocopherol to olive oil stability,
Food Chem. 52 (3), 289-294.
Brigelius-Flohé, R. (2006): Bioactivity of vitamin E. Nutr. Res. Rev. 19 (2),174-186.
Combs, G.F. (2008): The Vitamins, Fundamental aspects in nutrition and health, Fourth Edition,
Elsevier Academies Press, USA, p.p.181-212.
Crapiste, G.H., Brevedan, M.I.V., Careli, A.A. (1999): Oxidation of sunflower oil during storage,
JAOCS 76 (12), 1437-1443.
Eitenmiller, R., Lee, J. (2004): Vitamin E; Food chemistry, Composition, and Analysis, Marcel
Dekker, Inc, New York, USA. pp. 2, 17, 46, 300-301, 307-308, 438-445.
Fidanza, F., Alberti, A., Lanti, M., Menotti, A. (2004): Mediterranean adequacy index: correlation
with 25-year mortality from coronary heart disease in the seven countries study, Nutr. Metab.
Cardiovasc. Dis. 14, 254-258.
Food and Nutrition Board (FNB), Institute of Medicine (IOM), National Academies (NC). (2004):
Dietary Reference Intakes (DRIs): Recommended intakes for Individuals, Vitamins. National
Academy of Sciences, Washington, USA.
Gimeno, E., Castellote, A.I., Lamuela-Raventós, R.M., de la Torre, M.C., López-Sabater, M.C.
(2000): Rapid determination of vitamin E in vegetable oils by reversed phase high-
performance liquid chromatography, J. Chromatogr. A. 881, 251-254.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
231
Gimeno, E., Castellote, A.I., Lamuela-Raventós, R.M., de la Torre, M.C., López-Sabater, M.C.
(2000): The effects of harvest and extraction methods on the antioxidant content (phenolics,
α-tocopherol, and β-carotene) in virgin olive oil, Food Chem. 78, 207-211.
Goosens, B., Marion, J. (2011): Quantifying vitamin E in vegetable oils with reversed-phase high
performance liquid chromatography, Concordia College Journal of Analytical Chemistry 2,
44-50.
Gómez-Alonso, S., Mancebo-Campos, V., Deamparados Salvador, M., Fregapane, G. (2007):
Evolution of major and minor components and oxidation indices of virgin olive oil during 21
months storage at room temperature, Food Chem. 100, 36-42.
Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokól-Lętowska, A., Kucharska, A.Z. (2013):
Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars,
Food Chem. 139, 155-161.
Nissiotis, M., Tasioula-Margari, M. (2002): Changes in antioxidant concentration of virgin olive oil
during thermal oxidation, Food Chem. 77, 371-376.
Rabrenović, B.B., Dimić, E.B., Novaković, M.M. Tešević, V.V. (2014): The most important
bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds,
LWT-Food Sci. Technol. 55, 521-527.
Shafqatullah, A.H., Sohail, M. (2011): Effect of packing materials on storage stability of sunflower
oil, Pak. J. Biochem. Mol. Biol. 44 (3), 92-94.
Šarolić, M., Gugić, M., Marijanović, Z., Šuste, M. (2014): Virgin olive oil and nutrition, Food in
health and disease 3 (1), 38-43.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
232
Determination of polyphenolic compounds in red wines
from Baranja vineyards
UDC: 663.222(497.543) : 547.623
Nebojša Kojić1
, Lidija Jakobek2
1Vupik d.d., Sajmište 113c, HR-32000 Vukovar, Croatia
2Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia
Summary
In this study, bioactive polyphenolic compounds from red wines were investigated. For the
characterization of individual polyphenolic compounds belonging to phenolic acid and flavanol
class, easy and reliable high performance liquid chromatography method with photodiode array
detection was developed. Total polyphenols and total flavonoids were also investigated by using
simple spectroscopic methods. All methods were checked for their linearity, limit of detection, limit
of quantification and precision. Developed and validated procedures were applied for the
determination of polyphenolic compounds in two wines from Baranja vineyards, Croatia. The most
abundant compounds found in red wines were (-)-epicatechin and gallic acid followed by p-coumaric
acid, (+)-catechin. The developed method were shown to be precise for the determination of
polyphenolic compounds from red wines.
Keywords: polyphenolic compounds, red wine, HPLC method, spectroscopic method
Introduction
Wine is an alcoholic beverage that contains various polyphenols extracted from grapes
during the processes of vinification (Rastija et al., 2009; Puškaš, 2010). Polyphenolic
compounds are responsible for the quality of red wines, influencing on their astringency,
bitterness and colour. The viticulture practices, different enological techniques, the varieties
and the harvesting year of grapes influence the polyphenolic composition of wines (Boulton,
2001; Lesschaeve, Noble, 2005; Cliff et al., 2007; Gómez-Alonso et al., 2007).
Wines contain a wide range of polyphenols that include phenolic acids, notably
hydroxycinnamic acids (e.g., caffeic acid, p-coumaric acid and ferulic acid) and
hydroxybenzoic acids (gallic, ellagic, p-xydroxybenzoic, vanillic, and syringic acid).
Anthocyanins, flavonols (quercetin, rutin, myricetin, etc.) and flavanols (catechin,
epicatechin, etc.) were also found in wines (Gómez-Alonso et al., 2007; Spacil et al., 2008).
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
233
Polyphenols from wines were reported to have many bioactivities which are still studied
intensively (Teissedre et al., 1996; Cooper et al., 2004). They are present in high quantities
in wine, especially in red wines, which may explain so-called French paradox (Cliff et al.,
2007) which was the subject of research of (Renaud, de Lorgeril, 1992). They reported that
there was a low mortality rate from ischemic heart disease among French people despite
their high consumption of saturated fats and the prevalence of other risk factors, such as
smoking. This referred to the "Mediterranean diet", which included regular but moderate
consumption of red wine (Renaud, de Lorgeril, 1992).
Therefore, determination of the polyphenol content of red wines could be very useful for
the interpretation of their effects in the human body. Many different methods, including
high-performance liquid chromatography (HPLC) in combination with different detectors,
UV/Vis, photo diode array detector (PDA) have been used to investigate the polyphenolic
content of wine (Escarpa, Gonzales, 2001). Spectrophotometry, as a more affordable
technique for fast and simple routine analyses, has been used for the determination of the
total amounts of polyphenols (Slinkard, Singleton, 1977; Ivanova et al., 2010), flavonoids
(Mazza et al., 1999; Zhishen et al., 1999; Ivanova et al., 2009), flavan-3-ols (Ivanova et al.,
2009).
The aim of this study was to validate spectroscopic and high-performance liquid
chromatography methods with photodiode array detector (HPLC-PDA), for the
determination of polyphenols in wines. Furthermore, two wines from Baranja vineyards,
belonging to Continental region of Croatia, were analysed for their total polyphenol, total
flavonoid content. The content of individual flavanols and phenolic acids was also
determined by using HPLC-PDA method in order to examine the distribution of these
polyphenols in red wines.
Materials and methods
Chemicals
Gallic acid monohydrate (398225), p-coumaric acid (C9008), (+)-catechin hydrate (C1251),
(-)-epicatechin (E1753) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ortho-
phosphoric acid (85% HPLC grade) was purchased from Fluka (Buchs, Germany). Methanol
(HPLC grade) was obtained from Merck (Darmstadt, Germany) and used as mobile phase.
Folin-Ciocalteau reagent was obtained from Kemika (Zagreb, Croatia).
Wine samples
Grapes from Vitis vinifera L., Merlot and Franconia, were cultivated on the slopes of the
Ban's hill, Baranja vineyard county, vintage 2013 (Continental region of Croatia, sub-
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
234
region Podunavlje, zone C1). Vegetative cycle is characterized by an excellent schedule
rainfall during spring and dry and hot summer, which resulted in exceptional quality of the
grapes at harvest. After the grapes were hand-picked, fermentation with maceration as well
as pressing and continuation of malolactic fermentation were conducted in stainless steel
vinimatics for a period of 10-12 days (http://vinabelje.hr/vina/select/, October, 09th 2014).
At the time of sampling, wines were not blended and any clarification or filtration were not
conducted. The wines were investigated just a few days after bottling. The wine samples
were stored at a temperature of 15 to 18 °C. They were packed in PET bottles. Before
HPLC-PDA analysis, wine samples were filtered through 0.45 µm polytetrafluoroethylene
(PTFE) filters (Varian, USA).
Determination of total polyphenols
Spectroscopic determination of the total polyphenol (TP) content was done with the
Folin-Ciocalteau micro method for wine analysis (Waterhouse, 2009) using gallic acid
as the standard. The TP content was measured at 765 nm on a UV/Vis
spectrophotometer (JP Selecta UV 2005, Barcelona, Spain). An aliquot (20 µl) of wine
sample was mixed with 1580 µl of distilled water and 100 µl of Folin-Ciocalteau
reagent. 300 µl of sodium carbonate solution (200 gl-1
) was added to the mixture. After
incubation in water bath at 40 °C for 30 min, absorbance of the mixture was read
against the prepared blank at 765 nm. Total polyphenols were expressed as mg gallic
acid equivalents per litre of wine (mg GAE l-1
). The calibration curve of the
absorbance vs. concentration of the standard was used to quantify TP content. Data
presented are mean ± standard deviation (SD). All measurements were performed in
triplicate.
Determination of total flavonoids
Total flavonoid content (TF) was evaluated according to a colorimetric assay with
aluminium chloride proposed by (Zhishen et al., 1999). An aliquot of 1 ml of appropriate
diluted wine sample was placed in a 10 ml volumetric flask, containing 4 ml of distilled
water, followed with addition of 0.3 ml solution of NaNO2 (0.5 gl-1
). About 0.3 ml of
AlCl3solution (1 gl-1) was added 5 min later and after 6 min, 2 ml of NaOH solution (1 moll
-1)
was added. The total volume was made up to 10 ml with distilled water and the solution was
mixed. The absorbance was measured against the blank (prepared in the same way with
distilled water) at 510 nm. (+)-catechin was used as the standard for the calibration curve and
the concentration of TF was expressed in mg l-1 as catechin equivalents (mg CE l
-1). Data
presented are mean ± standard deviation (SD). All measurements were performed in
triplicate.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
235
High-performance liquid chromatography measurement
The analysis were performed on a HPLC analytical system (Varian, USA) consisting of a
Prostar 230 pumps and Prostar 330 PDA detector. Separation of polyphenolic compounds
was performed on an OmniSpher C18 column (inner diameter 250 x 4.6 mm, particle
diameter of 5 microns, Varian, USA) that is protected by the first column (ChromSep 1cm
x 3 mm, Varian, USA). The flavan-3-ols and phenolic acids present in wines were
separated using water solution of phosphoric acid (0.1%) as solvent A and 100% methanol
(HPLC grade) as solvent B (Jakobek et al., 2007). The elution conditions are as folows:
0 min, 5% B, 30 min 80% B, 33 min 80% B, 35 min 5% B, the operating conditions
were: injection volume 20 µL, flow rate 0.8 mlmin-1
.
Phenolic compounds were identified through comparison of their retention times and
UV/Vis spectra with those of standards. Peak area was used for quantitation purposes,
using internal standard calibration. Values were reported as mg l-1
. The detection
wavelength was 260 nm for gallic acid, 280 nm for (+)-catechin and (-)-epicatechin, 320 nm
for p-coumaric acid.
Spectroscopic and HPLC-PDA method validation
For the total polyphenol and total flavonoid determination, gallic acid and (+)-catechin
were used as standards, respectively. Standards were prepared in methanol in concentration
ranges 0-250 mg l-1
for gallic acid and 0-150 mg l-1
for (+)-catechin. Different
concentrations were measured two times according to the procedure described. Calibration
curves were created. Linearity of calibration curves was expressed with coefficient of
determination (R2), limit of detection (LOD) and limit of quantification (LOQ) were
detemined according to equations 1 and 2.
LOD = 3.3 × s/S (1)
LOQ = 10 × s/S (2)
where, s is the standard deviation of the y intercepts of the regression lines, and S is the
slope of the calibration curve.
Precision of methods was detemined by analysing the same wine samples four times
during the day and it was expresed by calculating standard deviation of the polyphenol
content, and coefficient of variation expressed in %. For the HPLC-PDA method,
calibration curves of all standards were constructed analysing standard solutions of
different concentrations. Each concentration was analysed two times (gallic acid 0-98 mg l-1
;
(+)-catechin 0-250 mg l-1
; (-)-epicatechin 0-245 mg l-1
; p-coumaric acid 0-98 mg l-1
).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
236
Linearity was expressed with coefficient of determination (R2) and LOD and LOQ were
calculated according to equations 1 and 2.
Statistical analysis
Measurements for TP and TF was done in triplicate, and the results were presented as
mean value ± standard error (standard deviation, SD). Correlation and regression analyses
were performend using Microsoft Office Excel.
Results and discussion
The results for the validation of spectroscopic methods are shown in Table 1. Linearity of
methods was good which is represented by R2 values 0.985 and 0.961 for total polyphenols
and total flavonoids, respectively. Limit of detection and limit of quantification were also
determined. It could be seen that these methods could determined and measure reasonably
small content of total polyphenols (LOD = 0.159 mg l-1
; LOQ = 0.483 mg l-1
) and total
flavonoids (LOD = 0.243 mg l-1
; LOQ = 0.738 mg l-1
). Moreover, both methods were
shown to be precise for the determination of polyphenols in wines (CV 5 and 2% for total
polyphenols and total flavonoids, respectively).
Table 1. Linearity, limit of quantification, limit of detection and precision of methods for total
polyphenols, total flavonoids and HPLC-PDA method
Method R² Equation LOD
mg l-1
LOQ
mg l-1
Ret.
time
min
Coefficient
of variation
%
Spectroscopic
Total polyphenols 0.985 y = 368.7x + 6.545 0.159 0.483 4.6
Total flavonoids 0.961 y = 741.5x – 21.18 0.243 0.738 1.8
HPLC
(+)- Catechin 0.996 y=46379x + 28374 1.02 3.10 16.56 1
(-)- Epicatechin 0.996 y=42184x + 25919 0.89 2.71 19.51 3.3
Gallic acid 0.998 y=37589x + 212082 2.44 7.40 11.26 1.9
p-coumaric acid 0.954 y=225769x - 676083 0.33 0.98 23.85 15.3
These methods were used to determine the content of total polyphenols and total
flavonoids in Merlot and Franconia wines. The results can be seen in Table 2. In both
wines, the content of total flavonoids (829 mg l-1
in Merlot; 835 mg l-1
in Franconia) and
total polyphenols (2016 mg l-1
in Merlot; 1910 mg l-1
in Franconia) were similar. The
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
237
results are in accordance with results published in the literature (Sato et al., 1996; Sanchez-
Moreno et al., 1999; Arnous et al., 2002; Minussi et al., 2003; Roussis et al., 2005).
Furthermore, the content of total polyphenols in wines from various contries were: 1738-
3292 mg l-1
in wines from Spain (Villano et al., 2006), 1637- 2717 mg l-1
in wines from
Slovenia (Košmerl and Cigić, 2008), 2200 to 3200 mg l-1
in wines from Poland (Tarko et al.,
2008), 1018-3545 mg l-1
in wines from France (Landrault et al., 2001), 874-2262 mg l-1 in
wines from Czech Republic (Stratil et al., 2008). According to literature data, wines from
Croatia had 4576-4989 mg l-1 total polyphenols (Piljac et al., 2005) or 2809-3183 mg l
-1
(Katalinić et al., 2004).
Table 2. Content of total polyphenols and total flavonoids in two types of wine
Wine Total flavonoids
[mg CE l-1]
Total polyphenols
[mg GAE l-1]
Merlot 829.14±8.0 2015.88±89.1
Franconia 835.29±22.2 1909.72±93.5
Table 1. shows the results for the validation of HPLC-PDA method. Linearity of the
method was good which is represented by R2 values 0.954-0.998. The calculated LOD and
LOQ were in the range of 0.33-2.44 mg l-1
and 0.98-7.4 mg l-1
, respectively. Precision of
the method was presented with coefficient of variation (%). All identified compounds
could be precisely detemined with HPLC-PDA method (CV from 1 to 15%).
Validated method was used to analyse individual flavanols and phenolic acids in wines.
Fig. 1 presents the chromatograms of wines Merlot and Franconia scanned at 280 nm with
identified compounds. From phenolic acid class, gallic acid and p-coumaric acid were
found. From flavan-3-ol class, (+)-catechin and (-)-epicatechin were identified. Both wines
contain some unidentified compounds from phenolic acid group, anthocyanin group and
flavonol group. This can be seen from their UV/Vis spectra maximum which were 315 and
316 nm for phenolic acids (peak PA 1 and 2, respectively). The maximum absorbance at
arround 500 - 510 nm and 280 nm represents unknown anthocyanins (peaks A). Unknown
flavonols showed absorbance maximum at arround 340 nm.
Table 3. shows the content of identified phenolic compounds. The content of
identified phenolic acids and flavanols are similar in bo th wines. The dominant
compound was (-)-epicatechin (41 and 69 mg l-1
in Merlot and Franconia, respectively),
followed by gallic acid (21 mg l-1
in Merlot and Franconia). p-coumaric acid was identified
only in Franconia wine (11 mg l-1
). (+)-catechin was detected but its content was below the
limit of quantification. These results are in accordance with literature data (Rastija et al.,
2009; Šeruga et al., 2011; Artem et al., 2014).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
238
Fig. 1. The HPLC chromatogram of two types of wine: Franconia and Merlot, scanned at 280 nm
with identified compounds. Peak identification: 1 – gallic acid, 2 – (+)-catechin, 3 – (-)-epicatechin,
4 – p-coumaric acid, A – unidentified anthocyanins, F – unidentified flavonols,
PA1, PA2 – unidentified phenolic acids
Table 3. Content of individual polyphenols in wine, determined by HPLC-PDA method
Content
[mg l-1] Merlot Franconia
Phenolic acids
Gallic acid 21.02 ± 0.6 20.47 ± 0.2
p-coumaric acid nd 10.73 ± 1.6
Flavanols
(+)- Catechin bql bql
(-)- Epicatechin 40.73 ± 0.1 68.98 ± 4.4 Bql – below quantification limit
Nd – not detected
Conclusions
In this work, red wines made from Merlot and Franconia grape from Baranja county
vineyard were analyzed using spectroscopic and HPLC-PDA methods. All methods were
shown to be good for the determination of polyphenols in wines. The results showed the
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
239
content of total polyphenols and total flavonoids similar to those reported in the literature.
Individual flavanols and phenolic acids were identified and their content was similar to
earlier studies.
Acknowledgments
The work was funded by project from Josip Juraj Strossmayer University of Osijek.
References
Arnous, A., Makris, D.P., Kefalas, P. (2002): Correlation of pigment and flavanol content with
antioxidant properties in selected aged regional wines from Greece, J. Food. Compos. Anal.15,
655-665.
Artem, V., Geana, E.-I., Antoce, A.O. (2014): Study of phenolic compounds in red grapes and
wines from Murfatlar wine center, Analele Stiint Univ. v. 25, n.1, pp.47-52.
Boulton, R. (2001): The copigmentation of anthocyanins and its role in the color of red wine: A
critical review, Am. J. Enol. Vitic. 52, 67-72.
Cliff, M. A., King, M. C., Schlosser, J. (2007): Anthocyanin, phenolic composition, colour
measurement and sensory analysis of BC commercial red wines, Food Res. Int. 40, 92-100.
Cooper, K.A., Chopra, M., Thurnham, D.I. (2004): Wine polyphenols and promotion of cardiac
health, Nutr. Res. Rev. 17, 111-129.
Escarpa, A., Gonzalez, M.C. (2001): An overview of analytical chemistry of phenolic compounds in
foods, Crit. Rev. Anal. Chem. 31, 57-139.
Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I. (2007): HPLC analysis of diverse
grape and wine phenolics using direct injection and multidetection by DAD and fluorescence,
J. Food Compos. Anal. 20, 618-626.
Ivanova, V., Stefova, M., Vojnoski, B. (2009): Assay of phenolic profile of Merlot wines from
Macedonia: Effect of maceration time, storage, SO2 and temperature of storage, Maced. J.
Chem. Chem. En. 28, 141149.
Ivanova, V., Stefova, M., Chinnici, F. (2010): Determination of the polyphenol contents in
Macedonian grapes and wines by standardized spectrophotometric methods, J. Serb. Chem.
Soc. 75, 45-59.
Jakobek, L., Šeruga, M., Novak, I., Medvidović-Kosanović, M. (2007): Flavonols, phenolic acids
and antioxidant activity of some red fruits, Deut. Lebensm-Rundsch. 103, (8), 369-378.
Katalinić, V., Miloš, M., Modun, D., Musić, I., Boban, M. (2004): “Antioxidant Effectiveness of
Selected Wines in Comparison with (+) Catechin,” Food Chem. v.86, n.4, pp. 593-600.
Košmerl, T., Cigić, B. (2008): Antioxidant potential and phenolic composition of white and red
wines, Bulletin l'OIV, v.81, n.926-928, p. 251-259.
Landrault, N., Poucheret, P., Ravel, P., Gasc, F., Cros, G., Teissdre, P.-L. (2001): Antioxidant
capacities and phenolics levels of French wines from different varieties and vintages, J. Agr.
Food Chem. 49, 3341-3348.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
240
Lesschaeve, I., Noble, A.C. (2005): Polyphenols: Factors influencing their sensory properties and
their effects on food and beverage preferences, Am. J. Clin. Nutr.81, 3305-3355.
Mazza, G., Fukumoto, L., Delaquis, P., Girard, B., Ewert, B. (1999): Anthocyanins, phenolics, and
color of Cabernet Franc, Merlot, and Pinot noir wines from British Columbia, J. Agr. Food
Chem. 47, 4009-4017.
Minussi, R.C., Rossi, M., Bologna, J., Cordi, J., Rotilio, D., Pastore, M. (2003): Phenolic
compounds and total antioxidant potential of commercial wines. Food Chem. v.82, p.409-416.
Piljac, J., Martinez, S., Valek, L., Stipčević, T., Kovačević Ganić; K. (2005): A comparison of
methods used to define the phenolic content and antioxidant activity of Croatian wines, Food
Technol. Biotech. 43(3), 271-276.
Puškaš, S.V., (2010): Doktorska disertacija „Uticaj tehnoloških faktora u proizvodnji crvenih vina
na sadržaj i stabilnost katehina i njihovih oligomera“, Novi Sad.
Rastija, V., Medić-Šarić, M., Srečnik, G. (2009): Polyphenolic composition of Croatian wines with
different geographical origins, Food Chem. 115, 54-60.
Renaud, S., de Lorgeril, M. (1992): Wine, alcohol, platelets, and the French paradox for coronary
heart-disease, Lancet. 339, 1523-1526.
Roussis, I.G., Lambropoulos, I., Soulti, K. (2005): Scaveringing capacities of some wines and wine
phenolic extracts, Food Technol. Biotech. v.43, p.351-358.
Sanchez-Moreno, C., Larrauri, J.A, Saura-Calixto, F. (1999): Free radical scavenging capacity of
selected red rose and white wines, J. Sci. Food Agr.79, 1301-1304.
Sato, M., Ramarathnam, N., Suzuki, Y., Okhubo, T., Takeuchi, M., Ochi, H. (1996): Varietal
differences in the phenolic content and superoxide radical scavenging potential of wines from
different sources, J. Agr. Food Chem. v.44, p.37-41.
Slinkard, K., Singleton, V. L. (1977): Total phenol analysis: Automation and comparison with
manual methods, Am. J. Enol. Vitic. 28, 49-55.
Spacil, Z., Nováková, L., Solich, P. (2008): Analysis of phenolic compounds by high performance
liquid chromatography and ultra performance liquid chromatography, Talanta.76, 189-199.
Stratil, P., Kubáň, V., Fojtová, J. (2008): Comparison of the phenolic content and total antioxidant
activity in wines as determined by spectrophotometric methods, Czech J. Food Sci. (26), 242-
253.
Šeruga, M., Novak, I., Jakobek, L. (2011): Determination of polyphenols content and antioxidant
activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric
methods, Food Chem. 124, 1208-1216.
Tarko, T., Duda-Chodak, A., Sroka, P., Satora, P., Jurasz, E. (2008): Physicochemical and
antioxidant properties of selected Polish grape and fruit wines, Acta Sci. Pol., Technol.
Aliment. v.7, n.3, p.35-45.
Teissedre, P. L., Frankel, E. N., Waterhouse, A. L., Peleg, H., German, J. B. (1996): Inhibition of in
vitro human LDL oxidation by phenolic antioxidants from grapes and wines, J. Sci. Food Agr.
70, 55-61.
Villaño, D., Fernández-Pachón, M.S., Troncoso, A.M., García-Parrilla, M.C. (2006): Influence of
enological practices on the antioxidant activity of wines, Food Chem. 95, 394-404.
Waterhouse, A. (2009): Folin–Ciocalteau micro method for total phenol in wine.
(http://www.waterhouse.ucdavis.edu/phenol/folinmicro.htm).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
241
Yücesoy, C. (2000): Determination of some parameters which affect the accuracy and precision in
UV-Vis spectrophotometry, J. Fac. Pharm. 29, (2), 7-18.
Zhishen, J., Mengeheng, T., Jianming, W. (1999): The determination of flavonoid contents in
mulberry and their scavenging effects on superoxide radicals, Food Chem. (64), 555-559.
http://vinabelje.hr/vina/select/, October, 09th 2014.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
242
Antiradical activity of polyphenols from old apple varieties
UDC: 547.56 : 634.11
Petra Krivak, Lidija Jakobek
Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Department of
Applied Chemistry and Ecology, Franje Kuhača 20, HR 31000 Osijek, Croatia
Summary
The aim of this work was to study the antiradical activity of polyphenols from old, ancient apple
varieties grown in Croatia (Crvenka, Pisanika, Ledenara, Adamova zvijezda, Slavonska srčika and
Wild apple). Polyphenols were extracted from apple peel and flesh by using ultrasonic bath. The
scavenging of syntetic, free DPPH˙ radical by polyphenols was studied until the reaction reached
the steady state. A biphasic reaction was observed between apple polyphenols and DPPH˙ radicals,
with “fast” and “slow” scavenging rate. The antiradical activity of the peel of apples Pisanika,
Ledenara, Crvenka, Adamova zvijezda was similar and higher than the antiradical activity of the
peel of Wild apple and Slavonska srčika. On the other hand antiradical activity of the flesh of Wild
apple was significantly higher than the antiradical activity of the flesh of other apples. A
polyphenolic profile showed that the compounds most likely to be responsible for a strong
antiradical activity of Wild apples are chlorogenic acids, phloretin derivatives, quercetin derivatives
and flavanols. Polyphenols of old apple varieties can be considered as strong free radical
scavengers, especially Wild apples. The overall results showed the need to preserve and protect
these old varieties because they represent a significant source for horticultural biodiversity.
Keywords: old apple varieties, antiradical activity, DPPH˙, biphasic reaction
Introduction
Apples represent a significant source of polyphenols in the human diet because they are
available for consumption during the whole year. Old ancient apple varieties are also rich
in polyphenols. These varieties that used to be grown in the past, are now days almost
forgotten. In addition to being a good source of polyphenolic antioxidants (Jakobek et al.,
2013; Mendoza-Wilson et al., 2013), old varieties should be preserved because of
biodiversity of plant species.
A series of papers investigated the antiradical activity of old ancient and common apple
varieties (Iacopini et al., 2010; Carbone et al., 2011; Lata et al., 2009) and polyphenols
(Ceymann et al., 2012). DPPH˙ method is usually used to measure antiradical activity of
polyphenols. DPPH˙ test belongs to AOAC methods utilizing HAT (Hidrogen Atom
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
243
Transfer) and SET (Single Electron Transfer) mechanisms. Antioxidants act by hydrogen
atom donation to free DPPH˙ radical (Prior et al., 2005; Madsen et al., 2010). Moreover,
earlier studies emphasized the importance of conservation of old apple varieties and
determination of polyphenols. Wild apples or crabapples have been investigated earlier and
it was found that they are also rich in polyphenols (Jakobek et al., 2013). John et al. (2014)
studied metabolic variation and antioxidant potential of Malus prunifolia (Wild apple).
They found that polyphenol content in Wild apple collected from Konkuk University,
Seoul, South Korea was higher than in grapes, commercial apples, beverages and black
tea.
Due to the importance of old apple varieties and Wild apple (crabapple), five varieties of
old apples and Wild apple (crabapple) grown in Croatia were investigated (Crvenka,
Pisanika, Ledenara, Adamova zvijezda, Slavonska srčika and Wild apple). The antiradical
activity of polyphenolic compounds from flesh and peel of old apple varieties was
measured by using DPPH˙ method. Furthermore, the kinetic of inhibition of free DPPH˙
radicals was studied. Polyphenols in the peel and flesh of Wild apples were determined
with reversed phase high-performance liquid chromatography with photodiode array
detection (RP-HPLC-PDA method).
Materials and methods
Fruit samples
Apples Crvenka, Pisanika, Ledenara, Adamova zvijezda, Slavonska srčika and Wild apple
were harvested in October 2013. Apple samples were obtained from the family orchard
(Veić M.) located in the region Slavonia (Mihaljevci, near Požega) in Croatia. All apples
were peeled with a hand peeler. The peeled fruits were cut into quarters, seeds and core
were removed. Peel and flesh were separately homogenized by using a stick blender and
kept in freezer at -18 °C until the start of the analysis.
Chemicals
The methanol used was HPLC grade purchased from J.T. Baker (Netherlands). Antiradical
activity was determined with 2,2-Diphenyl-1-picryl-hydrazyl (DPPH˙) (D9132) free
radical which has been purchased from Sigma-Aldrich (USA). Gallic acid monohydrate
(398225), (+)-catechin hydrate (C1251), (-)-epicatechin (E1753), chlorogenic acid
(C3878), quercetin dihydrate (Q0125), quercetin-3-D-glucoside (isoquercitrin - 17793)
were purchased from Sigma-Aldrich (USA); procyanidin B1 (epicatechin(4-8)catechin -
0983), quercetin-3-O-galactoside (hyperoside - 1027 S), quercetin-3-O-rhamnoside
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
244
(quercitrin - 1236 S), phloretin-2’-O-glucoside (phloridzin - 1046), phloretin (1044) were
purchased from Extrasynthese (France).
Polyphenolic compounds extraction from apple peel and apple flesh
Polyphenolic compounds were extracted from apple peel and apple flesh. Apple peel and
flesh were homogenized separately. Approximately 0.5 g of homogenized apple peel was
weight and added to an empty test tube. The extraction was performed with 5 ml 0.1%
methanolic HCl using an ultrasonic bath, for 15 min. Extract was filtrated and residue was
extracted again with 2 ml 0.1% methanolic HCl. Extracts were combined. To extract
polyphenols from the flesh, 80% methanol in water was used as an extraction solvent, and
the procedure was the same. Additionally, extracts from peel and flesh of Wild apples were
filtrated through a 0.45 µm syringe filter (PTFE) and analyzed with RP–HPLC-PDA
method. All extracts were prepared twice. The antiradical activity was determined in both
extracts. During the measurement, extracts were stored in a freezer at -18 °C.
RP-HPLC-PDA method for the determination of polyphenols in Wild apples
Polyphenols in Wild apples were determined by using a Varian HPLC system (USA).
Varian HPLC system consists of ProStar 230 solvent delivery module, ProStar 330 PDA
detector and OmniSpher C18 column (250 x 4.6 mm inner diameter, 5 µm, Varian, USA).
Polyphenols were separated using 0.1% phosphoric acid as solvent A and 100% HPLC
grade methanol as solvent B (elution conditions: 0 min 5% B; 0 to 5 min from 5 to 25% B,
5 to 14 min from 25 to 34% B, 14 to 25 min from 34 to 37% B, 25 to 30 min from 37 to
40% B, 30 to 34 min from 40 to 49 % B, 34 to 35 min from 49 to 50% B, 35 to 58 min
from 50 to 51% B, 58 to 60 min from 51 to 55 % B, 60 to 62 min from 55 to 80% B, 62 to
65 min 80% B, 65 to 67 min from 80 to 5% B, 67 to 72 min 5% B; with flow rate=0,8
ml/min). Injection volume was 20 l. UV-Vis spectra were recorded from 190 to 600 nm.
Detection wavelength was 280 nm for flavan-3-ols, dihydrochalcones, 320 nm for phenolic
acids, 360 nm for flavonols. Identification was based on the comparison of retention times
and spectral data with those of authentic standards. Calibration curves of standards were
made by preparing different concentrations of standards in 100% methanol and by
analyzing them on RP-HPLC-PDA system.
Antiradical activity of polyphenolic compounds by DPPH˙ free radical
The antiradical activity of apple peel and flesh was determined using DPPH˙ assay (Brand-
Williams et al., 1995). Stable radical 2,2-diphenyl-1-picryl-hydrazyl in methanol solution
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
245
was used in this method. Reaction for scavenging free DPPH˙ radical according to
Brand-Williams et al. (1995) is:
DDPH˙ + AH DPPH – H +A˙
DPPH˙ + R˙ DPPH - R
where (AH) is an antioxidant and (R˙) is free radical. During the reaction, antioxidants or
free radicals scavenge DPPH˙ radicals and the purple color of DPPH˙ radicals disappears,
therefore absorption decreases.
Measurement was done with a UV-Vis spectrophotometer (Selecta, UV 2005, Barcelona,
Spain). DPPH˙ stock solution was prepared (1 mmol/l, in methanol). The reaction
solutions were prepared with 200 µl DPPH solution, increasing aliquots of peel or flesh
polyphenol extracts, and methanol to a final volume of 3 ml. The absorbance was
measured against the blank solution (which contained 200 µl methanol instead of DPPH
solution) in the total time period of 70 minutes. When polyphenols were added to DPPH˙
free radical, purple color of the solution turns to yellow. This effect is measured as the
decrease in the absorbance.
The percentage of remaining DPPH˙ radicals were calculated (Eq. 1):
% 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑃𝑃𝐻 =𝐴(𝑒𝑥𝑡𝑟𝑎𝑐𝑡)
𝐴0(𝐷𝑃𝑃𝐻•) 100⁄ (1)
where
A0 (DPPH˙) = absorption of DPPH˙ radical in t = 0
A (extract) = absorption of extract.
Furthermore, the percentage of remaining DPPH˙ radicals in 70 min was plotted against
the mass ratio of peel or flesh to DPPH˙ (g flesh or peel to g DPPH˙). From these graphs,
the EC50 value was calculated. EC50 value represents the amount of apple peel or flesh
needed to inhibit 50% of DPPH˙ radical in 70 min. If EC50 value is higher, then the
antiradical activity is lower and vice versa.
Statistical analysis
MS Excel was used for data analysis. The results for the antiradical activity of polyphenols
from apple peel and flesh were based on two replicate samples measured once. Regression
function was used to calculate EC50 value. EC50 value is presented as mean value ± SD
(standard deviation).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
246
Results and discussion
The kinetic behavior of polyphenol extracts from apple peel and flesh is presented in Fig. 1
and 2, respectively. These figures represent the percentage of remaining DPPH˙ free
radical after the reaction with different mass ratios of peel and flesh to g DPPH˙. Higher
mass of peel or flesh caused faster disappearance of DPPH˙ radicals. Furthermore,
scavenging of DPPH˙ radicals was fast at the beginning and slowed down at the end. It
could be said that the reaction is biphasic. It has two periods: a period with fast inhibition
of DPPH˙ radical and a period with slow DPPH˙ radical inhibition. Fast inhibition period
where the absorbance decreased rapidly, was approximately 10 minutes. After that period,
DPPH˙ radical inhibition slowed down and absorbance slowly decreased. This is in
accordance with earlier studies (Brand-Williams et al., 1995; Jakobek et al., 2008).
Fig. 1. Kinetic behavior of apple peel. a) Crvenka; b) Pisanika; c) Ledenara;
d) Adamova zvijezda; e) Slavonska srčika; f) Wild apple;
for different ratios g apple/g DPPH
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
247
Fig. 2. Kinetic behavior of apple flesh. a) Crvenka; b) Pisanika; c) Ledenara;
d) Adamova zvijezda; e) Slavonska srčika; f) Wild apple;
for different ratios g apple/g DPPH
Fig. 3 and 4 represent disappearance of DPPH˙ radicals after 70 minutes (steady state) as a
function of mass ratio of peel and flesh to DPPH˙, respectively. From these graphs, EC50
values were calculated. EC50 values are presented in Table 1. Higher EC50 means lower
antiradical activity. It can be seen that the antiradical activity of apple flesh was generally
lower than the antiradical activity of apple peel. In comparison of the antiradical activity of
the peel, Pisanika (EC50 20.53 g peel/g DPPH˙), Ledenara (EC50 22.73 g peel/g DPPH˙),
Crvenka (EC50 26.39 g peel/g DPPH˙) and Adamova zvijezda (EC50 27.09 g peel/g
DPPH˙) had higher antiradical activity then the peel of Slavonska srčika (EC50 42.28 g
peel/g DPPH˙) and Wild apple (EC50 40.35 g peel/g DPPH˙). Flesh of Ledenara (EC50
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
248
294.07 g flesh/g DPPH˙) and Adamova zvijezda (EC50 284.28 g flesh/g DPPH˙) showed
higher antiradical activity than Slavonska srčika (EC50 302.94 g flesh/g DPPH˙), Pisanika
(EC50 468.71 g flesh/g DPPH˙), Crvenka (EC50 712.45 g flesh/g DPPH˙). The antiradical
activity of polyphenols of Wild apple flesh can be highlighted (EC50 33.43 g flesh/g
DPPH˙) because it is much higher than the antiradical activity of polyphenols from other
apple flesh.
Fig. 3. The disappearance of DPPH˙ radicals as a function of the g apple/g DPPH
for apple peel. a) Crvenka; b) Pisanika; c) Ledenara; d) Adamova zvijezda;
e) Slavonska srčika; f) Wild apple
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
249
Fig. 4. The disappearance of DPPH˙ radicals as a function of g apple/g DPPH
for apple flesh. a) Crvenka; b) Pisanika; c) Ledenara; d) Adamova zvijezda;
e) Slavonska srčika; f) Wild apple
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
250
Table 1. Antiradical effectiveness of polyphenols from apples expressed in grams of apples per g of
DPPH needed to inhibit 50% of DPPH radicals
Apple
EC50 Standard deviation
(g apple/g DPPH)
Crvenka Peel 26.39 4.47
Flesh 712.45 60.64
Pisanika Peel 20.53 5.00
Flesh 468.71 63.80
Ledenara Peel 22.73 3.29
Flesh 294.07 2.52
Adamova zvijezda Peel 27.09 1.61
Flesh 284.28 8.99
Slavonska srčika Peel 42.28 1.54
Flesh 302.94 36.58
Wild apple Peel 40.35 7.62
Flesh 33.43 0.07
Since Wild apples differ from other old apple varieties by higher antiradical activity of
flesh, their polyphenol extracts were analyzed using RP-HPLC-PDA method. Fig. 5
presents HPLC chromatograms of Wild apple, and identified compounds were shown in
Table 2. Wild apple have shown the same polyphenolic compounds found usually in
apples (Jakobek et al., 2013; John et al., 2014). In the peel, (+)-catechin, (-)-epicatechin
from flavan-3-ol group were identified. Other compounds belong to hydroxycinnamic
group (chlorogenic acid), and flavonol group (quercetin derivatives such as quercetin-3-
galactoside, quercetin-3-glucoside, quercetin-3-rhamnoside and unknown quercetin
derivatives). In the flesh, compounds belonging to flavan-3-ol group ((+)-catechin, (-)-
epicatechin, procyanidin B1), dihydroxychalcone group (phloretin derivative and
phloridzin) and hydroxycinnamic acid group (chlorogenic acid) were identified.
Table 2. Phenolic compounds found in Wild apple
Peak Assignment
1 Procyanidin B1
2 (+)-Catechin
3 Chlorogenic acid
4 (-)-Epicatechin
5 Quercetin-3-galactoside
6 Quercetin-3-glucoside
7 Phloridzin
8 Quercetin-3-rhamnsoide
9 Quercetin
Unknown and tentatively identified
a Phloretin-2’-xyloglucoside
b Unknown phenolic acid
c Quercetin derivative
d Quercetin derivative
e Quercetin-3-xyloside
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
251
Fig. 5. The HPLC chromatogram of Wild apple. a) chromatogram of flesh of Wild apple,
scanned at 280 nm; b) chromatogram of peel of Wild apple, scanned at 280 nm.
For peak identification, see Table 2.
Conclusions
In this work, the antiradical activity of polyphenolic compounds from flesh and peel of old
apple varieties grown in Croatia was studied. Antiradical activity was determined by
DPPH method, where polyphenols scavenge free DPPH˙ radicals. A biphasic reaction
between apple polyphenols and DPPH˙ radicals was observed, with “fast” and “slow”
scavenging rate. Furthermore, the antiradical activity of apples was compared. It was found
that polyphenols from the flesh of Wild apples showed much higher antiradical activity
then polyphenols from the flesh of other apples. The antiradical activity of polyphenols
from the peel was similar. Due to these results, Wild apples can be highlighted among all
apples due to a very high antiradical activity of polyphenols from the flesh. Old apple
varieties represent a significant source for horticultural biodiversity and indicate the need
for preserving and protecting them.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
252
Acknowledgments
We wish to thank family orchard (Veić M.) for supplying apple samples.
This research was financed by Josip Juraj Strossmayer University of Osijek, project:
Characterization of polyphenols in old apple cultivars.
References
Brand Williams, W., Cuvelier, M.E., Berset, C. (1995): Use of a free radical method to evaluate
antioxidant activity, Lebensm-Wiss. U. Technol. 28, 25-30.
Carbone, K., Giannini, B., Picchi V., Lo Scalzo, R., Cecchini, F. (2011): Phenolic composition and
free radical scavenging activity of different apple varieties in relation to the cultivar, tissue
type and storage, Food Chem. 127, 493-500.
Ceymann, M., Arrigoni, E., Schärer, H., Bozzi Nising A., Hurrell, F.R. (2012): Identification of
apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol
profile, J. Food Compos. Anal. 26, 128-135.
Iacopini, P., Camangi, F., Stefani A, Sebastiani, L. (2010): Antiradical potential of ancient Italian
apple varieties of Malus x domestica Borkh.
in a peroxynitrite-induced oxidative process, J. Food Compos. Anal. 23, 518-524.
Jakobek, L., Šeruga, M., Novak, I., Medvidović-Kosanović, M., Šeruga, B. (2008): DPPH radical
inhibition kinetic and antiradical activity of polyphenols from chokeberry and elderberry fruits,
Pomol. Croatica 14, 101-118.
Jakobek, L., Garcia-Villalba, R., Tomas-Barberan, F. (2013): Polyphenolic characterisation of old
local apple varieties from Southeastern European region, J. Food Compos. Anal. 31, 199-211.
John, K.M.M., Enkhtaivan, G., Kim, J.J., Kim, D.H. (2014): Metabolic variation and antioxidant
potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits
(apple, grapes) and beverage (black tea), Food Chem. 163, 46-50.
Lata, B., Trampczynska, A., Paczesna, J. (2009): Cultivar variation in apple peel and whole fruit
phenolic composition, Sci. Hortic. 121, 176-181.
Madsen H.L., Andersen C.M., Jorgensen L.V., Skibsted L.H. (2010): Radical scavenging by dietary
flavonoids. A kinetic study of antioxidant efficiencies, Eur. Food Res. Technol. 211, 240-246.
Mendoza-Wilson, A., Armenta-Vázquez, M.E., Castro-Arredondo, S.I., Espinosa-Plascencia, A.,
Robles-Burgueño, M.R., González-Ríos, H., González-León, A., Balandrán-Quintana, R.R.
(2013): Potential of polyphenols from an aqueous extract of apple peel as inhibitors of free
radicals: An experimental and computational study, J. Mol. Struct. 1035, 61-68.
Prior, R.L, Wu, X., Schaich, K. (2005): Standardized Methods for Determination of Antioxidant
Capacity and Phenolics in Food and Dietary Supplements, J. Agric. Food Chem. 53 (10),
4290-4302.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
253
Određivanje teksture (čvrstoće) i SFC profila binarnih i ternarnih smjesa
palminog ulja, palminog stearina i sojinog ulja
UDC: 664.34
Zvonimir Ladešić, Sandra Maričić Tarandek, Josip Cvetko
Zvijezda d.d., Marijana Čavića 1, 10000 Zagreb, Hrvatska
Sažetak
U ovom radu proučavani su sadržaji čvrstih triglicerida (SFC) pomoću nuklearne magnetske rezonance i
tekstura (čvrstoća) binarnih i ternarnih smjesa palminog ulja (PO), palminog stearina (PS) i sojinog ulja
(SO). Reološka svojstva teksture odnosno čvrstoće ovih smjesa određena su penetracijom pri konstantnoj
brzini. Pripremljene su binarne smjese PO/SO, PS/SO, PO/PS i ternarne smjese PS/PO/SO sa 20%-tnim
povećanjem udjela svake pojedine komponente. Statički su kristalizirane u hladnjaku na -25 °C kroz
20 min, a zatim temperirane kroz 48 H na 15 °C. S obzirom da se ovi lipidni sistemi uobičajeno koriste u
proizvodnji margarina i masti, cilj rada bio je procijeniti fizikalne karakteristike kao što su tekstura
(čvrstoća) i SFC profil, te njihove međusobne odnose. Dobiveni rezultati ukazuju da se povećanjem
čvrste komponente (PO i PS) u smjesama PO/SO i PS/SO povećavala čvrstoća kao i SFC vrijednost.
Slični rezultati dobiveni su i kod proučavanih ternarnih smjesa. Izuzetak je smjesa PS/PO sa više od 50%
PS gdje porastom SFC vrijednosti nije došlo i do očekivanog porasta čvrstoće.
Ključne riječi: SFC, tekstura, binarne i ternarne smjese masti
Uvod
Na teksturu prehrambenih proizvoda na bazi masti u velikoj mjeri utječu struktura i
mehanička svojstva umreženih kristala masti (Marangoni, 2002). Neka od najvažnijih
kvalitativnih svojstava proizvoda koji sadržavaju masti ovise o makroskopskim
karakteristikama kristala masti koji tvore umreženi sustav unutar gotovog proizvoda. Ova
svojstva kvalitete uključuju npr. mazivost margarina, maslaca i namaza kao i lom
čokolade, pa je očigledno da je iznimno važno pokušati predvidjeti ta svojstva (Narine et
al., 1999a). U radu na razvoju novih proizvoda koji uključuju ulja i masti, profil sadržaja
čvrstih triglicerida (SFC) vrlo je važan parametar koji se koristi za procjenu prihvatljivosti
pojedine masti ili smjese (blende) masti i ulja za određenu primjenu (Noraini et al., 1995).
Većini biljnih ulja nedostaje funkcionalno svojstvo kako bi zadovoljili zahtjeve potrošača
za teksturom i stabilnošću u prehrambenim proizvodima. Prije inkorporiranja u margarine,
smjese (blende), masti i ulja trebaju biti modificirane bilo fizikalno frakcioniranjem ili
blendiranjem, bilo kemijski hidrogenacijom ili interesterificiranjem. Zadnjih godina
hidrogenacija se sve manje koristi u margarinskim industrijama zbog potrebe da se
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
254
izbjegne proizvodnja trans izomera masnih kiselina. Masne blende bez trans masnih
kiselina, odnosno hidrogeniranih masti uglavnom su bazirane na smjesama palminog ulja i
njegovih frakcija sa ili bez sjemenskih ulja (Wassell et al., 2007; Jirasubkunakorn et al,
2007). Tekstura odnosno čvrstoća masti ili smjese masti i ulja važno je svojstvo koje
značajno utječe na dojam o teksturi prehrambenih proizvoda (Brunello et al., 2003).
Sadržaj čvrstih triglicerida (SFC) značajno utječe na mehaničko ponašanje masti, ali oslanjanje
samo na SFC kako bi se predvidjela čvrstoća pokazalo se nepouzdanim. Na mehanička
svojstva jestivih masti mogu utjecati razni faktori uključujući SFC profil, polimorfizam čvrstog
stanja kao i mikrostruktura mreže kristalnih čestica (Narine et al., 1999b; Narine et al., 1999c).
U ovom radu proučavani su sadržaji čvrstih triglicerida (SFC) pomoću nuklearne
magnetske rezonance i tekstura (čvrstoća) binarnih i ternarnih smjesa palminog ulja (PO),
palminog stearina (PS) i sojinog ulja (SO).
Materijali i metode
Materijali
Za ovo istraživanje korišteni su komercijalni uzorci rafiniranog, dekoloriranog i
deodoriziranog palminog ulja (PO), palminog stearina (PS) i sojinog ulja (SO) iz tvornice
ulja i masti Zvijezda d.d. Zagreb, Hrvatska.
Priprema uzoraka
Binarne smjese (w/w) masti i ulja pripremljene su u intervalima od po 20±0,1 % svake
pojedine komponente u rasponu od 0-100%, a za ternarne smjese mješavine raznih udjela kako
bi se pokrilo šire područje ternarnog dijagrama. Binarne smjese (blende) PO/SO, PS/SO,
PO/PS i ternarne smjese PO/PS/SO pripremljene su otapanjem svake vrste masti odnosno ulja
na 80 °C i njihovim međusobnim miješanjem u staklenim posudama prema unaprijed zadanim
omjerima. Vrijeme miješanja bilo je 15 min na 60 °C, a ukupna količina svake smjese iznosila
je 1 kg. Sve blende su statički kristalizirane u hladnjaku na -25 °C kroz 20 minuta, a zatim su
temperirane na 15±0,5 °C u vremenu od 48 h. Ovim načinom pripreme uzoraka pokušalo se
simulirati hlađenje na industrijskom izmjenjivaču topline s brišućom površinom.
SFC profil
Za određivanje sadržaja čvrstih triglicerida korišten je pulsni NMR spektrometar (Minispec-
pc120; Bruker, Karlsruhe, Germany). Profil sadržaja čvrstih triglicerida mjeren je prema
ISO8292 metodi (ISO 8292-1:2008). Uzorci su 20 min grijani na 80 °C, kako bi se izbrisala
kristalna povijest, i temperirani na 60 °C minimalno 5 min, zatim držani na 10 °C kroz 16 h i
konačno kroz minimalno 30 min temperirani na 20 °C, 25 °C, 30 °C i 35 °C prije analiza.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
255
Podaci su dobiveni i analizirani koristeći programski paket instaliran od strane proizvođača
instrumenta. Automatska kalibracija vršila se na dnevnoj bazi koristeći 3 standarda (isporučeni
od strane Bruker-a) koji su sadržavali 0,0%, 31,3% i 74,0% čvrstih triglicerida.
Mjerenje teksture
Uzorci su temperirani na 20±0,1 °C kroz 2 h prije mjerenja na instrumentu STEVENS L.F.R.A.
TEXTURE ANALYSER (Stevens Advanced Weighing Systems Ltd., Essex, United Kingdom).
Penetracija konstantnom brzinom
Uzorci, homogeno napunjeni u staklene čaše promjera 71,5 mm i visine 70 mm, penetrirani su
do dubine od 5 mm cilindričnom sondom promjera 2,2 mm pri brzini od 0,5 mm/s. Minimalno
su rađena po 3 penetracijska testa za svaki uzorak na 20 °C. Zabilježene su najveća i
konačna penetracijska sila, a kao pokazatelj čvrstoće uzoraka korištena je vrijednost
maksimalne penetracijske sile izražene u gramima.
Rezultati i rasprava
Pri obradi podataka korištene su dobivene vrijednosti sadržaja čvrstih triglicerida - SFC i
penetracije uzoraka temperiranih na 20 °C. Slika 1 prikazuju SFC na 20 °C sa postupnim
povećanjem udjela čvršće komponente (u smjesi PO/SO čvrsta komponenta je PO, dok je u
smjesama PS/SO i PS/PO čvršća komponenta PS). Kao što je vidljivo iz slike 1 dodatkom
čvrste komponente dolazi do porasta SFC vrijednosti u svim binarnim blendama.
Slika 1. SFC profil na 20 °C za binarne smjese PO/SO, PS/SO i PS/PO
Fig. 1. SFC profile at 20 °C for binary blends PO/SO, PS/SO and PS/PO
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
256
Na slici 2 prikazana je maksimalna zabilježena sila penetracije na 20 °C u odnosu na SFC
vrijednost za binarnu smjesu PO/SO, a na slici 3 za binarnu smjesu PS/SO. Kao što je i
očekivano maksimalna sila penetracije (čvrstoća) rasla je s porastom SFC vrijednosti, odnosno
kako se povećavao udio čvrste komponente (PO i PS) u smjesi. Također, kod smjese PS/SO
zabilježene su više SFC vrijednosti kao i vrijednosti čvrstoće, nego kod smjese PO/SO što je
povezano sa većim sadržajem triglicerida s višom točkom topljenja u palminom stearinu (PS).
Slika 2. Odnos čvrstoće i SFC vrijednosti na 20 °C za binarnu smjesu PO/SO
Fig. 2. Relationship between hardness and SFC value at 20 °C for binary blend PO/SO
Slika 3. Odnos čvrstoće i SFC vrijednosti na 20 °C za binarnu smjesu PS/SO
Fig. 3. Relationship between hardness and SFC value at 20 °C for binary blend PS/SO
PO(%w/w) SO(%w/w)
0 100
20 80
40 60
60 40
80 20
100 0
PS(%w/w) SO(%w/w)
0 100
20 80
40 60
60 40
80 20
100 0
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
257
Međutim, dobiveni rezultati za binarnu smjesu PS/PO (Slika 4) sa više od 50 % PS, pokazuju
da porastom SFC vrijednosti nije došlo i do očekivanog porasta čvrstoće. Različite SFC
vrijednosti uzoraka za približno slične vrijednosti čvrstoće mogu biti uzrokovane drugačijom
strukturom (tip kristala i njihova međusobna povezanost) koja se formira nakon kristalizacije
(Braipson-Danthine et al., 2004).
Slika 4. Odnos čvrstoće i SFC vrijednosti na 20 °C za binarnu smjesu PS/PO
Fig. 4. Relationship between hardness and SFC value at 20 °C for binary blend PS/PO
Slika 5 prikazuje maksimalnu zabilježenu silu penetracije na 20 °C u odnosu na SFC
vrijednost za ternarne smjese PS/PO/SO. Iz prikazanih rezultata također možemo uočiti da
je čvrstoća smjese PS/PO/SO u omjeru 20/60/20 značajno veća od smjese PS/PO/SO u
omjeru 40/20/40, iako su im SFC vrijednosti gotovo identične.
Slika 5. Odnos čvrstoće i SFC vrijednosti na 20 °C za ternarnu smjesu PS/PO/SO
Fig. 5. Relationship between hardness and SFC value at 20 °C for ternary blend PS/PO/SO
PS(%w/w) PO(%w/w)
0 100
20 80
40 60
60 40
80 20
100 0
PS(%w/w) PO(%w/w) SO(%w/w)
20 40 40
20 60 20
40 20 40
40 40 20
60 20 20
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
258
Zaključci
Pri razvoju proizvoda na bazi ulja i masti, tekstura i SFC profil su vrlo važni parametri za
definiranje prikladnosti pojedine masne sirovine ili njihove smjese u konačnom proizvodu.
Proučavanje međusobnih odnosa vrijednosti čvrstoće i SFC profila za binarne i ternarne
smjese palminog ulja, palminog stearina i sojinog ulja, kroz ispitivanja u ovom radu,
ukazuju da te dvije varijable nisu uvijek u korelaciji. Različite SFC vrijednosti uzoraka za
približno slične vrijednosti čvrstoće mogu biti uzrokovane drugačijom strukturom (tip
kristala i njihova međusobna povezanost) koja se formira nakon kristalizacije.
Literatura
Braipson-Danthine, S., Deroanne, C. (2004): Influence of SFC, microstructure and polymorphism
on texture (hardness) of binary blends of fats involved in the preparation of industrial
shortenings, Food Research International 37, 941-948.
Brunello, N., Mc Gauley, S.E., Marangoni, A.G. (2003): Mechanical properties of cocoa butter in
relation to its crystallization behavior and microstructure, Lebensm.-Wiss. u.-Technol.
Lebensmittel-Wissenshaft & Technologie 36, 525-532.
ISO 8292-1:2008 Animal and vegetable fats and oils - Determination of solid fat content by pulsed
NMR - Part 1: Direct method
Jirasubkunakorn, W., Bell, A.E., Gordon, M.H., Smith, K.W. (2007): Effects of variation in the palm
stearin:palm olein ratio on the crystallization of a low-trans shortening, Food Chem. 103, 477-
485.
Marangoni, A.G. (2002): Special issue of FRI-crystallization, structure and functionality of fats,
Food Research International 35 (10), 907-908.
Narine, S.S., Marangoni, A.G. (1999a): Fractal nature of fat crystal networks, Physical Review E, 59
(2), 1908-1920.
Narine, S.S., Marangoni, A.G. (1999b): Microscopic and rheological studies of fat crystal networks,
Journal of Crystal Growth 198/199, 1315-1319.
Narine, S.S., Marangoni, A.G. (1999c): Relating structure of fat crystal networks to mechanical
properties: a review, Food Research International 32, 227-248.
Noraini, I., Embong, M.S., Aminah, A., Md.Aliand, A.R., Che Maimon, C.H. (1995): Physical
characteristics of some shortenings based on modified palm oil, milk fat and low melting milk
fat fraction, Fat Sci. Technol. 7, 253-260.
Wassell, P., Young, N.W.G. (2007): Food application of trans fatty acid substitutes, Int. J. Food Sci.
Technol. 42, 503-517.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
259
Determination of texture (hardness) and SFC profile of binary
and ternary mixtures of palm oil, palm stearin and soybean oil
Zvonimir Ladešić, Sandra Maričić Tarandek, Josip Cvetko
Zvijezda d.d., Marijana Čavića 1, HR-10000 Zagreb, Croatia
Summary
This work studied solid fat content (SFC) by nuclear magnetic resonance and texture (hardness) of
binary and ternary blends of palm oil (PO), palm stearin (PS) and soybean oil (SO). Rheology
characteristics of texture like hardness for these blends were determined by constant speed
penetration. Binary blends PO/SO, PS/SO, PO/PS and ternary blends PS/PO/SO were prepared with
20% increase of every component. Blends were statically crystallized in a freezer at -25 °C for 20
min and then tempered at 15 °C for 48 h. Those lipid systems are commonly used in the margarine
and shortening production so the aim of this work was to evaluate physical properties like texture
(hardness) and SFC profile and their relationships. These results show that increase of hard
component (PO and PS) in PO/SO and PS/SO blends increased hardness and SFC values. Similar
results are obtained and for studied ternary blends. Exception is PS/PO blend with more than 50%
of PS where increase in SFC values did not result with expected increase in hardness.
Keywords: SFC, texture, binary and ternary fat blends
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
260
Cryoprotective effect of oat β-glucans on beef myofibrillar proteins
UDC: 637.5'62
633.13 : 577.112.82
Krešimir Mastanjević, Dragan Kovačević, Kristina Vidaković
Josip Juraj Strossmayer University of Osijek, Faculty of Food Tecnnology Osijek, Franje Kuhača 20
HR-31000 Osijek, Croatia
Summary
Cryoprotective effects of oats β-glucans on beef myofibrillar proteins after frozen storage were
investigated by the use of Differential scanning calorimetry (DSC). Also influence of frozen storage
on texture profile analysis (TPA) parameters, instrumental colour parameters and cooking loss of
beef myofibrillar proteins were investigated. Beef myofibrillar proteins samples were prepared from
beef meat (mainly lat. musculus psoas major), mixed with oat β-glucans (w = 0-6%), quickly frozen
and stored for 30 days on -30 °C. Onset temperature of transition (To), peak thermal transition (Tp),
and endset temperature of transition (Te), and denaturation enthalpy (ΔH), were evaluated. Peak (Tp)
thermal transition temperatures of beef myofibrillar proteins showed shift to higher values with the
increase of mass fraction of β-glucans. Denaturation enthalpies (ΔH) of beef myofibrillar proteins
showed increase with increase of mass fraction of oat β-glucans. Instrumental colour parameters
(lightness (L*), redness (a*), yellowness (b*) and whiteness (L*-3b*) of beef myofibrillar proteins
were significantly (P<0.05) affected by addition oat β-glucans. Hardness, gumminess and chewiness
increased significantly (P<0.05) and cooking loss decreased significantly (P<0.05) by addition of
oat β-glucans. Cohesiveness and springiness of beef myofibrillar gels were not significantly
(p>0.05) affected by addition of oat β-glucans. Increase in peak thermal transition (Tp),
denaturation enthalpies (ΔH), some TPA and instrumental colour parameters indicates possible
cryostabilsation effect of oat β-glucans on beef myofibrillar proteins.
Keywords: cryoprotection, beef myofibrillar proteins, DSC, β-glucans texture (TPA), instrumental
colour (L*, a*, b*)
Introduction
Washed beef meat (WBM) is surimi-like product made from red beef meat. The process
for making surimi-like product from beef, with modified technology from fish surimi (Park
et al., 1996) results in semi-purified protein fraction containing a high concentration of
myofibrillar proteins. Freezing has become the most frequently used preservation method
for meat and meat products. To protect myofibrillar proteins from denaturation during
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
261
frozen storage and maintain its possible high processability, some cryoprotectants (i. e.
disaccharides, polysaccharides, polyalcohol’s, organic acids and polyphosphates) are
generally added (MacDonald et al., 2005). Most commonly used instrumental methods for
determination cryoprotective effects of added substances are measurement of myofibrillar
protein solubility SEP (Salt extractable protein), Ca2+
ATP-ase activity, unfrozen water by
Nuclear Magnet Resonance (NMR), transition temperatures and denaturation enthalpies of
myofibrillar proteins by Differential Scanning Calorimetry (DSC) (Findlay and Barbut,
1990; Sych et al., 1990). β-glucans are composed of glucose molecules, which are linked
with β-(1,3), (1,4) and (1,6) glycosidic bonds. (1,3), (1,4)-β-D-glucans are commonly
isolated from wheat, barley and oats. Although found in all grains, their concentration is
highest in oats (4.6-4.9%) and barley (1.8 to 6%). β-glucans from various sources are used
in the food industry as a thickening agent, dietary fibers, emulsifiers, etc. (Brennan and
Cleary, 2005). Studies have shown that the addition of β-glucans to meat batter increases
the denaturation enthalpy of myofibrillar proteins, which suggests that β-glucans interact
with meat proteins and stabilize them (Morin et al., 2004). Differential scanning
calorimetry (DSC) is a useful technique used for studying thermal behaviour of muscle
proteins (Finday and Barbut, 1990). Changes in the protein structure during heating in
DSC analysis are referred to as protein denaturation, and peak temperatures of these
transitions are used to represent denaturation temperatures.
The objective of this study was to determine cryoprotective effects of oat β-glucans on
beef myofibrillar proteins using Differential Scanning Calorimetry (DSC), texture profile
analysis (TPA) and instrumental colour measurements (L*, a*, b*).
Material and methods
Sample preparation
Washed beef meat (WBM) samples were prepared in the laboratory from from beef meat
mainly (lat. m. psoas major) using the modified procedure of Yang and Froning (1992)
since washing and leaching was performed with distilled water, instead of with tap water.
Samples of WBM were mixed with oat β-glucans in mass fractions of 2, 4 and 6%. Mass
fractions were determined as percent of total mass. The pH level was measured in a
homogenate of the sample with distilled water (1:10, p/v) with pH/Ion 510-Bench
pH/Ion/mV Meter (Eutech Instruments Pte Ltd/ Oakton Instruments, USA). Water activity
(aw) was determined using a Rotronic Hygrolab 3 (Rotronic AG, Bassersdorf, Switzerland)
at a room temperature (20 ± 2 ºC). The FoodScan Meat Analyser was used to determine
moisture, total protein share, total fat share and collagen content according to the AOAC
2007. 04.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
262
DSC measurements
Differential scanning calorimetry (DSC) was performed using Mettler Toledo DSC 822e
differential scanning calorimeter equipped with STARe software. After defrosting in a
refrigerator (4 °C, over night), samples of ca. 15 mg (±1 mg) were weighed and sealed into
standard aluminium pans (40 μl) and scanned over the rage from 25 to 95 °C at a heating
rate of 10 °C min-1
, using empty standard aluminium pan as a reference. The peak
temperatures (Tp) were determined from DSC curves. The changes in enthalpy (ΔH J g-1
),
associated with the denaturation of proteins, were determined by measuring the area under
the DSC curves using STARe software.
Textural analysis (TPA) and cooking loss
Samples of washed beef meat (WBM) were placed into plastic test tubes with an inside
diameter of 10 mm. After defrosting, test tubes with their content were heated for 25 min
in a water bath at 80 oC. Test tubes with produced gels were cooled in ice water until the
temperature of approx. 20 oC was obtained inside the sample. After that they were stored at
4-6 oC until the next day. Cooking loss was calculated as a weight difference of the sample
prior to the cooking and after the removal of the cooked gel from the test tubes. Cooking
loss was expressed as a percent of the fresh sample weight. Texture profile analysis (TPA)
tests were performed using a TA.XT2i SMS Stable Micro Systems Texture Analyzer
(Stable Microsystems Ltd., Surrey, England) equipped with a cylindrical probe P/75. This
involved cutting samples into 1.5 cm thick slices, compressed twice to 60% of their
thickness. Force-time curves were recorded at across-head speed of 5 mm s-1
and the
recording speed was also 5 mm s-1
. The following parameters were quantified (Bourne
1978): hardness (g), maximum force required to compress the sample, springiness (ratio),
the ability of the sample to recover its original form after the deforming force was
removed, cohesiveness, the extent to which the sample could be deformed prior to rupture
(ratio) and chewiness (g), the work required to masticate the sample before swallowing,
which is calculated hardness · cohesiveness · springiness, was measured.
Determination of colour
Colour measurements (L*, a*, and b* values) were taken using a Hunter-Lab Mini ScanXE
(A60-1010-615 Model Colorimeter, Hunter-Lab, Reston, VA, USA). The instrument was
standardized each time with a white and black ceramic plate (L*0 = 93.01, a*0 = -1.11,
and b*0 = 1.30). The Hunter L*, a*, and b* values correspond to lightness, greenness (-a*)
or redness (+a*), and blueness (-b*) or yellowness (+b*), respectively. The whiteness (W)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
263
was calculated: L* - 3b*. The colour measurements were performed on WBM at a room
temperature (20 ± 2 ºC).
Statistical analysis
Three determinations for basic chemical composition, cooking loss, pH, aw, onset (To),
peak (Tp) and endset (Te) temperatures and transition enthalpies (ΔH J g-1
), seven for TPA
and colour parameters were measured from each sample. Experimental data were analyzed
by the analysis of variance (ANOVA) and Fisher’s least significant difference (LSD), with
significance defined at p < 0.05. Statistical analysis was carried out with Statistica ver. 8.0
StatSoft Inc. Tulsa, OK. USA.
Results and discussion
The mean basic chemical composition, pH and aw values of individual WBM samples did
not vary significantly and are presented in Table 1. Differential scanning calorimetry
thermogram’s of WBM samples for each treatment after 30 days of frozen storage without
addition of oat β-glucans contained two endothermic transitions. Referring to previous
DSC studies of similar samples (Bircan and Barringer, 2002; Aktas, et al., 2005;
Fernandez-Martin, 2007), it can be assumed that two peaks in this study are related to the
thermal denaturation of myosin and actin.
Variance analysis of beef myosin Tp showed that myosin’s Tp varied significantly (p<0.05) as
a function of mass fraction oat β-glucans (Table 2). Addition of oat β-glucans (w = 2-6%)
caused shift of myosin’s Tp to higher values. These shifts in Tp of myosin to the higher values
as the mass fraction of oat β-glucans increases can be interpreted as a stabilization of
myofibrillar proteins since a higher temperature was required to denature these proteins
(Sych et al., 1990; Kovačević and Mastanjević, 2014). Peak temperatures of actin transition
did not vary significantly (p>0.05) as a function of mass fraction of oat β-glucans (Table 3).
Highest value of actin Tp showed the sample with addition of 6% of oat β-glucans (Table 3).
The method of expressing peak enthalpies ΔH was adopted to provide an estimate of the
quantity of native proteins (Sych et al., 1990; Herrera et al., 2001; Kovačević and
Mastanjević, 2011). Enthalpies of myosin and actin denaturation for WBM with addition
of oat β-glucans (w = 0-6%) are shown in tables 2 and 3. Values of ΔH for myosin and
actin showed an increase with the increase of mass fraction of oat β-glucans (w = 0-6%).
Since the value of denaturation enthalpy is directly related to the amount of native proteins,
higher values of ΔH indicate possible cryostabilization of beef myofibrillar proteins with
addition of oat β-glucans (w = 0-6%).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
264
Table 1. Basic chemical composition, aw and pH of WBM samples
Water
w (%)
Proteins
w (%)
Fat
w (%)
Collagen
w (%) pH aw
83.40 ± 0.02 15.38 ± 0.18 1.37 ± 0.02 0.98 ± 0.04 6.85 ± 0.04 0.97 ± 0.01 Values are means ± Standard deviation of triplicate
The cooking loss of WBM mixed with different mass fracion of oat β-glucans after 30 days
of frozen storage are presented in Fig. 1. The increase in mass fraction a of oat β-glucans
(w = 0-6%) caused a significant reduction (p<0.05) of cooking loss in the obtained gels.
Stangierski and Kijowski (2003) reported similar result for mechanically recovered washed
and frozen stored poultry meat with the addition of Cremodan and Pork Stock.
Table 2. Denaturation temperatures (To, Tp, Te) and denaturation enthalpies (ΔH) of WBM myosin
mixed with different mass fracion of oat β-glucans after 30 days of frozen storage
w (%) To (ºC) Tp (ºC) Te (ºC) ΔHm (J g-1)
0 57.62a ± 0.04 59.62c ± 0.12 64.57b ± 0.33 0.21b ± 0.02
2 55.25c ± 0.01 59.89c ± 0.17 63.26c ± 0.01 0.23b ± 0.03
4 56.44b ± 0.16 60.78b ± 0.15 69.42a ± 0.05 0.26b ± 0.01
6 56.45b ± 0.31 61.26a ± 0.11 69.54a ± 0.05 0.32a ± 0.02 Values are means ± S. D. of triplicate. Values in the same row with different letters (a-d) are
significantly different (p < 0.05)
Table 3. Denaturation temperatures (To, Tp, Te) and denaturation enthalpies (ΔH) of WBM samples
actin mixed with different mass fracion of oat β-glucans after 30 days of frozen storage
w (%) To (ºC) Tp (ºC) Te (ºC) ΔHa (J g-1)
0 70.71c ± 0.08 77.38b ± 0.04 82.63a ± 0.12 0.10a ± 0.01
2
10 (MŠT 2)
10 (MŠT 2)
70.93c ± 0.15 77.41b ± 0.01 80.63b ± 0.08 0.09a ± 0.01
4 71.68b ± 0.05 77.43b ± 0.13 81.07c ± 0.03 0.08a ± 0.01
6
10 (MŠJ)
72.29a ± 0.03 77.70a ± 0.03 81.47b ± 0.08 0.08a ± 0.01
Values are means ± S. D. of triplicate. Values in the same row with different letters (a-d) are
significantly different (p < 0.05)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
265
Fig. 1. The Cooking loss WBM samples mixed with different mass fracion
of oat β-glucans after 30 days of frozen storage
Table 4. Texture profile of WBM sampels gels mixed with different mass fracion of oat β-glucans
after 30 days of frozen storage
w (%) Hardness (g) Springiness Cohesiveness Chewiness (g)
0 3160.44a ± 141.80 0,95a ± 0.01 0.72a ± 0.03 2160.92a ± 98.42
2 1840.86ab ± 61.99 0.91a ± 0.07 0.51ab ± 0.01 1021.09ab ± 31.45
4 1092.04b ± 18.21 0.87a ± 0.01 0.38b ± 0.01 362.62b ± 14.85
6 1261.58b± 75.79 0.86a ± 0.10 0.46ab ± 0.21 521.84b ± 75.05 Values are means ±SD of seven measurements. Values in the same row with different letters (a-b) are
significantly different (p < 0.05)
Texture profile analysis parametrs of WBM mixed with different mass fracion of oat
β-glucans after 30 days of frozen storage are shown in Table 4. The addition of oat β-glucans
increased significantly (p<0.05) hardness and chewiness of WBM gels samples. The
cohesiveness and springiness were not affected with the increase of oat β-glucans mass fraction
(Table 4.)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
266
Table 5. Instrumental colour parameters of WBM mixed with different mass fracion of oat β-glucans
after 30 days of frozen storage
w (%) L* a* b* W
0 70.87c ± 0.61 4.62a ± 0.39 16.82a ± 0.31 20.41b ± 1.34
2 75.15b ± 0.66 3.11b ± 0.13 15.71b ± 0.24 28.04a ± 1.19
4 74.74b ± 0.38 2.63c ± 0.10 15.90b ± 0.11 28.31a ± 0.26
6 76.02a ± 0.43 2.58c ± 0.18 15.83b ± 0.21 27.25a ± 0.79 Values are means ±SD of seven measurements. Values in the same row with different
letters (a-c) are significantly different (p < 0.05)
Instrumental colour parameters of WBM with addion of oats β-glucans are presented in
Table 5. Generally, higher demand is for surimi gels with high lightness (L*), low
yellowness (b*) and high whiteness (W). The addition of β-glucans significantly increased
(p < 0.05) lightness and whiteness of WBM samples. This is in agreement with the study
that investigated the addition of potato starch and egg white to Alaska Pollock surimi
(Tabilo-Munizaga and Barbosa-Canovas, 2004).
Conclusions
Differential scanning calorimetry (DSC) revealed a shift in peak thermal transition
temperature (Tp) of myosin to higher temperature in WBM samples mixed with different
mass fraction of oat β-glucans. Shift in thermal transition temperature of myosin to higher
temperature, the increase of myosin transition enthalpies and some TPA (hardness,
chewiness) and colour parameters (L* and W) with the mass fraction oat β-glucans
increase, indicate that oat β-glucans interact with beef myofibrillar proteins and acting
according to the cryoprotecting mechanism.
References Aktas, N., Aksu, M. I., Kaya M. (2005.): Changes in myofibrillar proteins during processing of
pastirma (Turkish dry meat product) produced with commercial starter cultures, Food Chem.
90, 649-654.
Brennan, C. S. and Cleary, L. J. (2005): The potential use of cereal (1/3,1/4)-β-D-glucans as
functional food ingredients, J. Cereal. Sci. 42, 1-13.
Bircan, C. and Barringer, S. A. (2002): Determination of protein denaturation of muscle foods using
the dielectric properties. J. Food Sci. 67, 202-205.
Herrera, J.J., Pastoriza, L., Sampedro, G. (2001): A DSC study on the effects of various
maltodextrins and sucrose on protein changes in frozen-stored minced blue whiting muscle, J.
Sci. Food Agr. 81, 377-384.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
267
Fernandez-Martin, F. (2007): Bird muscles under hydrostatic high pressure/temperature
combinations - A DSC evaluation, J. Therm. Anal. Calorim. 87, 285-290.
Findlay, C. J. and Barbut, S. (1990): Thermal Analysis of Food Proteins in Relation to Processing
Data. In Thermal Analysis of Food, Harwalkar, V. R and Ma, C.–Y. (Eds.), Barking: Elsevier
Applied Science, pp. 92-125.
Kijowski, J. and Richardson, R. I. (1996): The effect of cryoprotectants during freezing or freeze
drying upon properties of washed mechanically recovered broiler meat, Int. J. Food Sci. Tech.
31, 45-54.
Kovačević, D. and Mastanjević, K (2011): Cryoprotective Effect of Trehalose and Maltose on
Washed and Frozen Stored Beef Meat, Czech J. Food Sci. 29(1), 15-23.
Kovačević, D. and Mastanjević, K (2014): Cryoprotective effect of trehalose on washed chicken
meat, J. Food Sci. Technol. 51(5), 1006-1010.
Macdonald, G., Lanier, T., Carvajal, P. A. (2005): Stabilisation of proteins in surimi. In: Surimi and
surimi seafood, Park, J. W. (Ed.), Boca Raton, USA: CRC Press, pp: 163-227.
Morin, L.A., Temelli, F., McMullen L. (2004): Interactions between meat proteins and barley
(Hordeum spp.) β-glucan within a reduced-fat breakfast sausage system, Meat Sci. 68, 419-
430.
Park, S., Brewer, M. S., Novakofski,J., Bechtel, P. J., Mckeith, K. F.(1996): Process and
Characteristic for a Surimi-like Material Made from Beef or Pork, J. Food Sci. 61, 422-427.
Stangierski, J. and Kijowski, J. (2003): Effect of selected commercial substances with
cryoprotective activity on the quality of mechanically recovered, washed and frozen stored
poultry meat, Nahrung. 47 (1), 49-53.
Sych, J., Lacroix, C., Adambounou, L. T., Castaigne, F. (1990): Cryoprotective Effects of Lactitol,
Palatinit and Polydextrose on Cod Surimi Proteins During Frozen Storage, J. Food Sci. 55,
356-360.
Tabilo-Munizaga, G. and Barbosa-Canovas, G. V. (2004): Color and textural parameters of
pressurized and heat-treated surimi gels as affected by potato starch and egg white, Food Res.
Int. 37, 767-775.
Yang, T.S. and Froning, G.W. (1992): Changes in Myofibrillar Protein and Collagen Content of
Mechanically Deboned Chicken Meat Due to Washing and Screening, Poultry Sci. 71, 1221-
1227.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
268
Utjecaj mikorize i kvasaca na kakvoću vina
sorte merlot (Vitis vinifera L.)
UDC: 663.252.4 : 663.15
Josip Mesić, Valentina Obradović, Maja Ergović Ravančić,
Brankica Svitlica, Jelena Žilić
Veleučilište u Požegi, Vukovarska 17, 34000 Požega, Hrvatska
Sažetak
Mikoriza je simbioza korjena vinove loze i micelija mikoriznih gljiva koja omogućuje biljci bolju
apsorpciju hranjivih tvari iz tla, što se može u konačnici odraziti na kakvoću vina. Cilj istraživanja
bio je usporediti kemijska i senzorska svojstva vina sorte Merlot (berba 2013.), u ovisnosti o
nacijepljivanju korjena mikorizom. Osim toga, fermentacija moštova je provedena pomoću dvaju
različitih kvasaca: hibrida Saccharomyces cerevisiae pripremljenog za fermentaciju bordoških
tipova crnih vina kao što je Cabernet Sauvignon, te hibrida između Saccharomyces cerevisiae i
Saccharomyces paradoxus. U vinima su određeni sljedeći kemijski parametri: alkohol, ukupne
kiseline, pH, ukupni suhi ekstrakt, reducirajući šećeri, ekstrakt bez šećera, pepeo, te ukupni i
slobodni SO2. Također su određeni ukupni antocijani pH diferencijalnom metodom, ukupni
polifenoli Folin-Ciocalteu metodom, antioksidativna aktivnost (ABTS metodom), te nijansa boje i
gustoća boje. Senzorsko ocjenjivanje je provedeno metodom 100 bodova. Rezultati su pokazali
utjecaj kvasaca na udio polifenola, antocijana i antioksidativnu aktivnost, dok utjecaj mikorize nije
pokazao značajan utjecaj na navedene parametre.
Ključne riječi: mikoriza, S. cerevisiae, S. paradoxus, Merlot
Uvod
Prema Turkoviću i Miroševiću (2003) Kultivar Merlot uzgaja se u uvjetima umjerene
klime i navode da je prikladan za područje sjevernog Jadrana, a u sjevernim područjima
Hrvatske s uspjesima koji mogu tek uvjetno zadovoljiti. U Vinogorju Kutjevo na područje
podregije Slavonija, vinogradarske regije Istočna kontinentalna Hrvatska zadnjih desetak
godina Merlot je posađen u mnogim vinogradima.
Neobično da jedna sorta postane tako moderna, bez da u svijetu postoji bilo kakav stvarni
konsenzus o tome kako bi se trebala uzgajati i proizvoditi (Oz i Rand, 2008). U nasadu
Merlota Veleučilišta u Požegi na dio trsova nacijepljena je mikorizna gljiva za vinovu
lozu, a fermentacija moštova je provedena pomoću dvaju različitih kvasaca: hibrida
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
269
Saccharomyces cerevisiae pripremljenog za fermentaciju bordoških tipova crnih vina kao što je
Cabernet sauvignon, te hibrida između Saccharomyces cerevisiae i Saccharomyces paradoxus.
Mikoriza je simbioza biljaka i gljiva, u ovom slučaju trsa vinove loze i gljiva koje se
nalaze na korijenu vinove loze. Prema dosadašnjim istraživanjima mikoriza bi trebala
povoljno utjecati na otpornost trsova prema suši, lakše usvajanje hraniva iz tla i povećanu
otpornost prema nekim patogenima kao što je pepelnica (Barea i sur., 2011), kao i na
povećano stvaranje biomase i povećan sadržaj sekundarnik produkata metabolizma kao što
su fenolni spojevi (Hare Krishna i sur., 2005).
Eftekhari i suradnici (2012) istraživali su utjecaj različitih mikoriznih gljiva na promjene
koje se događaju na trsovima vinove loze (Vitis vinifera L.), te su utvrdili da su pojedini
vegetativni dijelovi vrijedni izvori za ekstrakciju flavonoida kvercetina čija se količina
povećava nakon inokulacije mikoriznim gljivama. Uzročnici alkoholne fermentacije,
kvaščeve gljivice u svom metbolizmu tijekom fermentacije osim osnovnih produkata
proizvode veliki broj sekundarnih spojeva. Razližite vrste i sojevi kvasaca mogu znatno
utjecati na kemijski sastav i kakvoću vina (Ribereau-Gayon i sur., 2006).
Cilj je ovog istraživanja bio usporediti kemijska i senzorska svojstva vina sorte Merlot
(berba 2013.), impementirajući različite zahvate u vinogradu i u procesu proizvodnje vina.
Materijali i metode
Istraživanje je provedeno u vinskom laboratoriju Veleučilišta u Požegi u i podrumu Mesić
u Požegi. Nasad kultivara Merlota nalazi se na položaju Gradina iznad sela Vetova u
Općini Kaptol istočno do sela Podgorje na nadmorskoj visini od 350 m u sklopu Vinogorja
Kutjevo, vinogradarske podregije Slavonija, regija Istočna kontinentalna Hrvatska, u
području umjereno kontinentalne klime. Nasad je posađen 2007. godine u sklopu
nastavnog objekta Veleučilišta u Požegi.
Na dijelu nasada 7. lipnja 2013. godine izvršena je mikorizacija trsova Merlota.
Mikorizacija trsova obavljena je pripravkom Mykoflor za vinovu lozu, na način da je
pripravak injektiran u zonu korjena na dubinu od oko 30 do 50 centimetara. Nasad se u to
vrijeme nalazio u fazi pred početak cvatnje.
Berba grožđa obavljena je 07. listopada 2013. godine. Sadržaj šećera iznosio je 100 °Oe,
dok su je ukupna kiselost izražena kao vinska iznosila 7 g/l. Berba je obavljena ručno, a
urod grožđa po trsu kretao se oko 1,5 kilogram. Posebno su pobrani trsovi Merlota na
kojem je izvršena mikorizacija, a posebno trsovi iz kontrolnog tretmana (bez mikorize).
Primarna prerada grožđa odbavljena je posebno za tretman kontrole, a posebno za tretman
mikorize. Nakon muljanja i runjanja u masulj su dodani kvasci, pri čemu smo dobili četiri
različita tretmana pokusa koji čine:
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
270
K ex – na trsovima nije izvršena mikorizacija, a fermentacija je provedena pomoću
hibridnog kvasca između Saccharomyces cerevisiae i Saccharomyces paradoxus, (Anchor
Exotics SPH),
M ex – na trsovima je izvršena mikorizacija, a fermentacija je provedena pomoću
hibridnog kvasca između Saccharomyces cerevisiae i Saccharomyces paradoxus, (Anchor
Exotics SPH),
K cru – na trsovima nije izvršena mikorizacija, a fermentacija je provedena pomoću kvasca
SIHA Rubino cru (Saccharomyces cerevisiae),
M cru – na trsovima je izvršena mikorizacija, a fermentacija je provedena pomoću kvasca
SIHA Rubino cru (Saccharomyces cerevisiae).
Masulj je macerirao u plastičnim posudama, pri čemu je dva puta dnevno potapan klobuk.
Temperatura tijekom maceracije i fermentacije iznosila je 18 °C. Masulj je prešan 21.
listopada, što govori da je maceracija trajala 14 dana kako bi dobili čim veću punoću
budućeg vina. Nakon maceracije u demižonima zapremine 34 litre provedena je
fermentacija do kraja nakon čega je vino pretočeno te izbistreno, napunjeno u butelje i
pripremljeno za kemijsku analizu i senzorno ocjenjivanje. Kemijska analiza i senzorno
ocjenjivanje provedeni su nakon odležavanja vina u bocama u trajanju od 6 mjeseci.
U laboratriju Veleučilišta u Požegi u svim vinima su određeni slijedeći kemijski parametri:
alkohol, ukupne kiseline, pH, ukupni suhi ekstrakt, reducirajući šećeri, ekstrakt bez šećera,
pepeo, te ukupni i slobodni SO2. Također su određeni ukupni antocijani pH
diferencijalnom metodom, ukupni polifenoli Folin-Ciocalteu metodom, antioksidativna
aktivnost (ABTS metodom), te ton boje i gustoća boje.
Senzorno ocjenjivanje vina provedeno je u prostorijama Veleučilčišta, a panel ocjenjivača
činili su proizvođači s višegodišnjim iskustvom.
Ocjenjivanje je provedeno metodom 100 bodova prema važećem pravilniku za
organoleptičko (senzorno) ocjenjivanje vina i voćnih vina („Narodne novine“, broj
106/04, 137/12, 142/13, 48/14).
Rezultati i rasprava
U tablici 1 prikazane su vrijednosti sadržaja alkohola u volumnim postotcima,
reducirajućeg šećera u gramima po litri, ukupne kiselosti izražene kao vinska kiselina u
gramima po litri, pH vrijednost, sadržaj slobodnog i ukupnog SO2 (mg/L), pepela (g/L),
ukupnog suhog ekstrakta i ekstrakta bez šećera u gramima po litri, sadržaj ukupnih
polifenola, ukupnih antocijana, nijansa boje (Hue), gustoća boje (Density) i antioksidativna
aktivnost u tretmanima vina kultivara Melot (Vitis vinifera L.).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
271
U svim analiziranim vinima sadržaj alkohol je gotovo jednak, a ostatak neprevrelog šećera
stavlja sve tretmane na granicu suhog i polusuhog vina. Ukupna kiselost jednaka je u
tretmanima K ex i K cru te iznosi 5,7 g/l dok je kod mikorize različita ovisno od
apliciranih kvasaca. Veća vrijednost zabilježena je kod tretmana M ex (5,9), dok je kod
tretmana M cru 5,2 g/l. Ukupna kiselost u svim tretmanima je gotovo podjednaka nema
značajnije razlike kao i u kod vrijednosti pH. Neznatno niža pH vrijednost zabilježena je
kod tretmana proizvedenih pomoću kvasca SIHA Rubino cru (Saccharomyces cerevisiae).
Rezultati drugih autora ukazuju da pojedini sojevi kvasaca imaju značajan pozitivan ili
negativan utjecaj na kemijski sastav vina (Liang i sur., 2013) obzirom da većina aroma u
vinu potječe upravo iz alkoholne fermentacije (Marullo i Dubourdieu 2010). Međutim u
provedenom istraživanju nisu zabilježene veće razlike među tretmanima Merlota.
Tablica 1. Sadržaj alkohola (vol%), reducirajući šećeri (g/L), ukupna kiselost (g/L), pH, slobodni SO2
(mg/L), ukupni SO2 (mg/L), pepeo (g/L), ukupni suhi ekstrakt (g/L), ekstrakt bez šećera
(g/L), ukupni polifenoli (mgGAE/L)a, antocijani (mgMGE/L)
a, nijansa boje, gustoća boje
(Density), antioksidativna aktivnost (ABTS) micromol TE / L u vinu, Merlot, 2013.
Table. 1. The alcohol content (vol%), reducing sugars (g/L), total acidity (g/L), pH, Free SO2
(mg/L), total SO2 (mg/L), ash (g/L), total dry extract (g/L), sugar-free extract (g/L),
polyphenols (mgGAE/L)a, Anthocyanes (mgMGE/L)
a, hue, color density (Density), AA
(ABTS) micromol TE / L in wine, Merlot, 2013.
K ex M ex K cru M cru
Sadržaj alkohola (vol%) 14,7 14,6 14,5 14,4
Reducirajući šećeri (g/L) 4,36 4,81 4,22 4,78
Ukupna kiselost (g/L) 5,7 5,9 5,7 5,2
pH 3,53 3,51 3,43 3,47
Slobodni SO2 (mg/L) 5 6 7 7
Ukupni SO2 (mg/L) 53 48 39 38
Pepeo (g/L) 2,55 2,5 2,33 2,37
Ukupni suhi ekstrakt (g/L) 24,8 24,2 23,7 23,7
Ekstrakt bez šećera (g/L) 20,4 19,4 19,5 18,9
Polifenoli (mgGAE/L) 1071,7 1030,1 983,64 1020,5
Antocijani (mgMGE//L) 116,3 110,33 88,13 90,24
Nijansa boje (Hue) 0,56 0,54 0,57 0,51
Gustoća boje (Density) 9,85 10,09 8,41 7,82
AA (ABTS) µmol TE/L 15463 16207 14173 13667 aGAE-ekvivalent galne kiseline (gallic acid equivalent)
MGE-ekvivalent malvidin-3-glukozida (malvidin-3-glucoside equivalent)
Slobodni i ukupni SO2 ujednačen je i nizak svim tretmanima i iz tog razloga ne možemo
govoriti o utjecaju slobodnog SO2 na senzorna svojstva, obzirom da veća količina u vinu
daje osjećaj svježine (Clark i Bakker, 2004). Veće vrijednosti pepela, ukupnog suhog
ekstrakta i sadržaja polifenola te antocijana zabilježene su u vinima proizvedenima
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
272
pomoću hibridnog kvasca Saccharomyces cerevisiae x Saccharomyces paradoxus. U
istima vinima (K ex i M ex) bilježimo i veću antioksidativno aktivnost.
Veće vrijednosti nijanse boje zabilježene su u tretmanima u kojima nije aplicirana
mikoriza neovisno o kvascima. Gustoća boje većaje u vinima proizvedenima pomoću
hibridnog kvasca Saccharomyces cerevisiae x Saccharomyces paradoxus.
U tablici 2 prikazani su rezultati organoleptičkog ocjenjivanja vina metodom 100 bodova.
Posebno su istaknute ukupne ocijene za izgled, miris i okus vina. Sve su ocijene medijane
pojedinog ocijenjenog svojstva.
Tablica 2. Izgled (bistroća i boja), miris (čistoća, intenzitet i kvaliteta), okus (čistoća, intenzitet,
trajnost i kvaliteta), harmonija i ukupna ocjena, tretmana Merlota, 2013.
Table 2. The appearance (clarity, color), odor (cleanliness, intensity, quality), flavour (cleanliness,
intensity, durability, quality), harmony and overall rate, variants of Merlot, 2013.
K ex M ex K cru M cru
Bistroća 5 5 5 5
Boja 10 10 10 10
Izgled 15 15 15 15
Čistoća 7 7 7 7
Intenzitet 5 5 5 5
Kvaliteta 14 14 16 12
Miris 26 26 28 24
Čistoća 7 6 7 7
Intenzitet 4 4 5 5
Trajnost 19 16 16 19
Kvaliteta 6 6 7 7
Okus 36 32 35 38
Harmoničnost 10 10 9 9
Ukupna ocjena 87 83 87 86
Parametri izgleda (boja i bistroća) kod svih tretmana vina ocjenjeni u maksimalnim brojem
bodova. Boja je u svim uzorcima puna tamno crvena gotovo crna što odmah asocira na
punoću vina. Čistoća i intenzitet mirisa vina jednako je vrednovana i u svi su tretmani
ocijenjeni kao vrlo dobri. Najbolja kvaliteta mirisa zabilježena je u tretmanu K cru (16
bodova-odlično) dok je najslabije ocijenjen tretman M cru s 12 bodova (dobro).
Enzimatskom aktivnošću kvasaca dolazi da formiranja specifičnih aromatskih spojeva koji
direktno utječu na kakvoću mirisa vina (Ribereau-Gayon i sur. 2006). Čistoća okusa
jednako kao vrlo dobra zabilježena je u uzorcima K ex, K cru i M cru, dok je nešto lošije
vrednovan uzorak M ex. Intenzitet i kvaliteta okusa bolje su ocijenjeni u tretmanima gdje
je apliciran kvasac SIHA Rubino cru (Saccharomyces cerevisiae). Veću ocijenu trajnosti
okusa dobili su tretmani M ex i K cru. Ukupni dojam za okus vina najbolji je kod vina
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
273
proizvedenog od grožđa na kojem je aplicirana mikoriza, a fermentacija provedena
pomoćuj kvasca SIHA Rubino cru, dok je najmanju ocijenu dobio tretman s mikorizom i
kvascem Saccharomyces cerevisiae i Saccharomyces paradoxus, (Anchor Exotics SPH).
Harmoničnost tretmana vina Merlot porizvedenog kvascem Anchor Exotics SPH
ocijenjena je kao vrlo dobra (ocijena 10), a tretmana vina proizvedenog kvascem SIHA
Rubino cru kao dobra (ocijena 9).
Ukupne ocijene vina bolje su u kontrolnim tretmanima u pogledu tretmana mikorizom i
ujedno su dobile najbolje ocijene (87 od 100 bodova). Najmanju ocijenu dobio je tretman
M ex, 83 boda. Prema važećem pravilniku o za organoleptičko (senzorno) ocjenjivanje
vina i voćnih vina, vina svih tretmana ubrajaju se u kategoriju vrhunskih vina, uz
napomenu da bi prema klasifikaciji prije izmjena pravilnika od 01.srpnja 2014. godine
tretman M ex bio deklariran kao kvalitetno vino. Razlog najmanjoj ocijeni nalazimo u
činjenici da je tretman M ex sadržavao malu količinu ugljičnog dioksida koji se detektirao
prilikom prvog kušanja, a prema Clark i Bakkeru (2004) ugljični dioksid daje bodljikav
osjećaj u ustima, koji je vjerojatno imao negativan utjecaj kod kušača. Kasnije se u
potpunosti gubio iz čaše što je komentirano kao naknoadno vrenje (početak malolaktične
fermentacije).
Zaključci
Pojedini kemijski parametri su pokazali značajan utjecaj kvasaca na udio polifenola,
antocijana i antioksidativnu aktivnost, dok utjecaj mikorize nije pokazao značajan utjecaj
na navedene parametre. Odsutnost utjecaja mikorize može se objasniti idealnim
vremenskim uvjetima za zrenje grožđa u 2013. godini, tako da je grožđe sazrelo na lozi bez
nacjepljene mikorize imalo dovoljnu količinu hranjivih tvari.
Organoleptičke ocjene vina ujednačene su osim uzorka koji je proizveden od grožđa
mikoriziranih trsova s hibridnim kvascem Saccharomyces cerevisiae x Saccharomyces
paradoxus.
Literatura
Barea, J.M., Palenzuela, J., Cornejo, P., Sánchez-Castro, i., Navarro-Fernández, C., Lopéz-García,
A., Estrada, B., Azcón, R., Ferrol, N., Azcón-Aguilar, C., (2011): Ecological and functional
roles of mycorrhizas in semi-arid ecosystems of Southeast Spain, Journal of Arid
Environments 75 (12), 1292-1301.
Clarke, R.J., Bakker, J., (2004): Wine flavour chemistry, Blackwell Publising Ltd, Oxford, UK,
173-176.
Clarke, Oz; Margaret Rand, (2008): Grapes & Wines, Pavilion books, United Kingdom, 128-137.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
274
Eftekhari, M., Alizadeh, M., Ebrahimi, P. (2012): Evaluation of the total phenolics and quercetin
content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest
drying on quercetin yield, Industrial Crops and Products 38, 160-165.
Hare Krishna, S.K. Singh, R.R. Sharma, R.N. Khawale, Minakshi Grover, V.B. Patel, (2005):
Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-
mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization, Scientia Horticulturae
106 (4), 554-567.
Jackson, R.S. (2008). Wine science, principles and applications, Elsevier inc. California, SAD 73-
74.
Heng-Yu Liang, Jing-Yu Chen, Reeves, M., Bei-Zhong Han, (2013): Aromatic and sensorial
profiles of young Cabernet Sauvignon wines fermented by different Chinese autochthonous
Saccharomyces cerevisiae strains, Food research international 51 (2), 855-865.
Marullo, P., Dubourdieu, D., (2010): 11 - Yeast selection for wine flavour modulation, Managing
Wine Quality, Oenology and wine quality Woodhead publising limited, 293-345.
Ministarstvo poljoprivrede, šumarstva i vodnoga gospodarstva (2014): Pravilnik o organoleptičkom
(senzornom) ocjenjivanju vina i voćnih vina, Narodne novine, broj 106/04, 137/12, 142/13,
48/14, Zagreb.
Mirošević, N., Turković, Z, (2008): Ampelografski atlas, Golden marketing tehnička knjiga, ISBN
953-212-019-X, Zagreb, 166-167.
Ribereau-Gayon, P., Dubourdieu, D., Doneche, B., Lonvaud, A., (2006): Handbook of enology
Volume 1, The mikrobiology of Wine and Vinification, John Wiley and sons, LTD, England,
53-78.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
275
Influence of mycorrhizae and yeast strain on quality
of wine variety merlot (Vitis vinifera L.)
Josip Mesić, Valentina Obradović, Maja Ergović Ravančić,
Brankica Svitlica, Jelena Žilić
Polytechnic in Požega, Vukovarska 17, HR-34000 Požega, Croatia
Summary
Mycorrhiza is symbiosis of the root of the vine and the mycelium of mycorrhizal fungi that allows
the plant better absorption of nutrients from the soil, which can ultimately affect the quality of wine.
The aim of the study was to compare the chemical and organoleptic characteristics of wine variety
Merlot (vintage 2013), depending on the root inoculation of mycorrhiza. In addition, the
fermentation of the musts was conducted using two different yeasts: Saccharomyces cerevisiae
hybrids prepared for fermentation types Bordeaux red wines such as Cabernet Sauvignon, as well as
hybrids between Saccharomyces cerevisiae and Saccharomyces paradoxus. The wines are
determined by the following chemical parameters: alcohol, total acidity, pH, total dry extract,
reducing sugars, sugar-free extract, ash, total SO2 and free SO2. Total anthocyanins pH was
determined with differential method, total polyphenols with Folin-Ciocalteu method, antioxidant
activity (ABTS method), and the hue and color density. Sensory evaluation was conducted by
method of 100 points. The results showed a effect on yeast polyphenols, anthocyanins and
antioxidant activity, while the impact of mycorrhiza had no significant effect on these parameters.
Keywords: mycorrhiza, S. cerevisiae, S. paradoxus, Merlot
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
276
Effect of the immobilized yeast cells fermentation on chemical composition
and biogenic amines content in wine
UDC: 663.252.4(497.541)
547.288.2 : 663.12
Borislav Miličević1, Drago Šubarić
1, Antun Jozinović
1, Đurđica Ačkar
1,
Jurislav Babić1, Danijela Vuković
1, Ana Mrgan
2
1Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia 2Zvečevo d.d., Food Industry, Kralja Zvonimira 1, HR-34000 Požega, Croatia
Summary
Biogenic amines are well known organic nitrogenous compounds with low molecular weight, which are
formed from precursor amino acids, mainly by lactic acid bacteria during malolactic fermentation in wine
making. It could negatively affect the wine quality and its presence in high concentrations is a health risk for
sensitive individuals. The aim of this research was to determine the chemical composition and biogenic
amines content in wines made from grape varieties Merlot and Syrah (Vitis vinifera L.) from Kutjevo
vineyards, located in the east part of continental Croatia. Wines were produced in 2012 by cold maceration
and fermentation with immobilized yeast cells. The obtained results of chemical analysis of wines showed
that all wine samples produced by fermentation with immobilized yeast cells had a slightly higher amount of
alcohol, reducing sugars and total acidity, while relative density, total and free SO2 content were decreased
using this method of fermentation. Furthermore, total biogenic amines content decreased by fermentation
with immobilized yeast cells for both grape varieties. Wine produced from grape variety Syrah had higher
content of biogenic amines compared to wine produced from Merlot grape. Histamine was the most
abundant biogenic amine followed by 2-phenylethylamine, while amount of serotonine was the lowest.
Keywords: biogenic amines, immobilized yeast cells, Merlot, Syrah
Introduction
Biogenic amines (BA) are organic nitrogenous compounds formed by the metabolisms of living
organisms (microorganisms, plants and animals) from amino acid precursors. In fermented
foodstuffs, such as wine, the non-volatile biogenic amines (histamine, putrescine, cadaverine,
spermine, spermidine, agmatine, tyramine, and tryptamine) and phenylethylamine (a volatile
amine) are formed by microbial decarboxylation of the corresponding amino acids (Smit et al.,
2013). BA occur in different kinds of food, such as cheese, fish products, beer and wine (Del
Prete et al., 2009). They are essential for several physiological functions, e.g. body temperature
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
277
regulation and gastric acid secretion, however the intake of foods with high concentrations of BA
might produce important adverse effects, i.e. hypotension, hypertension, nausea, vomit, diarrhea,
migraines, heart palpitations, kidney failure, anaphylactic shock and death (Henríquez-Aedo et
al., 2012). Actually, the European Union (EU) has not established regulations for the wine
industry, but only suggested the „safety threshold values“. In 2011, the International Organization
of Vine and Wine (OIV) published the „OIV code of good vitivinicultural practices“ in order to
minimise the presence of BA in vine-based products (Martuscelli et al., 2013). Generally, the
toxic dose in alcoholic beverages is considered to be between 8 and 20 mg/L for histamine, 25 to
40 mg/L for tyramine, but as little as 3 mg/L phenylethylamine can cause negative physiological
effects (Karovičová and Kohajdová, 2005). The levels of BA produced in wine greatly depend on
the abundance of amino acid precursors in the medium. Generally, BA production will increase
with increased availability of free amino acids. Amino acid content in grape must, and
subsequently in wine, may be influenced by vinification methods, grape variety, geographical
region, vintage and vine nutrition (Smit et al., 2013).
BA content also depends on the type of wine. It is well known that red wines present higher
BA concentrations than white ones (Henríquez-Aedo et al., 2012). This is in accordance with
research of Martuscelli et al. (2013), who found these BA concentrations in Abruzzo (Italy)
wines: red (19.3±12.8 mg/L), rosé (9.20±6.34 mg/L), white (7.67±3.84 mg/L) wine.
For the determination of BA in foodstuffs diverse methods have been proposed in the
bibliography, among them high performance liquid chromatography followed by
fluorometric detection or spectrophotometry is the most commonly used technique in
recent years, especially for the analysis of wines (García-Marino et al., 2010).
Many technological, biological and environmental factors can affect the occurrence of BA
in wine such as skin maceration or post-fermentative maceration or contact with the lees
(Martuscelli et al., 2013). Among the factors that have been suggested as favouring the
abundance of amines in wine, some winemaking practices seem to play a major role
because they can directly affect the content of the precursor amino acids of BA (Alcaide-
Hidalgo et al., 2007; Martín-Álvarez et al., 2006).
The aim of this study was to determine the chemical composition and BA content in wines
made from grape varieties Merlot and Syrah (Vitis vinifera L.) from Kutjevo vineyards,
located in the east part of continental Croatia. Wines were produced in 2012 by cold
maceration and fermentation with immobilized yeast cells.
Materials and methods
Wine production
The wines were produced from the grapes varieties Merlot and Syrah (Vitis vinifera L.).
The cold maceration was carried out controlling the skin contact time for 4 days at
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
278
temperature below 15 °C. After the cold-maceration period was completed, mash was
drawn off to remove the skins and other solid parts, and left to finish the fermentation.
Samples of wines without asterisk were produced using classical technological
fermentation procedure; with selected yeast Fermol-Bouqet 125, and controlled thermal
regime, keeping the average temperature in interval of 16-22 °C by outer chilling of
fermentors with running water. The average duration of the fermentation of all grape
varieties under these conditions was 40 days.
Samples with asterisk were produced using technological procedure of fermentation as
shown in Fig. 1: Fermentation with immobilized yeast cells /selected yeast Feromol-
Bouqet 125, immobilized in Ca-alginate gel (Gaserod, 1998, Poncelet et al., 2001) / in
internal loop gas-lift fermentor with alginate beads as yeast carriers and controlled thermal
regime using outer refrigeration of fermentors with running water, with the aim of keeping
the average temperature in interval of 16-22 °C. The average duration of fermentation
under these conditions was 14 day for each set.
The samples of young wine were exempted at the end of fermentation and before filtration
so the wine was insufficiently clear, slightly dull.
Fig. 1. Reactor for fermentation with immobilized yeast cells
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
279
Chemical analysis of wine
For the evaluation of the quality of wine fundamental analytical techniques were applied.
In industrial control laboratories these techniques represent the basis for the determination
of quality parameters, defined by OIV (2001), Anonymous (1996) and AOAC (1995).
Chemical analysis of wine included relative density, alcohol, total acidity, volatile acidity,
pH, reducing sugars, total and free SO2 and the analysis of ash content.
HPLC analysis of BA in wine
The BA content was determined by HPLC method according to (Proestos et al., 2008). BA
were separated using a liquid chromatograph HP 1100 (Agilent Technologies, Waldbronn,
Germany), with an auto-sampler and UV/VIS detector with variable wavelength, and a
fluorescence detector. The separation after dansyl chloride (Dns-Cl) derivatisation was
performed on a reversed-phase column Zorbax Eclipse XDB C8 (150 mm × 4.6 mm,
particle size 5 μm) equipped with a guard column Meta Guard Inertsil C18. The BA
standards were obtained from Sigma-Aldrich, Steinheim, Germany and Dns-Cl was
purchased from Merck, Darmstadt, Germany.
Results and discussion
The results of the chemical analysis of wine are shown in Table 1. From the obtained
results it can be seen that wine samples produced with technological procedure as shown in
Fig. 1 (fermentation with immobilized yeast cells) had a slightly higher amount of alcohol,
ranging from 12.73-13.50% vol., in relation to the amount of 12.50-13.20% vol. in wines
produced using classical technological procedure. These results for alcohol amount
correspond to the requirements of Regulation of wine (Anonymous, 1996). Furthermore,
results obtained for alcohol content in Merlot are in accordance with results obtained in
research of Del Prete et al. (2009), but on other hand these authors found lower alcohol
amount in Syrah, compared to results obtained in our research. One more investigation
which confirm results obtained in this research is research of Martuscelli et al. (2013), who
observed that amount of alcohol in red wines from Abruzzo vineyards ranged from 12.0-
14.5% vol. The total and volatile acidity slightly increased by using fermentation with
immobilized cells, regardless of wine type. Rodriguez-Naranjo et al. (2013) determined
slightly higher total acidity in Merlot, and lower in Syrah, compared the results obtained in
this research, while the results for volatile acidity were very similar. Same trend was
observed for reducing sugars and ash contents i.e. the samples produced with classical
procedure had lower values. The obtained results for sugar contents were little higher in regard
to results obtained in researches of Rodriguez-Naranjo et al. (2011, 2013). Free and total SO2
significantly decreased when the wines were produced with immobilized yeast cells. Total SO2
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
280
content ranged from 95.05-99.20 mg/L, and these results are in accordance with research of Del
Prete et al. (2009), who found that total SO2 in red wines ranged from 12.80-115.20 mg/L.
Table 1. Results of chemical analysis of wine
Determinate
characteristics Merlot Merlot* Syrah Syrah*
Relative density
(20/20 °C) 0.9928 ± 0.10 0.9918 ± 0.20 0.9940 ± 0.20 0.9930 ± 0.20
Alcohol (% vol.) 12.50 ± 0.15 12.73 ± 0.10 13.20 ± 0.10 13.50 ± 0.15
Total acidity (g/L) 5.50 ± 0.25 5.55 ± 0.15 5.60 ± 0.15 5.70 ± 0.25
Volatile acidity (g/L) 0.46 ± 0.20 0.50 ± 0.10 0.45 ± 0.15 0.49 ± 0.10
pH 3.52 ± 0.20 3.52 ± 0.20 3.50 ± 0.10 3.51 ± 0.20
Reducing sugars (g/L) 2.80 ± 0.20 2.85 ± 0.25 2.62 ± 0.20 2.68 ± 0.10
Free SO2 (mg/L) 38.24 ± 0.20 38.22 ± 0.30 25.55 ± 0.20 24.54 ± 0.25
Total SO2 (mg/L) 98.05 ± 0.20 95.05 ± 0.30 99.20 ± 0.40 96.20 ± 0.20
Ash (g/L) 1.68 ± 0.10 1.70 ± 0.18 2.10 ± 0.40 1.95 ± 0.25
*- immobilized yeast cells
Influence of different fermentation procedure on BA content in wines is shown in Table 2.
The contents of all analysed biogenic amines decreased by using method with immobilized
yeast cells, and because of that total amount of BA ranged from 8.97 mg/L in wines
produced with immobilized yeast cells up to 9.88 mg/L in wines produced in classical
fermentation process. Significantly lower values of total BA were found in our samples,
compared to other investigations (Del Prete et al., 2009; Henríquez-Aedo et al., 2012;
Pineda et al., 2012). In our research histamine was the most abundant BA in both types of
wines (3.21-3.29 mg/L), followed by 2-phenylethylamine (2.35-2.40 mg/L) and tryptamine
(1.65-1.91 mg/L), what is in accordance with the conclusion of Gloria et al. (1998). In
addition, it can be seen that most of the results were relatively similar in Merlot and Syrah,
where the greatest differences were observed in contents of spermidine and tryptamine.
Table 2. Results of HPLC analysis of biogenic amines in wine
Biogenic amine
(mg/L) Merlot Merlot * Syrah Syrah *
Putrescine 0.43±0.20 0.39±0.10 0.44±0.06 0.43±0.05
Cadaverine 0.45±0.05 0.44±0.05 0.48±0.05 0.46±0.05
2-Phenylethylamine 2.40±0.15 2.35±0.15 2.50±0.20 2.40±0.20
Spermidine 0.56±0.11 0.54±0.10 0.66±0.10 0.62±0.10
Tryptamine 1.80±0.10 1.65±0.15 1.91±0.15 1.65±0.15
Serotonine 0.20±0.05 0.15±0.05 0.25±0.05 0.15±0.05
Tyramine 0.25±0.01 0.20±0.01 0.25±0.05 0.20±0.02
Histamine 3.38±0.05 3.25±0.10 3.39±0.10 3.21±0.05
Σ Biogenic amines 9.47 8.97 9.88 9.12
*- immobilized yeast cells
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
281
Conclusions
According to the obtained results it can be concluded that the chemical properties and
content of BA in wines were influenced by fermentation procedure. Wine produced from
grape variety Syrah had higher content of BA compared to wine produced from Merlot
grape. Regardless of grape variety, the amount of all BA in analysed wines decreased by
fermentation with immobilized yeast cells. The fermentation with immobilized yeast cells
is a promising approach in the wine-making process, with a reduced content of BA in
wine.
References
AOAC (1995): Official Methods of Analysis. Association of Official Chemists, Arlington, VA,
USA.
Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Martín-Álvarez, P.J., Polo, M.C. (2007): Influence
of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen
compounds of red wines, Food Chem. 103, 572-581.
Anonymous - Regulations of wine (1996): Official Gazzete of Republic of Croatia. no. 96 and 57.
Official Gazzete, Zagreb, Croatia.
Del Prete, V., Costantini, A., Cecchini, F., Morassut, M., Garcia-Moruno, E. (2009): Occurrence of
biogenic amines in wine: The role of grapes, Food Chem. 112, 474-481.
García-Marino, M., Trigueros, Á., Escribano-Bailón, T. (2010): Influence of oenological practices
on the formation of biogenic amines in quality red wines, J. Food Compos. Anal. 23, 455-462.
Gaserod, O. (1998): Microcapsules of alginate chitosan: A study of capsule formation and
functional properties, Phd thesis, NTNU Trondheim.
Gloria, M.B.A., Watson, B.T., Simon-Sarkadi, L., Daeschel, M.A. (1998): A survey of biogenic
amines in Oregon Pinot noir and Cabernet Sauvignon wines, Am. J. Enol. Vitic. 49, 279-282.
Henríquez-Aedo, K., Vega, M., Prieto-Rodríguez, S., Aranda, M. (2012): Evaluation of biogenic
amines content in chilean reserve varietal wines, Food Chem. Toxicol. 50, 2742-2750.
Karovičová, J., Kohajdová, Z. (2005): Biogenic Amines in Food, Chem. Pap. 59, 70-79.
Martín-Álvarez, P.J., Marcobal, Á., Polo, C., Moreno-Arribas, M.V. (2006): Influence of
technological practices on biogenic amine contents in red wines, Eur. Food Res. Technol. 222,
420-424.
Martuscelli, M., Arfelli, G., Manetta, A.C., Suzzi, G. (2013): Biogenic amines content as a measure
of the quality of wines of Abruzzo (Italy), Food Chem. 140, 590–597.
OIV International Code of Oenological Practices, (2001).
Pineda, A., Carrasco, J., Peña-Farfal, C., Henríquez-Aedo, K., Aranda, M. (2012): Preliminary
evaluation of biogenic amines content in Chilean young varietal wines by HPLC. Food
Control 23, 251-257.
Poncelet, D., Dulieu, C., Jacquot, M. (2001): Description of the immobilization procedures, In:
Immobilized Cells, (Wijffels R.), Springer Lab Manual, Heidelberg, pp. 15-30.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
282
Proestos, C., Loukatos, P., Komaitis, M. (2008): Determination of biogenic amines in wines by
HPLC with precolumn dansylation and fluorimetric detection, Food Chem. 106, 1218-1224.
Rodriguez-Naranjo, M.I., Gil-Izquierdo, A., Troncoso, A.M., Cantos-Villar, E., Garcia-Parrilla,
M.C. (2011): Melatonin is synthesised by yeast during alcoholic fermentation in wines, Food
Chem. 126, 1608-1613.
Rodriguez-Naranjo, M.I., Ordóñez, J.L., Callejón, R.M., Cantos-Villar, E., Garcia-Parrilla, M.C.
(2013): Melatonin is formed during winemaking at safe levels of biogenic amines, Food
Chem. Toxicol. 57, 140-146.
Smit, A.Y., Du Toit, W.J., Stander, M., Du Toit, M. (2013): Evaluating the influence of maceration
practices on biogenic amine formation in wine, LWT - Food Sci. Technol. 53, 297-307.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
283
Rheological properties of molten chocolate masses
during storage - influence of milk components
UDC: 663.91 : 532.135
621.796
Radoslav Miličević1, Borislav Miličević
2, Đurđica Ačkar
2, Svjetlana Škrabal
3,
Drago Šubarić2, Jurislav Babić
2, Antun Jozinović
2, Dijana Miličević
1
1Faculty of Technology, University of Tuzla, Univerzitetska 8, 75000 Tuzla, Bosnia and
Herzegovina 2Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20,
HR-31000 Osijek, Croatia 3Zvečevo dd, Food Industry, Kralja Zvonimira 1, HR-34000 Požega, Croatia
Summary
When finished chocolate mass is used for production of chocolate based products, it is often
produced in large quantities and stored in molten condition at 50-55 °C and spent in smaller
quantities during maximum period of 30 days. It is well established in scientific literature that
chocolate components have significant influence on rheological properties, however, this influence
during storage hasn’t yet been elucidated. The aim of this research was to investigate influence of
milk components (spray-dried milk powder, cream powder and sweetened condensed milk) on
rheological properties of chocolate during 30-day storage. The results showed that sweetened
condensed milk had highest impact on decrease of yield stress and plastic viscosity stability during
storage. Chocolate produced with addition of spray-dried milk powder and cream had highest yield
stress and plastic viscosity during storage.
Keywords: chocolate, rheological properties, spray-dried milk powder, cream powder, sweetened
condensed milk
Introduction
When finished chocolate mass is used for production of chocolate based products, it is
often produced in large quantities and stored in molten condition at 50-55 °C and spent in
smaller quantities during maximum period of 30 days (Ziegleder et al., 2004). Traditional
milk chocolate production required drum-dried milk powder due to high free fat content,
large particles and low vacuole volume, which positively influence rheological properties
of chocolate (Keogh, Murray & O’Kennedy, 2003). However, during drum drying,
caramelisation of sugar is significant, proteins are denaturated and milk fat is released,
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
284
which results in poor solubility of milk powder in water and some undesired sensory
characteristics.
Spray-dried milk powder has better sensory characteristics and higher water solubility,
however, less free milk fat requires higher addition of cocoa butter and, ultimately, higher
production costs (Ziegleder et al., 2004), which was the main reason not to use spray-dried
milk powder. However, free fat content in spray-dried milk powder can be increased by
extrusion process (Koc et al., 2003), or anhydrous milk fat can be added during chocolate
production (Ziegleder et al., 2004) to overcome this problem.
Cream powder is milk product containing significant amounts of milk fat (50-60%) and is
applied mostly when milk fat content is to be increased.
Condensed milk is produced by evaporation of milk in vacuum until minimum 23% total
milk solids. In production of sweetened condensed milk sugar is added so that final
product contains 43-45% sugar, min. 8.5% milk fat and 28% total milk solids (Francis,
2000). Sweetened product is darker, more yellow and thick, and gives unique sensory and
rheological properties to chocolate. Hence, sucrose added during condensed milk
production delays crystallisation of lactose (Sormoli et al., 2013), making the product, and
chocolate to which is added, rheologically more stable.
The aim of this research was to investigate influence of spray-dried milk, spray-dried milk
combined with cream and sweetened condensed milk on rheological stability of chocolate
masses during 30-day storage.
Materials and methods
Lecithin (liquid) was supplied from ADM, Netherlands. Drum-dried milk powder was
supplied by "Laktopol" Sp.z.o.o. Warszawie, Poland, sweetened condesend milk was
produced in Zvečevo d.d., Croatia and cream powder was supplied by Sery ICC Paslek SP
Z.O.O., Poland.
Production of chocolate masses, storage and rheological properties monitoring were
performed as described in Miličević et al. (2014), using lecithin as emulsifier.
Milk chocolate masses had following composition:
1) sugar (49%), cocoa butter, cocoa mass (total cocoa parts 33%), spray-dried milk powder
(16%), lecithin (total fat 31%);
2) sugar (48%), cocoa butter, cocoa mass (total cocoa parts 30%), spray-dried milk
powder, cream powder (total milk components 20%), lecithin (total fat 30%);
3) sugar (47%) , cocoa butter, cocoa mass (total cocoa parts 32%), sweetened condensed
milk, milk butter (total milk components 21%), lecithin (total fat 33%).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
285
Results and discussion
Addition of spray-dried milk powder resulted in increase of Casson yield stress from 15.16 Pa
(for dark chocolate) to 15.64 Pa (Table 1), and addition of cream powder further increased
it to 16.64 Pa. Sweetened condensed milk, however, decreased yield stress to 0.39 Pa,
which is in accordance with its high fat content. Plastic viscosity was increased by addition
of all milk components, with most pronounced impact of spray-dried milk powder (2.62 Pas),
followed by combination of spray-dried milk powder and cream powder (2.35 Pas) and
sweetened condensed milk (2.22 Pas). This observation is in contrast with literature data
(Liang & Hartel, 2004; Keogh et al., 2001; Keogh et al., 2006), but could be partially
explained by reduced content of free milk fat in spray-dried milk powder and increased
proportion of solid matter due to milk solids. Sweetened condensed milk contains water,
which negatively influences chocolate viscosity. Namely, increased moisture aggregates
sugar particles, which increases friction and apparent viscosity (Afoakwa et al., 2007).
Cream powder, due to high content of milk fat should have decreased observed parameters,
however, total fat content in this chocolate mass was lower than in chocolate produced
only with spray-dried milk powder.
Table 1. Influence of milk components on Casson plastic viscosity (CA) and Casson yield stress
(τCA) of milk chocolate mass during 30-day storage
Milk component Storage days
0 10 20 30
τCA [Pa]
None (dark chocolate) 15.16 ± 0.18 34.82 ± 0.26 33.72 ± 0.31 18.78 ± 0.4
Spray-dried milk
powder 15.64±0.25 8.12±0.24 10.55±0.23 5.55±0.27
SD milk powder + cream
16.64±0.12 15.29±0.11 10.94±0.86 14.46±0.21
Sweetened condensed
milk 0.39±0.05 0.87±0.04 0.75±0.23 0.83±0.16
CA [Pas]
None (dark chocolate) 2.10 ± 0.03 1.71 ± 0.18 2.04 ± 0.18 2.51 ± 0.11
Spray-dried milk
powder 2.62±0.25 1.89±0.21 1.41±0.20 1.66±0.02
SD milk powder +
cream 2.35±0.14 2.10±0.01 2.06±0.00 2.13±0.07
Sweetened condensed
milk 2.22±0.04 1.81±0.18 1.82±0.16 2.00±0.11
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
286
Another explanation could be sought in emulsifier addition time – it wasn’t added
during conching, but later, in laboratory conditions and effect of emulsifier could be
delayed in milk chocolates. This is supported by results obtained for yield stress after
10, 20 and 30 storage days (Table 1), when yield stress was proportional to the fat
content in chocolate masses: lowest for chocolate with sweetened condensed milk,
followed by chocolate with milk powder, and combination of spray-dried milk powder
and cream powder, while for dark chocolate it was 1.3 to 40 times higher than for milk
chocolate samples.
From Fig. 1-3 it is visible that during first 20 days of storage viscosity of all samples
decreased. After 30 days viscosity of chocolate produced with spray-dried milk powder
continued decreasing. Research of Ziegleder et al. (2004) showed that thickening of
chocolate is influenced by temperature – while at temperatures above 60 °C thickening of
chocolate produced with spray-dried milk powder is significant, at temperatures below
55°C no thickening was noticed. In addition, authors reported that amorphous lactose in
spray-dried milk powder was resistant to mechanical and thermal stress during
manufacture without crystallisation.
0
20
40
60
80
100
120
140
160
180
0 10 20 30 40 50 60
τ[P
a]
γ [1/s]
0
10 days
20 days
30 days
Fig. 1. Influence of spray-dried milk powder on shear stress (τ) – shear rate (γ) ratio
of chocolate mass during 30-day storage at 50 °C
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
287
0
50
100
150
200
250
0 10 20 30 40 50 60
τ[P
a]
γ [1/s]
0
10 days
20 days
30 days
Fig. 2 Influence of spray-dried milk powder and cream on shear stress (τ) – shear rate (γ) ratio
of chocolate mass during 30-day storage at 50 °C
Fig. 3 Influence of sweetened condensed milk on shear stress (τ) – shear rate (γ) ratio
of chocolate mass during 30-day storage at 50 °C
0
20
40
60
80
100
120
140
160
0 10 20 30 40 50 60
τ [P
a]
γ [1/s]
0
10 days
20 days
30 days
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
288
Viscosity of samples produced with sweetened condensed milk and combination of spray-
dried milk powder and cream powder increased after 30 days of storage.
Hence, viscosity of chocolate produced with sweetened condensed milk was identical to
initial viscosity. Chocolate viscosity during storage is influenced by lactose crystallisation
(Ziegleder et al., 2004). Since sugar delays lactose crystallisation in condensed milk,
delayed lactose crystallisation could be reason why viscosity of chocolate increased only at
the end of the storage and in such extent.
In addition, chocolate produced with spray-dried milk powder and cream powder
contained higher content of non-fat solids, particularly sugar, which could also crystalize at
the end of storage, after crystallisation of lactose (Sormoli et al., 2013).
Conclusions
Chocolate rheological properties are highly influenced by its composition. In addition to
emulsifier, milk components have also high impact mainly due to free milk fat, but protein
and sugar content shouldn’t be disregarded. Chocolate viscosity changes during storage
and milk components can influence viscosity stability of chocolate masses. All these
aspects should be considered when storing chocolate masses for prolonged usage.
References
Afoakwa, E. O., Paterson, A., Fowler, M. (2007): Factors influencing rheological and textural
qualities in chocolate - a review, Trends Food Sci Technol., 18, 290-298.
Francis, F. F. (2000): Encyclopedia of Food Science and Technology, Vol. 1., Wiley, USA.
Keogh, K., Twomey, M., O´Kennedy, B., Mulvihill, D. (2001): Effect of milk composition on
spray-dried high-fat milk powders and their use in chocolate, Lait,82, 531-539.
Keogh, M. K., Murray, C. A., O’Kennedy, B. T. (2003): Effects of ultrafiltration of whole milk on
some properties of spray-dried milk powders, Int. Dairy J. 13, 719-726.
Keogh, M. K., Twomey, M., O´Kennedy, B. T., Kennedy, R., O´Keeffe, J., Kelleher, C. (2006):
Irish Ag. and Food Development End- of-Project (Armis No. 4519), Teagasc, Dublin.
Koc, A. B., Heinemann, P. H., Ziegler, G. R. (2003): A Process for Increasing the Free Fat Content
of Spray-dried Whole Milk Powder, J. Food Sci., 68, 210-216.
Liang, B., Hartel, R.W. (2004): Effects of Milk Powders in Milk Chocolate, J. Dairy Sci. 87, 20-31.
Miličević, R., Miličević, B., Ačkar, Đ., Škrabal, S., Šubarić, D., Babić, J., Jozinović, A., Jašić M.
(2014): Rheological properties of molten chocolate masses during storage I. Influence of
emulsifiers, Technologica Acta, 7(1), 35-40.
Sormoli, M. E., Das, D., Langrish, T. A. G. (2013): Crystallization behavior of lactose/sucrose
mixtures during water-induced crystallization, J. Food Eng., 116, 873-880.
Ziegleder, G., Amanitis, A., Hornik, H. (2004): Thickening of molten white chocolates during
storage, Lebensm.-Wiss.-u-Technol., 37, 771-778.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
289
Stanje i mogućnosti proizvodnje mlijeka u Požeško-slavonskoj županiji
UDC: 637.1(497.541)
Ana Mrgan1
, Gordana Jurišić2
1Zvečevo d.d., prehrambena industrija, K. Zvonimira 1, 34000 Požega, Hrvatska
2Josipa Runjanina 2, 34000 Požega, Hrvatska
Sažetak
Mlijeko je biološka tekućina, karakteristične boje, mirisa i okusa, koju izlučuju mliječne žlijezde
ženki sisavaca ili žene (Tratnik, 1998). Pod pojmom mlijeko, uvijek se podrazumijeva „kravlje
mlijeko“, za sve ostale vrste mlijeka mora biti istaknuto od koje životinje potječe, kao npr. „ovčje
mlijeko“, „kozje mlijeko“, „bivolje mlijeko“ ili neka druga vrsta mlijeka. Posebno se deklarira
„majčino mlijeko“ koje se normalno ne pojavljuje na tržištu, ali zauzima važno mjesto u
nutricionističkim i medicinskim istraživanjima (Tratnik, 1998). Sve vrste mlijeka sadrže gotovo iste
sastojke, ali u različitom udjelima. Mlijeko sadrži nekoliko stotina hranjivih tvari. Zato je u
prehrambenom smislu, mlijeko nezamjenjiva namirnica. Proizvodnja mlijeka i mliječnih proizvoda
za svaku zemlju strateško je pitanje i ono je odraz uređenosti prehrambene proizvodnje neke zemlje.
Dok razvijene zemlje zadovoljavaju svoje potrebe vlastitom proizvodnjom mlijeka, Hrvatska oko
pola svojih potreba pokriva uvozom. Iz podataka koji su obrađeni u ovom radu, vidljivo je da u
posljednjih devet godina nije došlo do značajnijih pozitivnih pomaka u tom pogledu. U radu su
korišteni podaci Hrvatske poljoprivredne agencije, Hrvatske savjetodavne službe, Hrvatskog zavoda
za statistiku, Državnog hidrometeorološkog zavoda, kao i nekih objavljenih radova, kako od prije
devet godina tako i najnovijih podataka. Korištenjem raspoloživih podataka došlo se do zaključka o
razlozima nedostatne proizvodnje mlijeka, te mogućnostima proizvodnje u Požeško-slavonskoj
županiji i dijelu Brodsko-posavske županije, odnosno pedeset kilometara u polumjeru od Požege,
području koje je tradicionalno gravitiralo Požegi i bilo izvor sirovine Požeške mljekare. Iz dobivenih
podataka je vidljivo da nije vođena učinkovita strategija razvoja govedarstva, stvaranja dovoljnog
broja obiteljskih gospodarstava sa 21-25 krava, visoke produktivnosti.
Ključne riječi: mlijeko, proizvodnja mlijeka, Požeško-slavonska županija
Uvod
Mlijeko je namirnica koja sadrži sve potrebne tvari za rast i razvoj mladog organizma. U
prehrani djece kao i odraslih ljudi mlijeko i mliječni proizvodi veoma su bitna namirnica i
odraz su standarda pojedine zemlje. Razvijene zemlje imaju znatno veću potrošnju mlijeka
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
290
u odnosu na manje razvijene ili ne razvijene zemlje, a osobito potrošnju mliječnih
proizvoda.
Tablica 1. Prosječan sastav mlijeka (%) različitih vrsta mlijeka (prema Bylundu, 2003.)
Table 1. The average content of milk (%) of different types of milk (according to Bylundu, 2003)
Vrst mlijeka Ukupni proteini Kazein Proteini sirutke Mast Ugljikohidrati Pepeo
Majčino 1,0 0,5 0,5 4,5 7,0 0,2
Kobilje 2,2 1,3 0,9 1,7 6,2 0,5
Kravlje 3,5 2,8 0,7 3,7 4,8 0,7
Bivolje 4,0 3,5 0,5 7,5 4,8 0,7
Kozje 3,6 2,7 0,9 4,1 4,7 0,8
Ovčje 4,6 3,9 0,7 7,2 4,8 0,8
U svijetu se proizvede godišnje oko 568 milijardi kg različitih vrsta mlijeka, od čega je
najviše kravljeg mlijeka (85,2%), bivoljeg (10,9%), kozjeg (2%), ovčje (2%) (Bosnić,
2013).
Bivolje mlijeko najviše se proizvodi u Aziji.
Kozje mlijeko poznato je po svome terapeutskom djelovanju, lakše je probavljivo nego
kravlje i pogodno je za konzumaciju osobama alergičnim na proteine kravljeg mlijeka.
Koristi se u proizvodnji nekih vrlo cijenjenih sireva.
Ovčje mlijeko najviše se koristi u proizvodnji vrlo cijenjenih sireva, a poznato je po
najvećim prinosima zbog velikog postotka masti i proteina.(Tratnik, 1998).
Hrvatska kao izrazito poljoprivredna zemlja, uvozi više od 40% svojih potreba za mlijekom
i mliječnim proizvodima. Najveća proizvodnja mlijeka u Hrvatskoj ostvarena je 1987.god.
oko 1.013 milijuna litara, od tada proizvodnja postepeno pada. Od 2002.god. ponovno
pokazuje lagani trend porasta do 2009., a od 2010. ponovno postepeni pad proizvodnje,
koji se nastavio i u 2013.god. (HPA, 2004,2013).
Prije deset godina potrošnja mlijeka u RH bila je 170L/glavi stanovnika,od toga približno
55% kao tekuće mlijeko, a 45% u obliku mliječnih proizvoda (Državni zavod za
statistiku,2004). Ukoliko se navedena potrošnju mlijeka pomnoži sa brojem stanovnika RH
dobije se oko 760 000 000 kg, a proizvodnja u RH tada je iznosila oko 550 000 000 kg
mlijeka. Tadašnja nacionalna strategija je bila, da se potrošnja mlijeka poveća na 220
L/glavi stanovnika s tim da se potrebe moraju promatrati i kroz povećanje potreba za broj
turista kroz godinu pa bi ukupne potrebe u RH iznosile oko 1 071 000 000 kg/god.
Prema raspoloživim podacima potrošnja mlijeka od 170L/glavi stanovnika u proteklih
deset godina u Hrvatskoj nije povećana (Bosnić,2013). Vlastita proizvodnja se smanjila, što
se može pratiti i kroz smanjenje broja krava, dakle porastao je uvoz, iako postoji dovoljno
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
291
prostora za povećanje vlastite proizvodnje, do količine od 765 milijuna litara, što je
ispregovarana kvota sa EU. (HPA, 2014).
U zapadno Europskim zemljama potrošnja mlijeka je oko 280 kg/glavi stanovnika, (mlijeko
79 kg, kondenzirano mlijeko 2,3 kg, svježi mliječni proizvodi 17 kg, vrhnje 4,3 kg, maslac
4,7 kg, sve vrste sira 17,4 kg (Bosnić, 2013).
Cilj rada je analiza trenda proizvodnje mlijeka u posljednjih devet godina u Požeško-
slavonskoj županiji kao i RH, te kakve su realne mogućnosti povećanja proizvodnje
mlijeka i bolje iskorištenosti raspoloživih resursa u Požeško-slavonskoj županiji (koja se
nalazi na začelju po proizvodnji mlijeka ali i razvijenosti u Hrvatskoj) i dijelu Brodsko-
posavske županije koji prirodno gravitiraju Požegi, to je prostor koji je bio izvor sirovina
Požeške mljekare.
U Požegi je 1982. god. izgrađena nova mljekara (jedan od tri proizvodna pogona Zvečeva
d.d., kapaciteta 100 000 kg/dan), isključivo kao tvornica mlijeka u prahu, maslaca i
kondenziranog mlijeka, za potrebe Tvornice konditorskih proizvoda. Od 2005. god. nema
vlastitog otkupa mlijeka. Za potrebe Tvornice konditorskih proizvoda, povremeno kupuje
mlijeko od nekog drugog otkupljivača, na taj način proizvodni pogon mljekare održava se u
„hladnom pogonu“. U blizini nema neke veće mljekare koja bi bila razlog oduzimanja
terena, odnosno sirovine te time prestanka otkupa mlijeka. Najbliža veća mljekara udaljena
je oko 100 km od Požege (Osijek, Županja, Veliki Zdenci).
Razloge prestanka otkupa mlijeka, a time i zanemarivanja proizvodnje mlijeka u Požeškoj
županiji, mogu se tražiti u uvozu jeftinog mlijeka u prahu, ali i nedostatku interesa da se
proizvodni asortiman Zvečevačke mljekare prilagodi potrebama tržišta odnosno proširi na
profitabilniji proizvodni asortiman.
Materijali i metode
U nastojanju da se dođe do što realnijih podataka o mogućnostima proizvodnje ovako
vrijedne prehrambene namirnice, koja je odraz uređenosti poljoprivrede i prehrambene
industrije neke zemlje, korišteni su podaci Hrvatskog zavoda za statistiku kao i izvješća
Hrvatskog stočarskog centra, odnosno HPA i dobiveni podatci stavljeni su u korelaciju sa
podacima od prije devet godina.
Aktiviranjem rada Požeške mljekare izvor sirovina potencijalno bi bilo područje od 50 km
u polumjeru od Požege, dakle područje Požeško-slavonske županije i pola Brodsko-
posavske županije, odnosno ono što je u prošlosti gravitiralo Požeškoj mljekari.
Rezultati i rasprava
U Hrvatskoj je u 2013.god. ukupno bilo 180 946 krava, što je 5% manje u odnosu na njihov
broj u 2012. god. Od ukupnog broja krava, mliječnih i kombiniranih pasmina je bilo
167491, od čega 101637 pod kontrolom mliječnosti od strane HPA (HPA, 2013).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
292
Tablica 2. Kretanje broja krava, ovaca i koza (1975., 2004., 2013.) u Požeško-slavonskoj županiji
(HPA, 2014)
Table 2. Trends in the number of cows, sheep and goats (1975., 2004., 2013.) in Pozega-Slavonia
county (HPA, 2014)
1975.god. 2004.god. 2013.god.
Krave 20 000 5026 4704
Ovce 8 300 13 679 21 780
Koze nema podataka 476 220
Iz tablice je vidljiv veliki pad broja krava u Požeško-slavonskoj županiji i značajan porast
broja ovce koje su uglavnom u sustavu proizvodnje mesa. Ispod 5% je u sustavu
proizvodnje mlijeka, dakle zanemariva je njihova proizvodnja mlijeka (Hrvatska
poljoprivredna savjetodavna služba).
Tablica 3. Veličina stada u Požeško-slavonskoj i Brodsko-posavskoj županiji (HPA, 2014)
Table 3. Herd size in Pozega-Slavonia and Brod-Posavina county (HPA, 2014)
Požeško-slavonska
županija Veličina stada Broj stada Broj krava
<6 450 974
6-10 113 852
11-15 34 435
16-20 24 425
21-25 9 203
26-30 11 311
31-50 13 504
51-100 12 883
101-250 1 117
Ukupno 4704 (2013.)
5026 (2004.)
Brodsko-posavska
županija Veličina stada Broj stada Broj krava
<6 660 1 344
6-10 99 759
11-15 61 792
16-20 42 751
21-25 16 365
26-30 15 418
31-50 21 726
51-100 11 703
101-250 3 374
Ukupno 6232 (2013.)
10 015(2004.)
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
293
Iz tablice 3 je vidljivo da u Požeškoj i Brodskoj županiji još uvijek prevladavaju stada sa
manje od šest krava, kao i vrlo mali broj stada sa 21-25 krava, što je optimalan broj za
jedno obiteljsko gospodarstvo. U zadnja dva retka napravljena je usporedba broja krava
2004.god. i 2013. god., što se može bolje vidjeti u tablici 2 za područje Požeške županije.
Proizvodnja mlijeka
Proizvodnja mlijeka, odnosno produktivnost krava ovisi o više faktora, kao što su
karakteristike pasmine, zemljišno bogatstvo i tehnologija proizvodnje.
Visoku godišnju laktaciju imaju mliječne pasmine holstein frisien. U Hrvatskoj je najviše
zastupljena simentalska pasmina sa 65%, a potom holstein frisien. U Požeško-slavonskoj
županiji simentalska pasmina je zastupljena sa 83%, a Brodsko-posavskoj 76% (HPA,
2014).
Najveću produktivnost u proizvodnji mlijeka u svijetu ima Izrael oko 10 000 kg/kravi,
SAD 8500 kg/kravi, Kanada 7500 kg/kravi. U Europi intenzivnu godišnju proizvodnju
imaju Holandija, Njemačka, Francuska, Švicarska od 6000-7000 kg/kravi. U Hrvatskoj je
produktivnost oko 3000 kg/kravi (Bosnić, 2013).
U Požeškoj i Brodskoj županiji produktivnost je oko 2500-3000 kg/kravi (HPA, 2014).
Ponekad se u javnosti pojavljuju podaci o porastu produktivnosti u Hrvatskoj na oko
5000 kg/kravi, međutim tu se radi o podacima koji se odnose samo na pojedinačna stada pod
kontrolom HPA, korištenje takvih podataka daje krivu sliku o produkciji mlijeka u RH.
Komparacijom ranijih podataka o proizvodnji mlijeka (Bosnić, 2003. i Hrvatske savjetodavne
službe, te HPA), i sadašnje proizvodnje vidljiv je pad proizvodnje. Pad proizvodnje je rezultat
izostanka povećanja produkcije po kravi i smanjenja broja krava.
Tablica 4. Otkupljene količine mlijeka (u kg) ( HPA, 2014)
Table 4. Bought-out quantities of milk (in kg) ( HPA, 2014)
2004.god. 2013.god.
RH 550 000 000 500 000 000
Požeško-slavonska županija 14 000 000 12 000 000
Brodsko-posavska županija 44 000 000 15 000 000
Iz tablice 4. vidljivo je smanjenje proizvodnje mlijeka, na nivou Hrvatske za 9%, Požeške
županije za 14%, a Brodske županije za 66%. Na ovaj veliki pad proizvodnje u Brodsko-
posavskoj županiji, osim općeg trenda u cijeloj Hrvatskoj, svakako je utjecalo i
dugogodišnja agonija u radu, te na kraju i gašenje mljekare u Starom Petrovom Selu.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
294
Kvaliteta mlijeka
Evropska unija je 1992.god. donijela propise-direktive o uvjetima kvalitete proizvodnje i
prerade sirovog mlijeka i proizvodnji mliječnih proizvoda (Directive 46/92, Milk and milk
product quality, health and hygiene).
Tablica 5. Kriteriji higijenske kvalitete i klase kravljeg mlijeka u EU-15 (EU, Council directive 92/46/EEC)
Table 5. Hygienic criteria of milk quality and milk classes in EU-15 (EU, Council directive 92/46/EEC)
Količina (broj) u 1 ml.
Klasa od do
Mikroorganizmi
50 000 I. Ekstra
50 001 100 000 I.
> 100 001 II.
Somatske stanice 300 000 I. Ekstra
Sukladno Evropskim kriterijima kvalitete, Hrvatska je donijela svoj pravilnik o kakvoći
svježeg sirovog mlijeka (n.n. 102/00), koji je u punoj primjeni od 2003.god. Prema
Hrvatskom „Pravilniku o svježem i sirovom mlijeku“, mlijeko se razvrstava u četiri klase
prema broju mikroorganizama i somatskih stanica.
Klasa Broj mikroorganizama/1ml Broj samatskih stanica
E ≤ 50000 ≤ 400000
I 51000 - 100000 ≤ 400000
II 101000 - 400000 ≤ 600000
III > 400000 > 600000
Od 2004.god. kada je tek 37,2% otkupljenog mlijeka u Hrvatskoj, bilo prve ili ekstra
kvalitete, do 2013.god. postignut je značajan napredak u pogledu kvalitete sirovog mlijeka,
kada je od ukupne otkupljene količine 95% bilo prve i ekstra klase.(HPA, 2014).
Infrastuktura
Infrastruktura, odnosno raspoloživi prostor za zimski smještaj stoke jedan je od preduvjeta
za podizanje proizvodnje. U Požeškoj kao i Brodskoj županiji, uglavnom su klasične staje
na vez, manjeg kapaciteta što se vidi iz tablice 4 (najviše proizvođača sa manje od šest
krava). Optimalna veličina stada za obiteljsko gospodarstvo je 21-25 krava, što zahtjeva
izgradnju većih staja(standard je 15krava/100 m² stajskog prostora).
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
295
Zemljišni potencijal
Zemljišni potencijal je jedan od najvažnijih preduvjeta za razvoj stočarske proizvodnje.
Potrebna količina zemlje po jednom grlu goveda je 1 ha. U razvijenim zemljama 60%
obradivog zemljišta je u funkciji govedarstva.
Požeško-slavonska županija raspolaže sa oko 90000 ha obradivog zemljišta (oranice,
livade, vinogradi i voćnjaci) i približno 11000 ha pašnjaka.
U Brodsko-posavskoj županiji je oko 110000 ha obradivog zemljišta i približno 12000 ha
pašnjaka.
Klimatske prilike
Klimatske prilike i pokrivenost terena snijegom važan su čimbenik zbog proizvodnje
dovoljnih količina hrane za stoku kao i mogućnosti držanja stoke na otvorenom.
Područje Požeške kao i Brodske županije je prostor sa umjereno kontinentalnom
klimom, a prateći prosjek pokrivenosti terena snijegom, u zadnjih dvadeset godina,
iznosio je 29 dana/godišnje (DHZ).
Zaključci
Analizirajući navedene podatke, vidljivo je da u Požeško-slavonskoj županiji postoje svi
preduvjeti za znatno povećanje proizvodnje mlijeka. Ljudske resurse možemo promatrati
kroz postojanje tradicije ove proizvodnje kao i veliku nezaposlenost stanovništva.
Daljnji bitan preduvjet za proizvodnju mlijeka je zemljišno bogatstvo, čime Požeška
županija raspolaže u dovoljnim količinama. Kada bi se samo 40000 ha obradivog zemljišta
stavi u funkciju govedarstva (što je 44% od obradivih površina, znatno manje od standarda
razvijenih Evropskih zemalja od 60%) to je dostatno za 40000 grla goveda, odnosno
dovoljno za 20000 krava, ovaj broj krava sa relativno niskom produktivnosti od 4000 kg
mlijeka/kravi (kombinacijom intenzivnog i ekstenzivnog načina uzgoja, gdje su financijska
ulaganja u proizvodnju znatno manja) proizvelo bi se oko 80 000 000 kg mlijeka godišnje.
To je znatno više od dugogodišnjeg strateškog cilja od 34 000 000 kg/godišnje ili od
proizvodnje u 2013. god od 12 000 000 kg.
Postoje neiskorišteni prerađivački kapaciteti Zvečevačke mljekare, koja nikada nije radila
sa sto postotnim kapacitetom.
Ono što nedostaje za povećanje proizvodnje na ovom prostoru, to je stajski prostor za
zimski smještaj stoke, što bi u planskoj proizvodnji trebao biti najmanji problem.
Brodsko-posavska županija raspolaže sa još većim potencijalom, od obradivih površina,
broja stanovnika, genetike goveda kao i tradicije proizvodnje.
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
296
Literatura
Bosnić, P. (2013): Primarna proizvodnja mlijeka, 41.Hrvatski simpozij mljekarskih stručnjaka.
Bylund, G. (2003): Dairy processing handbook, Tetra Pak, Processing Systems AB, Swe&#
172;den, Second revised edition.
Državni hidrometereološki zavod Hrvatske.
Hrvatska poljoprivredna agencija, Godišnje izvješće HPA za 2013, Mljekarski list 5/2014.
Hrvatska poljoprivredna savjetodavna služba.
Hrvatski zavod za statistiku.
Tratnik, Lj.(1998): Uvod ( opći pojmovi), Mlijeko-tehnologija,biokemija i mikrobiologija 13-16.
Condition and possibility of milk production in Pozega-Slavonia county
Ana Mrgan1, Gordana Jurišić
2
1Zvečevo d.d., prehrambena industrija, K. Zvonimira 1, HR-34000 Požega, Croatia
2Josipa Runjanina 2, HR-34000 Požega, Croatia
Summary
Milk is biological fluid with caracteristic colour, smell and taste, that is excreted by the mammary glands
of female mammals or woman. Under the term milk is always implied „cow's milk“, for all other types of
milk it must be emphysized of which animal milk originates, for example „sheep's milk“, „goat's milk“,
„buffalo's milk“ or some other kind. Breast milk is specially declared and narmally it can not be found on
market, but it takes very important role in nutritional and medical research. All kinds of milk contains the
same ingrediente but in a different mutual relationships. Milk contains several hundreds of nutrients.
Therefore, nutritionally milk is irreplaceable food. For every country, milk production is a strategic
question and it is the reflection of food production arrangement in certain country. While developed
countries meet their own needs milk production, Croatia about half of its needs by imports. From the date
that are processed in this paper shows that in the last nine years, there has been no significant positive
developments in this regard. The paper used data Croatian Agricultural Agency, Croatian Extension
Service, Croatian Bureau of Statistics, State Meteorological Service, as well as some published works,
how ten years ago and the latest data. Using available data, conclusions were drawn about the reasons for
insufficient milk production, and the capabilities of production in Pozega-Slavonia County and part of the
Brod-Posavina County, and fifty kilometers in diameter from Pozega, or an area that has traditionally
gravitated Pozega and was a source of raw materials Požeške dairies. From these data it is evident that not
conducted an effective strategy for cattle-breeding, creation of a sufficient number of family farms with
21-25 cows of high productivity.
Keywords: milk, milk production, Pozega-Slavonia country
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th and 12
th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
297
Influence of harvest date on the primary metabolites
of ˝Plavac mali˝ (Vitis vinifera L.) grapes
UDC: 663.222 : 663.252.1
Ana Mucalo1
, Goran Zdunić1, Ivana Tomaz
2, Luna Maslov
2,
Irena Budić-Leto1, Edi Maletić
2
1Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
2Faculty of Agriculture University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
Summary
Choosing the best harvest date is the most important decision of the viticulturists upon which the
balance of must before fermentation as well as the quality of future wine depends. We determined
the changes in the composition and concentration of organic acids (malic, tartaric and citric acid),
total acidity, potassium content, sugar components (fructose and glucose) and the change of pH
value in „Plavac mali“ grape during four different harvest dates within Central and Northern
Dalmatia conditions. The separation and quantitative determination of organic acids was done with
high performance liquid chromatography, while fructose and glucose were determined by applying
ultraviolet-visible spectrophotometry. Significant differences of four harvest dates in concentration
of individual primary metabolites were found in both target locations as well as between the two
observed locations. Delaying the harvest date showed an increase in sugar content (°Oe), equatation
in the mass portion of glucose and fructose and the decrease in the total content of acids in grape
berries. The concentration of malic acid decreases sharply, while the changes in concentration of
tartaric acid remain less marked during the ripening.
Keywords: glucose, fructose, HPLC-DAD, organic acids, ˝Plavac mali˝
Introduction
The essential element of the future quality of the wine and must is a degree of the ripeness
of the grapes at the moment of harvest. The taste, sensation, smell and colour of the wine
are the result of complex interaction of a large number of compounds primarily
synthesized in the grape during the ripening. The primary metabolites, sugars, organic
acids, minerals and aminoacids make biggest part of soluble dry matter in the grapes. The
change in the content and behaviour of primary metabolites starts with the véraison. The
grape swells, its skin colour changes, the accumulation of soluble hexoses, glucose and
fructose begins (Davies and Robinson, 1996; Coombe and McCarthy, 2000) as well as cell
deacidification (Peynaud and Maurié, 1958). The ripening is a continuous process during
Corresponding author: [email protected]
International Scientific and Professional Conference 15th
Ružička days
“TODAY SCIENCE – TOMORROW INDUSTRY”
11th
and 12th September 2014
Vukovar, Croatia
Prehrambena tehnologija i biotehnologija / Food technology and biotechnology
298
which grapes go through different phases (Meléndez et al., 2013). The individual
compounds reach the state of balance (Kennedy, 2008). It is commonly believed that
ripeness is a physiological age of the berries on the vine (Bisson et al., 2001) that is
divided into different stages: physiological, technological, phenolic, aromatic and texture
maturity of the grapes. The ripeness is „in the eye of the beholder“ and has the primary
function of the future use of the grapes (Hellman, 2004). The definition of the optimal date
of harvest is crucial in achieving the particular style and quality of wine, and includes
being familiar with characteristics of the variety, climatic conditions, seasonal weather
variations and ampelotechnical practices in vineyard (Bindon et al., 2013).
Primary and secondary metabolites are the characteristics of grapes being the function of
time. Defining the peak of ripening in which all the characteristics are in optimal ratio, is
of the crucial importance in improving the quality of wine. The aim of this study is to
determine the changes in the composition and content of organic acids (malic, tartaric and
citric acid), total acidity, pH value, potassium content and sugar components (fructose and
glucose) in „Plavac mali“ grape during four different harvest dates within Central and
Northern Dalmatia conditions. Displaying the dynamics of basic parametres of the grape's
ripeness has a goal in the development optimal maturity model of economically most
important red wine variety „Plavac mali“ in Croatia.
Materials and methods
Plant material
Grape samples of „Plavac mali“ variety (Vitis vinfera L.) were collected in 2013 from
the two experimental vineyards situated in the Mediterranean region of Croatia,
Central Dalmatia subregion (Duilovo) and Northern Dalmatia subregion (Baš